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A Model-Driven Approach to Automate

Data Visualization in Big Data Analytics

Matteo Golfarelli1 and Stefano Rizzi1

Abstract

In big data analytics, advanced analytic techniques operate on big data sets aimed at complementing the role of

traditional OLAP for decision making. To enable companies to take benefit of these techniques despite the lack of in-

house technical skills, the H2020 TOREADOR Project adopts a model-driven architecture for streamlining analysis

processes, from data preparation to their visualization. In this paper we propose a new approach named SkyViz

focused on the visualization area, in particular on (i) how to specify the user’s objectives and describe the dataset

to be visualized, (ii) how to translate this specification into a platform-independent visualization type, and (iii) how to

concretely implement this visualization type on the target execution platform. To support step (i) we define a visualization

context based on seven prioritizable coordinates for assessing the user’s objectives and conceptually describing the

data to be visualized. To automate step (ii) we propose a skyline-based technique that translates a visualization context

into a set of most-suitable visualization types. Finally, to automate step (iii) we propose a skyline-based technique that,

with reference to a specific platform, finds the best bindings between the columns of the dataset and the graphical

coordinates used by the visualization type chosen by the user. SkyViz can be transparently extended to include

more visualization types on the one hand, more visualization coordinates on the other. The paper is completed by

an evaluation of SkyViz based on a case study excerpted from the pilot applications of the TOREADOR Project.
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1. CIM (Computation-Independent Model): an

abstract and platform-independent model that specifies

the user objectives (what big data analytics should

achieve) in terms of data collection, preparation,

analysis, and visualization.

2. PIM (Platform-Independent Model): a platform-

neutral, vendor-independent model that specifies the

algorithms for data preparation and for parallelizing

and executing the analytics, as well as the way to

present the results to users (how big data analytics

should work).

3. PSM (Platform-Specific Model): the computational

components and other resources for the process on a
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Introduction

Big data analytics is the process of collecting and analyzing 
large volumes of data to extract hidden useful information 
using advanced analytic techniques. In the last few years 
it has become more and more popular in companies of 
all sizes to complement the role of traditional OLAP and 
data warehouses by taking advantage of the increasing 
amounts of valuable data generated by sensors, devices, 
social media, etc.1. Unfortunately, companies are often 
discouraged from running analytics because it requires 
technical skills that they lack, while the costs for outsourcing 
would be too high. Aimed at filling this gap, the H2020 
TOREADOR (TrustwOrthy model-awaRE Analytics Data 
platfORm) Project adopts a model-driven architecture2 to 
speed up and simplify the analysis process so as to make it 
widely available to companies via an analytics-as-a-service 
approach. Following the basic principles of model-driven 
architectures, TOREADOR relies on three models3:



• We formalize the CIM in terms of a visualization

context based on seven prioritizable coordinates

for assessing the user’s objectives and conceptually

describing the data to be visualized (Section “An

objective-based CIM for data visualization”). With

reference to what was done in a previous paper7,

we enhance the approach to let users select multiple

values for some coordinates and adopt a simpler

formalization.

• We describe a skyline8-based technique for automati-

cally translating a visualization context from the CIM

Figure 2. Approach overview

onto the PIM in the form of a set of most-suitable

visualization types (Section “Translating the CIM into

the PIM”).

• We describe a skyline-based technique for finding the

best bindings between the columns of the dataset and

the graphical coordinates used by the visualization

type chosen by the user (among those determined at

the previous step), so as to bridge the gap between the

PIM and the PSM (Section “Translating the PIM into

the PSM”)

The overall approach is sketched in Figure 2. The user drives

the process by first declaring the visualization context, then

by choosing one visualization type among those proposed,

and finally by choosing one binding among those proposed;

this binding is then directly translated into a call to the

graphical library adopted. Both CIM-to-PIM and PIM-to-

PSM translations are based on a suitability function that

rates visualization types and bindings; in particular, the set

of possible bindings can be determined only after the dataset

has been made available.
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Figure 1. The framework of the TOREADOR Project

specific target execution platform (e.g., Hadoop-as-a-

service).

In compliance with model-driven architectures, each model

can be semi-automatically derived from the previous one.

Figure 1 shows how, in the TOREADOR Project, these

three models are split into five conceptual areas: preparation,

representation, analytics, processing, and visualization. The

focus of our work is on visualization, which has a key

role in big data analytics to enable users understand the

problem, generate hypotheses, and define the solution, as

well as to steer the analysis process when dealing with

massive, incomplete, and incorrect data4,5. Specifically,

we investigate (i) how to specify the user’s objectives

and describe the dataset to be visualized within the CIM

(e.g., comparison-oriented visualization of n-dimensional

numerical data with low cardinality), (ii) how to translate this

specification into a platform-independent visualization type

(e.g., bar chart) within the PIM, and (iii) how to concretely

implement this visualization type into a PSM on the target

execution platform (e.g., stacked-to-group bar chart in the

D3 Javascript library6). In a previous paper7 a preliminary

solution to the first part of the problem, i.e., how to move

from the CIM to the PIM, has been sketched. In this paper

we propose the complete approach, named SkyViz; the main

contributions are:



dimensions into account: goal (“why is a task pursued?”),

means (“how is a task carried out?”), data characteristics

(“what does a task seek?”), target (“where in the data does

a task operate?”), order (“when is a task performed?”), and

user type (“who is executing a task?”)14. More recently,

Börner surveyed the main classifications proposed in the

literature to integrate them into a single framework15 based

on six coordinates, namely insight need type, data scale

type, visualization type, graphical symbol type, graphical

variable type, and interaction type. Data types were further

classified with specific reference to the visualization of

linked open data16; the paper also suggests suitable user

goals some for some common chart types. Finally, the user

type coordinate (which distinguishes users into lay-users and

techies) was introduced for visualizing linked open data17.

During the last 30 years, several approaches have been

focused on the criteria for suggesting the most suitable type

of chart for each data type, dimensionality, user goal, etc.,

and on methods and tools for automating visualization, using

a variety of techniques that range from natural language

processing (NLP) to genetic algorithms. A seminal approach

in this direction is APT18, which automatically designs

effective graphical presentations of relational information;

the underlying idea is that graphical presentations are

sentences of graphical languages, and that the graphic

design issues are codified as expressiveness and effectiveness

criteria for graphical languages. A few years later, Vista19

extended the design methodology of APT18 from 2-

dimensional to 3-dimensional graphics. Vista automatically

generates an interactive visualization of a given data set by

heuristically composing primitive visualization techniques

(e.g., size and color).

Besides APT and VISTA, some other approaches can

be classified as data-driven, since they do not explicitly

consider the specific goal of the user for the current

analysis, thus mainly relying on the dataset features to

select a suitable visualization. Among these, Show Me20

incorporates automatic presentation into the Tableau tool. It

presents data within multiple displays, basically by applying

visualization best practices based on the properties of the

data fields. The DataVizard system21 recommends the most

appropriate visual presentation for the structured data either

resulting from a SQL query or arranged within a data table

taken for instance from the web. In the first case, the best

visualization type is determined by first classifying the data

columns into independent and dependent variables, then by

considering their data type. In the second case, an NLP-

based analysis of the table caption and of the table content

is made. The VISO visualization ontology22 formalizes the

Thanks to the use of skyline computation to find the 
most suitable visualization(s), SkyViz can be transparently 
extended to include more visualization types on the one 
hand, more visualization coordinates on the other. Besides, 
since the visualization best practices are not hard-coded but 
modeled in the suitability function using a table of explicit 
scores, SkyViz can be tailored to the need of specific types 
of users by simply changing the scores (e.g., if users feel 
uncomfortable with reading dendrograms, the corresponding 
scores can be decreased). Finally, although in the paper 
we adopt D3 as a reference graphic library, SkyViz can 
be easily plugged into any other graphic library as long 
as the signatures for invoking its visualization services are 
known. Noticeably, all these possible extensions do not 
undermine the performance of the approach; indeed, as we 
will discuss in the paper, skyline computation still gives real-

time performances when working with sets of objects that 
are orders of magnitude larger that those used in SkyViz.

The paper outline is completed by Section “Related 
Work”, which discusses the related literature, by Section 
“Case Study and Evaluation”, which evaluates SkyViz 
mainly through a real case study excerpted from the pilot 
applications of the TOREADOR Project, and by Section 
“Conclusions”, which draws the conclusions.

Related Work

Principles and taxonomies to classify the different 
approaches for visualizing data and interacting with 
them have been proposed in the literature. First of all, 
Shneiderman proposed a classification taxonomy for 
data visualization based on the task (e.g., zoom and 
relate) and data type coordinates (e.g., multidimensional 
and tree)9. Similarly, visualization problems had been 
previously classified based on the operation to be performed 
(e.g., categorize and correlate) and on the object to be 
visualized (e.g., nominal and position)10. A few years later, 
a different classification of data visualization techniques11

was suggested by considering, besides the data type 
(which mostly overlaps with the homonym coordinate 
of Shneiderman’s work), the visualization technique 
(which corresponds to the tasks9) and the interaction 
and distortion technique (which distinguishes between 
standard displays, icon-based displays, dense displays, 
and stacked displays). Abela also listed four possible 
goals for visualization, namely relationship, comparison, 
distribution, and composition12. Tory et al.13 introduced a 
high-level visualization taxonomy based on design models. 
A design space of visualization task was proposed taking six



dimensionality, but not all combinations are covered. In

Articulate30 a conversational user interface enables users

to verbally describe their analysis task; natural language

sentences are then translated into explicit expressions and a

visualization is heuristically selected using a decision tree

inspired by Abela’s work12. In the context of big data, a

framework for choosing the best visualization is outlined31;

the main types of charts are related to the user goals they

fulfill and to the data dimensionality, cardinality, and type

they support. VizAssist32 is a user assistant that aims at

improving the data-to-visualization mapping in data mining

by means of an interactive genetic algorithm. To propose

suitable visualizations for data it relies on a model of data

(data type and importance of each variable in the dataset,

and data cardinality), on a model of data mining objectives,

and on a model of visualizations (which quantifies, for each

visualization type, to what degree it is suitable for each data

type, cardinality, and objective).

A separate mention is due for behavior-driven visualiza-

tion recommendation33; here, the user’s behavior is analyzed

to detect meaningful interaction patterns, then these patterns

are used to infer the user’s intention for the current visual task

and to suggest possible visualizations. In a more cognitive

direction, Rogowitz et al. use perceptual rules to ensure

that the structure of the data is faithfully represented in

the visualization and to transform the structure of data so

as to highlight specific features34. Their following work35

introduces the PRAVDAColor tool, which is specifically

focused at improving the user’s selection of colormaps based

on the structure of the data and on the visualization goal.

Table 1 shows a comparison of the above-mentioned

approaches in terms of the coordinates they use for

determining the best visualization. It emerges that, to the best

of our knowledge, no previous approach took into account

all the coordinates we consider. Besides, SkyViz is the first

approach that uses skyline computation to find the best

visualizations, which ensures full extensibility in terms of

both the coordinate set and the set of visualization charts.

Overall, the approaches that are more strictly related to ours

are:

1. Vis-Wizz25, which —similarly to SkyViz— relies on

suitability functions to assess to what degree each

visualization technique is suitable for each possible

objective; however, differently from SkyViz, it gives

no model of this function.

2. The approach by Zhang26 can be seen as a way

to bridge the gap between the PIM and the PSM;

vocabulary for the interdisciplinary visualization domain and 
properly annotates both data and visualization components. 
VISO is used to determine the applicable mappings between 
data variables and graphic coordinates; then, mappings are 
ranked taking into account the user and device context so as 
to eventually recommend a set of visualizations.

Several other approaches can be classified as problem-

driven, since they directly take into account the various 
aspects that influence the effectiveness of a visualization, 
including the user’s goal. In SAGE23, a composite 
presentation for data is selected based on the data 
characteristics (e.g., their domain and their ordering), on 
the properties of the relational structure of data, and 
on the user’s goal. BOZ24 designs a visualization for 
data based on a user-provided logical description of the 
analysis task to be executed. The logical operators in 
this description are then turned into perceptual operators 
that can be graphically rendered, aimed at supporting 
efficient and accurate performance of the user’s perceptual 
procedure. Vis-Wizz25 recommends a visualization based 
on data characteristics and users goal as well as on an 
evaluation of the visual representation to be generated. 
A relevant approach was proposed by Zhang26; here, 
scale types (i.e., ratio, interval, ordinal, and nominal) are 
used to determine effective mappings between represented 
dimensions (columns of the dataset) and representing 
dimensions of the chart type (e.g., length, color, and shape). 
IMPROVISE27 uses a data-analysis taxonomy plus some 
presentation context information to produce a user-centered 
visual design. The process is guided by a set of design 
principles that ensure the expressiveness and effectiveness 
of a design. Abela12 proposes a decision tree to select 
the best visualization according to the user’s goal and to 
the main features of data (number of variables, cyclicality, 
and size). This work inspired Chart Chooser (labs. 
juiceanalytics.com/chartchooser), a web site 
which returns the subset of Excel/PowerPoint charts 
compatible with one or more visualization goals selected 
by the user. ViA28 is a visualization assistant that supports 
users in identifying perceptually salient visualizations 
for large, multidimensional datasets; this is done by 
applying knowledge of low-level human vision to evaluate 
visualizations given the dataset features (e.g., the spatial 
frequency of the attribute values) and analysis task (e.g., 
search and estimate). Marty29 provides a description of the 
pros and cons of different chart types in the security domain, 
taking into account the data dimensionality, cardinality, 
and type. A flow-chart is proposed to help users in 
choosing the right visualization for different goals and data



Table 1. A comparison of approaches to select the best visualization
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APT 18 composition rules, perceptual rules

SAGE 23 composition rules

BOZ 24 task description language, perceptual operators

Vista 19 composition rules, perceptual rules

PRAVDAColor 35 perceptual rules

Vis-Wizz 25 suitability vectors

Zhang 26 exact match

IMPROVISE 27 design rules

Show Me 20 defaulting

Abela 12 decision tree

ViA 28 mixed-initiative strategy

BDVR 33 pattern detection

Marty 29 flow-chart

Articulate 30 NLP, decision tree

VISO 22 discovery and ranking

IBA 31 flow-chart

VizAssist 32 genetic algorithm

DataVizard 21 heuristic rules, NLP

SkyViz suitability function, skyline

however, it is limited to considering data types, user

goals, and dimensionality.

3. Like SkyViz, VizAssist relies on extensible models

created by domain expert; however, its models do not

cover interactions, user type, and dimensionality.

4. The approaches by Abela12 and Marty29 give precise

suggestions about the degree to which the most

common visualization types are fit for different user

goals and data features; hence we incorporated them

into our suitability functions, though we had to extend

them since they do not cover all our coordinates.

same is true for SeeDB39, which is focused on efficiently

finding the most interesting views of a multidimensional

dataset (a view is considered to be interesting if it

shows a deviation from a reference). More recently, an

approach to recommend aggregate data visualization was

proposed40; however, the emphasis is not on choosing a

visualization type (only column charts are used) but rather

on determining the most effective ways to aggregate data for

generating interesting, usable, and accurate views. Similarly,

a recommender system was used41 to suggest visualizations;

this was done through an ad-hoc query language and by

introducing methods for choosing, ranking, and grouping

recommended visualizations. Finally, Streit et al.42 propose

a comprehensive approach to the codesign of data, view,

analytics, and tasks for heterogeneous data. The approach

is based on a domain-independent model of the setup in

which the analysis takes place, on a model of the domain that

captures what can be done with a given setup in the context

of a specific domain, and on a model of the analysis session

that lists what has to be done to pursue a given analysis goal.

The emphasis here is more on delivering an end-to-end guide

to the user through the analysis process than on selecting the

most appropriate visualization for data.

A different line of approaches is the one that proposes a 
framework to recommend a set of low-cost visualizations 
to users based on statistical properties of the dataset to 
be visualized such as its selectivity, data distribution, and 
number of distinct values36. This approach has a different 
goal from SkyViz since it actually aims at finding the most 
interesting variables of a large dataset to be visualized 
rather than the most appropriate visualization type for 
them. In the same direction, VizRank37 is a method to 
automatically select the most useful data projections (i.e., 
those that best visually discriminate between classes) of 2-

dimensional datasets. Similarly, AutoVis38 is an automatic 
visualization system aimed at giving analysts a first view 
of any data source; as such, it is more concerned with 
determining the most interesting views of a dataset than 
on finding the most effective way to visualize them. The



An objective-based CIM for data

visualization

As already mentioned, the CIM is an abstract and platform-

independent model that specifies the user objectives for

visualizing the analysis results. In SkyViz, the CIM is

defined in terms of a set of visualization coordinates whose

values are specified by the user aimed at declaring her

objectives and describing the dataset to be visualized. To

select these coordinates in the context of the TOREADOR

Project we adopt a requirement elicitation method that can

be summarized as follows:

1. Based on the literature on the taxonomies of data

visualization and interaction paradigms, we derived

a set of candidate coordinates (e.g., data type) and,

for each coordinate, a set of candidate values (e.g.,

ordinal). Each coordinate/value pair corresponds to a

requirement.

2. From these requirements we derived a questionnaire

which was submitted to users for requirement

elicitation. More specifically, we involved 27 users of

the pilot applications of the TOREADOR Project; of

these, 13 were domain experts, 11 data engineers, and

3 data scientists.

3. Based on the results of requirement elicitation, we

selected the final set of coordinates and values.

For requirement elicitation we adopted the Kano model43,

which enables designers to understand the needs and

expectations of a stakeholder based on how they affect

his/her satisfaction. The Kano model classifies requirements

in the following classes:

• Must-be, which customers take for granted; if these

requirements are not achieved, the stakeholder will be

severely dissatisfied and not interested in the product

at all.

• One-dimensional, those for which the level of func-

tionality is proportional to the degree of satisfaction:

the better a requirement is achieved, the higher the

stakeholder will be satisfied, and vice versa.

• Attractive, which are usually unexpected by the

stakeholders but have the greatest influence on

how satisfied they will be. As the level of

functionality achieved by these requirement increases,

the stakeholder’s satisfaction increases more than

proportionally.

• Indifferent, which are rated as neither good nor bad.

• Reverse, which cause dissatisfaction when present and

satisfaction when absent.

The Kano model is typically constructed using a survey

methodology, where requirements are first classified at the

individual stakeholder level through a questionnaire and

then aggregated. The Kano questionnaire contains a list

of question pairs for each requirement; the question pair

includes a functional question, asking how the user would

feel if a certain requirement were met, and a dysfunctional

question, asking how the user would feel if that requirement

were not met. An example of requirement and of the two

related questions posed to users is shown in Table 2. To

answer each question, the user had the options listed below:

• Like: “This would be helpful to me”

• Expect: “This is a basic requirement to me”

• Neutral: “This would not affect me”

• Tolerate: “This would be a minor inconvenience”

• Dislike: “This would be a major problem for me”

The answers to all questions were collected and analyzed

using the DuMouchel methodology44. This methodology

assumes the use, together with the Kano questionnaire,

of a self-stated importance questionnaire which makes the

respondents rank each requirement on a scale of importance

aimed at determining the relative importance of each

individual requirement. Then it assigns three scores to each

requirement: the functional score maps each answer given

to a functional question onto the range from 4 (Like) to −2

(Dislike); the dysfunctional score maps each answer given

to a dysfunctional question onto the range from −2 (Like)

to 4 (Dislike); the importance score maps each answer in the

self-stated importance questionnaire onto the range from 1 to

5. The three scores obtained for each requirement, averaged

over the set of all respondents, enable the categorization

of that requirement as either must-be, one-dimensional,

attractive, indifferent, or reverse according to its positioning

within a two-dimensional grid44. As a consequence of the

process described above, all the candidate coordinates were

deemed to be either must-be (e.g., user), one-dimensional

(e.g., goal), or attractive (e.g., cardinality). Conversely,

some coordinate values (e.g, the history and projection

interactions) were categorized as reverse, since they were

considered to be too specific and possibly misleading, so we

had to exclude them.

In the following we list the seven coordinates we selected,

see Table 3 for the complete list of values each coordinate

can take:



Code REQ02

Requirement The TOREADOR platform will enable users to declare the number of variables they wish to 
visualize (1, 2, …, N, tree, graph)

Rationale To enable the platform to suggest a visualization that can support the chosen number of variables

Scenario You are about to analyze the effectiveness of a promotional campaign for ice-creams. The impact of 
this campaign on sales could be investigated from different perspectives aimed at gaining insights 

using a different number of variables. For instance you could be interested in

•  reading the total sales-to-date of ice-creams since the beginning of the campaign (1 dimension);

•  analyzing the trend of ice-creams sales during the campaign (2 dimensions);
•  visualizing, for each nation, the daily trends of ice-creams sales and costs during the campaign (4

dimensions)

Functional 
question

The CIM allows to declare the number of visualized variables (1D, 2D, 3D, nD, tree, graph) aimed at 
suggesting the most suitable visualization

Dysfunctional 
question

The CIM does not allow to declare the number of visualized variables

Table 3. Visualization coordinates

Value Description Example

Goal

Composition highlighting the way in which distinct parts of data are composed to form a total stacked column chart

Order analyzing objects by emphasizing their ordering alphabetical list of names

Relationship analyzing the correlation between two or more objects or attribute values point graph

Comparison examining two or more objects or values to establish their similarities and dissimilarities column chart

Cluster analyzing data in such a way as to emphasize their grouping into categories dendrogram

Distribution analyzing how objects are dispersed in space histogram

Trend examining a general tendency of data variables line graph

Geospatial analyzing data values using a geographical map as a graphical context choropleth map

Interaction

Overview gain an overview of the entire data collection dendrogram

Zoom focus on items of interest network map

Filter quickly focus on interesting items by eliminating unwanted items area chart

Details-on-demand select an item and get its details choropleth map

User

Lay computer-literates who may have troubles in understanding complex visualizations line graph

Tech skilled users with a deeper understanding of analytics tree map

Dimensionality

1-dimensional a single numerical value or a string gauge

2-dimensional one dependent variable as a function of one independent variable single line graph

n-dimensional each data object is a point in an n-dimensional space bubble graph

Tree a collection of items, each having a link to one parent item dendrogram

Graph a collection of items, each linked to an arbitrary number of other items network map

Cardinality

Low from a few items to a few dozens items pie chart

High some dozens items or more heat map

Independent/Dependent Type

Nominal qualitative, each data variable is assigned to one category (e.g., “male” and “female”) pie chart

Ordinal qualitative, categories can be sorted (e.g., “small”, “medium”, “large”) column chart

Interval quantitative, it supports the determination of equality of intervals or differences (e.g., a

temperature)

line graph

Ratio quantitative, with a unique and non-arbitrary zero point (e.g., an income) point graph

(1) Goal, which enables users to declare their main analysis

goal(s). This classification follows the one into basic task

types15; examples of goals are that of analyzing data

based on their order (in which case, a sorted list of data

could be a good choice) and that of comparing pieces of

data to assess how similar they are (e.g., using a column

chart).

(2) Interaction, which enables users to declare the type of

interactions to be supported by the visualization. This

classification derives from a previous one15; specifically,

based on requirement elicitation, we selected a subset

of most common and intuitive interaction types11. For

instance, the user may wish to gain an overview of the

data using a dendrogram, or may need to get further

Table 2. A requirement and the related functional and dysfunctional questions



details about a selected piece of data by clicking on a

mark in a marked line graph.

(3) User, which enables users to declare their skill17. We

distinguish lay users, for which simple visualization

types such as line graphs are more suitable, and

tech users, who can also understand more complex

visualization types such as tree maps.

(4) Dimensionality, which enables users to declare the

number of variables they wish to visualize. Here,

as done by Abela12, we count all variables without

distinguishing between independent and dependent

variables. Clearly, while a few visualization types are

suitable for 1-dimensional datasets (e.g., gauges and

alerts), most of them require n-dimensional datasets

(e.g., histograms and bubble graphs). Also trees and

graphs are considered here, which can be visualized

using dedicated approaches like dendrograms and

networks map, respectively.

(5) Cardinality, which enables users to qualitatively declare

the cardinality of the data to be visualized12. Since

the user at this stage will probably have only a rough

idea of the cardinality, here we just distinguish between

low cardinality, up to a few dozens rows (which are

better visualized using a pie chart, for instance) and

high cardinality (which should be shown using dense

visualization types such as line graphs and heat maps).

(6) Independent Type, which enables users to declare the

type of the independent variable(s) to be visualized. The

classification we adopt here45 includes four data types:

nominal (qualitative and unordered, can be visualized

using for instance the colors in a pie chart), ordinal

(qualitative and ordered, shown for instance through the

row labels in a pivot table), interval (quantitative with

no zero point, can be visualized using for instance the

X-axis of a column graph), and ratio (quantitative with

zero point, shown for instance through the X-axis of a

point graph).

(7) Dependent Type, which enables users to declare the

type of the dependent variable(s) to be analyzed.

The classification we adopt here is the same of

the independent type. Using two separate coordinates

for independent and dependent variables enables a

finer specification of the CIM29 and a more accurate

translation into the PIM and the PSM; for instance, while

the color in a pie chart is suitable to show a nominal

variable, the width of each sector should represent a ratio

variable.

Note that, while for coordinates User, Dimensionality, and

Cardinality, one single value can be specified by the user

because the possible values have disjunctive semantics,

for coordinates Goal, Interaction, Independent Type, and

Dependent Type the semantics of values is conjunctive, so

the user can specify multiple values (e.g., the user might

be interested in interacting with the visualization using both

overview and details-on-demand).

We now formalize the CIM in terms of a visualization

context based on the seven coordinates listed above for

assessing the user’s objectives and conceptually describing

the data to be visualized. The context has variable size to

accommodate both the case in which the user does not

specify a value for some coordinate(s) and that in which she

specifies multiples values for some coordinate(s). Besides,

the user can prioritize coordinate values to express her higher

or lower confidence and interest in each value.

Definition 1. Visualization Context. Let

Ogoa = {Composition,Order,Relationship,Comparison,

Cluster,Distribution,Trend,Geospatial}

Oint = {Overview,Zoom, Filter,Details-on-demand}

Ouse = {Lay,Tech}

Odim = {1-dimensional, 2-dimensional, n-dimensional,

Tree,Graph}

Ocar = {Low,High}

Oind = {Nominal-i,Ordinal-i, Interval-i,Ratio-i}

Odep = {Nominal-d,Ordinal-d, Interval-d,Ratio-d}

be the sets of values for coordinates goals, interactions,

users, dimensionalities, cardinalities, independent types, and

dependent types, respectively; let O = Ogoa ∪Oint ∪Ouse ∪

Odim ∪Ocar ∪Oind ∪Odep. A visualization context is defined

as C,
C
≻, where C ⊂ O is a subset that includes at most

one element from Ouse, Odim, and Ocar, and
C
≻ is a weak

order on C that expresses the priorities between the different

coordinate values.

Example 1. An example of visualization context is C,
C
≻

where

C = {Comparison,Tech, n-dimensional,High, Interval-i,

Ratio-d,Nominal-d}



and

(Tech
C
∼ Interval-i)

C
≻ Comparison

C
≻

C
≻ (n-dimensional

C
∼ High

C
∼ Ratio-d

C
∼ Nominal-d)

where the user expresses three levels of priority: high

(for the user and independent type coordinates), medium

(for the goal coordinate), and low (for the dimensionality,

cardinality, and dependent type coordinates). No value is

specified for the interaction coordinate. ✷

Translating the CIM into the PIM

In this section we discuss the CIM-to-PIM transformation,

specifically, how the visualization context stated by the

user in the CIM can be transformed into a set of suitable

visualization types in the PIM. The first step in this direction

requires to assess to which extent each visualization type

is suitable for each value of each visualization coordinate

introduced in Section “An objective-based CIM for data

visualization”.

Definition 2. PIM Suitability Function. A PIM suitability

function is a total function σ : O × V → s where O is the

set of all coordinate values, V is the set of all visualization

types, and s ∈ {unfit, discouraged, acceptable, fit} is a score.

The semantics of the scores is as follows:

• unfit means that the visualization type should not be

used for the coordinate value. For instance, a pie chart

cannot be used to represent 1-dimensional data.

• discouraged means that the visualization type can be

used in principle for the coordinate value, but it may

distort the very nature of that specific goal, interaction,

user, dimensionality, cardinality, or type. For instance,

a pie chart should not be used to fulfill the distribution

goal because it does not emphasize how objects are

dispersed in space.

• acceptable means that the visualization type is

compatible with the coordinate value, though it may

fail to emphasize some of the features of that specific

goal, interaction, user, dimensionality, cardinality, or

type. For instance, a pie chart can successfully be used

to visualize an ordinal independent variable such a

S/M/L/XL tag, but it will give no specific emphasis

to the ordering of values.

• fit means that the visualization type is fully compatible

with the coordinate value, and has been declared in

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. A single line graph (a), a marked line graph (b), a pie

chart (c), a bubble graph (d), a grouped column graph (e), a

heat map (f), a dendrogram (g), and a tree map (h)

the literature to be a best visualization practice for

that specific goal, interaction, user, dimensionality,

cardinality, or type. For instance, the pie chart

is perfectly fit to visualize a nominal independent

variable (such as Continent) and a ratio dependent

variable (such as SalesRevenues).

SkyViz can be applied to each possible visualization

type v as long as a suitability evaluation is done by a

visualization expert for v based on our seven coordinates.

In this paper we focus on the eight popular visualization

types shown in Figure 3, namely, single line graph, marked

line graph, pie chart, bubble graph, grouped column graph,

heat map, dendrogram, and tree map. For each of them we

assigned a score to each every coordinate-value pair, so as to

define a PIM suitability function as shown in Table 4. The

scores were mainly derived from the best practices found

in the literature12,15,29; where we could not find any specific



prescription in the literature, we fell back on common sense

to complete the function assignments.

The PIM suitability function can now be used to find

one or more “most suitable” visualization types for a given

visualization context C,
C
≻. To this end we start by observing

that, with reference to C = {c1, . . . , cp}, visualization type v

is evaluated through a set {σ(c1, v), . . . , σ(cp, v)} of scores,

where each element expresses the suitability of v for C along

one coordinate value. We also note that the scores introduced

in Definition 2 are obviously related by a strict total order that

expresses a preference:

fit > acceptable > discouraged > unfit

This enables a comparison between any two possible

visualization types v, v′ ∈ V along each single coordinate

value: for the i-th value, v is preferred to (i.e., is strictly

better than) v′ if σ(ci, v) > σ(ci, v
′).

The next step is to understand how to combine the p

resulting one-dimensional preferences for each visualization

coordinate into a single one for the whole visualization

context. A very reasonable way to cope with this problem

is to look for visualization types that are Pareto-optimal.

A visualization types is Pareto-optimal when no other

visualization types dominates it, being better along one

coordinate and not worse along all the other coordinates.

In the database community, when multiple preferences are

defined over a set of tuples, the set of tuples (in our context,

visualization types) satisfying Pareto-optimality is called a

skyline46.

The definition of dominance is given below in flat (non-

prioritized) form first; then, we will generalize it to cope with

the presence of priorities.

Definition 3. Flat Dominance. Given visualization context

C,
C
≻ and two visualization types v and v′, we say that v

is equivalent to v′ on C, denoted v ∼C v′, iff σ(cj , v) =

σ(cj , v
′) for all cj ∈ C. We say that v flat-dominates v′ on

C, denoted v ⊲C v′, iff

(a) ∃ci ∈ C : σ(ci, v) > σ(ci, v
′) and

(b) for all other cj ∈ C it is σ(cj , v) = σ(cj , v
′)

single line graph

marked line graph

pie chart

bubble graph

grouped column graph

heat map

dendrogram

tree map

single line graph

marked line graph

pie chart

bubble graph

grouped column graph

heat map

dendrogram

tree map

(a) (b)

Figure 4. Flat dominance (a) and dominance (b) relationships

for Example 2

except goal and dimensionality, on which it is better. On

the other hand, there is no flat-dominance or equivalence

between bubble graph and heat map because the first is

better on the goal coordinate, while the second is better on

the cardinality coordinate. So overall, if coordinate priorities

are not considered, bubble graph, heat map, and tree map

are Pareto-optimal and would belong to the skyline, while

the others would not. ✷

The definition of dominance is now generalized to cope

with the priorities
C
≻ declared by the user. To this end we

resort to the concept of prioritized skyline46 and redefine

dominance as follows. Intuitively, if v is better than v′

with reference to the coordinate values that take highest

priority for the user, then it is unconditionally better than

v′; otherwise, if v is equivalent to v′ with reference to those

coordinate values, we have to check if it is better with

reference to the coordinate values taking second priority, and

so on.

Definition 4. Dominance. Given visualization context C,
C
≻

and two visualization types v and v′, and given the set

of coordinate values C ⊆ C, we say that v dominates

v′ on C (denoted v ◮C v′) iff either (a) v ⊲max(C) v
′

or (b) (v ∼max(C) v
′) ∧ (v ◮C\max(C) v

′), where max(C)

denotes the top coordinate values in the
C
≻ order restricted to

C.

Definition 5. PIM Skyline. The PIM skyline for C,
C
≻ is the

set of visualization types in V that are not dominated on C

by any other visualization type.

It is easy to prove that v ⊲C v′ implies v ◮C v′ for

any
C
≻; as a consequence, the skyline for flat dominance

always includes the skyline for dominance, i.e, prioritizing

coordinate values leads to reducing the skyline.

Example 2. Consider again the visualization context in 
Example 1, which we match with the eight visualization 
types in Table 4. The eight corresponding suitability sets 
are singled out in Table 5. The resulting flat dominance 
relationships are shown in Figure 4.a. For instance,

heat map flat-dominates single line graph (heat map ⊲C 

single line graph) because it is equivalent on all coordinates



Table 4. PIM suitability scores for eight visualization types

single line graph marked line graph pie chart bubble graph

Goal: Composition unfit unfit fit discouraged

Order discouraged unfit unfit unfit

Relationship unfit unfit unfit fit

Comparison unfit unfit unfit fit

Cluster unfit unfit unfit acceptable

Distribution acceptable acceptable unfit fit

Trend fit fit unfit acceptable

Geospatial unfit unfit unfit discouraged

Interaction: Overview fit fit fit fit

Zoom acceptable acceptable unfit acceptable

Filter discouraged discouraged acceptable discouraged

Details-on-dem acceptable fit acceptable acceptable

User: Lay fit fit fit acceptable

Tech fit fit acceptable fit

Dimens.: 1-dimensional unfit unfit unfit unfit

2-dimensional fit fit fit unfit

n-dimensional unfit unfit unfit fit

Tree unfit unfit unfit unfit

Graph unfit unfit unfit unfit

Cardinality: Low acceptable fit fit acceptable

High fit discouraged discouraged discouraged

Ind. Type: Nominal-i unfit unfit fit unfit

Ordinal-i discouraged discouraged acceptable discouraged

Interval-i fit fit discouraged fit

Ratio-i fit fit discouraged fit

Dep. Type: Nominal-d unfit unfit unfit fit

Ordinal-d unfit unfit unfit fit

Interval-d fit fit discouraged acceptable

Ratio-d fit fit fit fit

grouped column graph heat map dendrogram tree map

Goal: Composition acceptable unfit acceptable acceptable

Order acceptable unfit discouraged unfit

Relationship discouraged unfit acceptable fit

Comparison fit acceptable discouraged acceptable

Cluster acceptable acceptable fit fit

Distribution acceptable fit discouraged discouraged

Trend fit unfit unfit unfit

Geospatial unfit fit unfit unfit

Interaction: Overview fit fit fit fit

Zoom unfit fit fit acceptable

Filter acceptable acceptable acceptable acceptable

Details-on-dem acceptable acceptable acceptable acceptable

User: Lay fit acceptable acceptable discouraged

Tech fit fit fit fit

Dimens.: 1-dimensional unfit unfit unfit unfit

2-dimensional unfit unfit unfit unfit

n-dimensional fit fit unfit acceptable

Tree unfit unfit fit fit

Graph unfit unfit unfit unfit

Cardinality: Low fit acceptable fit fit

High discouraged fit acceptable acceptable

Ind. Type: Nominal-i fit acceptable fit fit

Ordinal-i fit acceptable discouraged discouraged

Interval-i acceptable fit discouraged discouraged

Ratio-i acceptable fit unfit unfit

Dep. Type: Nominal-d unfit unfit unfit fit

Ordinal-d unfit discouraged unfit discouraged

Interval-d discouraged fit acceptable discouraged

Ratio-d fit fit fit fit

on the two top-priority coordinates of
C
≻ (max(C) =

{Tech, Interval-i}) except pie chart, dendrogram, and tree

map, which are flat-dominated by other visualization types

and can be immediately excluded from the PIM skyline. For

Example 3. Considering again the visualization context 
in Examples 1 and 2, and taking now into account the 
coordinate priorities, the dominance relationships are shown 
in Figure 4.b. Indeed, all visualization types are equivalent



Table 5. Suitability tuples for eight visualization types with reference to the visualization context in Example 1

single line graph marked line graph pie chart bubble graph

Goal: Comparison unfit unfit unfit fit

User: Tech fit fit acceptable fit

Dimens.: n-dimensional unfit unfit unfit fit

Cardinality: High fit discouraged discouraged discouraged

Ind. Type: Interval-i fit fit discouraged fit

Dep. Type: Ratio-d fit fit fit fit

Dep. Type: Nominal-d unfit unfit unfit fit

grouped column graph heat map dendrogram tree map

Goal: Comparison fit acceptable discouraged acceptable

User: Tech fit fit fit fit

Dimens.: n-dimensional fit fit unfit acceptable

Cardinality: High discouraged fit acceptable acceptable

Ind. Type: Interval-i acceptable fit discouraged discouraged

Dep. Type: Ratio-d acceptable fit fit fit

Dep. Type: Nominal-d unfit unfit unfit fit

each variable and a graphical coordinate of v. For instance,

if the user has picked pie chart as her preferred visualization

type out of the PIM skyline to visualize a dataset including

variables Continent and SalesRevenue, two bindings are

possible: using colors to represent continents and arc widths

to represent revenues, or the opposite.

To discuss how this translation can be automated, we need

some preliminary definitions.

Definition 6. Dataset and Variable. A dataset D is a

list of tuples, where each tuple consists of n variables.

Each variable ai has a type, type(ai) ∈ T , with T =

{Nominal,Ordinal, Interval,Ratio,Tree,Graph}.

Given a dataset, determining the types of its variables

can be done automatically to some extent, since nominal

and ordinal variables are normally represented by strings,

interval variables are represented by either numbers or

dates/timestamps, and ratio variables are represented by

numbers. To distinguish nominal from ordinal variables we

must resort to the user’s judgement (a qualitative variable

is ordinal if there is a meaningful ordering of values,

nominal otherwise). Similarly to distinguish interval from

ratio variables (a quantitative variable is ratio if it has a

meaningful zero, interval otherwise).

Note that we added Tree and Graph to the set of simple

types introduced in Table 3. This is to effectively deal with

visualization types which operate on trees and graphs, such

as dendrograms and chords, respectively. Indeed, in this case,

a graphical coordinate of the visualization type has to be fed

with a complex variable that uses some conventional notation

to code a topology (for instance, in the D3 library a tree-like

topology can be expressed using the dot notation to represent

each path in the tree, while a graph topology can be expressed

as a couple of labels to denote each arc). Though the complex

the remaining six visualization types we have to check the 
second-priority coordinate (max(C \ {Tech, Interval-i}) = 
{Comparison}), on which bubble graph and grouped column 
graph are better than heat map; thus, heat map is dominated 
and excluded from the PIM skyline. Single and marked line 
graph are in turn dominated by heat map, so they too can 
be excluded. Finally, we find that bubble graph and grouped 
column graph are equivalent on the remaining coordinates, 
except for the dependent type coordinate on which bubble 
graph is better. So, taking into account priorities, the PIM 
skyline only includes bubble graph. ✷

We close this section by recalling that skyline approaches 
are normally applied to rank the tuples of a database based 
on the users preferences. As such, they give real-time 
performance over thousands of objects. The performance and 
scalability of an algorithm for computing prioritized skylines 
have been measured46, and it turned out that the time for 
computing the result is always below 1 second, with a dataset 
including 50000 tuples and 20 attributes —well beyond the 
maximum number of visualization types we are expected 
to manage and the seven coordinates we currently use in 
SkyViz.

Translating the PIM into the PSM

In the model-driven approach, defining the PSM requires first 
of all to choose a target execution platform. In our context, 
this means choosing a specific platform that implements 
visualization services. In the following we pick the well-

known D3 Javascript library6 as a reference platform. Then, 
translating a PIM into a PSM means, given a dataset D to 
be visualized and a visualization type v picked by the user 
among those in the PIM skyline, deciding how each variable 
in D will be visualized, i.e., establishing a binding between



types we consider are those most commonly used in big data

analytics, SkyViz may be gracefully extended to cope with

more sophisticated types (such as hypergraphs) by adding

them to T .

Example 4. Figure 5 shows an excerpt of two sample

dataset available on the D3 site (at http://bl.ocks.

org/josiahdavis/a3534073492ca37b3682 and

https://bl.ocks.org/mbostock/3883245,

respectively). The first dataset includes 6 variables, the first

three with type nominal, the remaining three with type ratio.

The second dataset includes 2 variables with type interval

and ratio respectively.

In the context of a specific platform that implements visu-

alization services, each visualization type v is characterized

by a set of graphical coordinates, G(v). Each graphical

coordinate g ∈ G(v) can be either mandatory or optional

(denoted by Boolean function mand(g)), independent or

dependent (denoted by Boolean function indep(g)). Like in

Definition 2, and consistently with a previous approach26,

the suitability of g to be used for displaying a variable of

type t is assessed by a PSM suitability function:

Definition 7. PSM Suitability Function. A PSM suitability

function is a (total) function τ : G(v)× T → s where s ∈

{unfit, discouraged, acceptable, fit} is a score.

Here, the semantics of the scores (to be defined by a

visualization expert for the specific platform adopted) is as

follows:

• unfit means that the graphical coordinate cannot be

used to display the variable type, typically because

of the parameter type required by the visualization

service. For instance, the X coordinate of a line graph

cannot be used to display a nominal variable in D3

because the service only accepts numbers.

• discouraged means that the graphical coordinate can

be used to display the variable type, but this distorts

the very nature of that variable. For instance, the

label coordinate of a pie chart can be used to display

a number in D3, but —conceptually speaking— the

label should be mapped onto a qualitative rather than

a quantitative variable.

• acceptable means that the graphical coordinate is

compatible with the variable type, though it may fail

to emphasize some of the features of that variable. For

instance, the label coordinate of a pie chart can be used

to display an ordinal variable in D3, but it will give no

specific emphasis to the ordering of values.

• fit means that the graphical coordinate is fully

compatible with the variable type. For instance, the

arc coordinate of a pie chart is perfectly suitable for

visualizing a ratio variable.

Table 6 shows the graphical coordinates and the related

scores for eight visualization types in their D3 implementa-

tion (all scores for Graph are unfit because no graph-oriented

visualization types are included among the eight ones we

picked as a reference in the paper).

A binding is an assignment of all or some of the variables

of a dataset to the graphical coordinates of a visualization

type. To be feasible, a binding must assign one variable to

each mandatory graphical coordinates; besides, the scores for

all assignments must be different from unfit.

Definition 8. Binding. Given visualization type v with

graphical coordinates G(v), and dataset D with variables

A = {a1, . . . , an}, a binding of D onto v is an injective,

partial function β : A → G(v) such that

(a) the image of β includes all the g ∈ G(v) for which

mand(g) = TRUE, and

(b) for all ai ∈ Â, where Â = {ai ∈ A : ∃β(ai)}

(Â ⊆ A, called the active domain of β), it is

τ(β(aij ), type(aij )) > unfit.

For instance, reconsidering the sales revenue example

mentioned above to be visualized with a pie chart, the two

possible bindings (sketched in Figure 6) are

β(Continent) = Label

β(SalesRevenue) = Arc

and

β(Continent) = Arc

β(SalesRevenue) = Label

Of these, only the first one is actually compatible with the

visualization type.

As done in Section “Translating the CIM into the PIM”

to compare visualization types, to compare bindings we

introduce a notion of dominance aimed at proposing to

the user only the best bindings, i.e., those in the skyline.

Intuitively, a binding is better than another if it assigns at

least the same variables, and if the related scores are not

worse.



Figure 5. Two sample datasets

Table 6. Graphical coordinates (in the D3 library) and PSM suitability scores for eight visualization types (m=mandatory,

o=optional, i=independent, d=dependent)

Nominal Ordinal Interval Ratio Tree Graph

Single line graph: X (m, i) unfit unfit fit fit unfit unfit

Y (m, d) unfit unfit fit fit unfit unfit

Marked line graph: X (m, i) unfit unfit fit fit unfit unfit

Y (m, d) unfit unfit fit fit unfit unfit

Pie chart: Label (m, i) fit acceptable discouraged discouraged unfit unfit

Arc (m, d) discouraged discouraged discouraged fit unfit unfit

Bubble graph: X (m, i) acceptable acceptable fit fit unfit unfit

Y (m, i) acceptable acceptable fit fit unfit unfit

Size (o, d) unfit unfit discouraged fit unfit unfit

Shape (o, d) fit discouraged unfit unfit unfit unfit

Color (o, d) fit acceptable acceptable acceptable unfit unfit

Grouped column graph: X (m, i) acceptable fit discouraged discouraged unfit unfit

Height (m, d) unfit unfit discouraged fit unfit unfit

Group (o, i) acceptable fit discouraged discouraged unfit unfit

Color (o, i) fit acceptable acceptable acceptable unfit unfit

Heat map: X (m, i) acceptable acceptable fit fit unfit unfit

Y (m, i) acceptable acceptable fit fit unfit unfit

Value (m, d) unfit unfit fit fit unfit unfit

Dendrogram: Hierarchy (m, i) unfit unfit unfit unfit fit unfit

Value (o, d) unfit unfit acceptable fit unfit unfit

Tree map: Hierarchy (m, i) unfit unfit unfit unfit fit unfit

Size (m, d) unfit unfit discouraged fit unfit unfit

Color (o, d) fit acceptable acceptable acceptable unfit unfit

Label (o, d) fit discouraged discouraged discouraged unfit unfit

Continent	
SalesRevenue	

Continent	
SalesRevenue	

Figure 6. The two bindings for the sales revenue example

Definition 9. Binding Dominance. Given two distinct

bindings of D onto v, β and β′ with active domains Â and

Â′ respectively, we say that β dominates β′, denoted β ◮ β′,

iff either

(1a) Â ≡ Â′,

(1b) ∃j : aij ∈ Â ∩ Â′∧

τ(β(aij ), type(aij )) > τ(β′(aij ), type(aij )),

and

(1c) for all other j : aij ∈ Â ∩ Â′ it is

τ(β(aij ), type(aij )) = τ(β′(aij ), type(aij ))

or

(2a) Â ⊃ Â′ and

(2b) for all j : aij ∈ Â ∩ Â′ it is

τ(β(aij ), type(aij )) ≥ τ(β′(aij ), type(aij ))

This is to say that β dominates β′ if either (1a) β and β′

assign the same variables, (1b) β is better than β′ on at least

one coordinate, and (1c) β and β′ are equivalent on all other

coordinates, or (2a) β assigns more coordinates than β′ and

(2b) β is not worse than β′ on all the coordinates assigned by

β′.



Definition 10. PSM Skyline. The PSM skyline for D and

v is the set of bindings of D onto v that are not dominated by

any other binding.

Example 5. Consider again the first, n-dimensional dataset

in Example 4, featuring 3 nominal and 3 ratio variables.

We assume that, based on her analysis objectives, the user

has selected bubble graph out of the PIM skyline as the

preferred visualization type. As summarized in Table 6, in

D3 a bubble graph has 5 graphical coordinates: X, Y (both

mandatory and requiring to be preferably either an interval

or a ratio, but possibly also a nominal or an ordinal),

Shape (optional, to be preferably bound to a nominal), Size

(optional, to be preferably bound to a ratio but possibly also

to an interval), and Color (optional and compatible with

all variable types). Based on these constraints, a possible

binding (corresponding to the visualization in Figure 7) is as

follows:

β(ProductConcentration) = X

β(CustomerConcentration) = Y

β(TotValue) = Size

β(Category) = Color

Note that binding

β(ProductConcentration) = X

β(CustomerConcentration) = Y

β(TotValue) = Size

for their analytics use cases, asked them to select one

preferred visualization type out of those proposed by the

system, and showed them the visualizations produced using

the bindings in the PSM skyline. Here we will describe two

use cases out of those evaluated, namely, the one related to

threat detection and prevention in software ecosystems, and

the one related to predictive maintenance of solar farms.

Threat Detection Systems

Threat Detection Systems (TDS) in software ecosystems47

detect potential attacks on the application landscape by

gathering and analyzing log data, such as user change

logs, security audit logs, remote function call gateway logs,

and transaction logs. Logs are pre-processed, anonymized,

translated into a common format, and analyzed by pattern

or anomaly detection algorithms, which can highlight

suspicious events. On top of the generated events and

alerts, a detailed investigation is performed by a human

expert to decide if a real attack was detected or was

a false positive. However, with the increasing size and

complexity of software systems, the volume and diversity of

log data are becoming major issues. Customers use a large

spectrum of different systems and adopt a wide range of

data security policies. As a result, including and managing

these heterogeneous log files currently requires a significant

customization effort, especially when they contain sensitive

and personal information (e.g., user IDs, IP addresses),

come from logs of multiple customers, or are accessed via

a third party (e.g., a cloud provider) running the TDS.

Similarly, customers often need different security analyses

depending on the security context, industrial sector, and risk

management policies.

For simplicity, we focus on a simple, but relevant, scenario

for TDS: security incident analysis through usage of anomaly

detection analytics. The major challenge when searching

for security incidents lies in the ability either to detect

a deviation from a normal, standard behavior (unplanned

anomalous activity) during or outside an exceptional

process (planned anomalous activity), or to detect regular

malicious activity merged into the normal state of operations

(unplanned ordinary activity such as advanced persistent

threat or repeated fraud). In this context, starting from a

dataset where each row corresponds to a network node and is

labelled with the size of data exchanged, the transaction type,

and the user who activated the service, a clustering algorithm

is applied. The users’ declaration for the data visualization

is dominated by the previous one because its active 
domain is smaller. Overall, the PSM skyline for this 
example consists of all the bindings where X, Y, and Size 
are bound to any permutation of ProductConcentration, 
CustomerConcentration, and TotValue, while Color and 
Shape are bound to either Metric, SubCategory, or 
Category.

Case Study and Evaluation

To evaluate SkyViz we have implemented a Java prototype 
whose web interface (developed in Javascript) supports the 
declaration of the visualization context and returns the best 
visualizations; the underlying database is MySQL and the 
reference graphical library for visualizations is D3. Both 
the PIM and the PSM skylines are computed using the 
Maintaining the Window as a Self-organizing List variant 
of the block-nested-loops algorithm8. Then we have let the 
users of the four pilot applications of the TOREADOR 
Project use this prototype to express a visualization context



Figure 7. Bubble graph for Example 5

area is as follows:

Goal = Cluster

Interaction = Overview

User = Tech

Dimensionality = n-dimensional

Cardinality = High

Independent Type = Ratio

Dependent Type = Nominal

with no priorities, which translates into the following

visualization context:

C = {Cluster,Overview,Tech, n-dimensional,High,

Ratio-i,Nominal-d}

Cluster
C
∼ Overview

C
∼ Tech

C
∼ n-dimensional

C
∼

C
∼ High

C
∼ Ratio-i

C
∼ Nominal-d

single line graph

marked line graph

pie chart

bubble graph

grouped column graph

heat map

dendrogram

tree map

Figure 8. Dominance relationships for the TDS case study

ScaleDataTransfer (ratio), User (nominal), Transaction-

Type (nominal), and Cluster (nominal). Here is an excerpt

from the dataset:

ID DataSent ScaleDataTransfer User Trans.Type Cluster

32 916 −0.46290193656 u1 t3 6

232 967 −0.23589474886 u2 t5 5

432 1130 0.489638027516 u1 t2 6

632 1063 0.191412898577 u2 t3 4

832 1121 0.449577935569 u1 t1 2

As shown in Table 6, the graphical coordinates for bubble

graphs are X, Y (mandatory and independent), Size, Shape,

and Color (optional and dependent). Two possible bindings

are

β(ScaleDataTransfer) = X

β(TransactionType) = Y

β(User) = Shape

β(Cluster) = Color

The dominance relationships induced on visualization types 
by C, computed as in Section “Translating the CIM into the 
PIM” based on the scores excerpted in Table 7, are shown 
in Figure 8. The corresponding PIM skyline includes bubble 
graph, heat map, and tree map. Out of these three, the user 
selected bubble graph.

To move to the PSM, we consider the details of the 
dataset resulting from clustering, whose main variables are



Table 7. Suitability tuples for eight visualization types with reference to the visualization context of the TDS case study

single line graph marked line graph pie chart bubble graph

Goal: Cluster unfit unfit unfit acceptable

Interaction: Overview fit fit fit fit

User: Tech fit fit acceptable fit

Dimens.: n-dimensional unfit unfit unfit fit

Cardinality: High fit discouraged discouraged discouraged

Ind. Type: Ratio-i fit fit discouraged fit

Dep. Type: Nominal-d unfit unfit unfit fit

grouped column graph heat map dendrogram tree map

Goal: Cluster acceptable acceptable fit fit

Interaction: Overview fit fit fit fit

User: Tech fit fit fit fit

Dimens.: n-dimensional fit fit unfit acceptable

Cardinality: High discouraged fit acceptable acceptable

Ind. Type: Ratio-i acceptable fit unfit unfit

Dep. Type: Nominal-d unfit unfit unfit fit

and

β(ScaleDataTransfer) = Size

β(TransactionType) = Y

β(User) = X

β(Cluster) = Color

the mean time between failures, i.e., the predicted elapsed

time between inherent failures of a mechanical or electronic

system during normal system operation.

Here we focus on a 3-dimensional dataset that includes,

for 65 customers, a customer identifier, the mean time (in

days) between battery charging failures, ChargingMTBF,

and the one for which no power was generated by the solar

panels, NoPowerMTBF. The visualization context declared

by the users is as follows:

C = {Comparison, Filter,Lay, n-dimensional,High,

Nominal-i,Ratio-d}

Nominal-i
C
∼ Ratio-d

C
≻ Comparison

C
∼ Filter

C
∼

C
∼ Lay

C
∼ n-dimensional

C
∼ High

The PIM skyline for this visualization context includes

grouped column graph, dendrogram, and tree map; by

discarding the visualization types that feature one or more

unfit scores, only grouped column graph and tree map are

left. The user clearly selected grouped column graph, which

is more well-known and intuitive for a lay user.

To call the D3 library for creating grouped column

graphs, we had to transform the dataset by replacing the

two variables ChargingMTBF and NoPowerMTBF with two

variables MTBF and FailureType; the former stores the

values of the two previous ratio variables, while the latter

describes the values of the former and can take two nominal

values, charging and no power. There are two bindings in the

PSM skyline: in both, MTBF is bound to Height; Customer

and FailureType are bound to X and Color or vice versa. Of

the two corresponding visualizations, users selected the one

that binds Customer to X, since the customers are too many

Of these, the first one (corresponding to the visualization 
in Figure 9) dominates the second one and is the one 
proposed to the user. Though this visualization is probably 
not 100% optimal since it does not clearly show shapes 
(which represent the User variable), it is the one actually 
preferred by the user since it properly emphasizes clusters.

Predictive Maintenance of Solar Farms

This pilot is related to a global market leader in the 
development, acquisition, and long-term management of 
international large-scale solar projects and smart energy 
solutions. It has developed an asset management platform 
whose main goal is to provide, in a timely and concise 
manner, information to the users on the operation of the solar 
farms. All data originating from the field are forwarded to 
this platform, where they are stored and processed.

The use case we discuss here is related to the prediction 
of equipment maintenance based on historical data about 
equipment anomalies in work cycles of the devices 
(inverters, transformers, smart meter failures). To this end, 
data from the large-scale solar plants of three years and 
from residential assets are analyzed to prevent anomalies 
regarding spikes in voltage, giving frequency response of 
the grid quality, and receiving temperature of inverters and 
ampere information. Specifically, analyses are focused on



Figure 9. Data visualization using a bubble graph for the TDS case study

SkyViz, the user would declare the following visualization

context:

C = {n-dimensional,Low, Interval-i,Nominal-i,Ratio-d}

Note that, to avoid biases, we have not specified the goal,

interaction, and user coordinates. The PIM skyline for this

context includes bubble graph, grouped column graph, and

heat map (also single and marked line graph would be part

of the skyline, but they can be excluded because they are

scored as unfit on both the dimensionality and independent

type coordinates). Indeed, heat maps can provide an effective

visualization for the dataset at hand as shown in Figure 13.d.

In the next example we discuss the impact of user-

defined priorities on the PIM skyline. As already mentioned,

the skyline for flat dominance always includes the skyline

for dominance, i.e, prioritizing coordinate values leads to

reducing the PIM skyline. As a consequence, users must be

aware that providing priorities for coordinates may lead them

to miss some effective visualization types for their dataset.

On the other hand, priorities are useful to deal with situations

where requirements are potentially conflicting, and users are

willing to sacrifice the effectiveness of visualization from

some points of view to increase it from other points of view.

For instance, consider the following visualization context:

C = {Comparison,Zoom,Lay, 2-dimensional,Low,

Interval-i, Interval-d}

declared by a lay user who wants to analyze a small

2-dimensional dataset providing daily temperatures in a

given location during one month. The eight corresponding

suitability sets are singled out in Table 8. The flat

to be displayed using colors. The result is shown in Figure 
10.

The fact that users assigned to customers the role of 
the independent variable and to the mean times that of 
the dependent variables, led SkyViz to miss the chance of 
proposing a bubble graph using the X and Y axis to represent 
mean times as shown in Figure 11; such bubble graph, 
coupled with a detail-on-demand interaction for seeing the 
details of single customers, may indeed turn out to be the 
most effective visualization for the dataset. In fact, our choice 
of distinguishing independent from dependent data types 
in visualization contexts has two consequences: on the one 
hand, it gives users a closer control of the PIM skyline 
and creates a better connection to the next stage, i.e., the 
computation of the PSM skyline; on the other, should users 
fail in properly identifying the roles of variables, it may lead 
to missing interesting visualizations.

Evaluation

For a more critical evaluation of SkyViz, in this section we 
simulate some challenging scenarios.

First of all, we show a simple example for which 
SkyViz can suggest an effective visualization which a lay 
user would hardly think of. Consider a dataset including 
three variables: Quarter (interval), Country (nominal), and 
DollarSales (ratio). To visualize this dataset, a lay user 
would probably choose either a grouped line graph (e.g., 
using different colored lines for countries like in Figure 
13.a), or a grouped column graph (using colors to represent

countries like in Figure 13.b), or maybe even a bubble graph

(placing countries and quarters on the X and Y axis, and

using the bubble size to represent sales like in Figure 13.c).

These intuitive bindings are summarized in Figure 12. In
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Figure 10. Data visualization using a grouped column graph for the predictive maintenance case study
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Figure 11. Data visualization using a bubble graph for the predictive maintenance case study

Country	

Quarter	

DollarSales	

to reduce the PIM skyline. The reason for this is that the

comparison goal is somehow conflicting with the nature

of the dataset; indeed, a more reasonable choice for the

goal coordinate would be trend (in which case, the only

visualization type featuring no unfit in the PIM skyline would

be marked line graph). Now, the PIM skyline can be reduced

in different ways depending on the priorities given by the

user. For instance, if she is mostly sure of the dataset features

but not so much of her goals, she can declare priorities as

follows:

2-dimensional
C
∼ Low

C
∼ Interval-i

C
∼ Interval-d

C
≻

C
∼ Comparison

C
∼ Zoom

C
∼ Lay

In this case, the PIM skylines drastically reduces to include

only marked line graph. Conversely, if the user privileges her

goals but is unsure of the dataset features, she might declare

Figure 12. Intuitive bindings for the dollar sales example

PIM skyline for this visualization context includes all 
visualization types except single line graph and pie chart 
(both dominated by marked line graph). All visualization 
types feature at least one unfit, so there is no obvious way



2018 T1 2018 T2 2018 T3 2018 T4 2019 T1 2019 T2

Quarter of Date

0K

1K

2K

3K

4K

5K

Sa
le

s

Multiple Line Chart
State

Belgium
France
Germany
Greece
Italy
Spain

The trend of sum of Sales for Date Quarter.  Color shows details about State.

Quarter of Date  /  State
2018 T1 2018 T2 2018 T3 2018 T4 2019 T1 2019 T2

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

Be
lg

iu
m

Fr
an

ce
G

er
m

an
y

G
re

ec
e

It
al

y
Sp

ai
n

0K

1K

2K

3K

4K

Sa
le

s

Multiple Column Chart
State

Belgium
France
Germany
Greece
Italy
Spain

Sum of Sales for each State broken down by Date Quarter.  Color shows details about State.(a) (b)

State
Quarter of Date

2018 T1 2018 T2 2018 T3 2018 T4 2019 T1 2019 T2
Belgium
France
Germany
Greece
Italy
Spain

Bubble Chart
Sales

206
1.000
2.000
3.000
4.000
4.739

Sum of Sales (size) broken down by Date Quarter vs. State.

State
Quarter of Date

2018 T1 2018 T2 2018 T3 2018 T4 2019 T1 2019 T2
Belgium
France
Germany
Greece
Italy
Spain

Heat Map

206 4.739

Sales

Sum of Sales (color) broken down by Date Quarter vs. State.
(c) (d)

Figure 13. Alternative visualization for a 3-dimensional dataset: multiple line graph (a), grouped column graph (b), bubble graph

(c), and heat map (d)

Table 8. Suitability tuples for eight visualization types with reference to the visualization context in Section “Evaluation”

single line graph marked line graph pie chart bubble graph

Goal: Comparison unfit unfit unfit fit

Interaction: Zoom acceptable acceptable unfit acceptable

User: Lay fit fit fit acceptable

Dimens.: 2-dimensional fit fit fit unfit

Cardinality: Low acceptable fit fit acceptable

Ind. Type: Interval-i fit fit discouraged fit

Dep. Type: Interval-d fit fit discouraged acceptable

grouped column graph heat map dendrogram tree map

Goal: Comparison fit acceptable discouraged acceptable

Interaction: Zoom unfit fit fit acceptable

User: Lay fit acceptable acceptable discouraged

Dimens.: 2-dimensional unfit unfit unfit unfit

Cardinality: Low fit acceptable fit fit

Ind. Type: Interval-i acceptable fit discouraged discouraged

Dep. Type: Interval-d discouraged fit acceptable discouraged

opposite priorities:

C
∼ Comparison

C
∼ Zoom

C
≻

Lay
C
∼ 2-dimensional

C
∼ Low

C
∼ Interval-i

C
∼ Interval-d

In this case, marked line graph is dominated, and the PIM

skyline only includes heat map and dendrogram.

Finally, to provide a challenging example for the binding

of variables, we consider the case in which the number

of variables is larger than that of graphical coordinates.

Consider an n-dimensional dataset including eight variables,

of which two nominals, two ordinals, two intervals, and

two ratios, and assume that the user selected bubble

graph, which features five graphic coordinates, as the

preferred visualization type. There are
(

8
5

)

= 56 different

bindings, i.e., bindings that involve all five graphic

coordinates. If also incomplete bindings are considered,

i.e., bindings that leave optional graphical coordinates

unassigned, the overall number of bindings increases to

8792. Of these, some can be excluded because the Size

graphic coordinate cannot be bound to a nominal or ordinal

variable, while the Shape graphic coordinate cannot be

bound to an interval or ratio variable. Using SkyViz, the

number of complete bindings returned to the user for each

of the 56 possible selections of five variables decreases

drastically. For instance, if both nominal variables and

both interval variables are selected together with one ratio

variable, the PSM skyline only includes the four all-fit

bindings in which (i) the two nominal variables are bound

to Shape and Color, (ii) the two interval variables are bound

to X and Y, and (iii) the ratio variable is bound to Size.

Clearly, the real problem when the number n of variables

in the dataset is significantly larger that the number |G(v)|

of graphical coordinates is related the exponential growth

ways to select five variables out of the eight available 
for visualization; for each selection of five variables, these 
variables can be assigned to the five graphic coordinates 
in several ways. Overall, there are 6720 possible complete



of the number
(

n
|G(v)|

)

of possible selections of variables. In

practical cases, we argue that this number will be drastically

limited for two main reasons:

• The datasets we consider in big data analytics are

typically resulting from data mining processes, which

inherently include pre-selections of variables aimed at

returning informative but concise patterns.

• The user may not be an expert in visualization

techniques, but she is assumed to know the semantics

of the data she is analyzing, so she will presumably

pick for visualization those that she deems to be more

relevant for her current analysis task.

of the visualization type, and the (physical) implementation

of the visualization, thus decoupling the first two stages from

the choice of the visualization platform.

We close the paper by recognizing that, although a basic

characterization of data (dimensionality, cardinality, and

data type) is actually directly obtained from the data itself,

specifying visualization goals and interactions may indeed

be a challenge for non-expert users. To fill this gap, we

are currently working to extend SkyViz with a goal-oriented

approach based on the i∗ framework48 to guide users across

the process of expressing their requirements for visualization

and automatically derive the coordinate values to be used for

computing the skyline.

Another interesting direction for improving SkyViz lies

in introducing some fine-tuning of specific features of

visualizations, e.g., the color scale. While currently we

rely on the default mechanisms provided by the graphics

library, considering the context (e.g., by recognizing that a

rainbow color scale is not optimal for continuous data due

to the non-monoticity of luminance) and some fine-grained

data features (e.g., the range and the number of distinct

values for each single variable) would presumably lead to

a visualization that is more intuitive and more incisive from

the perceptual point of view.

Finally, some relevant questions arise in relationship to

scalability, not in terms of performance but in terms of

effectiveness. Indeed, should a very large number of possible

visualization types be considered, our seven coordinates

might no longer be sufficient to distinguish them (i.e., several

visualization types might be described by exactly the same

suitability tuples), in which case the PIM skyline would

include a large number of (probably similar) visualization

types. To cope with this situation, other coordinates should

be added, but then the research question to be addressed

would be how to select them in order to actually improve the

discriminatory power of SkyViz. Answering this question is

left for future work.
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