
A Model-Driven Engineering Framework for Architecting and Analysing Wireless

Sensor Networks

Krishna Doddapaneni∗, Enver Ever∗, Orhan Gemikonakli∗, Ivano Malavolta†, Leonardo Mostarda∗, Henry Muccini†

∗Computer Communications Department, School of Engineering & Information Sciences, Middlesex University, UK
Email:{k.doddapaneni, e.ever, o.gemikonakli, l.mostarda}@mdx.ac.uk

†Dipartimento Di Informatica De L’Aquila Via Vetoio L’Aquila 67100, Italy

Email:{ivano.malavolta, henry.muccini}@univaq.it

Abstract—A Wireless Sensor Network (WSN) is composed
of distributed sensors with limited processing capabilities and
energy restrictions. These unique attributes pose new chal-
lenges amongst which prolonging the WSN lifetime is one of
the most important. Challenges are often tackled by a code-
and-fix process that relies on low-level hardware and software
information.

Recently, the need of abstracting an implementation view
into an architectural design is getting more realized. A clear
separation of concerns is needed since hardware and software
aspects are locked and tied down to specific types of nodes,
hampering the possibility of reuse across projects and organiza-
tions. This means that exploiting the right level of abstraction,
and keeping explicit (and separated) software and hardware
architectural details will surely ease developers’ job.

In this paper we propose a modeling framework that allows
developers to model separately the software architecture of the
WSN, the low-level hardware specification of the WSN nodes
and the physical environment where nodes are deployed in.
The framework can use these models to generate executable
code for analysis purposes. In this paper we focus on energy
consumption analysis.

I. INTRODUCTION

A Wireless Sensor Network (WSN) consists of spatially

distributed autonomous sensors that monitor environmental

conditions in order to accomplish a task such as fire monitor-

ing and home temperature control [12]. WSNs lead to many

challenges [16] such as abstraction, separation of concerns

and reuse. When current practices on WSNs are considered,

it is quite evident the lack of engineering methods and

techniques to manage these challenges.

Beside the need of programming abstraction it is well-

acceted the need of abstracting an implementation view

into an architectural design. As remarked in [14], ”end

users require high-level abstractions that simplify the con-

figuration of the WSN at large, possibly allowing one to

define its software architecture based on pre-canned com-

ponents”. Separation of concern is limited since hardware

and software components are locked and tied down to

specific types of nodes, hampering the possibility to reuse

components across projects and organizations. Moreover,

while the focus is mostly on software components and

hardware, there is still a missing piece from the WSN

modeling puzzle: the physical environment where the WSN

application will be deployed. Since the physical environ-

ment plays a fundamental role especially when the energy

consumption of WSNs is considered, lack of an explicit

representation of the physical environment is an important

limitation of existing approaches (see Section V). Under this

perspective, approaches abstracting implementation details

from the underlying hardware and physical infrastructure

are strongly advised [12], [1]. Some initial effort has been

conducted for architecting WSNs [9], [6], however, they

partially meet the expectations.

This paper proposes a model-driven engineering (MDE)

framework to support an architecture-driven development

and analysis of WSNs. The framework makes use of a

multi-view architectural approach [7] to model separately

(i) software components and their interactions, (ii) the low-

level and hardware specification of the nodes, and (iii)

the physical environment where the nodes are deployed.

Although using different models helps for the separation of

concerns, it introduces the challenge of linking the models

together to get a complete view of the system under devel-

opment. For this purpose, we use suitable weaving models to

map software components into different hardware nodes and

virtually deploy the nodes into specific areas of the physical

environment. Model-to-text transformations can use these

models to generate executable code, e.g., for analysis pur-

poses. This paper shows how energy consumption analysis

can be conducted starting from the model-driven framework

we propose. Different model-based analysis techniques can

also be plugged into the proposed modeling framework.

The contribution of this paper is a model-driven engineering

framework that:

• enables reuse by clearly separating software, hardware,

and environment descriptions of a WSN;

• improves abstraction by masking the complexity of

low-level hardware details (code is also automatically

generated from the models);

• facilitates model-based analysis by automatically gen-

erating analysis models out of the modeling framework.

The paper is organised as follows: Section II provides an

overview of the framework; Section III briefly discusses the

model-driven engineering framework for architecting WSNs;



Figure 1. Overview of the modeling framework

Section IV presents how energy analysis can be performed;

Section V provides the related wok; Section VI summarises

the paper.

II. OVERVIEW OF THE MODELING FRAMEWORK

The main goal of our research is to take advantage of

Model Driven Engineering (MDE) techniques to support

an architecture-driven development and analysis framework

for improving WSNs. Figure 1 shows an overview of the

framework we are working on. It is composed of three main

parts.

The WSN Modeling Languages. The main building blocks

of such a framework are three modeling languages: the

Software Architecture Modeling Language for WSN (SAML),

the Node Modeling Language (NODEML), and the Envi-

ronment Modeling Language (ENVML). Depending on the

analysis to be performed, those modeling languages can be

linked together through weaving models, in order to create

a combined software, nodes, and environmental view of the

WSN.

The Code generation framework. This framework will

manage a repository of code generation engines. Each engine

will be realized as a plugin of this framework. A generic

engine knows at run-time which code generation plugins are

installed into the framework, and automatically provides to

the developer the available target implementation languages.

The Analysis framework. This framework is similar to the

code generation one, but it manages analyses for WSNs (e.g.,

coverage, connectivity, energy consumption analysis).

Our framework is generic since it is independent from

the programming language, hardware and network topology.

Starting from a set of models (each one reflecting a certain

WSN viewpoint), the code generation and analysis com-

ponents can be plugged into the framework for generating

executable code or analysis outcomes. Even if the proposed

modeling languages are very abstract, the current framework

is very much focused on energy consumption analysis, and

thus it might be necessary to extend the modeling languages

to provide the needed concepts for supporting other analysis

or code generation engines. In this context, introducing

changes at the metamodel level has a strong impact in the

already developed plug-ins (model editors, model transfor-

mations, etc.); this problem is called metamodel co-evolution

management and it is well-known in the MDE research

field [?], [?]. If we look at this problem from a different

perspective, similarly to what we proposed in a previous

work on architectural languages interoperability [?], a pos-

sible solution could be to provide a systematically defined

extension process for our modeling languages, in which

their extensions are organized into a hierarchy obtained by

systematically extending a root modeling language.

This paper briefly describes the modeling framework and

focusses on how to use those models to simulate WSN

energy consumption. In order to demonstrate the validity

of our approach, we make use of a home automation

case study [5], [3] by focussing on the fire alarm and

automatic heating systems. The fire alarm system considered

is composed of two types of sensors that are temperature

and smoke sensors. There are also sprinkler actuators that

are used to enable the water flow in case of fire. Temperature

sensors monitor the temperature at regular intervals (every

30 seconds). When a temperature sensor reads a value that

exceeds a specified threshold, it sends an alert message to

the smoke sensors. Each smoke sensor receives the alert

and checks for smoke. When a smoke sensor detects smoke

it sends an alarm message to the sprinklers to activate the

water flow. The automatic heating system is composed of

the same temperature sensors of the fire alarm system, a

base station and various heaters. Temperature sensors send

readings every 30 seconds to a base station. This is placed at

the centre forming a star topology. The base station averages

the readings and decides whether or not the central heating

system should be on.

III. MODELING LANGUAGES

In our approach model-driven techniques are used to

model the software and hardware architectures of WSN

nodes. Our approach also defines a physical environment



Figure 2. Modeling the home automation case study

model that enables virtual deployment of nodes. The main

building blocks are three modeling languages (see Figure 2):

SAML, NODEML, and ENVML. For the sake of space, this

section describes the main concepts included in each lan-

guage, a more detailed description is provided in Appendix

and their implementation can be found in [11]. It is important

to note that we defined the static semantics of the languages

by means of their underlying metamodels. Also, each meta-

model is complemented with a set of OCL1 constraints that

ensure properties that are not purely structural; however, the

description of those constraints is omitted for the sake of

brevity.

Software Architecture Modeling Language for WSN

(SAML). It allows designers to define the software archi-

tecture of the WSN application. The software architecture

of a WSN is defined as a set of interacting components

which exchange messages by passing through ports. Each

component can declare a set of application data that can be

seen as local variables declared in the scope of the com-

ponent; application data is manipulated by actions defined

in the behaviour of the component. In SAML, components

can contain a behavioural description. The behaviour of each

component is represented by a list of events, conditions and

actions, which together describe the control flow within the

component from an abstract point of view. Examples of

actions comprise: start or stop of a timer, sending a message

via a specific message port, get data from a sensor, etc.

Examples of events comprise: the message reception on a

message port, a timer fired, etc.

By referring to the leftmost part of Figure 2, the SAML

model of the home automation case study is composed of

four main components: Temp, Smoke, Sprinkler and Base

1http://www.omg.org/spec/OCL/2.0/

Station (BS), each of them describing the logic of the

software running on each type of node of the case study. The

left-lower part of each component contains its application

data; those data can be set either statically (e.g., threshold

in Temp), or by some sensing action performed by the

component (e.g., T in Temp). Application data can be used

within conditions (e.g., see the condition on the link between

sense smoke and send message actions in Smoke), or for

passing values while triggering an actuator (e.g., see the

actuate OFF action in BS). Store data actions are used to

assign specific values or expressions to an application data

(e.g., store data status = ON in BS). Messages can be sent

to a given message port by using send message actions (e.g.,

send actions in Temp), and the receiving of a message to a

specific port is represented by a receive message event (e.g.,

see the receive event in Sprinkler).

Node Modeling Language (NODEML). NODEML is our

language for describing the low-level details of each type of

node that can be used within a WSN. Indeed, different WSN

applications can reuse the same NODEML models and orga-

nize them differently, depending on the requirements of the

application. A NODEML model contains exclusively low-

level, node-specific information, like its supported operat-

ing system, implemented MAC protocols, routing protocols,

and so on. It also contains the hardware specification of

the nodes, including their energy sources (e.g., batteries),

communication devices, installed sensors and actuators.

The central part in Figure 2 shows the four types of

models we decided to use in the home automation case study.

More specifically, we decided to use a node for each type

of sensor, rather than mounting multiple sensors on each

node. This decision leads to a simpler implementation of

each node, and to a more flexible network topology. This is a



typical architectural trade-off since the previously described

benefits come at the cost of higher communication overhead

between the nodes. The BS node type is not equipped with

any sensor since it has to accomplish only tasks related

to communication within the network. For each node we

defined its low-level parameters; for example we decided

to use the CC2420 radio defined by the Texas instruments,

the output power of the different transmission levels varies

between 0dBm and -25dBm, the radio bandwidth is 20 MHz,

and T-MAC is used as a MAC protocol.

Environment Modeling Language (ENVML). It allows

designers to specify the physical environment in which

the WSN nodes are deployed in. An ENVML environment

identifies a specific area in the 2D space in which obstacles

can be freely positioned. Each obstacle has an attenuation

coefficient that may represent a specific material like con-

crete, wood, glass, etc.

The rightmost part of Figure 2 graphically shows the

physical environment in which we will virtually deploy the

node types defined in NODEML. In this case we consider

a flat composed of five rooms. We also consider different

obstacles such as wooden doors (the thin obstacles in

Figure 2), concrete walls (the large obstacles in Figure 2) and

a glass partition (the darker obstacle in Figure 2). Behind the

lines, each obstacle is represented as the set of coordinates

of its perimeter in the 2D space.

In our framework we provide two auxiliary modeling

languages for linking together the previously described lan-

guages, namely: MAPML and DEPML. Those models are

technically called weaving models, and have been success-

fully used in many fields (such as software architecture [10],

software product lines [2], etc.) to create semantic links

among different models. This approach provides a clear

separation between software components, WSN nodes, and

the physical environments, thus promoting the reuse of

models across different systems and projects.

Mapping Modeling Language (MAPML). A MAPML

model is composed by a set of mapping link, each of

them weaving together a node definition from the NODEML

model and a component from the SAML model. The compo-

nent in the SAML model will be physically deployed on the

linked node in the NODEML model. In the scope of a given

mapping link, a designer can define three types of link: (i)

sensor mapping link: it allows designers to associate which

sensor is actually used in the context of the sense data action,

(ii) actuator mapping link: it is similar to a sensor mapping

link, but it refers to actuators, rather than to sensors, (iii)

communication device mapping link: it specifies what the

communication device is (e.g., a radio antenna installed on

the node) that corresponds to a specific port in the SAML

model of the WSN.

When our home automation case study is considered, the

MAPML model in Figure 2 defines how we mapped each

component defined in the SAML model into its correspond-

ing node type in the NODEML model. For the sake of clarity

we do not show the other mappings defined in the MAPML

model (e.g., the sensor, actuator and communication device

mappings).

Each sense and actuate action is mapped to a unique

sensor and actuator node type. Each send and receive

message actions are mapped to its corresponding radio

communication device.

Deployment Modeling Language (DEPML). It allows de-

signers to consider each node type defined in the NODEML

model and to instantiate it in a specific area within the

physical environment defined in an ENVML model. Each

node type can be instantiated ”n” times within a specific

area. Currently, within a certain area each node type can

be distributed in three different ways: (i) randomly within

the area, (ii) as a grid with a certain number of rows and

columns, and (iii) custom, i.e., each node instance can be

manually placed within the area.

By considering our home automation case study, the

DEPML model in Figure 2 shows how we virtually deployed

the node types defined in NODEML into the physical envi-

ronment defined in ENVML. More specifically, we defined

two deployment areas: the first one contains the BS node

only and it is placed in the center of the environment, the

second area spans throughout the whole flat and contains

all the other nodes in the WSN; those nodes are customly

distributed by manually setting their position within the area,

allowing us to place each type of node in each room of the

flat.

IV. WSN SIMULATION

This section describes the application of our approach for

estimating the WSN life time. We describe the generation

of simulation scripts, the definition of the path loss formula

employed and we discuss the results obtained.

The modeling languages described in the previous section

can be translated into scripts that allow the simulation of

the WSN. This translation has been implemented by using

Acceleo2 that is the Eclipse implementation of the Object

Management Group (OMG) MOF Model-to-Text Language

(MTL) standard3. Acceleo provides, among the other, the

following features: customizable code templates, generation

engine, debugger, etc. Fundamentally, our Acceleo applica-

tion contains a set of templates that specify how the various

model elements described in Section III are converted into

text patterns. For the sake of brevity we do not go into

the details on the generation of simulation scripts, we tested

our Acceleo application by compiling and running a number

of generated simulation scripts in Castalia, demonstrating

satisfactory results.

2http://www.eclipse.org/acceleo
3http://www.omg.org/spec/MOFM2T/1.0/



The Castalia4 simulator for WSNs has been chosen as

target for the generation of simulation scripts. Castalia

can simulate protocols and/or algorithms by using realistic

wireless channel and radio models. It can simulate a wide

range of hardware platforms. Energy consumption for each

transmission level varies. For instance for 0 dBm, the

power consumed for listening (receiving) is 62 mW and

for transmission is 57.42 mW. Packet rate is kept at 250

kbps, the radio bandwidth is 20 MHz and the simulation

runs for 9000 sec. Since T-MAC is used as the MAC

protocol, the length of each frame period for all nodes is

610 milliseconds, and the duration of listen time out is

61 milliseconds. Although Castalia provides a good low

level simulation platform; it does not provide any means

to specify the application behaviour, the environment model

and the path loss mathematical model. The application

behaviour is needed to derive application level simulation

parameters. Furthermore the environment model and the path

loss mathematical model allow the calculation of the path

loss values. Castalia assumes that the user provides path loss

values, however it is necessary to derive those values from

high level models such as the environment and path loss

mathematical model. In this paper the details of the scenario

considered is provided in SAML, NODEML and ENVML.

A path loss model can be specified in the ENVML model

which is in turn used together with the physical environmen-

tal model in order to define the path loss between two nodes.

Propagation path-loss models are important for the design

of wireless networks to specify key parameters such as

transmission power, frequency, antenna heights, and so on.

The importance of these parameters is even more evident in

case of WSNs, since they directly affect the residual energy.

The propagation and path loss models are usually based

on empirical studies on systems considered. For example

the Okumura/Hata model has been used extensively both

in Europe and North America for predicting the behaviour

of cellular transmissions in built up areas. Indoor path-

loss models are commonly used especially for picocells

which cover a part of a building and span from 30 to

100 meters. They are used for wireless local area networks

and picocell base stations, and wireless PBX systems. The

earlier work for statistical measurement of signal amplitude

fluctuations are dependent on empirical measurements for

indoor office environment as well. Many of the researchers

in the field, performs narrowband measurements within

buildings mainly in order to determine the distance power

relationship and to arrive at empirical path loss models for

a variety of environments. In our case study we consider

the dependant path loss model [8] that is widely used for

indoor environment, however, in the future, it is desirable to

perform measurements for a path loss model more suitable

for the environment considered and WSNs:

4http://castalia.npc.nicta.com.au/

Figure 3. Energy consumed by each node with and without path loss

LP = L0 + 20log +
∑

mtypewtype

where, LP represents the path loss between two points,

L0 is the path loss in free space environment, mtype refers

to the number of objects of the same type and wtype is the

attenuation value attributed to that particular object. In the

Table I we show some attenuation values in dB introduced

by various materials.

Table I
PARTITION DEPENDENT LOSSES FOR 2.4 GHZ

obstacles attenuation in dB

Concrete wall 12

Wooden door 2.8

Glass wall 2

Cinder wall 4

window 2

Brick 5

Masonry brick 17

metal door 12.4

A. Numerical results and discussions

In this Section we discuss the application of our approach

to our home automation case study. In this case study we

use the CC2420 radio defined by the Texas instruments,

and the output power of the different transmission levels

in dBm is varied from 0 to -25dBm. Energy consumption

for each transmission level varies; for instance for 0 dBm

power consumed for listening (receiving) is 62 mW and for

transmission is 57.42 mW. Packet rate is kept at 250 kbps,

the radio bandwidth is 20 MHz and the simulation runs for

9000 sec. T-MAC is used as a MAC protocol. These details

are specified in NODEML.

The path-loss due to the material has been calculated by

considering the attenuation values of Table I (see [8] for

a complete list of all materials). Information presented in

Table I is used in ENVML together with the location of

servers. For the sake of the representation of information in

ENVML, we can use numbers to represent sensors. Node

0 represents the base station. Nodes 1, 4, 5, 7, 9 monitor

the temperature in the environment (i.e., they correspond

to nodes T in Figure 2), and nodes 2, 3, 6, 8 monitor



Figure 4. Energy consumed vs. transmitted power vs. packets lost

the presence of smoke ((i.e., they correspond to nodes S

in Figure 2).

Figure 3 shows the energy consumption of each node in a

free space environment and when the path loss is introduced.

It is evident that ignoring the effect of path loss would be

an optimistic assumption when energy consumed by each

node is considered. For instance node 3 consumes 13 joules

of more energy due to path loss, when compared to no

path loss. This is consequence of an increasing number of

retransmitted packets.

The trade-off between traditional performance measures

such as packet loss and residual energy is presented in

Figure 4. The dotted lines represent the packets lost and

the straight lines represent the energy consumed by each

node. As the transmission is decreased from 0 dBm to -25

dBm, there is a gradual increase in amount of packets lost.

For node 0, as the transmission power is decreased from

0 dBm to -25 dBm, the number of packets lost increases

to 370, from 206 and the energy consumed increases to

100 joules from 88 joules. Because of the retransmissions,

more energy is consumed by the nodes. But the increase in

transmission power does not necessarily mean increase in the

life time as there are no retransmissions. Results presented

in Figure 4 are particularly important to show the usefulness

of a detailed, an realistic modelling tool. Analysing the

tradeoff between the energy consumption and the packet loss

specifies the operative area for applications which requires

reliable transmission.

When the tradeoff between the packet loss and the energy

consumed is analysed, it can be seen that the optimum

transmission power should be between -15 to -5 dBm where

the energy consumption is less than 95 joules and packet loss

is less than 200 packets.

Please note that different levels of abstraction for soft-

ware architecture, node model, environment model, map-

ping model, and deployment model (described by SAML,

NODEML, ENVML, MAPML, DEPML respectively) intro-

duces flexibility and efficiency for the researchers working

in power management localisation routing, deployment tech-

nique, protocol development etc. of WSNs. For example,

it is possible to change the environment considered, by

modifying the ENVML, and the remaining definitions would

not be affected. Similarly in case the specification of motes

are altered, the user is able to modify NODEML, and run

same experiments with various node specifications. In that

sense the new architecture is very useful for optimisation of

WSN architectures from various aspects.

V. RELATED WORK

Currently, modelling is used to specify a WSN at different

levels of abstraction (hardware, application, communication

protocols, etc.) with the recurrent goals of code generation,

communication overhead analysis, energy consumption.

For example, in [4], the authors address energy-aware

system design of Wireless Sensor Networks (WSNs). Energy

mode signalling and energy scheduling of nodes within a

WSN are represented as SDL models, and then analysed.

In [13], a framework for modeling, simulation, and code

generation of WSNs is presented. The framework is based

on Simulink, Stateflow and Embedded Coder, and allows

engineers to simulate and automatically generate code with

energy as one of the main issues. In [15], a model-driven

process to enable a low-cost prototyping and optimization

of WSN applications is provided. In this work, a set of

modeling languages is the starting point for code generation

and performance (with energy consumption) analysis.

The contribution of our approach is a clear separation

amongst the software architecture of the application, the

hardware and the WSN deployment topology. This promotes

reuse of models across projects and organizations. The

modeling language for the physical environment supports

the analysis and development of WSNs.

VI. CONCLUSIONS

In this paper we propose an MDE framework for architect-

ing WSNs. It relies on three modeling languages that allow

developers to describe a WSN from three complementary

viewpoints: software architecture, low-level hardware details

of the nodes, and the physical environment of the WSN.

These are linked together by using weaving models. In

this work, a dedicated engine to assess the lifetime of

the modelled WSN is also presented. Other kinds of code

generation or analysis engines can be part of the framework.

As future work we are planning to extend our framework

with other code generation and analysis plugins (e.g, for

performance, security analysis, etc.). Also, we are working

on an extension of the framework in which NODEML

models are distributed via a dedicated market; it will be an

on-line repository of nodes definitions with vendors-specific

information. Moreover, in the current version of the SAML

language conditions and application data definitions are

defined as plain strings. As short-term future work, we are

working on defining those conditions in a more disciplined

manner, so that developers can validate those expressions at

design-time. Finally, we are evaluating different solutions for



refining and enhancing our (purposefully) simple ENVML

modeling language. In this respect, we are doing a survey

study for understanding how developers prefer to describe

the physical environment of the WSN (e.g., 2D vs 3D

environment) in order to provide them the solution that better

fit with their needs.

ACKNOWLEDGMENT

The authors would like to thank Fabrizio Di Giuseppe and

Lorenzo Salvatore, for their help and support in making this

work possible.

REFERENCES

[1] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, and
D. Timmermann, “Wireless sensor networks - new chal-
lenges in software engineering,” in Emerging Technologies
and Factory Automation, 2003. Proceedings. ETFA ’03. IEEE
Conference, vol. 1, sept. 2003, pp. 551 – 556 vol.1.

[2] K. Czarnecki and M. Antkiewicz, “Mapping features to mod-
els: A template approach based on superimposed variants,” in
GPCE, 2005, pp. 422–437.

[3] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A zigbee-based home
automation system,” Consumer Electronics, IEEE Transac-
tions on, vol. 55, no. 2, pp. 422 –430, may 2009.

[4] R. Gotzhein, M. Krämer, L. Litz, and A. Chamaken, “Energy-
aware system design with sdl,” in Proceedings of the 14th in-
ternational SDL conference on Design for motes and mobiles,
ser. SDL’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
19–33.

[5] D.-M. Han and J.-H. Lim, “Smart home energy management
system using ieee 802.15.4 and zigbee,” Consumer Electron-
ics, IEEE Transactions on, vol. 56, no. 3, pp. 1403 –1410,
aug. 2010.

[6] J. L. Hill, “System architecture for wireless sensor networks,”
Ph.D. dissertation, University of California, Berkeley, 2003,
aAI3105239.

[7] ISO/IEC, “ISO/IEC/IEEE 42010:2011 Systems and software
engineering – Architecture description,” 2011.

[8] K.Pahlavan and P.Krishnamurthy, Networking Fundamentals.
Chichester, UK: John Wiley and Sons, 2009.

[9] F. Losilla, C. Vicente-Chicote, B. lvarez, A. Iborra, and
P. Snchez, “Wireless Sensor Network Application Develop-
ment: An Architecture-Centric MDE Approach,” in ECSA,
ser. LNCS, F. Oquendo, Ed., vol. 4758. Springer, 2007, pp.
179–194.

[10] I. Malavolta, H. Muccini, P. Pelliccione, and D. Tamburri,
“Providing architectural languages and tools interoperability
through model transformation technologies,” Software Engi-
neering, IEEE Transactions on, vol. 36, no. 1, pp. 119 –140,
jan.-feb. 2010.

[11] I. Malavolta, 2012, source code of the WSN Modeling
Languages metamodels. [Online]. Available: http://www.di.
univaq.it/malavolta/files/it.univaq.wsn.zip

[12] L. Mottola and G. P. Picco, “Programming wireless sensor
networks: Fundamental concepts and state of the art,” ACM
Comput. Surv., vol. 43, pp. 19:1–19:51, Apr. 2011.

[13] M. M. R. Mozumdar, F. Gregoretti, L. Lavagno, L. Vanzago,
and S. Olivieri, “A framework for modeling, simulation and
automatic code generation of sensor network application,” in
SECON, 2008, pp. 515–522.

[14] G. P. Picco, “Software engineering and wireless sensor
networks: happy marriage or consensual divorce?” in Pro-
ceedings of the FSE/SDP workshop on Future of software
engineering research, ser. FoSER, NY, USA, 2010.

[15] R. Shimizu, K. Tei, Y. Fukazawa, and S. Honiden, “Model
driven development for rapid prototyping and optimization
of wireless sensor network applications,” in Proceedings of
SESENA ’11. New York, NY, USA: ACM, 2011, pp. 31–36.

[16] J. A. Stankovic, “Research challenges for wireless sensor
networks,” SIGBED Rev., vol. 1, pp. 9–12, July 2004.


