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Abstract. The early Eocene (∼ 55 to 50 Ma) is a time pe-

riod which has been explored in a large number of mod-

elling and data studies. Here, using an ensemble of previ-

ously published model results, making up “EoMIP” – the

Eocene Modelling Intercomparison Project – and synthe-

ses of early Eocene terrestrial and sea surface temperature

data, we present a self-consistent inter-model and model–

data comparison. This shows that the previous modelling

studies exhibit a very wide inter-model variability, but that

at high CO2, there is good agreement between models and

data for this period, particularly if possible seasonal biases

in some of the proxies are considered. An energy balance

analysis explores the reasons for the differences between the

model results, and suggests that differences in surface albedo

feedbacks, water vapour and lapse rate feedbacks, and pre-

scribed aerosol loading are the dominant cause for the dif-

ferent results seen in the models, rather than inconsisten-

cies in other prescribed boundary conditions or differences

in cloud feedbacks. The CO2 level which would give optimal

early Eocene model–data agreement, based on those models

which have carried out simulations with more than one CO2

level, is in the range of 2500 ppmv to 6500 ppmv. Given the

spread of model results, tighter bounds on proxy estimates

of atmospheric CO2 and temperature during this time pe-

riod will allow a quantitative assessment of the skill of the

models at simulating warm climates. If it is the case that a

model which gives a good simulation of the Eocene will also

give a good simulation of the future, then such an assessment

could be used to produce metrics for weighting future cli-

mate predictions.

1 Introduction

Making robust predictions of future climate change is a ma-

jor challenge, which has environmental, societal, and eco-

nomic relevance. The numerical models which are used to

make these predictions are normally tested over time peri-

ods for which there are extensive instrumental records of

climate available, typically over the last ∼ 100 yr (Hegerl

et al., 2007). However, the variations in climate over these

timescales are small relative to the variations predicted for

the next 100 yr or more (Meehl et al., 2007), and so likely

provide only a weak constraint on future predictions. As

such, proxy indicators of climate from older time periods are

increasingly being used to test models. On the timescale of
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∼ 100 000 yr, the Paleoclimate Modelling Intercomparison

Project (PMIP, Braconnot et al., 2007), now in its third phase,

is focusing on three main time periods: the mid-Holocene

(6000 yr ago, 6 k), the Last Glacial Maximum (LGM, 21 k),

and the Last Interglacial (LIG, 125 k). However, these time

periods are either colder than modern (LGM), or their

warmth is primarily caused not by enhanced greenhouse

gases, but by orbital forcing (mid-Holocene, LIG). As such,

their use for testing models used for future climate prediction

is also limited. On the timescale of millions of years, sev-

eral time periods show potential for model evaluation, being

characterised by substantial warmth which is thought to be

driven primarily by enhanced atmospheric CO2 concentra-

tions. An example is the mid-Pliocene (3 million years ago,

3 Ma), when global annual temperature was ∼ 3 ◦C greater

than pre-industrial (Dowsett et al., 2009). However, the lat-

est estimates of mid-Pliocene CO2 (Pagani et al., 2010; Seki

et al., 2010) range from ∼ 360 to ∼ 420 ppmv, which is sim-

ilar to that of modern (∼ 390 ppmv in 2010 according to the

Scripps CO2 program, http://scrippsco2.ucsd.edu/), and sub-

stantially less than typical IPCC scenarios for CO2 concen-

tration at the end of this century (∼ 1000 ppmv in the A1F1

scenario, > 1370 ppmv CO2-equivalent in the RCP8.5 sce-

nario, Meehl et al., 2007; Moss et al., 2010). The time period

which shows possibly the most similarity to projections of

the end of the 21st century and beyond is the early Eocene,

∼ 55 to ∼ 50 Ma. A recent compilation of Cenozoic atmo-

spheric CO2 is relatively data-sparse during the early Eocene,

with large uncertainty range, meaning that values more than

2000 ppmv cannot be ruled out (Beerling and Royer, 2011).

Relatively high values for the early Eocene are consistent

with recent CO2 reconstructions for the latest Eocene of the

order 1000 ppmv (Pearson et al., 2009; Pagani et al., 2011).

Proxy indicators have been interpreted as showing tropical

temperatures at this time ∼5 ◦C warmer than modern (e.g.

Pearson et al., 2001), and high latitude terrestrial tempera-

tures more than 20 ◦C warmer (e.g. Huber and Caballero,

2011). Recently, due at least in part to interest associated

with this time period as a possible future analogue, there

have been a number of new sea surface temperature (SST)

and terrestrial temperature data published, using a range of

proxy reconstruction methods. There have also been several

models recently configured for the early Eocene and attempts

made to understand the mechanisms of Eocene warmth. Most

of these studies have carried out some form of model–data

comparison; however, the models have not been formally in-

tercompared in a consistent framework, and new data now

allows a more robust and extensive evaluation of the models.

The aims of this paper are:

– To present an intercomparison of five models, all re-

cently used to simulate the early Eocene climate.

– To carry out a consistent and comprehensive com-

parison of the model results with the latest proxy

temperature indicators, taking full account of uncertain-

ties in the reconstructions.

– By analysing the energy balance and fluxes in the mod-

els, to gain an understanding of the reasons behind the

differences in the model results.

Section 2 describes the model simulations, Sect. 3 presents

the datasets used to evaluate the models, and Sect. 4 presents

the model results and model–data comparison. Section 5

quantifies the reasons for the differences between the model

results, and Sect. 6 discusses, concludes, and proposes direc-

tions for future research.

2 Model simulation descriptions

Many model simulations have been carried out over the last

two decades with the aim of representing the early Eocene.

Here, we present and discuss results from a selection of

these. We present all simulations of which we are aware that

(a) are published in the peer-reviewed literature, and (b) are

carried out with fully dynamic atmosphere–ocean general

circulation models (GCMs), with primitive equation atmo-

spheres. This makes a total of 4 models – HadCM3L (Lunt

et al., 2010), ECHAM5/MPI-OM (Heinemann et al., 2009),

CCSM3 (Winguth et al., 2010, 2012; Liu et al., 2009; Huber

and Caballero, 2011), and GISS ModelE-R (Roberts et al.,

2009). Criterion (b) is chosen to select the models which are

most similar to those used in future climate change projection

(i.e. we exclude models with energy balance atmospheres

such as GENIE; Panchuk et al., 2008). There are two sets

of CCSM3 simulations, which we name CCSM W (Winguth

et al., 2010, 2012) and CCSM H (Liu et al., 2009; Huber

and Caballero, 2011). All the models and simulations are

summarised in Table 1. Together they make up the “Eocene

Modelling Intercomparison Project”, EoMIP. EoMIP differs

from more formal model intercomparisons, such as those

carried out under the auspices of PMIP, in that the groups

have carried out their own experimental design and simula-

tions in isolation, and the comparison is being carried out

post hoc, rather than being planned from the outset. As such,

the groups have used different paleogeographical boundary

conditions and CO2 levels to simulate their Eocene climates.

This has advantages and disadvantages compared to the more

formal approach with a single experimental design: The main

disadvantage is that a direct comparison between models is

impossible due to even subtle differences in imposed bound-

ary conditions; the main advantage is that in addition to un-

certainties in the models themselves, the model ensemble

also represents the uncertainties in the paleoenvironmental

conditions, and therefore more fully represents the uncer-

tainty in our climatic predictions for that time period.
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Table 1. Summary of model simulations in EoMIP. Some models have irregular grids in the atmosphere and/or ocean, or have spectral

atmospheres. The atmospheric and ocean resolutions are given in number of grid boxes, X × Y ×Z where X is the effective number of grid

boxes in the zonal, Y in the meridional, and Z in the vertical. See the original references for more details.

Name Eocene simulation reference Model name and reference Atmosphere resolution Ocean resolution

HadCM Lunt et al. (2010) HadCM3L, Cox et al. (2001) 96 × 73 × 19 96 × 73 × 20

ECHAM Heinemann et al. (2009) ECHAM5/MPI-OM, Roeckner

et al. (2003)

96 × 48 × 19 142 × 82 × 40

CCSM W Winguth et al. (2010, 2012) CCSM3, Collins et al. (2006);

Yeager et al. (2006)

96 × 48 × 26 100 × 116 × 25

CCSM H Liu et al. (2009)

Huber and Caballero (2011)

CCSM3, Collins et al. (2006);

Yeager et al. (2006)

96 × 48 × 26 100 × 122 × 25

GISS Roberts et al. (2009) GISS ModelE-R, Schmidt et al.

(2006)

72 × 45 × 20 72 × 45 × 13

Name Paleogeography Sim. length

(years)

CO2 levels Vegetation Aerosols

HadCM proprietary > 3400 ×2,4,6 homogenous shrubland as control

ECHAM Bice and Marotzke (2001) 2500 ×2 homogenous woody savanna as control

CCSM W Sewall et al. (2000)

with marginal sea

parameterisation

1500 ×4,8,16 Shellito and Sloan (2006) as control

CCSM H Sewall et al. (2000) > 3500 ×2,4,8,16 Sewall et al. (2000) reduced aerosol

GISS Bice and Marotzke (2001) 2000 ×2 Sewall et al. (2000) as control

2.1 HadCM

Lunt et al. (2010) investigated the potential role of hydrate

destabilisation as a mechanism for the Paleocene–Eocene

Thermal Maximum (PETM, ∼ 55 Ma), using the HadCM3L

model. They found a switch in modelled ocean circulation

which occurred between ×2 and ×4 pre-industrial concen-

trations of atmospheric CO2, which resulted in a non-linear

warming of intermediate ocean depths. They hypothesised

that this could be a triggering mechanism for hydrate release.

For the three Eocene simulations carried out (×2, ×4, and

×6), vegetation was set globally to a “shrub” plant functional

type. The paleogeography is proprietary but is illustrated in

Supplementary Information of Lunt et al. (2010). An addi-

tional simulation at ×6 CO2 was carried out with the same

model by Tindall et al. (2010), which incorporated oxygen

isotopes into the hydrological cycle. The δ18O of seawater

from the Tindall et al. (2010) simulation is used in our SST

compilation to inform the uncertainty range of the proxies

based on δ18O measurements (see Sect. 3).

2.2 ECHAM

Heinemann et al. (2009) presented an ECHAM5/MPI-OM

Eocene simulation and compared it to a pre-industrial sim-

ulation, diagnosing the reasons for the Eocene warmth by

making use of a simple 1-D energy balance model (which

we use in this paper in Sect. 5). They reported a larger polar

warming than many previous studies, which they attributed to

local radiative forcing changes rather than modified poleward

heat transport. The Eocene simulation was carried out under

×2 CO2 levels, and a globally homogeneous vegetation was

prescribed, with characteristics similar to present-day woody

savanna.

2.3 CCSM W and CCSM H

Huber and Caballero (2011) presented a set of Eocene

CCSM3 simulations, originally published by Liu et al.

(2009), with the main aim of comparing these with a new

compilation of proxy terrestrial temperature data. They found

that at high CO2 (×16) they obtained good agreement with

data from mid and high latitudes. We use this same proxy

dataset in this paper, including estimates of uncertainty, for

evaluating all the EoMIP simulations.

Winguth et al. (2010) and Winguth et al. (2012) carried

out an independent set of CCSM3 simulations motivated by

investigating the role of hydrates as a possible cause of the

PETM. They found evidence of non-linear ocean warming

and enhanced stratification in response to increasing atmo-

spheric CO2 concentrations, and a shift of deep water forma-

tion from northern and southern sources to a predominately

southern source.
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The CCSM W and CCSM H simulations differ mainly in

the treatment of aerosols. In the CCSM W simulation, a high

aerosol load is applied, whereas the CCSM H simulation

considers a lower-than-present-day aerosol distribution fol-

lowing the approach by Kump and Pollard (2008), possibly

justified by a reduced ocean productivity and thus reduced

DMS (Dimethyl sulfide) emissions. A globally reduced pro-

ductivity is supported by the recent study of Winguth et al.

(2012). However, it remains uncertain to what extent inten-

sified volcanism near the PETM might have increased the

aerosol load (Storey et al., 2007).

2.4 GISS

Roberts et al. (2009) carried out an investigation into the role

of the geometry of Arctic gateways in determining Eocene

climate with the GISS ModelE-R, configured with ×4 CO2

and ×7 CH4 compared with pre-industrial. They estimated

the change to the total forcing to be about ×4.3 of CO2-

equivalent, but for the purposes of this paper we assume their

simulations were at ×4 CO2. They found that restricting Arc-

tic gateways led to warming of the North Atlantic and fresh-

ening of the Arctic Ocean, similar to data associated with

the “Azolla” event (Brinkhuis et al., 2006). They incorpo-

rated oxygen isotopes into the hydrological cycle in their

model (Roberts et al., 2011), and used the predicted isotopic

concentrations of seawater to more directly compare with

proxy temperature estimates. The δ18O of seawater from the

Roberts et al. (2011) simulation is used in our SST compila-

tion to inform the uncertainty range of the proxies based on

δ18O measurements (see Sect. 3).

3 Early Eocene SST and land temperature datasets

To evaluate the various climate model simulations, we make

use of both terrestrial and marine temperature datasets. The

marine dataset has been compiled for this paper, and the ter-

restrial data is identical to that presented in Huber and Ca-

ballero (2011). In both cases we take as full account as pos-

sible of the various uncertainties associated with each proxy.

The purpose of these compilations is not to provide a

tightly constrained “time-slice” reconstruction of any point

in the early Eocene against which the ensemble or individ-

ual model runs can be compared; instead, we include data

spanning the entire early Eocene. This approach is consis-

tent with the EoMIP simulations themselves, in which mod-

els have not been run with the same specific set of simulation

boundary conditions, such as paleogeography or atmospheric

greenhouse gas forcings, but can be considered to reflect a

possible range of time periods within the early Eocene.

3.1 Marine dataset

For the purposes of model–data comparison, we have

compiled (see Supplement) available paleotemperature

estimates for sea surface (archaeal-derived isoprenoid glyc-

erol dibiphytanyl glycerol tetraether (GDGT) paleothermom-

etry), near-sea surface (mixed layer dwelling planktonic

foraminifera) and shallow inner-shelf bottom waters (bivalve

oxygen isotopes) from across the early Eocene (Ypresian

stage; ∼ 55.9 to 49 Ma). Also included in the compilation are

some data from the very latest Paleocene, within the interval

immediately before but not including the Paleocene–Eocene

Thermal Maximum (PETM). These data are included to in-

crease the geographical coverage of data, especially in the

mid to low latitudes.

Long-term paleotemperature records through the early

Eocene indicate the presence of a significant warming trend

in both oceanic intermediate waters of ∼4 ◦C (Zachos et al.,

2008) and high-latitude sea surface temperatures of up to

∼ 10 ◦C (Bijl et al., 2009; Hollis et al., 2012) in the lead-up to

the early Eocene Climatic Optimum (EECO) (Zachos et al.,

2008). Although tropical sea surface temperatures may have

been more stable (Pearson et al., 2007) through this interval,

attention should be paid to the age of the compiled proxy

records relative to this warming trend. Notably, comparison

of EECO records from the southern high latitudes with basal

early Eocene records from the mid and low latitudes, or non-

EECO proxy records from the high latitudes, could introduce

a spurious reduction in the latitudinal temperature gradient or

false high latitude proxy–proxy disagreements, respectively.

The relative paucity of the available data however, which is

taken from a small number of locations, many of which have

limited time series and/or poor age control, prohibits a nar-

rowly focused time-slice reconstruction of SSTs within the

early Eocene. Instead, we have chosen to divide the data into

two broad categories, those from the period of peak Cenozoic

warmth during the EECO, and the remainder, assigned to a

generally cooler “background” early Eocene climate state.

Pre-PETM records are included in this “background” early

Eocene compilation. Given there is some evidence for warm-

ing between pre- and post-PETM conditions in the high lati-

tudes (Bijl et al., 2009; Hollis et al., 2012), as well as the gen-

eral early Eocene warming trend, these pre-PETM records

are likely to have a slight cool bias relative to other estimates

of early Eocene temperatures.

The identification of EECO records is only possible where

there is either good age control and/or a clear temperature-

trend across a long-term early Eocene record. Only three ma-

rine SST proxy datasets are identified as representing EECO

conditions for all or part of the associated SST time series –

ODP Site 1172D, Waipara River and the Arctic IODP Site

M0004. The EECO in the ODP Site 1172D record is iden-

tified following Hollis et al. (2012) as spanning ∼ 53.1 to

∼ 49 Ma (588.85 to 562.70 m b.s.f.), with the pre-EECO in-

terval from 54.9 to 53.3 Ma (611.0 to 591.15 m b.s.f.). All of

the Waipara River data used here are identified as represent-

ing EECO conditions (Hollis et al., 2009, 2012). Although

the early Eocene age model for the Arctic IODP M0004

is poorly constrained between early Eocene hyperthermal
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events and the termination of the “Azolla” phase, there is

a distinct cooling in GDGT-derived proxy temperature es-

timates between the stratigraphically lower (core 27X) and

upper (cores 23X to 19X) parts of this section (Sluijs et al.,

2008). For the purposes of a more refined proxy–proxy and

proxy–model comparison, we have labelled the (warmer)

SST data from the lower part of the M0004 as pre-EECO

and the (cooler) SST data from the upper part as EECO.

This is in line with speculation in Sluijs et al. (2008) that

while there is a global trend of warming through the early

Eocene, Arctic SSTs reduced during this interval. Data from

M0004 Core 27X between 369 to 367.9 rmcd has also been

excluded, which, based on carbon isotope stratigraphy, likely

represents the early Eocene hypethermal event ETM2 (Sluijs

et al., 2008).

The remaining sites have either relatively poorly con-

strained age models and have no discernable SST trend

through the dataset used (ODP Sites 690 and 738), are spot

samples within the early Eocene (Tanzania, Hatchetigbee

Bluff) or are well-constrained pre-PETM records. Seymour

Island is the exception to this, where there remains uncer-

tainty about even the gross age of this succession. The data

used in this compilation is sourced from Telms 3 to 5, which,

based on strontium isotope stratigraphy and sparse biostrati-

graphic data, were thought to span the early Eocene, ex-

tending just across the early/middle Eocene boundary (Ivany

et al., 2008). A revised age assessment, based on dinoflag-

ellate biostratigraphy, suggests that the lower part of this

sequence is middle and not early Eocene in age (Dou-

glas et al., 2011). This new biostratigraphic data remains

somewhat tentative, and while awaiting the publication of

a fully revised age model for these successions, the Sey-

mour Island data is provisionally included in the SST com-

pilation. It is however, assigned to the background “pre-

EECO” category, as it appears to be more likely to be rep-

resentative of middle Eocene post-EECO cooling. It is also

noted that although Tanzanian Drilling Project Site 2 (TDP2)

was originally reported as extending down into the early

Eocene (Nicholas et al., 2006; Pearson et al., 2004), with

the resolution of planktic foraminifera–nannofossil biostrati-

graphic mismatches around the early/middle Eocene bound-

ary (Payros et al., 2007), TDP2 is now considered to be

entirely within the basal middle Eocene (P. Pearson, per-

sonal communication, July 2012) and is excluded from this

compilation.

For each location the primary geochemical proxy data

were first collated and then used to generate a range of SST

estimates based on a set of plausible assumptions about the

underlying paleotemperature methodology. All of the pale-

otemperature estimation methods are subject to uncertainty

arising from their present-day calibrations, necessary as-

sumptions about ancient seawater chemistry and potential

non-analogue behaviour between modern and ancient sys-

tems. Although positive steps are being made with deep-time

proxy inter-comparison studies (Hollis et al., 2012), potential
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Fig. 1. SST proxy dataset, compiled for this study. Coloured sym-

bols show the various median estimates from the literature, with

various assumptions about Mg/Ca of seawater, δ18Osw, and TEX86

calibration. Error bars indicate the maximum and minimum range

at each site including temporal variability and calibration error.

The filled black circles represent the mean SST at each site, aver-

aged over the various assumptions. Larger symbols represent “back-

ground” early Eocene state, smaller symbols represent the EECO.

See Sect. 3.1 for more details.

non-analogue behaviour is very difficult to assess and we

do not try to quantify this directly in our uncertainty anal-

ysis. We do, however, attempt to quantify uncertainty asso-

ciated with both paleotemperature calibrations and the es-

timates of ancient seawater chemistry. This is achieved by

(1) applying the standard error determined from the mod-

ern calibration dataset to paleotemperature estimates; (2) the

use of multiple alternate calibrations where there is ongo-

ing debate about the most appropriate calibration or proxy

method (GDGT paleothermometry) or where modern cal-

ibrations vary with environmental conditions (oxygen iso-

topes); and (3) applying multiple estimates (Mg/Ca) or dif-

ferent estimation methodologies (oxygen isotopes) for sea-

water chemistry. Where distinct proxies (GDGT paleother-

mometry) or distinct parameters for seawater chemistry are

used (Mg/Ca and oxygen isotopes), the derived temperature

ranges are calculated separately at each site. This leads to

the following sets of proxy data: TEXH
86, TEXL

86, 1/TEX86,

oxygen isotope paleothermometry with modelled and latitu-

dinal corrected δ18Osw estimates, and Mg/Ca paleothermom-

etry with assumed Mg/Casw values of 3, 4 and 5 mol mol−1.

Details of all these methods and calculations are described

below, and illustrated in Fig. 1.

3.1.1 Oxygen isotopes

For planktic foraminifera-derived δ18O temperature esti-

mates, we applied the temperature–δ18O calibrations of Be-

mis et al. (1998) for the symbiotic planktic foraminifera,

www.clim-past.net/8/1717/2012/ Clim. Past, 8, 1717–1736, 2012
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Orbulina universa, under both high and low light con-

ditions (their Eqs. 1 and 2). Together, these two equa-

tions bracket most of the natural variability in planktic

foraminifera temperature–δ18O space within modern plank-

ton tow data (Bemis et al., 1998). Unlike the multiple GDGT

paleotemperature equations, which seem to vary in their ac-

curacy with geographical location or paleoenvironment, the

two equations of Bemis et al. (1998) represent the natural

variability at a single location (high/low light conditions).

The derived SST estimates from these two equations are thus

combined into a single range representing the potential en-

vironmental variability at any location. The standard errors

on Eq. (1) (low light) and 2 (high light) are ±0.7 and 0.5 ◦C,

respectively.

Three sets of temperature estimate are, however, plotted

in Fig. 1 for each location with planktic foraminifera δ18O

data based on three estimates of δ18Osw: the latitudinal cor-

rection of Zachos et al. (2008) and the modelled mixed-layer

δ18Osw of Tindall et al. (2010) and of Roberts et al. (2011).

The latitudinal correction is a first-order approximation of the

effects of the global hydrological cycle on seawater δ18Osw

and is a widely used improvement on an “ice-free” globally

uniform estimate of δ18Osw. This empirical relationship does

not, however, include zonal deviations from this general pat-

tern. In the early Paleogene world, these zonal deviations are

likely to have been significantly different to the modern due

to the closure of the major Southern Ocean gateways and

the resulting high-latitude isolation of the Atlantic and Pa-

cific basins. The isotope-enabled versions of HadCM3L and

GISS, however, reproduce both the expected latitudinal gra-

dients in δ18Osw and an estimation of early Paleogene basin-

to-basin zonal gradients (Tindall et al., 2010; Roberts et al.,

2011). These modelled δ18Osw values, taken from modelled

ocean depths of 50 m, are a potential refinement to early Pa-

leogene δ18Osw estimation and are included here to provide

a more comprehensive assessment of the range of possible

δ18O SST estimates.

For the latitudinal correction, we assume a global average

δ18O composition of early Eocene seawater of −1 h to be

consistent with the value used by Tindall et al. (2010). This is

comparable to the −0.96 h used in a recent early Eocene pa-

leotemperature inter-comparison (Hollis et al., 2012), and the

value of −0.81 h used in Roberts et al. (2011). A SMOW to

VPDB conversion of −0.27 h was applied to all estimates of

δ18Osw. The maximum difference in paleotemperature esti-

mates between the three δ18Osw assumptions is for Seymour

Island, where the median value using the modelled δ18Osw

of Roberts et al. (2011) is 5.6 ◦C warmer than that using the

δ18Osw of Tindall et al. (2010).

For the Eurhomalea and Cucullaea bivalve δ18O data,

we used the biogenic aragonite δ18O–temperature calibration

of Grossman and Ku (1986) as modified by Kobashi et al.

(2003) with both the latitude-corrected and modelled δ18Osw

noted above. We calculated the standard error on the Gross-

man and Ku (1986) calibration, based on the original dataset

for biogenic aragonite, to be ±1.4 ◦C. A SMOW to VPDB

correction of −0.2 h is already implicit within the Kobashi

et al. (2003) form of this temperature equation.

3.1.2 Mg/Ca ratios of planktonic foraminifera

To estimate calcification temperature, we used the multi-

species sediment trap calibration of Anand et al. (2003),

which has a calibration standard deviation of ±1.13 ◦C.

This paleotemperature estimation relies strongly upon the

assumed value of the Mg/Ca ratio in early Eocene seawa-

ter, which is still poorly constrained. Values in the range of

3–4 mol mol−1 are typically used within paleoceanographic

studies, and these produce tropical (Sexton et al., 2006) and

mid-latitude (Creech et al., 2010) surface ocean tempera-

tures that are broadly consistent with independent paleotem-

perature estimates. Here, we separately calculate and plot

(in Fig. 1) paleotemperature estimates based on three val-

ues of seawater Mg/Ca across a wide range, namely 3, 4 and

5 mol mol−1. Distinguishing temperature estimates based on

these three values allows for (1) a clear representation of the

sensitivity of temperature to the assumed value of Mg/Casw,

and (2) the future use of the most appropriate temperature

range if/when more robust constraints on early Paleogene

Mg/Casw become available.

For reference, an estimate of ∼ 3.5 mol mol−1 is ob-

tained using the Lear et al. (2002) calibration for Oridor-

salis umbonatus, the paired foraminifera Mg/Ca value of

2.78 mol mol−1 and δ18O-derived bottom water temperature

of 12.4 ◦C they quote for ∼ 49 Ma. A lower, ∼ 3 mol mol−1

value is obtained by the same method but using the re-

vised calibrations for O. umbonatus (Rathmann et al., 2004;

Rathmann and Kuhnert, 2008). Higher values of ∼ 4 to

5 mol mol−1 are indicated by δ18O–Mg/Ca paleotempera-

ture inter-comparisons with well-preserved early Eocene

foraminifera (Sexton et al., 2006), whilst recent modelling

of trace metal fluxes and assessments of the long-term ben-

thic foraminifera δ18O–Mg/Ca record suggest values of ∼

3 mol mol−1 or less (Cramer et al., 2011; Farkaš et al.,

2007). These lower values are more consistent with estimates

based on ridge flank hydrothermal carbonate veins, at around

2 mol mol−1 (Coggon et al., 2010). There remains a pressing

need to understand the causes of these discrepancies and es-

tablish robust estimates of the Mg/Ca ratio of ancient seawa-

ter (see discussion in Coggon et al., 2011).

3.1.3 TEX86

Determining the appropriate proxy index and calibration

for deep-time paleotemperature estimates based on the

relative abundances of archaeal-derived isoprenoid glyc-

erol dibiphytanyl glycerol tetraethers (GDGTs) is problem-

atic. Three methods have recently been proposed: separate

“low” and “high” temperature proxies based on different

ratios of GDGTs, TEXL
86 and TEXH

86 (Kim et al., 2010),
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Fig. 2. Global annual mean (a) SST (〈SST〉) and (b) continental 2 m air temperature (〈LAT〉), as a function of CO2 for all simulations, and

for observational datasets. The simulations at ×1 CO2 are pre-industrial reference simulations.

and a non-linear calibration of the original TEX86 index,

“1/TEX86” (Liu et al., 2009), revised by Kim et al. (2010).

TEXH
86 and 1/TEX86 are based on the same underlying ratio

of GDGTs – the original TEX86 proxy – but differ in the form

of their calibration equations (logarithmic versus reciprocal).

The fundamentally different ratio of GDGT isomers within

TEXL
86 results in a proxy that can, in certain instances, pro-

duce temperature trends contrary to TEXH
86 and 1/TEX86. It

is, as yet, unclear which of these proxies is the most appro-

priate for early Eocene paleotemperature estimation. There

are indications that their suitability may vary with both the

temperature range and paleoenvironment of GDGT forma-

tion (Hollis et al., 2012).

For the purposes of this study, we separately calculate

and plot (in Fig. 1) paleotemperatures at each site using all

three measures: TEXH
86, TEXL

86 and 1/TEX86. This illustrates

the full range of temperature estimates produced by these

GDGT-based proxies at a given location but also allows for a

more refined use of this data as the behaviour of these prox-

ies becomes better understood. The calculation of all three

proxies at all sites may be considered by some to be an

erroneous application of, for example, a “low temperature”

proxy, TEXL
86, to the mid and low latitudes of a warm cli-

mate state. We must stress that we do not intend to imply

that all three are equally applicable at all sites. Rather, by

showing all three proxies at all sites alongside other proxy

temperature estimates, we hope to contribute to the ongoing

discussion about the behaviour of GDGT proxies in deep-

time paleoenvironments (Hollis et al., 2012).

Recent development of good practice suggests the exclu-

sion of paleotemperature estimates from samples with a BIT

index in excess of 0.3 (Kim et al., 2010). Although we ac-

cept this as a recommendation, in the existing published data

compiled here it would result in the exclusion of all early

Eocene data from Tanzania and Hatchetigbee Bluff, which

both have BIT indices in the range 0.3 to 0.5. We choose

to include this published data but note these higher BIT in-

dices. In some cases, as for the early Eocene data from Tanza-

nia, TEXL
86 temperature estimates are clearly erroneous and

are excluded. Due to the greater availability of data, sam-

ples from the Arctic Ocean IODP Site M0004 with BIT in-

dices > 0.3 were excluded. The standard TEX86 proxies dis-

cussed above can be applied to this early Eocene Arctic data

rather than the TEX86 proxy used through the PETM by

Sluijs et al. (2006). The errors (◦C) on the GDGT-based prox-

ies are ±2.5 for TEXH
86 (GDGT index-2), ±4.0 for TEXL

86

(GDGT index-1) and ±5.4 for 1/TEX86 (Kim et al., 2010).

From the arrays of time-varying temperature estimates at

each site, and for all assumptions of seawater composition

and TEX86 calibration, we calculated the median, maximum

and minimum values from the time series as the basis for the

model–data comparisons. There is an important caveat to this

approach that relates to the effect of data quantity and strati-

graphic range on the temperature envelopes plotted. Where

there are reasonably extensive time series, natural tempo-

ral variability can result in a larger envelope of temperature

estimates than at sites where data is limited to a few spot

samples. As a result, these envelopes should not be taken to

solely represent uncertainty in paleotemperature estimation,

but to also include a measure of the temporal variability at

individual sites.

Finally, in order to provide a single “zero-order estimate”

for SST at each location, we averaged the median esti-

mates at each site across the various assumptions of seawater

chemistry and TEX86 calibration. The resulting estimates are

shown as filled black circles in Fig. 1, separately for EECO

and non-EECO estimates. We are not suggesting that these

are “best” estimates – interpretation of proxies is undergoing

rapid development at present – instead their main use is to

provide single-value estimates in the maps in Figs. 3 and 9a,

and to provide a zero-order target for the model error scores

in Table 2. By providing the raw data in the Supplement,
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Fig. 3. SST anomaly in the model simulations (SSTm
e −SSTm

p ), as a function of model and fractional CO2 increase from pre-industrial. Also

shown for the proxies are SSTd
e − SSTd

p.

others will be able to provide their own interpretation if nec-

essary as data is re-interpreted.

3.2 Terrestrial dataset

For the terrestrial, we make use of the data compilation pre-

sented in Huber and Caballero (2011). This is based largely

on macrofloral assemblages, with mean annual temperatures

being reconstructed primarily by leaf-margin analysis and/or

CLAMP (physiognomic analysis of leaf fossils). Other prox-

ies are also incorporated, such as isotopic estimates, organic

geochemical indicators, and palynoflora. The error bars asso-

ciated with each data point incorporate uncertainty in calibra-

tion, topography, and dating. More information on the data

themselves, and the estimates of uncertainty, can be found in

Huber and Caballero (2011).

Both marine and terrestrial datasets are provided in the

Supplement, and are plotted geographically in Figs. 3 and

4, and latitudinally in Figs. 5 and 7.

The SST plots have error bars which include the contri-

butions from the two sources of uncertainty we have con-

sidered, related to calibration and temporal trends. This ap-

proach to the data aims to include a wide range of potential

uncertainties in order to highlight both the regions of poten-

tial model–data agreement, but more importantly where there

appear to be genuine discrepancies that cannot realistically

be explained by the uncertainties in the proxy temperature

estimations.

4 Results and model–data comparison

In this section, we present results from the EoMIP model

ensemble (early Eocene simulations and pre-industrial con-

trols), as described in Sect. 2, and compare them with the

data described in Sect. 3. The reasons for the different model

results are explored in more detail in Sect. 5.

It is useful at this stage to define some nomenclature. To

represent the distribution of temperature, we write SST for

sea surface temperature (only defined over ocean), or LAT

for land near-surface (∼ 1.5 m) air temperature (only defined

over continents), or GAT for near-surface air temperature

(defined globally), or GST for surface temperature (defined

globally), or just T for a generic temperature. Global means

are denoted by angled brackets, so that, for example, the

global mean sea surface temperature is 〈SST〉. Zonal means

are denoted by overbars, so that the zonal mean sea surface

temperature is SST. In the case of model output, ensem-

ble means are denoted by square brackets, such as [LAT].

Eocene quantities are given a subscript e, and present/pre-

industrial (i.e. modern) quantities are given a subscript p.

Model values are given a superscript m, and proxy or ob-

served data are given a superscript d. Because the modern

observed data has global coverage (albeit interpolated, or

assimilated with models in some regions), but the Eocene

proxy data is sparse, the modern observed global or zonal

means 〈T d
p 〉 and T d

p are defined, but the Eocene equivalents

are not.
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Fig. 4. Continental surface air temperature anomaly in the model simulations (LATm
e − GATm

p ), as a function of model and fractional CO2

increase from pre-industrial. Also shown for the proxies are LATd
e − GATd

p.

Table 2. Global mean temperatures and model mean error scores for

each simulation. Scores are calculated based on the SST (σsst) and

land surface air temperature (σlat) data. Definitions of the scores are

given in Eqs. (1) and (2). Rows in bold indicate the best (i.e. lowest

σ ) CO2 level for each model.

Model CO2 〈SST〉 〈LAT〉 〈GST〉 σsst (◦C) σlat (◦C)

HadCM 2× 21.45 11.71 18.54 8.8 15.5

4× 24.19 16.20 21.95 6.0 11.4

6× 26.25 19.80 24.56 3.9 7.7

ECHAM 2× 24.65 20.59 24.03 5.8 9.7

CCSM W 4× 22.24 16.26 20.95 6.7 10.3

8× 24.45 19.57 23.59 4.0 7.2

16× 27.14 23.16 26.46 0.9 3.7

CCSM H 2× 22.15 15.71 21.12 8.6 11.5

4× 23.94 18.41 23.17 6.6 8.5

8× 26.43 21.66 25.79 3.6 5.1

16× 29.75 26.30 29.47 0.0 0.4

GISS 4× 26.43 21.97 23.25 3.8 6.9

4.1 Inter-model comparison

Figure 2 shows the global annual mean sea surface tem-

perature, 〈SST〉, and global annual mean near-surface land

air temperature, 〈LAT〉, from all the GCM simulations in

the EoMIP ensemble, and for modern observations; the

Eocene values are also given in Table 2. The observed mod-

ern datasets are HadISST for SSTs (pre-industrial; 1850–

1890) and NCEP (Kalnay et al., 1996) for near-surface air

temperatures (present; 1981–2010). For any given CO2 level,

there is a wide range of modelled Eocene global mean values;

for example, at 560 ppmv, there is a 8.9 ◦C range in 〈LATm
e 〉

and a 3.2 ◦C range in 〈SSTm
e 〉. This range is larger than

the range of simulated modern global means, which them-

selves agree well with the observed modern global means.

The spread in Eocene results is due to (a) differences in

the way the Eocene boundary conditions have been imple-

mented in different models, and (b) different climate sen-

sitivities in the different models. These differences are ex-

plored in Sect. 5. The clustering of the pre-industrial results

is likely a result of tuning of the pre-industrial simulations to

best match observations. For those models with more than

one Eocene simulation, the Eocene climate sensitivity (1

〈GAT〉 per CO2 doubling) can also be seen to vary, both be-

tween models and also within one model as a function of

CO2. The variation of climate sensitivity between models is

well documented in the context of future climate simulations

(e.g. IPCC, 2007). The increase in climate sensitivity with

CO2 (for example in the CCSM H model) is due to the non-

linear behaviour of climate system feedbacks, for example,

associated with water vapour (see Sect. 5); however, there

is also some non-linearity in the forcing itself as CO2 in-

creases (Colman and McAveney, 2009). For HadCM, it is

also related to a switch in ocean circulation which occurs be-

tween ×2 and ×4 CO2 and is associated with a non-linear in-

crease in surface ocean temperature (Lunt et al., 2010). The

HadCM model also carried out an Eocene simulation with

www.clim-past.net/8/1717/2012/ Clim. Past, 8, 1717–1736, 2012
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Fig. 5. Comparison of modelled SST with proxy-derived temperatures, SST vs. latitude. The simulations at ×1 CO2 are pre-industrial

reference simulations. For the model results, the continous lines represent the zonal mean, and the open symbols represent the modelled

temperature at the same location (longitude, latitude) as the proxy data. For the proxy data, the filled symbols represent the mean proxy

temperature, and the error bars represent the range. The smaller filled symbols are EECO temperatures. See Sect. 3 and the Supplement for

more details on the range calculations.

×1 CO2 (not shown). Comparison of that simulation with

its pre-industrial control shows that changing the non-CO2

boundary conditions to those of the Eocene (i.e. topographic,

bathymetric, vegetation, and solar constant changes) results

in a 1.8 ◦C increase in global mean surface air temperature,

by comparison with a 3.3 ◦C increase for a CO2 doubling

from ×1 to ×2 under Eocene conditions. At a given CO2

level, the CCSM W and CCSM H models give quite differ-

ent global means. This difference in mean Eocene climate

state between the two similar models is mostly due to dif-

ferences in the assumed Eocene atmospheric aerosol load-

ing; CCSM W includes modern aerosols, whereas CCSM H

includes no aerosol loading (see Sect. 2 and Table 1). Both

these models share the same pre-industrial simulation. For all

models, the 〈LAT〉 and 〈SST〉 means share similar character-

istics, albeit with 〈SST〉 varying over a smaller temperature

range.

Figure 3 shows the simulated annual mean SST anomaly

from each model and for the proxy reconstructions. A sim-

ple anomaly SSTe − SSTp would not be particularly infor-

mative because many regions would be undefined due to

the difference in continental positions between the Eocene

and present. Instead, we show SSTe − SSTp, which is only

undefined over Eocene continental regions and latitudes at

which there is no ocean in the modern. The figures show

that some features of temperature change are simulated con-

sistently across models, such as the greatest ocean warming

occurring in the mid latitudes. This mid-latitude maximum

is due to reduced SST warming in the high latitudes due to

the presence of seasonal sea ice anchoring the temperatures

close to 0 ◦C combined with reduced warming in the tropics

due to a lack of snow and sea ice albedo feedbacks. How-

ever, other patterns are not consistent. For example, GISS

at ×4 and HADCM at ×6 have similar values of 〈SST〉

relative to their controls (8.6 and 9.0 ◦C, respectively), but

the warming in GISS is greatest in the northeast Pacific and

the Southern Ocean, and the warming in HADCM is great-

est in the North Atlantic and west of Australia. Similarly,

ECHAM at ×2 and CCSM H at ×4 have similar global mean

SST anomalies (7.2 and 7.6 ◦C, respectively), but the greatest

Northern Hemisphere warming is in the Atlantic for ECHAM

and in the Pacific for CCSM H. The two CCSM models ex-

hibit similar patterns of warming, correcting for their offset

in absolute Eocene temperature – i.e. the patterns of warming

in CCSM H at ×8 are similar to those in CCSM W at ×16

(with anomalies of 10.1 and 10.8 ◦C, respectively).

Figure 4 shows the simulated annual mean LAT anomaly

from each model and for the proxy reconstructions. The

anomaly is calculated relative to the pre-industrial (or mod-

ern in the case of the proxies) global (land plus ocean) zonal

mean air temperature for each model, i.e. LATe − GATp.

The global (as opposed to land-only) zonal mean is used for

calculating the anomaly in order to avoid undefined points

(for example in the latitudes of the Southern Ocean where

there is no land in the modern). Similar to SST, there are

some consistent features between models – greatest warming

is in the Antarctic (due to the lower topography via the lapse-

rate effect and the change in albedo), and there is substantial

boreal polar amplification. Again, there are also differences

between models. For example, GISS at ×4 and ECHAM at
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Fig. 6. As Fig. 5a and d, but the HadCM and CCSM H modelled zonal mean represents the warm month mean SST as opposed to annual

mean.

×2 have similar values of 〈LAT〉 relative to their controls

(8.5 and 7.3 ◦C, respectively), but GISS has a substantially

greater warming over Southeast Asia. These differences can-

not be explained solely by differences in topography – the

GISS and ECHAM models both use the Eocene topography

of Bice and Marotzke (2001).

4.2 Model–data comparison

Figure 5 shows a zonal SST model–data comparison for

each model. The longitudinal locations of the SST data can

be seen in Fig. 3. Each model is capable of simulating

Eocene SSTs which are within the uncertainty estimates of

the majority of the data points. The data points which lie

furthest from the model simulations are the ACEX TEX86

Arctic SST estimate (Sluijs et al., 2006), and the δ18O and

TEX86 estimates from the southwest Pacific (Bijl et al.,

2009). The Arctic temperature reconstructions have uncer-

tainty estimates which mean that at high CO2, the CCSM H

(×8–16) and CCSM W (×16) model simulations are just

within agreement. At this CO2 level, these models are also

consistent with most of the tropical temperature estimates.

From Fig. 2a, it is likely that other models could also obtain

similarly high Arctic temperatures if they were run at suf-

ficiently high CO2 or low aerosol forcing. Also, given that

some of these models (e.g. HadCM) have a higher climate

sensitivity than CCSM H, this model–data consistency could

be potentially obtained at a lower CO2 than in CCSM.

TEX86 is a relatively new proxy, which, as discussed in

Sect. 3, is currently undergoing a process of rapid develop-

ment. In this context, it has been suggested that the proxy

could be recording the paleotemperature anomaly of the

bloom season of the marine archaeota as opposed to a true

annual mean. If this is the case, then it is likely that a more

appropriate comparison is with the modelled summer tem-

perature. This is illustrated in Fig. 6, for the HadCM and

CCSM H models. In this case, the modelled warm month

mean temperature is within the uncertainty range of the Arc-

tic TEX86 temperatures for both models.

Figure 7 shows the terrestrial temperature model–data

comparison for each model. Those models which have been

run at high CO2 (both CCSM models), show good agreement

with the data across all latitudes. The other models do not

simulate such high temperatures, but, as with SST, it does

appear that if they had been run at higher CO2, the model–

data agreement would have been better. The HadCM model

appears to be somewhat of an outlier in the Northern Hemi-

sphere high latitudes, as it shows less polar amplification than

the other models (see Sect. 4.3), an effect also seen in SST.

A quantitative indication of the model–data comparison

for each simulation cannot currently be used to rank the

models themselves, because the actual CO2 forcing is not

well constrained by data. However, it could give an indication

of the range of CO2 concentrations which are most consistent

with the data. Given the sparseness of the SST and terrestrial

data, any score should be treated with some caution. This is

confounded by the uneven spread of the data; for example,

there is a relatively high concentration of terrestrial data in

North America. There are also issues associated with the dif-

ferent land–sea masks in the different models, which mean

that the number of proxy data locations at which there are de-

fined modelled values differs between the models. Therefore,

we generate a simple mean error score for each simulation,

σ , for both SST (σsst) and land air temperature (σlat) by av-

eraging the error in temperature anomaly at the location of

each of N data points:

σsst =
1

N

∑
(SSTm

e − SSTm
p − SSTd

e + SSTd
p), (1)

σlat =
1

N

∑
(LATm

e − GATm
p − LATd

e + GATd
p), (2)
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Fig. 7. Comparison of modelled SAT with proxy-derived temperatures, SAT vs. latitude. The simulations at ×1 CO2 are pre-industrial refer-

ence simulations. For the model results, the continous lines represent the zonal mean, and the symbols represent the modelled temperature at

the same location (longitude, latitude) as the proxy data. For the proxy data, the symbols represent the proxy temperature, and the error bars

represent the range, as given by Huber and Caballero (2011).

but proceed with caution, being mindful that there is a con-

siderable uncertainty in the score itself. Values of σ for each

model simulation are given in Table 2. For each model, the

best results are obtained for the highest CO2 level which was

simulated (a result which also applies if an RMS score is

used in place of a mean error score). The CCSM H model

at 16× CO2 has the best (i.e. lowest absolute) values of σ .

However, as noted before, it appears that other models would

also obtain good σ scores if they had been run at sufficiently

high CO2. A “best-case” multi-model ensemble can be cre-

ated by averaging the simulations from each model which

have the lowest values of σ (it turns out that those mod-

els with the best σlat also have the best σsst). These are the

models highlighted in bold in Table 2. The model–data com-

parison for this multi-model ensemble is shown in Figs. 8

and 9. The 2 standard-deviation width of the “best-case”

ensemble overlaps the uncertainty estimates of every terres-

trial and ocean proxy data point. However, the high latitude

southwest Pacific SST estimates are right at the boundary of

consistency. The terrestrial data shows very good agreement

with the model ensemble, and both data and models show a

similar degree of polar amplification (see Sect. 4.3).

By regressing the CO2 levels and σ values in Table 2, it

is possible (for those models with more than one Eocene

simulation) to provide a first-order estimate of the CO2 level,

for each model, which could give the best agreement with

the proxy estimates. For HadCM, CCSM H, and CCSM W,

using σsst this is 2600 ppmv, 4300 ppmv, and 4900 ppmv, re-

spectively, and using σlat this is 2800 ppmv, 4500 ppmv, and

6300 ppmv, respectively. These estimates come with many

caveats, not least that the uneven and sparse data spread

means that the absolute minimum mean error, σ , is not nec-

essarily a good indicator of the correct global mean tempera-

ture. However, they do indicate the magnitude of the range of

CO2 values that could be considered consistent with model

results. These values are significantly higher than those pre-

sented for this time period in the compilation of Beerling and

Royer (2011).

4.3 Meridional gradients and polar amplification

The changes in meridional temperature gradient are sum-

marised in Fig. 10, which shows the surface temperature dif-

ference between the low latitudes (|φ| < 30◦) and the high

latitudes (|φ| > 60◦) as a function of global mean temper-

ature, and how this is partitioned between land and ocean

warming (Fig. 10b, φ is latitude in degrees). All the Eocene

simulations have a reduced meridional surface temperature
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Fig. 8. Zonal ensemble mean model (middle thick black line), and data, presented as an anomaly relative to present/pre-industrial. Outer

thick black lines indicate ±2 standard deviations in the models. Coloured lines represent each individual model simulation in the ensemble,

with the colour indicating CO2 level as in Figs. 5 and 7. (a) [SSTe −SSTp]. (b) [LATe −GATp]. For this figure, the ensemble consists of the

best simulation from each model, as highlighted in bold in Table 2. Descriptions of the proxy error bars are given in the captions to Figs. 5

and 7.
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Fig. 9. Ensemble mean modelled Eocene warming, presented as an anomaly relative to present/pre-industrial. (a) [SSTe−SSTp]. (b) [LATe−

GATp]. The ensemble consists of the best simulation from each model, as highlighted in bold in Table 2.

gradient compared with the pre-industrial, and the gradi-

ent reduces further as CO2 increases, i.e. polar amplifica-

tion increases (Fig. 10a). However, there is a high degree

of inter-model variability in the absolute Eocene gradient,

with HadCM appearing to be an outlier with a relatively high

Eocene gradient. There is some indication that the models are

trending towards a minimum gradient of about 20 ◦C. This,

along with our energy flux analysis (see Sect. 5), supports

previous work (Huber et al., 2003) that implied that merid-

ional temperature gradients of the order 20 ◦C were physi-

cally realistic, even without large changes to meridional heat

transport. Compared with pre-industrial, the meridional sur-

face temperature gradient reduces more on land than over

ocean (Fig. 10b). For HadCM, this applies also to the Eocene

simulations as CO2 increases. However, for the two CCSM

models, the meridional temperature gradient is reduced by a

similar amount over land and ocean as a function of CO2,

with some indication, at maximum (×16) CO2, that the SST

gradient starts reducing more over ocean than over land. This

implies that when considering changes relative to the mod-

ern, it is possible to have substantially different temperature

changes over land compared with over ocean at the same lat-

itude. This is also clear from comparing Fig. 3 with Fig. 4,

and shows the importance of differentiating terrestrial and

oceanic signals when considering the consistency between

different proxy data, and between data and models.
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Fig. 10. (a) Meridional surface temperature gradient GST|φ|>60 − GST|φ|<30, where |φ| is the absolute value of the latitude in degrees, as

a function of global mean surface temperature, 〈GST〉, for all the simulations presented in this paper. (b) Meridional surface temperature

gradient over land/ocean, SST|φ|>60 − SST|φ|<30 vs. LAT|φ|>60 − LAT|φ|<30. Symbols and colours correspond to those in Fig. 2.

5 Reasons for inter-model variability: an energy flux

analysis

It is interesting up to a point to simply intercompare model

results, and to compare with data, but also of interest is to

know why different models behave differently. Given the

complexity of climate models, this can be problematic, and

traditionally, groups such as PMIP have not often diagnosed

in detail the differences. Here, we attempt to diagnose some

aspects of the differences between the model results, building

on a 1-D energy-balance approach as outlined by Heinemann

et al. (2009). Here, the causes of the zonal mean temperature

response of a model are diagnosed from the top of the at-

mosphere and surface radiative fluxes, including their clear-

sky values, assuming simple energy balance. Any difference

between the meridional temperature profile in the GCM and

that estimated from the energy-balance approach is attributed

to meridional heat transport. As such, the change in merid-

ional temperature profile between two simulations (such as a

pre-industrial control and an Eocene simulation) can be at-

tributed to a combination of (1) changes in emissivity due to

changes in clouds, (2) changes in emissivity due to changes

in the greenhouse effect (i.e. CO2 and water vapour concen-

tration changes, and lapse-rate effects), (3) changes in albedo

due to changes in clouds, (4) changes in albedo due to Earth

surface and atmospheric aerosol changes, and (5) changes in

meridional heat transport.

Following Heinemann et al. (2009), the 1-D energy bal-

ance model (EBM) is formulated by equating the incoming

solar radiation with outgoing long wave radiation, with any

local imbalance attributed to local meridional heat transport:

SW
↓
t (1 − α) + H = ǫστ 4, (3)

where SW
↓
t is the incoming solar radiation at the top of the

atmosphere, α is the planetary albedo, H is the net merid-

ional heat transport convergence, ǫ is the atmospheric emis-

sivity, σ is the Stephan–Boltzmann constant, and τ is the sur-

face temperature, to be diagnosed by the EBM. All variables

are functions of latitude apart from σ .

The planetary albedo is given by

α =
SW

↑
t

SW
↓
t

, (4)

and the atmospheric emissivity is given by

ǫ =
LW

↑
t

LW
↑
s

, (5)

where SW
↑
t and SW

↓
t are the outgoing and incoming top of

the atmosphere shortwave radiation, respectively, and LW
↑
t

and LW
↑
s are the upwelling top of the atmosphere and surface

longwave radiation, respectively. Given that the surface emits

long wave radiation according to

LW↑
s = στ 4, (6)

it follows that the meridional heat transport convergence, H ,

is given by

H = −(SWnet
t + LWnet

t ), (7)

where the superscript net represents net flux (positive down-

wards). Equation (7) reflects the necessity that, in equilib-

rium, any net downward shortwave plus longwave heat flux

has to be compensated by a negative meridional heat flux

convergence (note that there is a typo in the equivalent equa-

tion of Heinemann et al. (2009), the minus sign in their Eq. 4
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is erroneous). All the radiative fluxes are output directly from

the GCMs, and used as input into the energy balance model.

From Eq. (3), it follows that

τ = (
1

ǫσ
(SW

↓
t (1 − α) + H)0.25) ≡ E(ǫ,α,H). (8)

The difference in temperature between two simulations,

1T = τ − τ ′, is given by E(ǫ,α,H) − E(ǫ′,α′,H ′), where

the prime, ′, represents values in the second simulation. In or-

der to diagnose the reasons for the temperature differences in

two simulations, we consider changes to the diagnosed emis-

sivity, planetary albedo, and heat transport, and write

1Temm = E(ǫ,α,H) − E(ǫ′,α,H) (9)

1Talb = E(ǫ,α,H) − E(ǫ,α′,H) (10)

1Ttran = E(ǫ,α,H) − E(ǫ,α,H ′), (11)

where 1Temm, 1Talb, and 1Ttran are the components of

1T due to emissivity, planetary albedo, and heat transport

changes, respectively. Because the changes in emissivity,

albedo, and heat transport are relatively small compared to

their magnitude,

1T ≃ 1Temm + 1Talb + 1Ttran. (12)

We further partition the 1Temm and 1Talb terms by consid-

ering the clear-sky radiative fluxes, also output directly from

the GCMs. Using cs as a subscript to denote clear-sky fluxes,

we can estimate the contribution due to the greenhouse effect

(CO2 and water vapour and lapse rate) changes, 1Tgg, and

the contribution due to surface albedo and aerosol changes,

1Tsalb:

1Tgg = E(ǫcs,αcs,Hcs) − E(ǫ′
cs,αcs,Hcs) (13)

1Tsalb = E(ǫcs,αcs,Hcs) − E(ǫcs,α
′
cs,Hcs), (14)

because the emissivity change in the clear-sky case is solely

due to greenhouse effect changes, and the albedo change

in the clear-sky case is mainly due to surface albedo and

aerosols. Considering the remaining temperature difference

as due to clouds, we can then write

1Tlwc = 1Temm − 1Tgg (15)

1Tswc = 1Talb − 1Tsalb, (16)

where 1Tlwc and 1Tswc are the components of 1T due to

long-wave cloud changes and short-wave cloud changes, re-

spectively. In this way, a temperature difference between two

simulations can be partitioned into 5 components, given by

Eqs. (9)–(11) and (13)–(16).

Figure 11 shows the results from this energy balance anal-

ysis for a number of pairs of simulations. Figure 11a–c shows

the models which simulate a transition from pre-industrial

to Eocene at ×2 CO2. ECHAM and CCSM H show similar

results in terms of the reasons for this change. They show

a high latitude warming in both hemispheres caused mainly

by non-cloud albedo changes, with a significant contribution

also from emissivity changes. In both these models, short-

wave cloud albedo changes act to reduce the polar ampli-

fication in both hemispheres. The greater global tempera-

ture change in ECHAM compared with CCSM H is due to

the greater change in greenhouse effect. However, the en-

ergy balance analysis does not allow us to diagnose if this

is due to a greater radiative forcing given the same CO2 in-

crease, or due to greater water vapour feedbacks or lapse-

rate changes in ECHAM. HadCM exhibits quite different be-

haviour. In the Southern Hemisphere, the zonal mean tem-

perature increase is due predominantly to non-cloud albedo

changes, and is reduced relative to the other two models.

In the Northern Hemisphere, the increase in temperature is

much reduced relative to the other two models due to a lack

of non-cloud albedo feedbacks and changes in emissivity.

Abbot and Tziperman (2008) suggested that the lack of sea

ice in the Arctic can lead to stronger convection over the

relatively warm Arctic sea surface during winter, leading to

more convective clouds and increased water vapour concen-

trations, and thereby causing polar amplification via both

albedo and emissivity effects. The largely decreased (ver-

sus unchanged) surface albedo in northern high latitudes in

CCSM H and ECHAM (versus HadCM), increased (versus

virtually unchanged) longwave cloud radiative forcing, and

reduced (versus hardly changed) clear-sky emissivity indi-

cate that this sea ice/convection feedback is active for ×1 to

×2 in CCSM H and ECHAM, but absent in HadCM. The re-

duced strength of this feedback in HadCM may be related to

the relatively strong Eocene seasonality in HadCM compared

with the other models (as can be seen by comparing Fig. 6

with Fig. 5), which suppresses Arctic convection in HadCM

in winter. Changes in heat transport are playing a relatively

minor role in determining the latitudinal temperature profile

in ECHAM, CCSM H, and HadCM, which supports previ-

ous findings using ECHAM alone (Heinemann et al., 2009).

Figure 11d–g shows the models which simulate a transi-

tion from pre-industrial to Eocene at ×4 CO2. For HadCM

and CCSM H, the results are very similar to ×2 CO2, but

with greater magnitude; for both models each component

contributes the same fraction to the total warming under ×2

as to under ×4, to within ∼ 10 %. CCSM W is very simi-

lar to CCSM H, except that it has reduced warming due to

decreased change in non-cloud albedo. This is most likely a

direct result of the different aerosol fields applied in the these

two models for the Eocene (see Table 1). The model which

exhibits the greatest warming is the GISS model. This high

sensitivity relative to the other models is due to greater green-

house gas effect changes and greater cloud albedo feedbacks.

The warming over Antarctica is particularly large in the GISS

model, and is due to a greater local change in non-cloud

albedo. However, the GISS model also has strong negative

cloud forcing at high latitudes in both hemispheres.

Figure 11h–i shows the models which simulate a transi-

tion from ×2 to ×4 CO2 under Eocene conditions. HadCM
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Surface temperature differences between 1* CO2 and 2* CO2 - HadCM3L
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Surface temperature differences between 1* CO2 and 2* CO2 - ECHAM5
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Surface temperature differences between 1* CO2 and 2* CO2 - CCSM_H
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Surface temperature differences between 1* CO2 and 4* CO2 - HadCM3L
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Surface temperature differences between 1* CO2 and 4* CO2 - GISS
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Surface temperature differences between 1* CO2 and 4* CO2 - CCSM_W
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Surface temperature differences between 4* CO2 and 8* CO2 - CCSM_W
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(k)

Fig. 11. The zonal mean surface temperature change under a range of CO2 transitions, and energy balance analysis of the reasons for the

changes. (a–c) ×1 to ×2 CO2, (d–g) ×1 to ×4 CO2, (h–i) ×2 to ×4 CO2, (j–k) ×4 to ×8 CO2. The simulations at ×1 CO2 are pre-industrial

reference simulations. Note the difference in vertical scale in panels (a–g) compared with (h–k). The dotted lines in the plots show the sum

of the various components, which in each case should be very close to the GCM line (i.e. the “actual” temperature change from the model)

and the EBM line (i.e. 1τ as calculated from Eq. 8 for the two climate states).

has a greater climate sensitivity that CCSM H, and this is

due to greater changes in greenhouse gas emissivity, and a

positive as opposed to negative cloud albedo feedback. The

relative lack of polar amplification in both models compared

to the results discussed above is due to the lack of Antarc-

tic ice sheet in the Eocene. The small amount of polar am-

plification in HadCM is due to changes in heat transport; in

CCSM it is due to non-cloud albedo changes in the Northern

Hemisphere.

Figure 11j–k shows the models which simulate a transi-

tion from ×4 to ×8 CO2 under Eocene conditions. Similar

to the transition from ×2 to ×4, the polar amplification is

relatively small. The warming is due almost entirely to the

changes in emissivity (direct CO2 forcing and water vapour

feedbacks and lapse-rate changes), and unsurprisingly has

a similar latitudinal distribution in the two models. How-

ever, in the Northern Hemisphere high latitudes the CCSM H

model shows strong opposing effects of cloud and surface

changes, which are not present in CCSM W. This is most
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Albedo vs latitude  - HadCM3L
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Fig. 12. Zonal mean albedo in the ×1 and ×2 CO2 simulations using the (a) HadCM, (b) ECHAM, and (c) CCSM H models. The simulations

at ×1 CO2 are pre-industrial reference simulations.

likely due to the remnants of Arctic sea ice in CCSM W

at ×8 CO2 which are not present in the warmer CCSM H

model. Comparison of Fig. 11k with Fig. 11i shows that the

increase in climate sensitivity in CCSM H as a function of

background CO2 is due almost entirely to increased non-

cloud emissivity changes; the framework does not allow us

to determine if this is due to increasing radiative effects due

to CO2, or increasing water vapour feedbacks or lapse-rate

changes. However, it is clear that it is not due to increased

albedo feedbacks, or cloud processes.

Given that the models prescribe Eocene vegetation in quite

different ways, it is interesting to assess how much this af-

fects inter-model variability. Figure 12 shows the surface

albedo in the pre-industrial control and the ×2 CO2 sim-

ulations for HadCM, CCSM H, and ECHAM. At the high

latitudes, this is affected by snow and sea ice cover and

prescribed changes in ice sheets, but at low latitudes this is

purely a result of the imposed vegetation and open-ocean

albedos. The fact that all the models have a low latitude

albedo which is similar to their control, and similar to each

other, indicates that this aspect of experimental design is

likely not playing an important role in determining the dif-

ferences in results between the models.

6 Conclusions and outlook

We have carried out an intercomparison and model–data

comparison of the results from 5 early Eocene modelling

studies, using 4 different climate models. The model results

show a large spread in global mean temperatures, for exam-

ple a ∼ 9 ◦C range in surface air temperature under a single

CO2 value, and are characterised by warming in different re-

gions. The models which have been run at sufficiently high

CO2 show very good agreement with the terrestrial data. The

comparison with SST data is also good, but the model and

data uncertainty only just overlap for the Arctic and south-

west Pacific δ18O and TEX86 proxies. However, if a possi-

ble seasonality bias in the proxies is taken into account, then

the model–data agreement improves further. We have inter-

rogated the reasons for the differences between the models,

and found differences in climate sensitivity to be due primar-

ily to a combination of greenhouse effect and surface albedo

feedbacks, rather than differences in heat transport or cloud

feedbacks.

There are several issues which have emerged from this

study which should be addressed in future work aimed at rec-

onciling model simulations and proxy data reconstructions

of the early Eocene (many of which also apply to other time

periods).

Firstly, modelling groups should aim to carry out simula-

tions over a wider range of atmospheric CO2 levels. In partic-

ular, the results of CCSM H indicate that at high prescribed

atmospheric CO2 and low aerosol forcing, the models and

data come close together. Some of this work is in progress

(e.g. simulations at ×3 CO2 are currently being analysed for

the ECHAM model). However, it should be noted that this is

not always possible. For example, the Eocene HadCM model

has been run at ×8 CO2, but after about 2700 yr the model

developed a runaway greenhouse, and the model eventually

crashed (Lunt et al., 2007). A similar effect has been ob-

served in the ECHAM model at ×4 CO2 (Heinemann, 2009).

Whether such an effect is “real”, i.e. whether the real world

would also develop a runaway greenhouse, is completely un-

known. In any case, it is clear that modelling the early Eocene

climate pushes the climate model parameterisations to the

boundaries within which they were designed to operate, if

not beyond these boundaries.

Some of the differences between the model results can

be attributed to differences in the experimental design. In

particular, some models apply a very generic Eocene veg-

etation, which is not particularly realistic. A slightly more

coordinated study could provide guidelines for ways to bet-

ter represent Eocene vegetation, for example by making use

of palynological data or by using dynamic vegetation mod-

els where available. This would provide an ensemble of

model results which better represented the true uncertainty in

our model simulations. Other inconsistencies between model
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simulations should not necessarily be eliminated – for ex-

ample, different models using different paleogeographical

reconstructions may be more representative of the true

spread of model results than if all groups used a single

paleogeography.

On the data side, better understanding of the temperature

proxies and their associated uncertainties, in particular sea-

sonal effects, is a clear goal for future work, as is greater geo-

graphical and finer temporal coverage. More tropical Eocene

terrestrial data would be especially beneficial for assessing

the terrestrial meridional temperature gradient.

Perhaps most crucial of all, better CO2 constraints from

proxies would be of huge benefit to model–data comparison

exercises such as this. Recently, much work is being under-

taken in this area, but this should be intensified wherever pos-

sible. We note that at high CO2, due to the logarithmic nature

of the CO2 forcing, proxies which may have relatively coarse

precision at low CO2 can actually provide very strong con-

straints on the CO2 forcing itself. Such constraints on CO2,

combined with proxy temperature reconstructions with well

defined uncertainty ranges, could provide a strong constraint

on model simulations, providing quantitative metrics for as-

sessing model performance, and could ultimately provide rel-

ative weightings for model simulations of future climates.

Supplementary material related to this article is

available online at: http://www.clim-past.net/8/1717/

2012/cp-8-1717-2012-supplement.zip.

Acknowledgements. This paper resulted from discussions at the

“CO2 at the zoo” event held in Bristol in 2010, and from a Royal

Society Kavli meeting held in 2011. DJL acknowledges funding

as an RCUK research fellow. NCEP Reanalysis Derived data pro-

vided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,

from their Web site at http://www.esrl.noaa.gov/psd/. M. H. was

funded by NSF P2C2 grant OCE 0902882. This is PCCRC paper

number 1220.

Edited by: A. Haywood

References

Abbot, D. S. and Tziperman, E.: Sea Ice, High Latitude Convec-

tion, and Equable Climates, Geophysical Research Letters, 35,

L03702, doi:10.1029/2007GL032286, 2008.

Anand, P., Elderfield, H., and Conte, M.: Calibration of

Mg/Ca thermometry in planktonic foraminifera from a

sediment trap time series, Paleoceanography, 18, 1050,

doi:10.1029/2002PA000846, 2003.

Beerling, D. and Royer, D.: Convergent Cenozoic CO2 history, Nat.

Geosci., 4, 418–420, 2011.

Bemis, B., Spero, H., Bijma, J., and Lea, D.: Reevaluation of the

oxygen isotopic composition of planktonic foraminifera: Exper-

imental results and revised paleotemperature equations, Paleo-

ceanography, 13, 150–160, 1998.

Bice, K. L. and Marotzke, J.: Numerical evidence against reversed

thermohaline circulation in the warm Paleocene/Eocene ocean,

J. Geophys. Res., 106, 11529–11542, 2001.

Bijl, P. K., Schouten, S., Sluijs, A., Reichart, G. J., Zachos, J. C.,

and Brinkhuis, H.: Early Palaeogene temperature evolution of the

southwest Pacific Ocean, Nature, 461, 776–779, 2009.

Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Pe-

terchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E.,

Fichefet, Th., Hewitt, C. D., Kageyama, M., Kitoh, A., Laı̂né,
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