
1. INTRODUCTION

Agents are a powerful technology with many significant
applications, both demonstrated and potential [13, 14]. How-
ever, building and modifying agent systems currently
requires substantial expertise in one or more agent develop-
ment platforms. The complex domains where agents are used
often have requirements that change as the understanding of
the system grows. Agent systems are inherently modular and
well suited to the gradual development of the system as spe-
cialised situations are recognised and appropriate behaviour
specified. Typically domain experts (e.g. meteorologists, sci-
entists, accountants) or users identify and require these
changes once the system is deployed. The need for an agent
software developer to make these modifications slows down
the evolution of the system, as well as increasing the cost.
Our vision is to develop a framework that facilitates domain
experts themselves making modifications to a deployed sys-
tem, in order for it to better fit needs which are identified as
the system is used.

Our approach is to develop a framework based on agent
systems made up of well defined components, where struc-
tured support is provided for modifying components, or
adding new components in well defined ways. For example,
assume that we have a definition for a goal, which is based
on a description of the world in terms of a set of attributes. A
domain expert wishing to add a new goal could then be pre-
sented with a menu of the attributes from which to choose a
combination that specifies the goal state. In order to build
plans to achieve this goal, the domain expert can be present-
ed with the set of existing actions and (sub)goals which
affect the relevant attributes.

The components within our framework must be of suffi-
ciently fine granularity to support the domain experts in
modifying an application to provide new or refined function-
ality. Consequently our view of components is somewhat
different to how they are viewed in traditional Object Orient-
ed Software Engineering, where components are viewed as
binary units of composition with specified interfaces, which
can be used in a suitable component infrastructure [10, 23].

vol 20 no 4 july 2005 273

Comput Syst Sci & Eng (2005) 4: 273–282
© 2005 CRL Publishing Ltd

A model driven component-based
development framework for agents

Gaya Buddhinath Jayatilleke, Lin Padgham and Michael Winikoff

School of Computer Science and Information Technology, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
Email: gjayatil, linpa, winikoff@cs.rmit.edu.au

International Journal of

Computer Systems
Science & Engineering

Developing agent-oriented systems is still a difficult task. However, a component-based approach can help by supporting both modular modifica-
tion of existing systems and construction of new systems from existing parts. In this paper we develop a foundation (conceptual model) for a compo-
nent-based agent development framework by extending the concepts of the SMART framework. We apply our definitions to an existing agent
application in order to both refine the definitions, and to evaluate the extent to which the model is able to support modification of existing systems.
A prototype toolkit called Component Agent Framework for non-Experts (CAFnE) that implements the component framework is also explained
briefly.

Keywords: agent-oriented systems, component-based approach, CAFnE

Our components must be easily modifiable (and therefore
not binary) building blocks. While our approach may well
lead to greater reuse of small pieces of code (our compo-
nents), supporting reuse is not the primary objective. Sup-
porting a ‘component market place’ where components are
bought and sold in binary form is not a goal of this research.
In order to support the modification of an existing applica-
tion by domain experts, the application must be built and
structured in terms of the relevant components. Many such
components (e.g. plans, agents, goals) are an integral part of
existing agent development applications, but others (e.g.
actions, protocols, environment) are more implicit. Our
framework will assist the agent software developer in build-
ing well structured applications that lend themselves to
ongoing modification as the application develops in scope
and complexity. This approach will make the application
easier to understand and maintain, even when extensions
beyond the scope of domain experts are required.

Our starting point for component definition is the SMART

framework of Ashri and Luck [16]. We have modified and
extended this framework based on a case study of a meteoro-
logical application, typical of the kind of system we aim to
support. The framework has been implemented as a work-
bench which supports the domain expert in making well
defined modifications to the application. In the following
sections we motivate and explain the details of the compo-
nents that we support, and provide examples from the appli-
cation, regarding the kind of changes that can be made by
domain experts. The meteorological application has in fact
undergone a range of developments since the initial imple-
mentation. We will be analysing these in detail and evaluat-
ing the extent to which they can be supported within our
framework. In future work the workbench will be used and
evaluated by domain experts within this domain, as well as
used within additional domains.

2. BACKGROUND

Component Based Software Engineering is a well-estab-
lished technology within object-oriented software engineer-
ing [10], and has also been explored in relation to Agent
Oriented Software Engineering. However none of the
approaches that we have seen have provided the right combi-
nation of simplicity and expressivity to support non-experts
in modification of evolving agent applications in the way
that we envision.

Agent component systems such as PARADIGMA [1],
DESIRE [3], JAF [24], Jadex [18] and others [8, 21] have
focused on making agent architectures modular, rather than
on making applications developed using these architectures
modular. These approaches make it easier to change the core
functionality of the agent architecture such as how the agent
selects actions and how the agent perceives the world. How-
ever, they do not support domain-oriented structuring and
changes of an agent application through components as in
developing a weather event monitor agent from existing
weather-related components. In other words they are not
intended for non-experts. Another common problem faced in
using these systems is the loosely defined nature of compo-
nents such as actions. While most of these systems use

actions as the primitive atomic behaviors used by agents
(frequently contained in Plans), they do not clearly define
what constitutes an action at the implementation level.
Another aspect that needs highlighting is the use of XML in
our framework and in Jadex. Jadex uses XML in defining the
structure of the Java code that implements each component.
This is significantly different to our use of XML where it
defines the implementation independent (inherent) structure
of the component. This allows for easy comprehension for
the non-experts while keeping the implementation indepen-
dent of the component definition.

The SMART framework [16] on which PARADIGMA [1] is
based provides an extensive set of components for defining
an agent. However we find that some of these are not rele-
vant for our purpose, as they define the underlying infras-
tructure components such as AgentPerception and
AgentState, rather than those required for a particular appli-
cation. Other components are not defined in sufficient detail,
or in a way that facilitates their use for building and modify-
ing applications. These include components such as Actions,
Plans and Events. We have however taken aspects of the
SMART framework as a starting point and further developed
or modified these in line with what we perceive as necessary
for providing the concrete implementation support desired.

Another category of work has focused on providing agent
toolkits with general purpose agent components for expert
agent programmers. This category includes toolkits such as
ABLE (Agent Building and Learning Environment) [2] and
ZEUS [6]. Both these tools provide graphical interfaces with
an extensive set of components mostly comprising core pro-
cessing elements such as communication, learning and plan-
ning based on Java. ZEUS provides more support for multi
agent communication and collaboration while ABLE spe-
cialises in agent learning. These prepackaged components
help the rapid development of agent systems via component
reuse. However they can only be used by expert program-
mers who are skilled in object-oriented languages such as
Java and agent concepts. Therefore these tools do not pro-
vide an answer to our problem of supporting non-expert
users.

The only work that we are aware of that develops a com-
ponent framework aimed at applications, rather than agent
architectures, is [9]. This work views each agent as consist-
ing of a number of Activity components, where an activity is
basically a tree of Decision components leading to a
Behaviour component Although this work is promising,
defining an agent with only Activity, Decision and Behavior
components seem too limited in implementing complex
agent systems. For example, it is not clear how agent beliefs
(i.e. agent’s view of the world) are maintained and also how
proactive (goal-oriented) behavior can be implemented. As a
whole, it is not clear how the three component types can be
used to implement flexible behaviors as supported by archi-
tectures such as Belief Desire Intention (BDI) architecture
[19].

The agent model is a natural and intuitive approach for
building complex software systems, compared to some of the
existing software engineering techniques [14]. However,
despite the claimed benefits, agent systems are still regarded
as being difficult to develop. By examining existing agent
development environments we have identified a number of

274 computer systems science & engineering

G BUDDHINATH JAYATILLEKE ET AL

key issues that make agent development difficult, especially
for domain-experts.

Firstly, some of the detailed concepts behind agents are
subtle and are difficult to understand and apply. For example
the concept of Intentions in BDI theory is not a simple con-
cept that can be grasped by a novice. Similarly advanced fea-
tures in toolkits, such as meta-plans in JACK, are not easy to
comprehend and use.

Secondly, the mapping of concepts to implementations is
done in different ways by various platforms, even where the
platforms are based on the same agent concepts. For example
toolkits such as JACK, Jadex and JAM are all based on the
BDI model and provide developers with a language to imple-
ment agents. However, each of the toolkits provides different
constructs with different semantics. For example, in JACK a
plan can have sub-goals, and if one of these fails, then the
plan fails. In Jadex, on the other hand, the success or failure
of a plan’s sub-goals needs to be explicitly checked. One
possible reason for this sort of inconsistency between agent
platforms is the novelty of the technology and it not being
mature enough to be standardized as in Object Oriented con-
cepts. However, this inconsistency may confuse a novice
agent developer in selecting and using a toolkit to implement
an agent following a particular set of concepts.

Thirdly, an issue more relevant to our goal is the orienta-
tion of all existing agent development tools towards expert
agent programmers. Most agent languages are based on an
existing object oriented language (i.e. a host language) such
as Java, requiring the agent developer to not only understand
the agent specific constructs but also understand the host lan-
guage.

Finally, the toolkits do not support the agent concepts in a
clearly structured way. For example, in BDI agents, plans
are typically thought of as including a sequence of steps, but
languages such as JACK, Jadex and JAM do not structure a
plan body as a sequence of steps, instead they simply view
plan bodies as being code in a suitable programming lan-
guage. Similarly, existing agent languages do not provide a
structured way of modeling the agent’s environment.

Therefore our aim is to first come up with a simplified
agent model with clear definitions for the constructs within
it, hence allowing non-experts to build and modify agent
systems in a way closely related to agent concepts (i.e. BDI).

3. APPROACH

In this work we are interested in defining components with
the right granularity to support non-expert users with limited
programming knowledge in modifying agent behavior. It is
essential that the component model support implementation,
not just design. In particular, we are interested in implemen-
tation using a particular style of agent systems, namely
Belief, Desire, Intention (BDI) [19] systems such as JACK
[4], PRS [11] and dMARS [7]. In this paper we provide
details of a conceptual component model which is a result of
our initial work towards achieving the aforementioned goal.

As a starting point we used the SMART framework [16] to
identify the potential building blocks of an agent system. The
reasons for selecting SMART are two fold. Firstly SMART is pre-
cisely defined (using the Z formal specification notation). Sec-
ondly SMART has been used to formalise the operation of the

dMARS agent platform [7] which suggests that the SMART mod-
el is compatible with the use of a BDI implementation platform.

Some of the component types defined in SMART corre-
spond to core functions of an agent platform, for example the
action selection function. These components are provided by
the agent platform and are not usually modified by applica-
tion developers. For example, the mechanism by which an
agent selects which plan to use or which event to process
next will not be changed by the designer of a particular agent
application. These ‘core platform components’ are not the
focus of our work since they are not the focus of an applica-
tion developer, but of a platform developer.

Other component types are application-specific. For
example, the entities that a particular application domain
deals with, or the goals that an agent achieves. These compo-
nent types are the focus of our investigation. Figure 1 shows
an overview of how these descriptive components are struc-
tured within an agent.

In order to investigate the suitability of the descriptive
components identified in SMART and to find what other com-
ponent types are required, we applied these to an existing
agent application. We used the weather alert system at the
Bureau of Meteorology in Melbourne [17] for this purpose.
We now briefly describe this application.

3.1 Meteorology alerting system

Currently, human forecasters receive a large range of infor-
mation from many sources such as radar, automated weather
stations, lightning, and volcanic ash advisories. The weather
alert system1 [17] aims to reduce the information overload
experienced by human forecasters by filtering information
and automatically generating a range of alerts. The system
receives events from a range of sources including:

• Automated Weather Stations (AWS) which produce regular
readings including temperature, pressure, and wind speed
and direction.

275

A MODEL DRIVEN COMPONANT-BASED DEVELOPMENT FRAMEWORK FOR AGENTS

vol 20 no 4 july 2005

Figure 1 Simplified model of an agent in our framework

1. The weather alert system is part of the research project Open Agent Archi-
tectures for Intelligent Distributed Decision Making which is funded by the
Australian Research Council (Linkage Grant LP0347025, 2003-2005) and is
joint work with the Australian Bureau of Meteorology (Australia’s national
weather service, www.bom.gov.au) and Agent Oriented Software Pty. Ltd.
(www.agent-software.com).

• Terminal Aerodrome Forecasts (TAF) which are regular-
ly-issued forecasts for airports, and contain pressure and
temperature predictions.

• Thunderstorm alerts.

The system is structured as an open agent system imple-
mented in JACKTM [4] where each agent subscribes to
events. For example, one of the agent types subscribes to
AWS and TAF events and checks for consistency between
the forecasts (TAF) and the actual weather readings (AWS).
If a significant inconsistency is detected it sends an alert
event. Forecasters’ GUIs subscribe to alert events. Currently
there are agents that check for inconsistencies between fore-
casts (TAF) and data readings (AWS) and agents that check
for extreme weather conditions (e.g. high wind speed, thun-
derstorms).

The key issues include ensuring that the system is resilient
to various forms of failure (i.e. is robust); reducing ‘alert pol-
lution’, that is trying to avoid overloading the human fore-
casters with too many alerts whilst ensuring that essential
information is delivered; and ensuring that the system is
extensible.

4. COMPONENT MODEL

Our exploration using the weather application yielded a basic
set of component types which we believe are sufficient to
describe an agent application. This set of components com-
prise: attribute, entity, environment, goal, event, trigger,
plan, step, belief and agent (see Figure 1).

We follow a layered approach to define our model, similar
to the levels M0, M1 and M2 defined in the Model Driven
Architecture (MDA) of the Object Management Group
(OMG). Figure 2 shows the levels in our model (left side)
and examples of entities in each layer (right side). The name
of the corresponding MDA layer is given in a circle. It is
important to note that we have not defined our levels using
the Meta Object Facility (MOF) which the MDA is based on
[15]. A rigorous comparison of the MDA levels and our lev-
els is out of the scope of this paper and we leave it as future
work.

At the meta-meta level (M2 equivalent) we define the
domain-independent generic component types found in our
study. These generic types are then used in the meta level
(M1 equivalent) to define domain dependent component
types. For example, using the M2 level component type
Agent we can define a WeatherAnalyzer type at the M1 level
in the meteorology application domain. The M0 level defines

the runtime components of the system which are bound to a
domain as well as a runtime platform. These components are
defined based on the M1 level component types using instan-
tiation. For example an instance of the WeatherAnalyzer type
could be created at runtime as VicWAnalyzer.

We use XML as a language for defining the components
and hence use an XML DTD2 specification to provide the
meta level definitions of component types. The reasons for
selecting XML as the definition language for components are
three fold. As stated earlier, our interest is in defining com-
ponents at a descriptive level rather than at a platform level.
For this XML provides an inherently structured language for
specifying the anatomy of each component. This is also one
of the reasons for deciding against a formal language such as
Z (‘Zed’) [22] (used by SMART for defining its components)
which is more suitable for defining process than structure.
Secondly, using technologies such as XSLT (XSL-Transfor-
mations) it is easier to transform the XML definitions of the
components to executable code. This process is shown in
Figure 3. The XML component definitions generated by the
top level development tool can be converted into executable
code of an existing agent programming language by the
Transformation module. This way we are able to leverage an
existing agent platform for executing our component agents.
For example, in our initial implementation, we are transform-
ing the component definitions to JACK agent language [4]
code. Thirdly, XML is heavily supported by tools and also
well established in mainstream software engineering.

In the rest of section 4 we define the component types
found in our study.

4.1 Attributes, entities and environments

A defining characteristic of agents is that they are situated in
an environment (usually highly dynamic). For example, in
the meteorological alerting domain the environment is
dynamic in (at least) two ways

1. The Environment generates a continuous flow of sensory

276 computer systems science & engineering

G BUDDHINATH JAYATILLEKE ET AL

Figure 2 Layered Component Definitions
2 Refer to http://www.w3.org/TR/2004/REC-xml-20040204/ for a specifi-
cation of XML and DTD

Figure 3 An Overview of the Component Framework

data (e.g. weather related readings from automated weath-
er stations).

2. The Environment may add/remove sensory data sources
with or without prior notice (e.g. an automated weather
station might go down due to a technical fault).

Therefore we need an effective way to model and represent
the Environment. The SMART model provides two ways of
structuring the environment: as a set of Attributes, where an
Attribute is defined as a ‘perceivable feature’; or as a set of
Entities, where an Entity is a set of Attributes. Using Entities
rather than Attributes gives a more structured view of the
environment. However SMART does not provide an explicit
definition for an Attribute that can be used in an implemen-
tation. Therefore we provide a definition for an Attribute
while retaining the model for the Environment as defined in
SMART. We define an Attribute type as a tuple:

<!ELEMENT Attribute (%ID;)>
<!ATTLIST Attribute Type CDATA #REQUIRED>
<!ENTITY % ID "(#PCDATA)">

where ID refers to a unique identifier used to identify an
Attribute. Type refers to the domain the Attribute value
belongs to. As Attributes are used to hold values and also
references to other components, Type can contain regular
data types such as integer, real etc. and also identifiers of
other components such as Entities, Events etc.

Since the environment is dynamic, Attributes are not sim-
ply mappings of names to values, but fluents [20] – the value
of a given Attribute depends on the situation. Hence, in some
situations it may be useful to explicitly attach state refer-
ences (for example time stamps) to Attributes. However in
our initial implementation we have ignored this fact for sim-
plicity.

Using the Attribute definition we can define an Entity as
being a collection of Attributes:

<!ELEMENT Entity (Attribute)+>
<!ATTLIST Entity ID CDATA #REQUIRED>

where ID refers to a unique identifier used to identify an
Entity.

While Environment is not an implementable component
in our model, the above definitions show that Attributes and
Entities can be used to define the environment an agent is
situated in. This helps in defining environment related con-
structs such as percepts and beliefs.

The meteorology domain has Entities such as Automated
Weather Station (AWS) readings which contain Attributes
such as temperature, pressure, wind direction and wind
speed. Following is an Attribute definition for a temperature
reading.

<Attribute Type="int">temperature</Attribute>

Formally, an AWS reading is a Type Instance of the Entity
Component Type (referred to as awsreading). The definition
for the awsreading entity is given below:

<Entity ID="awsreading">
<Attribute Type="String">location</Attribute>
<Attribute Type="int">temperature</Attribute>

</Entity>

At runtime an instance of the awsreading entity will have
its location and temperature attributes bound to values (e.g.
location=‘Melbourne’ and temperature=18). The nature of
the runtime structure of Attributes depends of the execution
platform used to run the application. For example, in a plat-
form based on Java, an Entity may be represented as an
Object.

4.2 Goals

Being proactive is an important property of agents and con-
sequently, Goals are a crucial concept for agents [25]. Sim-
ply, a Goal can be seen as a set of attributes that describe a
desired state of the world.

In addition to the desired state of the world, [26] argues
that Goals should include a failure condition which describes
when the Goal should be abandoned; as well as an indication
of how the Goal could be achieved (the procedural aspect of
the Goal). However, from an implementation point of view
linking Goals to the process of achieving them (called a
Plan) can lead to problems when a priori knowledge of the
relevant plans is not available and the agent has to formulate
a plan using a planner. Hence in our model we bind a Plan to
a Goal rather than a Goal to a Plan. Based on the above we
define a Goal as:

<!ELEMENT Goal (Attributes, Success?, Failure?)>
<!ELEMENT Attributes (Attribute+)>
<!ELEMENT Success (#PCDATA)>
<!ELEMENT Failure (#PCDATA)>
<!ATTLIST Goal ID CDATA #REQUIRED>

where ID is a ‘Goal Identifier’ used to identify a Goal and
Success and Failure are (optional) boolean expressions for-
mulated with Attributes that state the success and failure
conditions of the Goal respectively.

A distinction not made in this definition is between differ-
ent types of Goals such as achievement and maintenance. A
formal definition for a Goal that takes this aspect into con-
sideration is given in [7] in formalizing the dMARS agent
architecture. However, we regard the distinction between
achievement and maintenance Goals to be a part of the Goal
processing rather than to be a part of the Goal definition
itself. In other words we are able to define both types of
Goals with the definition given above while the processing
of the two types would be different. For example the same
Goal g could be fired as achieve(g) and maintain(g) where
the definition of g would be the same (using our definition)
while the resulting process would be different.

An example of a Goal from the meteorology application
domain is given below. The purpose of the Goal in this case
is to find a weather station which is responsible for monitor-
ing a given region. We assume that this mapping is not avail-
able in the agent’s internal beliefs and that the agent has to
consult an external agent or a directory service to obtain this
information. Therefore due to the absence of a provider ser-
vice, the agent might fail in achieving this Goal. The Goal
also assumes the existence of an attribute called GoalSeek-
Time and a Beliefset query (see section 4.7) queryws.
GoalSeekTime is a time counter that keeps track of the time
since the generation of the Goal and queryws queries the
agents beliefs for a weather station for a given region.

277

A MODEL DRIVEN COMPONANT-BASED DEVELOPMENT FRAMEWORK FOR AGENTS

vol 20 no 4 july 2005

<Goal ID="FindEffectiveWS">
<Attributes>

<Attribute Type="STRING">region</Attribute>
</Attributes>
<Success> queryws(region) </Success>
<Failure> goalSeekTime >= 5 </Failure>

</Goal>

Based on our definition of a Goal, the above states that the
Goal with an identifier FindEffectiveWS has a success condi-
tion (Success) which says that once the Goal is achieved the
Belief set query queryws should return true for the given
region and a failure condition (Failure) that says the Goal
needs to be achieved within five seconds.

4.3 Events

An Event is a notification of a certain state of the internal or
external environment of the agent. Based on our definitions,
an Event type can be defined as:

<!ELEMENT Event((Attributes|Entities)+, Step?)>
<!ELEMENT Attributes (Attribute+)>
<!ELEMENT Entities (Entity+)>
<!ELEMENT Step> (See section 4.6 for Step definition)
<!ATTLIST Event ID CDATA #REQUIRED>

where the Attributes and Entities describe the state being
notified by the Event and the optional Step (see section 4.6)
provides a way to specify a reflexive action. A reflexive
action is when an action is executed directly as a result of an
Event occurrence without invoking a plan.

An Event is similar to a Goal in that once an Event is gen-
erated, it needs to be handled by an Event Handler (similar to
a Plan). However an Event describes a current actual situa-
tion whereas a Goal describes a desired situation that needs
to be brought about. Hence an Event does not state success
or failure conditions. Further, by including a single Step, the
Event provides a way to execute a mandatory action before
any plans are processed. This helps in implementing reflex-
ive behavior and also in simplifying the specification of
Event handling when a single action is sufficient to handle
the Event. A good example is ‘percept events’ that are gener-
ated as a result of sensing actions of the agent. Most of the
percept data are written to the agent’s Beliefs before they are
handled by any plans. By including a write action in the
Event, an agent is able to easily achieve this, without execut-
ing any plans.

For example, an Event type instance awsdatareceipt is
generated when an agent receives data from an Automated
Weather Station. This Event is defined below:

<Event ID="awsdatareceipt">
<Attributes>

<Attribute Type="String">location</Attribute>
<Attribute Type="int">temperature</Attribute>
<Attribute Type="int">pressure</Attribute>

</Attributes>
<Step ID="add" Type="belief">

<BeliefSet>awsData</<BeliefSet>
<Input ID="location" Type="String">thisEvent.
location</Attribute>

<Input ID="temperature" Type="int">thisEvent.
temperature</Attribute>

<Input ID="pressure" Type="int">thisEvent.
pressure</Attribute>

</Step>
</Event>

Attributes location, temperature and pressure define the data
being passed on by the awsdatareceipt Event. As it is a per-
cept Event that is generated by the environment, we include
a step that writes the Event data to a Belief set called awsDa-
ta.

4.4 Triggers

A Trigger is an Event or a Goal, which invokes a plan (see
section 4.5 for the definition of a plan).

<!ELEMENT Trigger (Goal|Event)>

Defining a Trigger allows us to give a common definition to
a Plan as a process that handles Triggers (i.e. Events or
Goals). However a Trigger is only an addition to our termi-
nology and not a component in its own right. By defining a
Trigger we provide flexibility and expressiveness in the
modeling process when it is not clear if an Event or a Goal is
to invoke a Plan. This can be expressed as a Trigger and later
can be implemented as an Event or a Goal.

4.5 Plans

A Plan responds to a predefined Trigger (i.e. achieves a Goal
or handles an Event) by sequentially executing a set of
‘steps’ (a step is a generalized form of an action defined in
section 4.6), after checking whether a predefined state,
known as the Context is true. The Context is defined with
respect to the agent’s beliefset about the Environment and
the properties of the Trigger being handled by the Plan. This
is similar to the notion of a Plan definition given in [25].
Based on this definition we represent a Plan as:

<!ELEMENT Plan (Context, Steps)>
<!ELEMENT Context (#PCDATA)>
<!ELEMENT Steps (Step+)>
<!ATTLIST Plan ID CDATA #REQUIRED>
<!ATTLIST Plan Trigger_ID CDATA #REQUIRED>

Where Context is a boolean expression that specifies the
state in which this plan is applicable and Steps specify the
sequence of steps to be executed by the plan. The parameters
ID and Trigger_ID refer to the identifier of the plan and the
identifier of the Trigger (i.e. Goal or Event) being handled
by the plan respectively.

Example: The plan type instance FindAWS handles the
FindEffectiveWS Goal defined in section 4.2.

<Plan ID="FindAWS" Trigger_ID="FindEffectiveWS">
<Context> true </Context>
<Steps>

<Step ID="QueryAWSServer" Type="action">
<Input ID="Region" Type="String">thisEvent.
region</Input>

<Output ID="WSName" Type="String">
wsName</Output>

278 computer systems science & engineering

G BUDDHINATH JAYATILLEKE ET AL

</Step>
<Step ID="condition" Type="logical">

<Input ID="ConditionString" Type=
"String">wsName != NULL </Input>

</Step>
<Step ID="update" Type="belief">

<BeliefSet>WSData</BeliefSet>
<Input ID="Region" Type="String">
?thisEvent.region</Input>

<Input ID="WSName" Type="String">
wsName</Input>

</Step>
</Steps>

</Plan>

The action QueryAWSServer queries from an external
server the Weather Station name (WSName) for the given
Region. The second step checks whether an AWS server was
found. The third step is an internal beliefset update which
updates the agent’s belief set with the new data.

4.6 Steps

Actions are defined as primitive elements in many agent
platforms and frameworks. In SMART, actions are defined as
operations that change the state of the external Environment.
However, from an implementation point of view where we
consider actions to be the steps of a plan, it is useful to also
allow for ‘internal actions’ that affect the agent’s internals
rather than its environment. In order to avoid confusion, we
retain the term ‘action’ for an operation that affects the envi-
ronment, and view actions as being one type of step. Some
of the other types of steps (apart from actions) include:

• sense: changes attributes in the agent’s beliefs that reflect
the external Environment.

• trigger: generates a Trigger. Note that the step type trig-
ger is not a Trigger itself but a process that instantiates a
Trigger (i.e. ‘trigger’ is a verb and ‘Trigger’ is a noun).

• message: this is similar to generating a Trigger, however
in this case the generated Trigger is sent to another agent.
This is a very important step type for an agent in a multi
agent system.

• belief: reads or updates Attribute values in the agent’s
beliefs. In other words sense steps are a special type of
belief steps.

• logical: These are logical expressions that evaluate to true
or false. This is a special type of step defined to make the
plan formulation simpler. This type of step does not
change the internal or external environments. By includ-
ing logical steps an agent can test various conditions
within the plan execution and abandon the plan as being
failed if a logical step evaluates to false.

Based on the above, we attempt to provide an implementa-
tion-oriented specification for a step. We believe that with
the right tool support a non-expert will be able to create
plans by combining steps, and modify existing plans that are
formulated in terms of collections of steps. A step can be
formalized as below:

<!ELEMENT Step (Input*, Output*, Instructions,
Outcome)>

<!ELEMENT Input (Attribute+)>
<!ELEMENT Output (Attribute+)>
<!ELEMENT Instructions (#PCDATA)>
<!ELEMENT Outcome (#PCDATA)>
<!ATTLIST Step ID CDATA #REQUIRED>
<!ATTLIST Step Type (action | sense | trigger | belief
| logical) #REQUIRED>

where ID refers to the ‘Step Identifier’. Input specifies
which Attributes are required to carry out the step. Output
specifies a set of attributes that will be bound to values as a
result of the step execution. Outcome is a boolean expression
based on Attribute/Value pairs that specifies the state of the
Environment/View after the execution of the step. In other
words Outcome can be used to verify whether the step has
succeeded or failed. Instructions specify the execution pro-
cess of the step. From an implementation point of view
Instructions will include the code that implements the step

4.7 Beliefs

An agent’s Beliefs are responsible for storing the agent’s
view of the internal state and the external environments. In
their simplest form Beliefs can be represented as a set of
Attribute tuples. However in our model, Beliefs are extended
further by introducing Keys which make them closer to a
relation in a relational database model. The relational model
is sufficient for most data (belief) descriptions and it is also
simple to use. Extending this model to support more com-
plex structures such as storing objects instead of atomic val-
ues would be part of our future extensions. The current
definition of a Belief set is given below:

<!ELEMENT Belief (Attribute+, Keys)>
<!ELEMENT Keys (Key+)>
<!ELEMENT Key (#PCDATA)>
<!ATTLIST Belief ID CDATA #REQUIRED>

where the set of Attributes (denoted by Attribute+) defines a
tuple in the Belief set and the Keys define a subset of the
attributes that acts as a unique identifier for each tuple instance.

Example. The Belief set used in section 4.3 called awsData
is defined below.

<Belief ID="awsData">
<Attribute Type="DATETIME">timestamp</Attribute>
<Attribute Type="STRING">location</Attribute>
<Attribute Type="READING">temperature</Attribute>
<Attribute Type="READING">pressure</Attribute>
<Keys>

<Key> timestamp </Key>
</Keys>

</Belief>

An implementation of a belief set would need to provide a
means to update, query and raise triggers on its beliefs. The
update and query operations can be seen as belief steps
defined in section 4.6. An update step changes the state of
the Belief set. A query step returns a set of Attribute
instances with the values set to values taken from the Belief
set. By raising triggers we refer to the ability of the Belief
set to generate Events or Goals when predefined conditions
are met by the current beliefs. While existing database

279

A MODEL DRIVEN COMPONANT-BASED DEVELOPMENT FRAMEWORK FOR AGENTS

vol 20 no 4 july 2005

concepts can be used to implement these functions, tuple
spaces [5] are perhaps more suitable due to the associative
nature of data storage and logical querying.

4.8 Agent

An agent in our framework is a collection of Triggers (Goals
and Events), Plans and beliefs. In other words, an agent type
in our model can be defined as below:

<!ELEMENT Agent (Triggers+, Plans+, Beliefs+)>

<!ELEMENT Triggers (Handles*, Posts*)>
<!ELEMENT Handles (Event_ID | Goal_ID)+>
<!ELEMENT Posts (Event_ID | Goal_ID)+>
<!ELEMENT Event_ID (#PCDATA)>
<!ELEMENT Goal_ID (#PCDATA)>
<!ELEMENT Plans (Plan_ID)+>
<!ELEMENT Plan_ID (#PCDATA)>
<!ELEMENT Beliefs (BeliefSet_ID)+>
<!ELEMENT BeliefSet_ID (#PCDATA)>

<!ATTLIST Agent ID CDATA #REQUIRED>

The set of triggers includes all the Goals and Events used by
the agent. The distinction between the Triggers handled and
posted by the agent could be derived from the Plans used by
the agent as only a Plan can handle or post a trigger. Howev-
er specifying them explicitly helps in detecting errors by
cross checking between Triggers specified in the agent defi-
nition (intended triggers) and triggers used by the Plans
(used triggers).

5. USING THE COMPONENT MODEL

The components identified have been used to model the
weather alert system described in section 3.1, in order to
evaluate the effectiveness of the framework. We found that
structuring the agents as consisting of the defined compo-
nents made it easy to modify and add new behaviors. These
included operations such as adding new plans and creating
new triggers which were identified as frequent changes by
the meteorologists who use the system.

The component definitions support a well defined struc-
turing of the application. However in order for domain
experts to be able to make modifications using the frame-
work it is necessary to provide an interface and toolkit to
easily manipulate the components, and to see the available
fillers for building or modifying particular parts of the appli-
cation.

Figure 4 shows the prototype toolkit we have developed,
named CAFnE (Component Agent Framework for non-
Experts). It supports the user in defining components and
integrating them into the application. The toolkit produces
the relevant XML definitions, based on input from the GUI.
It also includes a Transformer module to transform the plat-
form independent components (defined in XML) to JACK
agent language constructs in order to provide an executable
application. For more details on the CAFnE toolkit, see [12].

The prototype CAFnE IDE shown in Figure 4 has data
from the sample Weather Alert Application we are working

with. The tree view window on the left side lists the avail-
able component types while the right side window contains
the attributes and the steps used in the application domain. It
is essential that Attributes and Steps be carefully defined as
the other component types are based on one or both of these
base component types.

In the rest of the section we briefly explain how the sam-
ple weather application is encoded using the component
types defined in the previous section and how the CAFnE
tool can be used to support the modification process.

A high level view of the sample weather alert system is
shown in Figure 53 with respect to percepts, agent types and
messages passed between the agents. (More detailed views
of the internal structure including plans, events and belief
sets of each agent are available in separate diagrams of the
PDT tool which we plan to fully integrate with CAFnE.)
Figure 5 shows that the Agent of type WeatherAnalyzer
receives wind speed readings as Event types called
envWindData.

The WeatherAnalyzer agent type processes this data by
firstly classifying the wind reading as HIGH, MID or LOW
based on a set of threshold values stored in a beliefset.
Secondly by looking at past wind readings stored in a belief-

280 computer systems science & engineering

G BUDDHINATH JAYATILLEKE ET AL

Figure 5 Application Overview

3 Designed using the Prometheus Design Tool (PDT),
http://www.cs.rmit.edu.au/agents/pdt

Figure 4 CAFnE Toolkit

set, it also determines if the wind speed is increasing or
decreasing. Finally, it sends these details to Alerter agent
type using an Event type NotifyWindData (shown in Figure
5). Based on a notification criteria for each region4, an Alert-
er agent potentially notifies agents of type RegionalWeather-
Agent of the wind level. For example, an alert is sent to the
RegionalWeatherAgent for the Victoria region if there have
been no alerts sent in the past 10 minutes and if the wind
speed is both HIGH and increasing. Once a regional agent
receives an alert it displays the alert for the meteorologist,
formatted based on the severity of the alert.

All the component types (i.e. steps, plans, beliefsets,
events, goals and agent) required to achieve the above
behavior are defined using the appropriate component defi-
nitions. The clear structure of the definitions not only guides
the developer in structuring the application, but also makes it
easier to provide an interface so that the meteorologist can
modify these components as needed. For example, the mid-
dle window in Figure 4 shows the edit window for the Noti-
fyRegion plan, used by the Alerter agent to respond to the
NotifyWindData event. The definition of the NotifyRegion
plan is given below:

<Plan ID="NotifyRegion" Trigger_ID="NotifyWindData">
<Context>true</Context>
<Steps>

<Step ID="findTimeDifference" Type="action">
<Input ID="Time1" Type="String">
lastAlertTime</Input>

<Input ID="Time2" Type="String">
thisEvent.Time</Input>

<Output ID="TimeDiff" Type="int">
elapsedTime</Output>

</Step>
<Step ID="condition" Type="logical">

<Input ID="ConditionString" Type=
"String">elapsedTime>10</Input>

</Step>
<Step ID="update" Type="belief">

<BeliefSet>RegionAlertData</BeliefSet>
<Input ID="Location" Type="String">
thisEvent.Location</Input>

<Input ID="Date" Type="String">
thisEvent.Date</Input>

<Output ID="Time" Type="String">
thisEvent.Time</Output>

</Step>
<Step ID="subgoal" Type="trigger">

<Trigger>NotifyRegionalAgent</Trigger>
<Input ID="Location" Type="String">
thisEvent.Location</Input>

<Input ID="Strength" Type="String">
thisEvent.Strength</Input>

<Input ID="WindTrend" Type="String">
thisEvent.WindTrend</Input>

<Input ID="Date" Type="String">
thisEvent.Date</Input>

<Input ID="Time" Type="String">
thisEvent.Time</Input>

</Step>
</Steps>

</Plan>

While some of the steps in the plan might not make sense

without having a deeper knowledge of the application, the
point to note here is that the structure of the plan has allowed
us to provide a simple interface to create and edit any plan.
This applies to all the component types defined in our frame-
work. For example looking at the second step shown in the
plan window of Figure 4, we see that the condition required
is that elapsed time is greater than 10 (minutes). If the mete-
orologist wishes to increase or decrease this, it can be done
very simply by changing the value within the tool.

To illustrate a slightly more complex scenario, imagine
that the meteorologists decide that they want a more fine
grained set of regions than the existing states. All they will
need to do is create the required new agent instances, of type
RegionalWeatherAgent, by using the AgentInstances choice
at the top of the left hand menu. They can then edit these to
differ from the current state based RegionalWeatherAgent
agents, by editing the relevant information such as Location.
If a slightly different notification behaviour is required,
compared to the agent used as a template, it is simply neces-
sary to create a new plan type (say NotifyRegion_Mel-
bourne) to replace the existing one (e.g. NotifyRegion_VIC)
that was inherited from the template, and to change the nec-
essary details such as alert frequency, situations to alert on,
and so on.

The key to being able to provide an interface to do this,
that shows the application specific details, but does not need
to be developed for each application, is the component struc-
ture based on application specific Attributes and Steps,
together with generic relationships between components
(e.g. a plan consists of a Context, which is a boolean condi-
tion based on values of Attributes, and a sequence of Steps).

Our initial explorations indicate that the framework is
quite successful for both building and representing a typical
application, and for enabling the type of modifications need-
ed by domain experts. When we have further refined the
interface of the toolkit, and added some additional compo-
nent types, we will be testing usability directly with meteo-
rologists as a typical target group.

6. CONCLUSIONS AND FUTURE
WORK

This paper described a conceptual framework of domain
independent component types that can be used to formulate
and modify an agent system. We used SMART concepts as a
starting point in analyzing an existing agent application for
generating weather alerts. This process yielded a set of com-
ponent types, namely attribute, entity, environment, trigger
(goal, event), plan, step, belief and agent that can be used to
build an agent system. While some of these are identified as
building blocks in SMART, the definitions and usage are dif-
ferent in our framework. For example a plan is not a basic
construct in SMART. Another difference is the definition of an
action in specifying a step. We have attempted to define our
components to make the description of an agent simpler
from an implementation perspective. This is one of the key
differences between our work and some of the other work on
component based agents. Some of the key issues yet to be
developed in our work include a structured representation
for condition statements (as in Plan Context), a richer plan
language (set of operators for steps) and a representation for

281

A MODEL DRIVEN COMPONANT-BASED DEVELOPMENT FRAMEWORK FOR AGENTS

vol 20 no 4 july 2005

4 The regions are the various states of Australia.

the conversation protocols, or sets of messages that are sent
between agents for a particular purpose.

As a continuation of this work we intend to provide a
‘Transformation Module’ for at least one additional platform
(thus demonstrating platform independence), to further refine
some of the components, such as Context, and to add compo-
nents to capture the interactions between agents. This would
include ways to design and implement agent protocols.
Another area we are interested in is looking at ways to visu-
alise and assess the effects of a change made to the system.
This will help the non-Experts in evaluating their changes
and minimise errors. We also plan to improve the user inter-
face and evaluate the approach with a user group of meteo-
rologists by asking them to make the changes which we
know other meteorologists actually requested within this
application as it has developed over time. If they are success-
fully able to make such changes, without any intervention
from a programmer, then we will consider the approach to be
highly successful. Initial indications are that this seems very
possible.

ACKNOWLEDGEMENTS

This work was supported by the Australian Research Council
(Linkage Grants LP0347025 and LP0453486) in collabora-
tion with the Australian Bureau of Meteorology and Agent
Oriented Software Pty Ltd.

REFERENCES

1 R. Ashri, M. Luck and M. d’Inverno. Infrastructure support
for agent-based development.Foundations and Applications of
Multi-Agent Systems, LNAI2403, pages 73–88, 2002.

2 J. Bigus, D. Schlosnagle, J. Pilgrim, W. Mills and Y. Diao.
ABLE: A toolkit for building multiagent autonomic systems.
IBM Systems Journal, 41(3):350–371, 2002.

3 F. M. Brazier, C. M. Jonker and J. Treur. Principles of com-
ponent-based design of intelligent agents. Data Knowledge
Engineering, 41(1):1–27, 2002.

4 P. Busetta, R. Ronnquist, A. Hodgson and A. Lucas. JACK
Intelligent Agents – Components for Intelligent Agents in Java.
Technical report, Agent Oriented Software Pty. Ltd, Melbourne,
Australia, 1998. Available from http://www.agent-
software.com.

5 N. Carriero and D. Gelernter. Linda in Context. Communica-
tions of the ACM, 32(4):444–458, 1989.

6 J. Collis and D. Ndumu. The zeus agent building toolkit: Zeus
technical manual (release 1.0). Technical report, British
Telecommunications PLC, 1999.

7 M. d’Inverno, D. Kinny, M. Luck and M. Wooldridge. A for-
mal specification of dMARS. In M. Singh, A. Rao, and M.
Wooldridge, editors, Intelligent Agents IV: Proceedings of the
Fourth International Workshop on Agent Theories, Architec-
tures, and Languages, pages 155–176. Springer-Verlag LNAI
1365, 1998.

8 K. Erol, J. Lang and R. Levy. Designing agents from reusable
components. In Proceedings of the Fourth International Confer-

ence on Autonomous Agents. Barcelona, Spain, 2000.
9 H. J. Goradia and J.M. Vidal. Building blocks for agent

design. In Fourth International Workshop on AOSE, pages
17–30. AAMAS03, July 2003.

10 G. T. Heineman and W. T. Council. Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wes-
ley Publishing Company, ISBN: 0-201-70485-4, 2001.

11 F. F. Ingrand, M. P. Georgeff and A. S. Rao. An architecture
for real-time reasoning and system control. IEEE Expert, 7(6),
1992.

12 G. Jayatilleke, L. Padgham, and M. Winikoff. Component
Agent Framework for non-Experts (CAFnE) Toolkit. In M. Cal-
isti, M. Klusch, and R. Unland, editors, (to appear in) Agent
Prototypes and Applications, Whitestein Series in Software
Agent Technologies. Whitestein, 2005.

13 N. Jennings and M. Wooldridge. Applications of intelligent
agents. In N. R. Jennings and M. J. Wooldridge, editors, Agent
Technology: Foundations, Applications, and Markets, chapter 1,
pages 3–28. Springer, 1998.

14 N. R. Jennings. An agent-based approach for building complex
software systems. Communications of the ACM, 44(4):35–41,
April 2001.

15 A. Kleppe, J. Warmer and W. Bast. MDA Explained, The
Model Driven Architecture: Practice and Promise. Addison-
Wesley Publishing Company, ISBN: 0-321-19442-X, 2003.

16 M. Luck and M. d’Inverno. Understanding Agent Systems.
Springer, ISBN 3540419756, 2001.

17 I. Mathieson, S. Dance, L. Padgham, M. Gorman, and M.
Winikoff. An open meteorological alerting system: Issues and
solutions. In Proceedings of the 27th Australasian Computer
Scienc Conference, Dunedin, New Zealand, Jan. 2004.

18 A. Pokahr and L. Braubach. Jadex: User guide (release
0.92).Technical report, Distributed Systems Group, University
of Hamburg, Germany, 05 2004.

19 A. S. Rao and M. P. Georgeff. BDI-agents: from theory to
practice. In Proceedings of the First Intl. Conference on Multia-
gent Systems. San Francisco, 1995.

20 S. Russell and P. Norvig. Artificial Intelligence A Modern
Approach. Prentice Hall, ISBN 0 13 080302 2, 2003.

21 N. Skarmeas and K. L. Clark. Component based agent con-
struction. International Journal on Artificial Intelligence Tools,
11(1):139–163, 2002.

22 J. M. Spivey. The Z Notation: A Z Reference Manual. Prentice
Hall International, 1989.

23 C. Szyperski. Component Software: Beyond Object Oriented
Programming. Addison-Wesley Publishing Company, ISBN: 0-
201-17888-5, 1998.

24 T. Wagner, B. Horling, V. Lesser, J. Phelps and V. Gural-
nik. The Struggle for Reuse: Pros and Cons of Generalization in
TÆMS and its Impact on Technology Transition. Proceedings
of the ISCA 12th International Conference on Intelligent and
Adaptive Systems and Software Engineering (IASSE-2003), July
2003.

25 M. Winikoff, L. Padgham and J. Harland. Simplifying the
development of intelligent agents. In proceedings of the 14th
Australian Joint Conference on Artificial Intelligence (AI’01),
pages 557–568. Adelaide, 2001.

26 M. Winikoff, L. Padgham, J. Harland and J. Thangarajah.
Declarative & procedural goals in intelligent agent systems. In
Proceedings of the Eighth International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2002),
Toulouse, France, Apr. 2002.

G BUDDHINATH JAYATILLEKE ET AL

282 computer systems science & engineering

