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Abstract. A multitude of component models exist today, characterized by slightly
different conceptual architectural elements, focusing on a specific operational do-
main, covering different phases of component life-cycle, or supporting analysis of
different quality attributes. When dealing with different variants of products and in
evolution of systems, there is a need for transformation of system models from one
component model to another one. However, it is not obvious that different compo-
nent models can accurately exchange models, due to their differences in concepts
and semantics. This paper demonstrate an approach to achieve that. The paper pro-
poses a generic framework to interchange models among component models. The
framework, named DUALLY allows for tool and notations interpretability eas-
ing the transformation among many different component models. It is automated
inside the Eclipse framework, and fully-extensible. The DUALLY approach is
applied to two different component models for real-time embedded systems and
observations are reported.

1 Introduction

A multitude of component models exist today [1]. While they share the same objectives
and some common foundational concepts, they all have some specific characteristics
that make them different in many ways. For example, the Progress component model
(ProCom) [2] supports the engineering process of embedded systems including quality
aspects such as response and execution time, while the Palladio Component Model (Pal-
ladioCM) [3] contains annotations for predicting software performance. As a result, a
proliferation of component models can be noticed today, each characterized by slightly
different conceptual architectural elements, different syntax or semantics, focusing on
a specific operational domain, or only suitable for specific analysis techniques.

While having domain- or analysis-specific component models allows component-
based engineers to focus on specific needs, interchange 1 among component models be-
comes limited. Many factors, instead, demonstrate the need of interchange. European
� This work has been partly supported by the national FIRB Project ART DECO (Adaptive

InfRasTructures for DECentralized Organizations), the Swedish Foundation for Strategic Re-
search via the strategic research centre PROGRESS, and EU FP7 Q-ImPrESS project.

1 Terminology: to be able to transform application models specified in a modelling language (i.e.
a component model) to another modelling language (i.e. another component model) we need
to enable interchange between these component models, i.e. interoperability between them.
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projects like Q-Impress2 or PROGRESS3 aim to predict performance, reliability, and
other quality attributes by integrating analysis features available in existing component
models (Klaper, SOFA, PalladioCM, and ProCom in Q-Impress, SaveCCM and Pro-
Com in PROGRESS). Artifacts interchange is required to propagate results and feed-
backs from one notation/tool to another. Different component models cover different
phases of component life-cycle. An example of such case is the use of SaveCCM and
JavaBeans component models; SaveCCM supports modelling of time-related proper-
ties, but has different implementations; one of them is achieved by transformation of
an application model specified in SaveCCM to JavaBeans, which then are implemented
in Java running on a Java platform [4]. Another example of need for interchange is a
migration from one component model to another due to technology change. An exam-
ple, later discussed, is a transformation from SaveCCM to a new generation, ProCom.
Interoperability between SaveCCM and Procom models enables reuse of both design
models (and their associated modeling tools) and of different quality attributes.

This work focusses on how to tackle interoperability from a model-driven engineer-
ing (MDE) perspective. Specifically, considering component models as meta-models
(thus without focusing on components’ implementation) allows us to apply model trans-
formation techniques to translate one model (conforming to a component model) to
something equivalent conforming to a different component model.

Purpose of this work is to show how DUALLY [5], a framework for multipoint-
to-multipoint transformations initially devised for allowing interoperability among ar-
chitecture description languages, can be utilized in the context of component models.
DUALLY transforms a source model into its target by passing through a pivot meta-
model (named A0 in Figure 1) enabling a star architecture of transformations. Order
of n transformations (between the reference model and the pivot) are thus sufficient
for transforming n notations, compared to the order of n2 transformations required in
traditional point-to-point ad hoc model transformations. While DUALLY scales better
than traditional point-to-point approaches, the accuracy of transformations is in general
lowered by passing through the pivot meta-model. In order to investigate the degree of
accuracy we can achieve when transforming a component model into a different one,
and to analyze cons’ and pros’ in using DUALLY compared to specialized point-to-
point model transformations, we have applied the DUALLY approach to automatically
build up transformations between two component models (namely, SaveCCM and Pro-
Com, introduced in Section 2) and executed them on specific models.

In the following of this paper, after having provided an overview on DUALLY, we
focus on the specific component models that exemplify evolution of component mod-
els, and we show how DUALLY can facilitate their interchange. For this purpose, a
demonstration of the approach is illustrated in Section 3: it will show how DUALLY

semi-automatically provides the means to exchange models between SaveCCM and
ProCom and how it may scale to other component models (thanks to its extensibil-
ity mechanisms). Considerations are provided in Section 4, while Section 5 discusses
related work. Section 6 concludes the paper with final remarks and suggestions for
future work.

2 http://www.q-impress.eu/Q-ImPrESS/CMS/index_html
3 http://www.mrtc.mdh.se/progress/
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2 Technologies Overview

This section introduces DUALLY, the generic framework for notations interoperabil-
ity (Section 2.1), then focusses on two component models for Embedded Real-time
systems: the SaveComp Component Model (Section 2.2) and ProCom (Section 2.3).

2.1 The DUALLY Framework

DUALLY provides a mechanism to automatically generate transformations allowing
to pass from a notation to another and vice-versa. The configuration of the DUALLY

framework is depicted in Figure 1.

Fig. 1. Notations topology in DUALLY

Conceptually, DUALLY is a multipoint-to-multipoint transformation framework that
permits transformation of elements of a model M1 into semantically equivalent ele-
ments in the model M2 (as shown in Figure 2). Each Mi conforms to its MMi that is a
meta-model or a UML profile. The semantic mappings (and its corresponding generated
transformation) relates MM1 to MM2 (as well as M1 to M2) passing through what we
refer to as A0.

The main purpose of A0 is to provide a centralized set of semantic elements with
respect to which relations must be defined. As clearly shown in Figure 1, for the re-
alization of DUALLY we chose a “star” architecture: A0 is placed in the center of
the star, while the transformation engine is in charge of maintaining the transformation

Fig. 2. DUALLY Conceptual overview
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network. Whenever a model M1 has to be transformed into M2, a two-step process is
realized that transforms M1 into M(A0), and successively M(A0) to M2. Thanks to the
depicted star architecture a linear relationship between the selected language and A0 is
created, thus reducing the number of connections needed. While the star architecture
clearly reduces the number of transformations needed, what may happen is that two
notations, say Mi and Mj , share some domain specific concepts that are not contem-
plated in A0. In general cases, this would strongly reduce the transformation accuracy,
since those common concepts could not be transformed (since missing in A0). However,
since DUALLY’s A0 can be extended, accuracy can be improved by including domain
specific concepts (an extension to A0 will be shown in Section 3). A0 is implemented
as a MOF compliant meta-model whose main elements are:

– SoftwareArchitecture:A collection of components and connectors instan-
tiated in a configuration. It may contain also a set of architectural types, a Behavior
and SAinterfaces representing points of interaction between the external envi-
ronment and the architecture being modeled.

– SAcomponent: A (hierarchically structured) unit of computation with internal
state and well-defined interface. It can contain a behavioral model and interacts
with other architectural elements either directly or through SAinterfaces.

– SAconnector: Represents a software connector containing communication and
coordination facilities. It may be considered as a special kind of SAcomponents.

– SAinterface: Specifies the interaction point between an SAcomponent or
an SAconnector and its environment. It is semantically close to the concept of
UML port and can have either input, output or input/output direction.

– SArelationship: Its purpose is that of delineating general relations between
A0 architectural elements; it can be either bidirectional or unidirectional.

– SAchannel: A specialization of an SArelationship representing a generic
communication mean; it supports both unidirectional and bi-directional communi-
cation, and both information and control can be exchanged.

– SAbinding: Relates an SAinterface of a component to an SAinterface
of one of its inner components; it is semantically close to the concept of UML
Delegation Connector.

– SAtype, SAstructuredType: They define architectural types, so any archi-
tectural element can potentially be an instance of a particular SAtype. Each
SAtype can contain a set of properties and the behavior of its instances, its in-
ternal structure is specified in case it is also a SAstructuredType.

– Behavior: Represents the behavior an architectural element. It is an abstract
meta-class that plays the role of a “stub" for possible extensions of the meta-model
representing dynamic aspects of the system.

– Development: Represents the direct relation between the architectural and the
technological aspects, such as the process that will be used to develop the system, or
the programming languages used to develop a certain component. Development
is an abstract meta-class and its realization is left to future extensions of the A0

meta-model.
– Business: An abstract meta-class to be specialized via future extensions of A0

and represents the link to business contexts within which software systems and
development organizations exist.
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– Group: A logical grouping of any element of A0, it can contain architectural ele-
ments, properties, other groups and so on.

The A0 meta-model contains other minor concepts like properties, abstract typed ele-
ments, generic components; we do not describe them in this work because of their basic
nature and for the sake of brevity. For more details about A0 we kindly refer the reader
to [5].

Figure 2 shows that DUALLY operates at two levels of abstraction: meta-modeling
and modeling. At the meta-modeling level, MDE experts provide the concepts of each
notation through either a meta-model or a UML profile. Then, a set of semantic links
between MM1 (or MM2) and the corresponding elements in A0 are defined. Such
links are contained in a weaving model [6], a particular kind of model containing links
between either meta-models or models.

Each weaving model (WM, in Figure 3) conforms to a specific weaving meta-model
WMM provided by DUALLY [5]. It’s main elements are: correspondences
(Left2Right, Right2Left and Equivalence) to relate two or more concepts,
feature equivalences to relate attributes or references, bindings to a constant defined
by the user, links to a woven element, and the various auxiliary elements referring the
meta-classes to relate. DUALLY provides a graphical editor for weaving models iden-
tification and a mechanism to automatically generate model-to-model transformations
that reflect the logic of the semantic links.

Figure 3 highlights also that model-to-model transformations are generated through
the execution of higher-order transformations (HOTs): Left2Right and Right2Left, de-
pending on the direction of the transformation to be generated at the modeling level
(i.e. MM1_2_A0 or A0_2_MM1). The input of a HOT is composed of three models: (i)
the weaving model WM, (ii) the left meta-model and (iii) the right meta-model (MM1
and A0 in Figure 3, respectively). The output is a model transformation generated on

Fig. 3. Higher-order transformations in DUALLY
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Fig. 4. DUALLY-zation process for each meta-model

the basis of the mappings defined into the weaving model. At a high level of abstrac-
tion, the current version of DUALLY translates each correspondence into an specific
transformation rule and each feature equivalence into a binding between the involved
attributes or references. The higher-order transformations are meta-model and A0 inde-
pendent; this gives the possibility to reuse DUALLY with different pivot meta-models,
i.e. to reuse its approach in different domains.

At the modeling level, system designers create the model M1 and execute the previ-
ously generated transformations t1 and t2. This produces first the intermediate model
M(A0) and then the final model M2 in the target notation.

Figure 4 shows the basic steps to DUALLY-ze a notation, i.e. to include it in the
star topology implied by DUALLY. DUALLY provides a clear separation between its
main users:

– meta-modeling experts play the role of technical stakeholders, they have to know
the language to relate and semantically link it to A0; they can also refine the gener-
ated transformations if there is the need for more advanced constructs within them;

– component-based systems designers play the role of final users, they deal with mod-
els only and apply the transformations automatically generated by DUALLY.

The preliminary steps of determining the pivot meta-model, or in case the extension
of A0, are not part of this process because they are not performed for each DUALLY-
zation, but rather once for each specific domain the framework is being used in.

DUALLY is implemented as an Eclipse plugin in the context of the ATLAS Model
Management Architecture (AMMA) [6]. Weaving models are expressed through the
ATLAS model weaver (AMW) [7] and transformations in the Atlas Transformation
Language (ATL [8]). Both models and meta-models are expressed via the XML Meta-
data Interchange (XMI), the interchange standard proposed by the OMG consortium.

2.2 SaveCCM

The SaveComp Component Model (SaveCCM) aims for design of software for embed-
ded systems with constraints on the system resources such as memory and CPU, and
requirements of time characteristics such as execution or response time. The graphical
notation of the SaveCCM component model is presented in Figure 5.

SaveCCM contains three architectural elements: components, switches and assem-
blies. The interface of these elements consists of input- and output ports. The model is
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Fig. 5. The graphical notation of SaveCCM

based on the control flow (pipes-and-filters) paradigm, and on the distinction between
data transfer and control flow. The former is captured by connections between data
ports where data of a given type can be written and read, and the latter by trigger ports
that control the activation of components. A port can also comprise both triggering and
data functionality. The explicit notation of control flow makes the design analyzable
with respect to temporal behaviour allowing analysis of schedulability, response time,
etc., factors which are crucial to the correctness of real-time systems.

Components are the main architectural element in SaveCCM. In addition to an inter-
face a component contains a series of quality attributes (e.g. worst case execution time,
reliability estimates), each associated with a value and possibly a confidence measure.
Quality attributes are used for analysis, model extraction and for synthesis. Compo-
nents have a strict“read-execute-write” semantics that ensures once a component is
triggered, the execution is functionally independent of any concurrent activity. This
facilitates analysis since component execution can be abstracted by a single transfer
function from input values and internal state to output values. The switch construct pro-
vides the means to change the components interconnection structure, either statically
or dynamically. switches specify a number of guarded connection patterns, i.e., partial
mappings from input to output ports. To enable increased reusability and design effi-
ciency SaveCCM also defines assemblies. An assembly can be considered as a means
for naming a collection of components and hiding its internal structure.

SaveCCM enables time and resource analysis using techniques are the basis in the
context of real-time systems and the current version of the SaveCCM development En-
vironment includes two analyzers: LTSA (Labelled Transition System Analyzer) [9]
and Times Tool [10].

2.3 ProCom

ProCom [2] is the component model designed as a "new generation of SaveCCM"
with extended functionality and somewhat different philosophy. While SaveCCM is
designed for small embedded systems, ProCom is aimed for design and modelling of
distributed embedded systems of larger complexity. ProCom enables distinguishing of
two layers called ProSys and ProSave. The former deals with elements of coarse granu-
larity, like subsystems and channels; the latter contains concepts to internally describe a
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Fig. 6. A subsystem internally modelled by ProSave

ProSys system as a collection of concurrent components. A ProSys subsystem is spec-
ified by its input/output message ports, and its external view can optionally include
attributes and auxiliary models. A subsystem is always active since it may perform
activities periodically or in response to internal events. Subsystems are not directly
connected, but rather they communicate through message-channels, which are specific
elements for sharing information between senders and receivers of each message.

ProSave concerns the internal design of subsystems through its contained elements.
Components in ProSave differ from ProSys subsystems since they are passive and the
communication is based on the pipes-and-filters paradigm as in SaveCCM. Similar to
SaveCCM, this component model explicitly separates data and control flow that are
captured by data and trigger ports respectively. A new feature, compared to SaveCCM,
is that ports can be grouped into services. They are part of the component and allow
external entities to make use of the component functionality at an higher level of ab-
straction. Services are triggered independently and can run concurrently. ProSave does
not have switches like SaveCCM, but a rich set of predefined connectors that provide
more elaborate constructs, such as data/control fork, join, data muxer and demuxer.

ProSave elements are used to decompose ProSys subsystems (as exemplified in
Fig. 6).This is is done in a similar way to how composite ProSave components are
defined internally (i.e., as a collection of interconnected components and connectors)
but with some additional connector types to allow for (i) mapping between message
passing (used in ProSys) and trigger/data communication (used in ProSave), and (ii)
specifying periodic activation of ProSave components. This is provided by the clock
connector that repeatedly triggers ProSave elements at a given rate.

3 Demonstration of the Approach

This section shows how we apply the DUALLY approach to SaveCCM and ProCom
modeling languages. Since both notations have common concepts and DUALLY’s A0

covers many of them, A0 is still suitable as the pivot meta-model. However, there are
also concepts that are contemplated in both SaveCCM and ProCom but not in A0. This
is not a desirable situation, because such concepts will not be preserved during trans-
formation due to A0’s lack of them. The extensible structure of A0 allows to overcome
this issue: we extended A0 in order to capture such elements an avoid their loss while
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Table 1. Elements extending the A0 pivot meta-model

Added element A0 base element Description
System SAcomponent Coarse-grained independent component with

complex functionality.
DataSAinterface SAinterface Specific interface for data transfer to which

typed data may be read or written.
ControlSAinterface SAinterface Specific interface for control flow handling the

activation of components.
Clock SAcomponent Component triggering other elements of the

system when its given period expires.

passing from either SaveCCM and ProCom to A0. We discuss this choice and its possi-
ble pros and cons in Section 4. Table 1 presents such an extension.

The line of reasoning we followed to create such extension is purely pragmatic: if
(i) there are two elements x and y in SaveCCM and ProCom respectively that represent
the same semantic concept z, and (ii) there is not a corresponding element in A0, then
extend A0 with z. During the creation of weaving models, both x and y will be linked
to z so that the execution of the generated transformations will preserve z while passing
through A0. An example of a common semantic concept is the data-transfer interface
represented by DataSAinterface in A0 (second row in table 1), it corresponds to
the concepts of SaveCCM and ProCom DataPort.

The remaining of this section is organized so as to reflect the two roles of DUALLY’s
users. In Subsection 3.1 we act as meta-modeling experts: for each language we follow
the steps of the activity diagram in Figure 4 until the generation of model-to-model
transformations. In Subsection 3.2 we act as software architects, i.e. we provide an
example model conforming to SaveCCM and we apply the transformations generated
from the previous steps. This allows us to get first a model conforming to the A0 meta-
model and then the final model conforming to the ProCom meta-model. We evaluate
and compare the various models obtained within each phase of the process.

3.1 Semantic Links Definition

The first step is to import the SaveCCM and ProCom meta-models into the DUALLY

framework; in our case it is straightforward since such meta-models have been devel-
oped in the context of Eclipse. Next step is the creation of the weaving models. Since
a weaving model defines the links between a notation and A0, we need two weaving
models: SaveCCM_A0, which contains the semantic links between SaveCCM and A0

and ProCom_A0 that relates ProCom concepts to A0 elements. Due to space restric-
tions, in this paper we describe each weaving model in an informal way, abstracting
from the technical details and presenting only its basic semantics.

In SaveCCM_A0 a SaveCCM System is mapped into an A0 System. If the
source System element is the root of the model, an A0 SoftwareArchitecture element
is also created (it will contain all the A0 target elements). SaveCCM Component
and Connection are mapped to SAComponent and SAchannel, respectively.
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Assembly and Composite components are both mapped to SAcomponent an-
notating the type of its corresponding source element in the description field. By do-
ing this we will not lose which kind of element the SAcomponent was generated
from during the translation to an A0 model. A SaveCCM Clock corresponds to the
Clock entity specified in the extension of A0, the Delay element is mapped into a
generic SAcomponent, Switch is mapped into an SAConnector. DataPort and
TriggerPort correspond to DataSainterface and ControlSAinterface
respectively, their direction attribute is set accordingly to the type of the SaveCCM
ports (i.e. whether they are input or output ports) and vice-versa. We applied a spe-
cific mechanism to manage combined SaveCCM ports: a combined port is splitted
to a DataSainterface and a ControlSAinterface with the same name and
direction; doing this, the generated SaveCCM2A0 transformation splits combined
SaveCCM ports to two A0 interfaces, while the A02SaveCCM transformation merges
two A0 interfaces with the same name and direction to a single combined SaveCCM
port. Both generic and SaveCCM-specific attributes (e.g. “delay” and “precision” at-
tributes in Delay) correspond to A0 properties.

ProCom_A0 contains links between concepts of A0 ProCom at both system (i.e.
ProSys) and component (i.e. ProSave) levels. At the system level, Subsystems corre-
spond to SAtypes andSubsystemInstances are related to A0 Systems. ProSys
Connections are mapped to SAChannels, while MessagePorts correspond
to generic SAPorts. The MessageChannel entity is linked to SAconnector.
At the component level, CompositeComponent and PrimitiveComponent are
mapped to SAtype. The concept of SubcomponentInstance is linked to the con-
cept of SAcomponent; Sensor, ActiveSensor and Actuator also relate to
SAcomponent along with the corresponding real-time attributes, in this cases the type
of the source ProCom entity is annotated in the description attribute of the generated
SAcomponent. A0 Clocks are mapped to ProCom Clocks, and the corresponding
period attribute is set. Each kind of ProCom port is mapped into SAPort, while the
corresponding Services and port groupings are not matched because both A0 and
SaveCCM do not have entities semantically close to them; such elements are lost dur-
ing the translation to A0 and can be restored when “going back” to ProCom thanks to
DUALLY’s lost-in-translation mechanism [5].Furthermore,ProSave Connections
are mapped into SAchannels and every kind of Connector (e.g. DataFork,
ControlJoin) corresponds to an SAConnector; the specific type of the ProSave
Connector can be inferred by analysing its own ports and connections pattern, e.g.
a connector with one input data port and n output data ports can be considered a
DataFork connector, a connector with n input control ports and a single output con-
trol port is a ControlJoin connector, etc. A number of low-level correspondences
have been abstracted to make the description of the weaving models as readable as pos-
sible and complete at the same time. Most of them are contained into the ProCom_A0

weaving model; for example there is a system of correspondences and conditions to
correctly arrange ProSave Components and their internal realization or the mecha-
nism to infer the type of ProSave Connectors sketched above.

The next step is the execution of the DUALLY HOTs in order to get the model-
to-model transformations. We generate two transformations from each weaving model:
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(i) Save2A0 and A02Save from the weaving model between SaveCCM and A0; (ii)
ProCom2A0 and A02ProCom from the ProCom_A0 weaving model. The logic of
the generated transformations reflects that of the links in the weaving models. Since
obtained transformations suit well with the models that we use, at the moment there
is no need to refine them, i.e. the generated transformations are ready to be used by
software architects.

3.2 Model Transformations Execution

After the generation of model transformations, designers can use them to translate mod-
els into other notations. Generated transformations can be executed in any order, in this
work we focus only on how to produce ProCom models from SaveCCM specifications;
this process is composed of three main phases:

1. development of a model conforming to SaveCCM;
2. execution of the Save2A0 transformation that produces an intermediate A0 model;
3. execution the A02ProCom transformation in order to translate the A0 model into

a ProCom specification.

The initial SaveCCM model is a specification of an Adaptive Cruise Controller (ACC),
an enhanced version of the traditional vehicular Cruise Control. It has the basic function
to actuate brake or throttle controls in order to keep the speed of the vehicle constant; it
is geared also with a set of sensors (mainly radars and cameras) that allow the controller
to (i) check if there is another vehicle in the lane, allowing the driver to maintain a safe
distance with the preceding vehicle and (ii) check the presence of speed road signs and
adapt the actual speed according to them. Figure 7 presents a simplified version of the
ACC system developed using Save-IDE [11], the SaveCCM dedicated modeling toolkit.

The ACC system contains two main components, Sensors and ACC_application.
The former represents a group of sensors that periodically provides data about the dis-
tance towards the preceding vehicle, actual speed, status of the whole controller and the
degree of pressure on the brake pedal by the driver. Such sensors have been grouped
into a single component in order to leave the model as simple as possible. The core of
the system is the latter component, it performs three main tasks: (i) analyze information
provided by sensors and return which actions forward to the actuators; (ii) log the status
of the system; (iii) provide data to the Human Machine Interface (HMI).

For the sake of simplicity, we do not show the internal structure of ACC_application
and the external context of the whole system. The system is also composed of two clock
components that periodically trigger the corresponding components. More specifically,
clk50hz triggers Sensors to gain the available current data and ACC_application to
set its status according to the newly available informations. The Splitter switch pe-
riodically receives a trigger generated by the clock at 50Hz and splits it triggering
simultaneously the Sensors and ACC_application components. clk10hz triggers
ACC_application to log the status of the systems and to provide data to the HMI;
clk10hz operates at a lower rate since it is not related to safety-critical activities.

Once the ACC model has been created, we give it as input to SaveCCM2A0 (the
transformation automatically generated by DUALLY). The produced model is com-
posed of a main SoftwareArchitecture containing all the elements of the ACC
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Fig. 7. ACC system designed using SaveCCM

system. Each SaveCCM component has been transformed into an SAcomponent,
two clock entities have been created from the 10Hz and 50Hz SaveCCM clocks and
their period attribute is represented as an A0 Property. Data and Trigger ports have
been translated into DataSAinterfaces and ControlSAinterface, respec-
tively. All the SaveCCM Connections have been translated into SAchannels,
while the Splitter switch is transformed into an SAconnector with a single input
ControlSAinterface and two output ControlSAinterfaces. Attributes
specific to the SaveCCM language (e.g. the attribute specifying the implementation in C
programming language of ACC_application) are preserved in the A0 model through
generic properties; they will be looked up when passing to the ProCom specification.

At this point, we execute the A02ProCom transformation on the A0 model that we
just obtained. The produced specification is a complete ProCom model containing both
a ProSys and ProSave layer. The ProSys part of the model is made of only the ACC
System containing its internal ProSave specification (depicted in Figure 8).

The obtained ProCom model, even though we passed through A0, is similar to the
initial SaveCCM specification, e.g. the topography of the two models remains the same.
We mapped every A0channel to a ProSave Connection since the connected ele-
ments are only components (in case they were systems, ProSys Connectionswere
generated); the two Clock components have been translated and their period attribute
has been preserved. The thick dot shown in 8 represents a ControlFork connector
that splits the control flow into two paths. The various data/control ports have been
translated and their direction and type are also preserved; the only concern that we did
not manage to map is grouping ProSave ports into services. Actually we expected it
since there is no concept of service neither in SaveCCM nor in A0. This is the typical
case in which model designers have to manually arrange obtained models. A possible
alternative solution to this issue is to generate services applying some heuristics, e.g.
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Fig. 8. The ACC specification obtained from the execution of A02ProCom

analyze ports using a dictionary or an ontology so that ports whose names represent a
common semantics may be grouped into a single service.

In conclusion, in this section we showed how DUALLY can be used to pass from a
real-time notation (SaveCCM) to another (ProCom) applying a model-driven approach;
designers need to specify only semantic links at the meta-modeling level and modellers
execute automatically generated transformations to migrate models. The results of such
executions strongly depend on the accuracy of the semantic links between meta-models;
this and other issues are discussed and evaluated in the next section.

4 Evaluation and Considerations

Purpose of this paper has been to investigate the feasibility in utilizing DUALLY as a
generic transformation framework in the context of component models and its advan-
tages and limitations in comparison to manual and specialized model-to-model transfor-
mations. For this purpose and based on the experience reported in the previous section,
we identified a set of generic dimensions to reason about which strategy best suites
our needs: i) number of required transformations (NTrans) for achieving interchange
among n notations, ii) number of additional transformations (AddTrans) required
when a new notation is added, iii) accuracy (Acc) of the transformations results. Other
(secondary) dimensions are also analyzed. Table 2 summarizes the main findings.

From the first row, we can see that the point-to-point strategy requires the develop-
ment of order of n2 transformations, while the pivot-based solution requires order of n
transformations. Since many component models exist in real-time embedded systems,
the traditional point-to-point strategy would require possibly too many transformations.
Specifically, since our intent is to link several additional notations such as AADL, UML
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Table 2. Comparison between point-to-point and DUALLY

point-to-point transformations DUALLY

NTrans n*(n − 1) n

AddTrans n 2
Acc semantic loss semantic loss + pivot inaccuracy

automation manually coded transformation automatically generated transformations
steps one-step transformation two-step transformation

models using the MARTE profile or Timed Automata, the pivot meta-model proposed
in DUALLY seems to be more appropriate.

Moreover, the second row points out that adding a further notation to the interoper-
ating network of notations requires n new transformations implemented from scratch
in the point-to-point strategy. The pivot meta-model strategy in DUALLY, instead, re-
quires only one new transformation between the added notation and A0. More impor-
tantly, the full-mesh strategy requires a deep knowledge of the n existing notations,
while the pivot-based solution requires knowledge on A0 only.

As outlined in the third row, loss of information may happen in both the point-to-
point and pivot-based strategies, since the expressiveness of the notations to relate can
vary (i.e., if a notation is more expressive than the other, the extra expressiveness cannot
be typically mapped). Apart from this, the pivot-based strategy is in principle less ac-
curate than the point-to-point solution, since the (domain-specific but generic) interme-
diate model can increase the probability to loose concepts during the translation. Even
a well designed pivot meta-model might be less accurate than a point-to-point trans-
formation. Heterogeneity between notations to relate exacerbates this issue. In order to
limit such an issue, DUALLY provides extensibility mechanisms as a way to minimize
the loss of information. As shown in Section 3 we created an ad hoc extension includ-
ing all those elements in SaveCCM and ProCom not contemplated in A0. Specifically,
we added the concepts of system (meant as coarse-grained component), data/control
interfaces and clock components. This allowed us to not lose such elements while pass-
ing through A0; this was an undesirable issue because elements would have been lost
only because of the pivot meta-model and not for a real mismatch between SaveCCM
and ProCom. For example, SaveCCM data port would have been mapped to A0 SAin-
terface, but when passing to ProCom we did not know to which kind of ProCom port
we had to translate it; so, extending A0 allowed us to map SaveCCM data ports to
ProCom data ports passing through A0’s DataSAinterfaces without losing their
semantics. As illustrated in Section 3, this activity has not required a big effort, due
to the similar expressive power and conceptual elements exposed by the two notations
and the similarity between the concepts already in A0 and those in component models.
Indeed, when deciding to DUALLYze notations in a completely different domain, ex-
tending A0 might not be enough. We are currently evaluating how to deal with such a
situation.

The fourth row points out that while traditional point-to-point transformations re-
quire ad hoc and manually coded transformations in some transformation language
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Table 3. Efforts to relate SaveCCM and ProCom

SaveCCM ProCom

import meta-model 0 0
learn meta-model 4 (7,2%) 10 (18,1%)
create weaving model 9 (16,2%) 20 (36,2%)
refine transformation 0 0

develop models 2 (3,6%) 0

15 (29,8%) 30 (56,1%)

(e.g., ATL [8] or QVT [12]), DUALLY automatically generates the transformation code
out of the weaving models.

In the fifth row, we put in evidence that DUALLY uses a two-steps transformation,
while a single-step is required in point-to-point strategies. The main issue about the two
strategies is that of accuracy, i.e. passing through a pivot meta-model could lower down
the quality of the models produced by the transformations; we managed to overcome
this problem extending A0 so that no common element is lost because of A0’s expres-
sivity. So, in this specific case, extending A0 and applying the DUALLY approach leads
to the same degree of accuracy as if a point-to-point strategy is applied. In addition, ap-
plying the pivot-based strategy gives us also other benefits in the context of future work;
for example it is possible to reuse the DUALLY-zations of both SaveCCM and ProCom
while relating other notations to A0, or quantifying how many elements SaveCCM and
ProCom have in common with respect to other DUALLY-zed notations.

Table 3 quantify the efforts needed to DUALLY-ze SaveCCM and ProCom. Each
notation has a dedicated column, while the rows describe specific activities performed
during our experience. The value of a cell is both represented in terms of person-hour,
(i.e. the amount of work carried on by an average worker) and in percentage with re-
spect to the whole process. All the percentage values do not sum to one hundred since
we leaved out around eight person-hours to define which topology adopt to relate the
notations and to specify which elements form the extension of the A0 meta-model.

Since each meta-model is already in the XMI format, the effort related to the import
phase can be considered equal to zero. The second row represents the time to ”learn"
each notation, that is how much it took to understand its constructs and manage its
models. Table 3 highlights that creating weaving models is the activity that requires
much effort, since the resulting weaving model must be very accurate and the generation
of well-formed transformations directly depends on it. This specific experiment did not
require to manually refine the generated transformations.

The develop models row specifies how much time it took to create a model in each
notation. The ProCom column value is equal to zero because the ProCom model has
been automatically derived by executing the A02ProCom transformation. The efforts
associated to the meta-modeling expert represent almost the 80% of the whole process
but are performed only once for each notation. Further, DUALLY hides most of the
complexity to the final users, since they deal with models development and transforma-
tions execution only.
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5 Related Work

Related work mainly regards model-based tool integration, automatic derivation of
model transformations and semantic integration. The authors of [13] present Model-
CVS, a framework similar to DUALLY in which meta-models are lifted to ontologies
and semantic links are defined between such ontologies, they will serve as a basis for the
generation of model transformations; this approach manages also concurrent modeling
through a CVS versioning tool. DUALLY is somewhat different because it implies the
A0-centered star topology (it scales more when dealing with multiple notations) and the
preliminary step of meta-model lifting is not performed.

The role of DUALLY’s A0 is similar to the Klaper language in the field of per-
formability. Grassi et al. in [14] propose the Klaper modeling language as a pivot
meta-model within a star topology; however the Klaper-based methodology is different
from DUALLY’s approach since model transformations are not “horizontal” (Klaper
is designed as a mean between design-level and analysis-oriented notations). Moreover
model transformations are not derived from semantic bindings, they must be manually
developed.

In the field of software architectures, the ACME initiative [15] is famed for being
one of the very first technologies to tackle the interoperability problem. It benefits from
both a good tooling set and a good level of expressivity, but it is neither MOF compliant
nor automatized; further on, a programming effort (rather than graphically designed
semantic links) is needed every time a notation must be related to the ACME language.

Finally, the Eclipse project named Model Driven Development integration (MDDi4)
presents an interesting approach based on the concepts of model bus and semantic bind-
ings, but it is still in a draft proposal state.

6 Conclusion and Future Work

In model-driven engineering transformations of models are crucial activities in the de-
velopment process. In component-based development, along with increasing support
for specification, analysis and verification of quality attributes, and evolution of the
component-based systems, transformation models between different component mod-
els becomes increasingly important. We have analyzed possibilities of increasing in-
terchange between component models by applying a principle multipoint-to-multipoint
transformation engine and using a pivot-metamodel, both implemented in DUALLY.
Although DUALLY was originally designed for transformation of different architec-
ture description languages, we have demonstrated feasibility of this approach. The
component models SaveCCM and ProCom, used in our investigations, are examples
of evolution of component models; for this reason they have many similar elements,
but also elements that are quite different. We have shown that it is possible to find
a common core, in spite of these differences. Actually we have demonstrated that the
pivot-metamodel expressed in A0 is sufficient. The interoperability between component
models and A0, depends of course on similarities of the component models. We have ad-
dressed the structural part of the architectural interoperability, which does not cover the

4 http://www.eclipse.org/proposals/eclipse-mddi/
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complete interoperability; for example we have not addressed behavioral models, and
models of quality attributes. Our future work is focused on (i) adding new component
models , and (ii) adding behavioral models. Architectural interoperability is however
the most important since it is used as a common reference point for other models both
functional and non-functional. Further it is the only part that is included in most of the
component models.

So far in the Component-Based Development approach, interoperability between
component-based applications have been addressed in research in order to increase
reusability of existing components or component-based systems. We have investigated
interoperability between models which increases reusability of models, this is crucial
for analysis and verification of components and component-based systems.
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