
International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

1

A Model-Driven Approach to Cloud SaaS

Interoperability

Ritu Sharma
Himachal Pradesh University

Summer Hill, Shimla, India

Manu Sood
Himachal Pradesh University

Summer Hill, Shimla, India

ABSTRACT
Cloud computing is a promising computing paradigm wherein

the resources are made available to the clients as services, over

high bandwidth networks. Cloud SaaS refers to a cloud

computing service model in which the software applications are

offered as services. These cloud software applications may

require interacting with each other in order to accomplish a task.

Thus, interoperability among services is an important issue for

consideration in cloud computing. With the hardware and

software technologies constantly evolving at a tremendous pace,

the IT industry is persistently faced with the challenges of

technology obsolescence. These changing technologies have

more serious consequences in B2B context. Therefore, it

becomes essential to promote a technology-agnostic software

development approach that could alleviate the undesirable

effects of technology change. In this perspective, Model-driven

Architecture (MDA) becomes a preferred methodology for

developing cloud software services. This paper presents an

MDA-based model-driven approach to develop cloud software

services and exhibit interoperability between them.

General Terms
Cloud computing, Cloud SaaS, Model Driven Architecture,

Cloud Service, WSDL Metamodel, Interoperability

Keywords
Platform Independent Model, Platform Specific Model, Meta

model, Web Service, WSDL, SOA

1. INTRODUCTION
Cloud computing, a leading edge technology, is reshaping the

world of Information and Communication Technology (ICT). In

the ambit of cloud computing, a variety of computing resources

such as processors, storage, software applications, databases,

development environments etc are made available to the clients

as services, over a high speed network. These resources in the

cloud may be accessed as per demand across a simple interface

such as a browser running on devices that range from desktop,

laptop, iPhone or even a PDA. The usage is metered and the

client may choose to either pay for every single use of the

service or subscribe to it for a definite period [1, 2]. A software

application running in the cloud can be implemented on a

variety of technology platforms. Besides, the applications in the

cloud may require interacting with each other to achieve a

business goal. In spite of the business functionality remaining

relatively constant, as the technologies evolve these legacy

software applications tends to become obsolete and need to be

replaced. This incurs additional expenses on part of the service

providers. A software development approach that can cope with

multiple implementation technologies and extend the lifetime of

the cloud software application is, therefore, desirable and

required.

Model-Driven Architecture (MDA), an Object Management

Group (OMG) initiative, is a model-driven software

development approach which mitigates the undesirable effects

of technology change to a considerable extent. This approach

does not eclipse the various technologies; rather, it works with

them synergistically and enhances their efficiency. The MDA

approach uses formal models to describe various aspects of the

software system. The semantically rich, programmable models

are the prime artifacts in the entire software development

process directing the course of software application

development from understanding, design, construction,

deployment, operation, maintenance and modification. The

models themselves are specified in well-defined modeling

languages. Programming with semantically rich modeling

languages enhances the productivity, quality and longevity of

the software application.

In this paper, the authors attempt to present a model-driven

approach for ensuring interoperability among the software

services in the cloud. Section 2 introduces the fundamental

concepts of cloud computing. Section 3 focuses on the

significance of SOA and Web services in cloud SaaS. Section 4

highlights the concept of models and transformation in MDA.

Section 5 illustrates the development of a cloud SaaS based on

MDA. The WSDL and its metamodel are discussed in Section 6.

Section 7 briefly lists the rules for transforming the PIM of a

cloud SaaS into its WSDL PSM. Section 8 addresses the

interoperability issue in cloud SaaS. Section 9 draws the

conclusion of the work attempted by the authors in this paper.

2. CLOUD COMPUTING AND CLOUD

SERVICES
Cloud computing is the technology underpinning the cloud

services. Cloud services are analogous to utility services, and

offer computing resources as services to the clients. The

resources are pooled and shared among the clients, thereby

ensuring their optimal utilization. These resources are

dynamically scalable and can be acquired from the pool or

released to the pool with great elasticity, in order to meet the

varying demands of the clients. The virtualization technology

makes this allocation and reallocation of resources transparent to

the client, giving him an illusion of the existence of infinite

resources in the cloud. Based on the type of resource offered as

a service, the cloud service models are broadly categorized as –

(i) Cloud Software-as-a-service (SaaS) where software

applications running on cloud infrastructure are provided as

services to the consumers, (ii) Cloud Platform-as-a-Service

(PaaS) where programming languages, development tools,

utilities etc comprising the development platforms are provided

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

2

as service, and (iii) Cloud Infrastructure-as-a-Service (IaaS)

where the basic computing resources such as processors,

storage, networks etc are provided as service to the consumers.

A cloud itself may be deployed as – a public cloud, a private

cloud, a hybrid cloud or a community cloud [3, 4, 5].

The key attributes that characterize this technology include – 1)

ubiquitous access of resources, 2) resource pooling and sharing,

3) dynamic scalability of resources, 4) on-demand availability of

resources, and 5) metered usage of resources.

The advantages of this technology are that the resources are

owned, managed and controlled by third-party service providers

and the client is only required to perform certain configuration

settings on the accessing device, in order to use the services.

Also, the ability to use the service requires no or minimal IT

skills on part of the user. The use of cloud services prevents the

users from incurring any upfront infrastructure costs for their

business solutions.

3. SIGNIFICANCE OF SOA AND WEB

SERVICES IN CLOUD SAAS
Cloud computing technology has evolved from a variety

relevant legacy technologies and concepts such as distributed

computing, grid computing, virtualization, Web Service with its

supporting technologies such as Web service Definition

Language (WSDL), Simple Object Access Protocol (SOAP) and

Universal Description, Discovery and Integration (UDDI),

Service Oriented Architecture (SOA), Software-as-a-Service

(SaaS) to mention a few.

Service Oriented Architecture (SOA) represents an architectural

style in which the automation logic of an enterprise application

is decomposed into smaller, distinct units of logic called

services. These services are then configured to provide business

solutions. These units of logic in SOA must conform to the

technology-independent principles of loose-coupling, autonomy,

abstraction, reusability, discoverability, statelessness, adherence

to a service contract and compos ability [6]. SOA is an

implementation-agnostic paradigm that can be realized with any

suitable technology platform. Currently, the Web Services

platform with its supporting standards is the choice for

realization of SOA.

A web service is any service that is available over the Internet or

an intranet, uses standardized XML messaging system and is

self-describing, discoverable and not tied to any operating

system or programming language [7]. It is characterized by open

standards, cross-platform capabilities and human-readable

messages that can be sent across firewalls. The standards

comprising the Web Services framework are – Web Service

Description Language (WSDL), Simple Object Access Protocol

(SOAP) and Universal Description, Discovery, and Integration

(UDDI). WSDL is an XML-based document that describes a

web service. It specifies the location of the service and the

functionalities exposed by the service. SOAP is an XML-

compliant communication protocol that specifies the message

format for exchanging information among the applications in a

distributed environment. The service description registry and

discovery is realized through UDDI. Thus, while WSDL

specification provides a means to expose the details of how to

interact with the service and its methods, SOAP provides a

protocol for calling remote methods and passing complex data

types.

While SOA focuses on decomposing the business logic into

distinct services, which are then orchestrated or choreographed

to provide business solutions, cloud computing technology

focuses on provision of computing resources as services to the

consumers. The cloud should not be looked at as a new

architecture, but instead as another option of storing and running

services within SOA [8]. As the software applications in the

cloud may be implemented on varied platforms and

technologies, an SOA-based cloud will naturally abstract and

hide the vendor-specific and platform-specific aspects of the

various software applications by leveraging the open Web

services communications framework and establishing a

predictable communications medium for all applications

exposed via Web service. A quality „Cloud‟ therefore requires

the individual cloud services to conform to common design

principles of SOA in order to fully realize the benefits of

reusability, interoperability, federation, and others.

4. MDA AND MODEL

TRANSFORMATION
Model-Driven Architecture (MDA) is an open, vendor-neutral

approach [9] to enterprise application development where

modeling activity drives the process of software development.

The models in MDA are defined at different levels of abstraction

based on separation of concerns – the Computation Independent

Model (CIM), the Platform Independent Model (PIM) and the

Platform Specific Model (PSM). Each level may be comprised

of one or models to specify the structural, functional and

behavioral aspects of the system. The CIM is at the highest level

of system abstraction and describes the business functionality of

the system in a software independent manner using a vocabulary

familiar to domain experts. The PIM is at the next lower level of

abstraction and specifies the structure and function of the system

in a manner that is independent of the platform technology that

would be used for its implementation. The PSM is at the lowest

level of abstraction and describes the system in terms of

constructs that are specific to a particular implementation

technology. A „platform‟ is a set of subsystems and technologies

that provide a coherent set of functionality through interfaces

and specified usage patterns, which any application supported

by that platform can use without concern for the details of how

the functionality provided by the platform is implemented [10].

The key to success of the MDA approach lies in the automation

of model-to-model or model-to-code transformation. A

transformation is the process of automatic generation of a target

model from a source model, according to a transformation

definition. A transformation definition comprises of a set of

transformation rules that describe how a model in the source

language can be transformed into a model in the target language.

A transformation rule is a description of how one or more

constructs in the source language can be transformed into one or

more constructs in the target language [11]. An essential

characteristic of transformation is that it should be able to

preserve the semantics of the source and target models.

The Model Driven Architecture systematically builds upon other

OMG standards such as the Unified Modeling LanguageTM

(UML), the Meta Object Facility (MOF), XML Metadata

Interchange (XMI), Software Process Engineering Metamodel

(SPEM), the Common Warehouse Metamodel (CWM) and

Business Process Modeling Notation (BPMN).

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

3

The models in MDA must conform to their respective

metamodels. The OMG‟s Meta Object Facility (MOF) standard

facilitates this conformance. Meta Object Facility (MOF) is the

language definition mechanism of MDA [11]. It defines an

abstract syntax of modeling constructs for specifying,

constructing, and managing technology-neutral metamodels; the

technique is referred to as metamodeling. A four-layered MOF

architecture [12], starting from bottom to the top, comprises of –

the data/information layer (M0), the model layer (M1), the

metamodel layer (M2), and the meta- metamodel layer (M3).

Each ith layer in this architecture consists of a set of constructs

which are used to define the elements of (i-1)th layer. While, a

model at M1 layer is an abstraction of a real world phenomenon

described at M0 layer, a metamodel at M2 layer is an abstraction

of the model at M1 layer. The M3 layer essentially models the

technology neutral metamodels at M2 layer. The MOF M3 layer

is self-describing i.e. the M3 elements are instances of M3

elements. The MOF is, therefore, a closed metamodeling

architecture.

Figure 1 Model Transformation in MDA

Figures 1 depicts the model transformation in MDA based on

MOF standard. A transformation tool transforms a source model

into a target model by executing a transformation definition

specified for the purpose. The source and target models must

conform to their respective metamodels. The transformation

definition is described using a transformation language

(metamodel) which is chosen such that it maps the constructs of

source metamodel into constructs of target metamodel. In a PIM

to PSM transformation, the PIM is the source model and the

PSM is the target model. The PIM and PSM are specified at the

M1 level of the MOF architecture, and must conform to their

respective metamodels at M2 level.

The primary goals of MDA are – interoperability, reusability

and portability through architectural separation of concerns [10].

The MDA approach to software development benefits the

stakeholders by enhancing productivity, improving software

quality, preserving Return on Investment, reducing development

cost and reducing time to market.

5. INCORPORATING MDA APPROACH

IN CLOUD SAAS DEVELOPMENT
US NIST (National Institute of Standards and Technology) [5]

defines a Cloud SaaS as a service model in which software

applications running on a cloud infrastructure and managed by

the service provider are offered as services to the clients. The

application may be a simple one performing a single function or

a complex one performing a set of related functions. As

discussed earlier, with the technologies evolving constantly,

these software applications in the cloud are vulnerable to

technology obsolescence. Also, the changing technologies have

more serious ramifications in the B2B context as it becomes

increasingly difficult to control the impact of change when

external partners are involved. Hence, rather than developing

these cloud software services directly using available

technologies, modeling them at a higher level of abstraction will

decouple them from the undesired effects of technology change

and will also enhance their longevity. An MDA based

development of cloud SaaS (application) will enable defining

these services in a technology-independent manner and will play

a significant role in improving the quality of cloud software

services, making them more robust, flexible and agile [13, 14,

15, 16]. Encapsulating the business logic in a manner that is

independent of the technical details will formally capture the

essence of the applications; and will also make it possible to

reuse them in a variety of contexts [17, 18].

Based on MDA approach, a model-driven development of a

cloud SaaS – an Online Hotel Reservation System (OHRS) – is

illustrated. OHRS is a cloud software application which may be

availed as a service – OHRS_Service – by any small or medium

Hotel enterprise. It provides a variety of online business

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

4

functionalities to the hotel enterprise and hotel customers such

as book an accommodation, cancel a booking, check availability

of accommodation, and generate reports for the management etc.

Although MDA does not restrict itself to the use of UML for

modeling, we are using UML to specify the PIM and PSM of the

cloud SaaS. The PIM of the OHRS cloud service provides a

formal definition of the operations offered by the service that

can be accessed through the OHRS_Service interface.

Although, the service offers a range of operations through its

interface, for the sake of simplicity, only a couple of operations

associated with the service are depicted in Figure 2. The

business rules for the operations are specified by declaring the

constraints as pre-conditions, post-conditions and invariants in

Object Constraint Language (OCL) and are depicted in the

lower part of the Figure 2. Combining UML with OCL results in

a PIM specification that is more precise, rigorous and

semantically rich. The PIM is then transformed into a PSM

targeted on WSDL. Figure 3 depicts the mappings of the source

model (PIM) constructs to the target model (PSM) constructs.

Again, to keep the diagram simple, mapping for only one

operation is exhibited. The „checkAvailability‟ operation in

Figure 3 takes the type of unit, the number of units and the dates

specifying the booking period as input, and provides the

availability status as output.

Figure 2 A formal model (PIM) of a business service

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

5

Figure 3 A Cloud Service PIM mapped to a WSDL PSM

As discussed earlier, the MDA approach requires that the

models defined at different levels of abstraction during the

process of development of the software system must conform to

their respective metamodels. The platform-specific WSDL

model must therefore be in conformance with the WSDL

metamodel. A metamodel for WSDL2.0 is presented in the

section 6.

6. WSDL AND WSDL METAMODEL
Web Service Description Language (WSDL), an XML-based

specification, is the cornerstone of the Web service architecture,

providing a common language for describing the services and a

platform for integrating those services. These service

descriptions enable communication between the loosely-coupled

services in an SOA-based cloud. A WSDL specification

describes four critical pieces of information: 1) interface

information describing all the publicly available functions; 2)

data type information for all the message requests and

responses; 3) binding information about the messaging and

transport protocol to be used; and 4) address information for

locating the specified service [7]. A WSDL specification

consists of distinct abstract and concrete definitions, which

separates the abstract details of „what‟ functionality is offered by

the service from the concrete details of „how‟ and „where‟ this

functionality is offered. Each of these definitions in turn uses a

number of constructs to promote reusability of the description

and to separate independent design concerns. This separation of

definitions helps to preserve the integrity of the service

description regardless of the changes in the underlying

technology platform.

A metamodel in simple words is a „model of a model‟. It

describes the abstract syntax of the set of elements of a model. A

WSDL metamodel, thus, is an explicit description of the

elements (constructs and rules) of a WSDL model.

Figure 4 WSDL Metamodel

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

6

The description is the root element in a WSDL2.0 model

and serves as a container for zero or more child elements in the

following order [19, 20]:

1. zero or more documentation element

2. zero or more elements from among the following, in any

order:

i. zero or more include element

ii. zero or more import element

3. an optional types element

4. zero or more elements from the following, in any order:

i. interface element

ii. binding element

iii. service element

These six elements – import, include, types,

interface, binding and service – are the top-level

elements directly contained in the description root

element. The top-level elements in turn may contain other

elements called nested elements, for example the operation

elements nested in the interface element or the endpoint

element nested in the service element. Figure 4 depicts the

WSDL metamodel specified using a UML class diagram.

The technology-independent abstract description includes the

types and interface elements while the technology-

specific concrete description includes the binding and

service elements.

The description element holds the namespace declarations

that would be used throughout the WSDL document. The

import element is used to refer to the elements belonging to a

different WSDL namespace while include element is used to

refer to the elements in the same WSDL namespace. The

types element uses the schema definition language such as

XSD to describe the message types – input, output or

fault – that the service would send and receive. The

interface element contains operation elements to

specify a set of operations offered by the service, each operation

representing a single set of interaction between the client and the

service. The operation element describes the input,

output and fault messages, and also the pattern

(message exchange pattern) between the communicating

partners. The message exchange pattern may be one of the eight,

enumerated in Figure 4. The binding element specifies the

concrete details regarding message format and the transmission

protocol for each operation and fault in the interface.

The service element defines one or more endpoint

elements to specify the locations where it can be accessed and a

single interface which it supports. Each endpoint must

reference a previously defined binding to indicate the protocols

and transmission formats to be used at that endpoint.

7. MAPPING THE PIM (UML) TO PSM

(WSDL)
Once the PIM of the cloud software service is specified, it can

be transformed into a WSDL PSM based on the transformation

definition specified for the purpose. An automated or a semi-

automated transformation tool may be used to execute the

transformation definition.

The complete transformation definition for transforming the

cloud service PIM to the WSDL PSM cannot be described here

due to spatial constraints. Therefore, only the key mappings of

the transformation definition are listed below:

i. The interface of the service in the PIM maps to the

interface element of WSDL PSM.

ii. The operations in the PIM map to the operation element in

the WSDL PSM.

iii. The data types in the PIM map to the types element of

WSDL PSM.

iv. Each input message in the PIM maps to the input element

in the operation element of the WSDL PSM.

v. Each output message in the PIM maps to the output

element in the operation element of the WSDL PSM.

8. CLOUD SAAS INTEROPERABILITY
Cloud computing architectures are a heterogeneous blend of

technologies and platforms. The various software applications

residing in the cloud do not exist in isolation. They must be able

to communicate and exchange information transparently,

irrespective of the technologies used to implement them. Thus,

interoperability among the cloud SaaS is a relevant and

significant issue in cloud computing.

The IEEE Glossary [21] defines interoperability as “the ability

of two or more systems or components to exchange information

and to use the information that has been exchanged”.

In early- and mid-90s, the sharing of data among the

applications on same computer or different computers was

facilitated through the then prevalent technologies such as

COM/DCOM (Microsoft) and CORBA/IIOP (OMG), which

allowed the units of functionality to be reused as binary objects.

Sun created its own native ORB, called RMI (Remote

Invocation Method). But these technologies were platform-

specific. For example, COM/DCOM was tied to Windows

platform and though CORBA/IIOP did not have this limitation,

it was used with non-Java languages. Also, in the absence of a

universal standard for data representation at that time, the

communication among the applications was carried out in binary

form; but this binary data was restricted by firewalls.

The year 1999-2001 witnessed the advent of Web services.

Web-services are characterized by non-proprietary standards,

cross-platform capabilities and human-readable messages that

can be sent across firewalls. Since the web service message is in

human-readable form, it requires more bytes to transmit the

same amount of information as compared to that of its

predecessors.

Web Service offers a suitable technology platform for realizing

SOA. The services in SOA are inherently interoperable. This

intrinsic interoperability builds on the principle of loose-

coupling among the services which is achieved by virtue of

vendor-neutral communications framework that enables

implementation of highly standardized service descriptions and

message structures. Loose-coupling results in the independence

of service logic. Services only require being aware of each

other; they can evolve independently.

Thus, the standard-based service descriptions are the key

ingredients in establishing a consistently loosely coupled form

of communication among the services implemented in the cloud.

A service description document which describes the

functionality offered by a service via its interface, accompanies

each service. This document is specified in WSDL. WSDL is

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

7

not tied to any specific XML messaging system such as XML-

RPC or SOAP, but it does include built-in extensions for

describing SOAP services. Once a WSDL document (.wsdl file)

is specified for a service, a SOAP client can be manually created

to invoke any of the service‟s publicly available functions as

defined in the WSDL document. Alternatively, the service can

be automatically invoked using a WSDL invocation tool

available for the purpose such as Web Service Invocation

Framework (WSIF) from IBM, SOAP::Lite, GLUE from The

Mind Electric etc. These tools may be command-line based or

may provide a web-based interface.

In the context of MDA, the WSDL represents the PSM of the

cloud SaaS. The WSDL in a cloud SaaS is responsible for

message exchange and communication between the interacting

services, thus ensuring interoperability at the PSM level in the

model-driven approach.

In order to address the interoperability issue we extend the

example further to include another cloud SaaS – the COHS

(Cab_on_Hire System) Service. The service may be availed by

any Cab Enterprise. A variety of business functionalities are

offered by this cloud software service such as online bookings

and/or cancellations of cabs by the customers, generating reports

for the management etc. To illustrate, we consider two fictitious

enterprises – ABCHotels and XYZCabs – that subscribe to these

cloud services [15] and provide services to their customers

through their respective websites – ABCHotels.com and

XYZCabs.com. Also, the two enterprises complement each

other in terms of the services they provide, i.e. the ABCHotels

hires cabs from XYZCabs for its customers. Similarly,

XYZCabs hires rooms for its customers from ABCHotels. This

requires a B2B communication between the two enterprises.

This interaction is facilitated by the cloud services through

simple interfaces – an OHRS_Service interface for OHRS and a

COHS_Service interface for COHS. Although, a service may

maintain different interfaces for B2B and B2C interactions, for

simplicity we are assuming a single interface to enable both. Let

us, for example, consider that ABCHotels wishes to enquire

about the total number of their customers who have hired cab(s)

from XYZCabs on a particular day. This requires the

ABCHotels to invoke a specific method through the

Cab_Service interface. In an SOA-based cloud this interaction is

enabled through an XML-based communication framework that

uses SOAP messages. The HTTP request is submitted through

the browser, and is routed via a controlling servlet on the OHRS

web server (in the cloud). The web service client provided by

the OHRS Service uses the web service interface published by

COHS Service to invoke the method on its server that returns

the required information. The method invocation is performed

by creating an XML message that contains the method name and

any required parameters and then sending it to COHS Service

using the SOAP protocol. The value(s) returned by the method

call are then wrapped in another XML message and sent back to

the OHRS web client, which extracts the information that it

needs and uses a server-side script engine to render it as HTML.

The HTML is then returned to the client‟s browser. The

advantage of using XML instead of HTML is that only raw data

is required to be transferred which does not include presentation

markups, thereby reducing network traffic. Also, the code

required to make a request is much simpler than that required to

extract data from an HTML page.

Figure 5 Interoperability between two services

9. CONCLUSION
The hardware and software technologies are evolving at a

tremendous pace. The cloud computing is the latest

technology in this timeline of evolution, where computing

resources are made available as services over high

bandwidth linkages. This technology is gradually changing

the way the small and medium enterprises would look at

their business solutions. The enterprises may opt for

subscribing to these services, thereby preventing the

upfront cost on the required hardware and software

infrastructure. In addition, it will reduce the need to train,

or hire skilled professionals for the job. But, the

technology evolution has a negative aspect too. The rapid

transitions may lead to the obsolescence of several legacy

enterprise applications. The consequences are more serious

when the application involves business-to-business

interaction among enterprises.

In order to overcome this drawback, the authors in this

paper present a model-driven approach to develop cloud

software services, and exhibit interoperability among them.

Based on MDA, the PIM and PSM of a cloud SaaS, taken

as an example, are specified in UML. A transformation

definition to transform the PIM of the cloud SaaS into its

PSM is discussed briefly. The PSM is targeted on WSDL,

which is an essential component of Web Services

communications framework, in addition to SOAP and

UDDI. It is the WSDL document of the cloud service

which defines the interface of a cloud SaaS, and which is

invoked by other software applications in the cloud. SOAP,

a messaging and communication protocol, is used for the

exchange of messages between the services. WSDL itself

has the ability to bind to SOAP, simple HTTP or MIME.

WSDL, which represents the PSM level of the MDA-based

cloud SaaS, thus ascertains interoperability among the

cloud SaaS. At present, the authors are working towards the

completion of a transformation tool to transform the cloud

SaaS PIM into its WSDL PSM.

International Journal of Computer Applications (0975 – 8887)

Volume 30– No.8, September 2011

8

10. REFERENCES
[1] Rimal, B.P., Choi, E., Lumb, I. 2009. A Taxonomy

and Survey of Cloud Computing systems. In

Proceedings of the Fifth International Joint

Conference on INC, IMS and IDC, 44–51.

[2] Foster, I., Zhao, Y., Raicu, I., Lu, S. 2008. Cloud

Computing and Grid Computing 360-Degree

Compared. In IEEE Grid Computing Environments

Workshop, 1–10.

[3] Youseff, L., Butrico, M., Da Silva, D. 2008. Toward a

Unified Ontology of Cloud Computing. In Grid

Computing Environments Workshop, 1–10. ISBN:

978-1-4244-2860-1, doi: 10.1109/GCE.2008.4738443

[4] Maggiani, R. 2009. Cloud computing is changing how

we communicate. In IEEE International Professional

Communication Conference, 1–4.

[5] Mell, P., Grance, T. 2009. The NIST Definition of

Cloud Computing. Version 15 (July 10, 2009),

http://thecloudtutorial.com/nistcloudcomputingdefiniti

on.html

[6] Erl, T. 2005. Service Oriented Architecture: Concepts,

Technology and Design. Pearson Education, Inc.

[7] Cerami, E. 2007 Web Services Essentials. Third

Indian Reprint. O‟Reilly Media, Inc. ISBN 10:81-

7366-339-4

[8] Cloud Computing and SOA Convergence in Your

Enterprise,

http://searchsoa.techtarget.com/generic/0,295582,sid2

6_gci1375000_mem1,00.html

[9] OMG Model Driven Architecture.

http://www.omg.org/mda/

[10] Miller, J., Mukerji, J.: MDA Guide Version 1.0.1,

http://www.omg.org/docs/omg/03-06-01.pdf

[11] Kleppe, A., Warmer, J., Bast, W. 2003 MDA

Explained: The Model Driven Architecture: Practice

and Promise. Pearson Education, Inc., London.

[12] OMG‟s Meta Object Facility

http://www.omg.org/mof/

[13] Ritu Sharma and Manu Sood, 2011. Cloud SaaS and

Model Driven Architecture. In Proceedings of the

International Conference on Advanced Computing and

Communication Technologies (ACCT11), 18-22.

ISBN: 978-981-08-7932-7

[14] Sharma, R., Sood, M. 2011. Modeling Cloud

Software-as-a-Service: A Perspective. In Proceedings

of the International Conference on Network

Communication and Computer (ICNCC 2011), 170–

174. ISBN: 978-1-4244-9550-4

[15] Ritu Sharma, Manu Sood and Divya Sharma, 2011.

Modeling Cloud SaaS with SOA and MDA. In

Proceedings of the International Conference on

Advances in Computing and Communications (ACC

2011). Communications in Computer and Information

Science, 2011, Volume 190, Part 5, 511-

518, DOI: 10.1007/978-3-642-22709-7_50

[16] Ritu Sharma and Manu Sood, 2011. Cloud SaaS:

Models and Transformation. In Proceedings of the

First International Conference on Computer Science,

Engineering and Information Technology (CCSEIT-

2011). Communications in Computer and Information

Science, 2011, Volume 205, 305-314.

[17] Frankel, D.S. 2003. Model Driven Architecture:

Applying MDA to Enterprise Computing. Wiley

Publishing Inc., Chichester.

[18] Frankel, D., Parodi, J. 2002. Using MDA to develop

Web Services, 2nd edn. IONA Technologies PLC

[19] Web Services Description Language (WSDL) Version

2.0 Part 0: Primer W3C Recommendation 26 June

2007. http://www.w3.org/TR/2007/REC-wsdl20-

primer-20070626

[20] Web Services Description Language (WSDL) Version

2.0 Part 1: Core Language W3C Recommendation 26

June 2007. http://www.w3.org/TR/2007/REC-

wsdl20-20070626

[21] Institute of Electrical and Electronics Engineers. IEEE

Standard Computer Dictionary: A Compilation of

IEEE Standard Computer Glossaries. New York, NY:

1990.

http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.springerlink.com/content/1865-0929/
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626
http://www.w3.org/TR/2007/REC-wsdl20-primer-20070626

