
symmetryS S

Article

A Model-Driven Framework to Develop Personalized
Health Monitoring

Algimantas Venčkauskas *, Vytautas Štuikys, Jevgenijus Toldinas and Nerijus Jusas

Department of Computers Science, Kaunas University of Technology, Studentu 50-212, Kaunas LT-51368,
Lithuania; vytautas.stuikys@ktu.lt (V.Š.); jevgenijus.toldinas@ktu.lt (J.T.); nerijus.jusas@ktu.lt (N.J.)
* Correspondence: algimantas.venckauskas@ktu.lt; Tel.: +370-37-300-386

Academic Editor: Ka Lok Man
Received: 3 June 2016; Accepted: 11 July 2016; Published: 18 July 2016

Abstract: Both distributed healthcare systems and the Internet of Things (IoT) are currently hot
topics. The latter is a new computing paradigm to enable advanced capabilities in engineering
various applications, including those for healthcare. For such systems, the core social requirement is
the privacy/security of the patient information along with the technical requirements (e.g., energy
consumption) and capabilities for adaptability and personalization. Typically, the functionality of
the systems is predefined by the patient’s data collected using sensor networks along with medical
instrumentation; then, the data is transferred through the Internet for treatment and decision-making.
Therefore, systems creation is indeed challenging. In this paper, we propose a model-driven
framework to develop the IoT-based prototype and its reference architecture for personalized health
monitoring (PHM) applications. The framework contains a multi-layered structure with feature-based
modeling and feature model transformations at the top and the application software generation at
the bottom. We have validated the framework using available tools and developed an experimental
PHM to test some aspects of the functionality of the reference architecture in real time. The main
contribution of the paper is the development of the model-driven computational framework with
emphasis on the synergistic effect of security and energy issues.

Keywords: personalized health monitoring; Internet of Things; wireless sensor networks; security;
energy consumption; model-driven modeling

1. Introduction

Technology advances have greatly extended capabilities in engineering of healthcare-related
systems such as body area networks (BAN) [1], personalized health monitoring (PHM) [2], and
personal health assistants (PHA) [3], to name a few. Multiple medical instrumentations are integrated
within those systems and are able to ensure an interruptible remote monitoring of the patient’s health
through Internet-based communication. Therefore, the technology enables the transition from the
hospital-based and physician-centered healthcare delivery systems to home-based and patient-centered
systems. However, soon not only patients but also other humans and, what is most important, the
items of their everyday life will be interconnected to create a new computing infrastructure—the
Internet of Things (IoT). This technological leap opens new possibilities in creating more advanced
medical devices as well as medical applications. On the other hand, due to a growing proportion of
senior citizens (e.g., in developed societies), there is an evident demand for the more advanced and
personalized medical systems to suit user-specific needs [2–4].

In case of healthcare, the IoT is to be considered as information-communication technology with
smart features and enhanced capabilities. From this viewpoint, the IoT represents a huge infrastructure
containing physical objects (e.g., medical instrumentations) that are self-identifiable to other devices

Symmetry 2016, 8, 65; doi:10.3390/sym8070065 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://www.mdpi.com/journal/symmetry

Symmetry 2016, 8, 65 2 of 18

and enable the communication and continuous transmission of the patient data over the nodes of a
network via the Internet.

In this paper, we consider technological aspects in engineering of IoT-based PHM applications
by introducing the adequate prototype and developing its software. The functionality, i.e. functional
requirements of the prototype, is concerned with collecting of initial data taken from the patient’s body
by medical sensors and then transferring the data over the network to a remote hospital for processing
and decision-making. On the other hand, non-functional requirements of PHM are concerned with
security/privacy issues (because of the transferred data may be intercepted and changed during the
transfer sessions), energy-awareness (because of the use of battery-charged medical devices) and
environmental factors (because of possible noises).

The diversity of medical devices (sensors), the diversity of their mode of use, and the diversity of
protocols to support the integration of devices into the network of IoT applications make the design of
such systems indeed challenging. The prototyping and software design automation therefore are seen
as the necessity and, perhaps, as the only possible way for managing the complexity issues. Typically,
the automation of design processes requires the introduction of model-driven approaches. The latter
should be based on using well-proven methodologies such as Product Line Engineering (PLE) [5].

In this paper, we propose a stack-based framework to design a medical-oriented IoT-based
prototype using the model-driven approach with the focus on model transformations; the latter, in fact,
means that we will attempt to introduce the automation in the design as fully as possible. We consider
the functionality of the introduced framework as the main task, which contains the following sub-tasks:
(1) the development of feature-based models to specify functional and non-functional requirements for
the prototype; (2) model transformation (model verification, aggregation, specialization); (3) generation
of executable software components for the selected prototype application.

The main contribution of the paper is (1) the stack-based computational framework to describe the
overall functionality of the proposed prototype; (2) feature models describing the interaction between
the functional and non-functional requirements (the latter being focused on the combined security and
energy issues at the application level); and (3) an approach to connect higher-level feature models with
the generation level to produce software of the IoT-oriented applications such as PHM.

The structure of the paper is as follows. In Section 2, we analyze the related work and motivate
our research. In Section 3, we present the stack-based computational framework that includes the
theoretical background and a description of the conceptual vision in solving the formulated tasks. In
Section 4, we discuss a case study to implement the computational framework using feature-based
modeling and model transformation tools. In Section 5, we present the summary, discussion, and
evaluation of the proposed approach. In Section 6, we formulate the conclusion and propose some
ideas for the future work.

2. Related Work

The Internet of Things (IoT) is a new computing paradigm [6,7] to enable advanced capabilities
in engineering various applications, including those for healthcare. Sallai [8], for example, identifies
modeling as a separate branch in the IoT research. The state-of-the-art survey [2,9] shows intensive
research within the smart healthcare systems field and focuses on healthcare frameworks, platforms,
standards, and quality attributes. The authors’ main conclusion is that the formal modeling and
validation tools are enhancing the reliability and dependability properties in designing healthcare
systems; however, these have not yet gained ground in real-world scenarios. Wireless sensor networks
(WSN) provide a virtual layer where the information about the physical world can be accessed by any
computational system. Therefore, Alcaraz et al. [10] emphasize that WSNs are an invaluable resource
for realizing the vision of the IoT in terms of integration, security, and other issues. The collection,
modeling, reasoning, and distribution of context in relation to sensor data as well as context-aware
computing play a critical role in IoT applications.

Symmetry 2016, 8, 65 3 of 18

Adeluyi and Lee [2] give a systematic review of the key aspects of personalized health systems.
They identified the main challenges for such systems: adaptation according to the profile of the
patient; requirements of quality of service and reliability; issues of privacy, security, and authentication;
mobility and low energy consumption; and integration with web services. Babar et al. [11] give an
overview, analysis, and taxonomy of security and privacy challenges in IoT and propose the Security
Model for the IoT. Venckauskas et al. [12] present the energy efficient SSL protocol that ensures
the maximum bandwidth and the required level of security with minimum energy consumption.
Slavin et al. [13] introduce security-requirement patterns that represent reusable security practices that
software engineers can apply to improve security in their systems. The paper proposes a new method
that combines an inquiry-cycle-based approach with the feature diagram notation to review relevant
patterns and quickly select the most appropriate patterns for the situation. Gupta [14] discusses the
current and future security solutions for low-energy body area networks (BANs). Selimis et al. [15]
emphasize the importance to guarantee and protect the patient’s personal sensitive data obtained in
wireless BANs (WBANs) and propose a new microcontroller design in order to reduce the energy
consumption of the system in relation to enhancing security. Ameen et al. [16] categorize the sensor
network applications into two major categories— nonmedical and medical use (in this case, sensors
can be wearable and implanted). The paper considers the security and privacy issues of such networks
for healthcare applications.

The study of Hughes et al. [17] reviews the existing research in WBAN technology, focusing
on the protocol adaptation and energy efficient cross-layer design for remote continual healthcare
monitoring. Venckauskas et al. [18] present the configurable IoT prototype module to provide
wide-scale experiments to obtain energy-security dependencies for various modes of IoT applications.
Vu et al. [19] describe an extensible simulation environment for the modeling of WSNs. In particular,
their simulator facilitates the study of secure connectivity between sensor nodes. The simulator has
five main components: a network topology model, a key establishment protocol, and an adversary
model for node capture, network analysis tools, and a graphical user interface to facilitate the
rapid simulation, visualization, and analysis of WSNs. Ortiz et al. [20] consider runtime variability,
which is a key technique for the success of dynamic software product lines (DSPLs), as certain
applications demand reconfiguration of system features and execution plans at runtime. In this
emerging research work, the authors address the problem of dynamic changes in feature models in
sensor-network product families, where the nodes of the network demand dynamic reconfiguration at
post-deployment time.

Fajar et al. [21] perform feature modeling to analyze commonality and variability among the
applications in terms of their features, and they visualize the analyzed commonality and variability in a
tree-form diagram. The feature model provides a comprehensive view of the wireless sensor/actuator
network (WSAN)-based agriculture system and helps agriculture domain experts and software
engineers communicate intuitively. Moreover, the feature model will be useful for software engineers
to pre-design software architecture and reusable components shared by the WSAN-based healthcare
systems [22], and Third Generation In-Ambulance Telemedicine [23] as predominant ones now.

A large body of the following papers focuses on analyzing models and frameworks for building
healthcare systems. Mehmood et al. [24] present an ontology-based framework to expose the devices
functionality for the healthcare application domain. Mavetera et al. [25] also considers a framework
that uses ontology-based view in the software development process. The ontology plays the role
of the software model that bridges the communication gap between software development stages.
Ruiz-Zafra et al. [26] present a model-driven approach based on using UML to develop high-level
software interfaces that enable designer to interact with wearable devices easily. This method also
allows reducing risks and development efforts. Ruiz [27] addresses the problem how to cope with
the heterogeneity of sensor-based wearables devices (also used in healthcare) and to support their
integration. The paper presents a model-driven approach using a meta-model that was developed for
a wider system to define and specify interaction with sensors. Instances of the resulting models being

Symmetry 2016, 8, 65 4 of 18

derived from the proposed meta-model are specified in a custom language called the wearable markup
language. Kim et al. [28] present a model that uses ontology-based healthcare context information
to implement a ubiquitous environment. The model is used to extract and classify the healthcare
services using the context information by considering medical references and service environments.
Benerjee et al. [29] consider a model-driven approach for a pervasive healthcare monitoring system
that uses verified body worn medical sensors and smart phones. The latter are acting as base stations
in Body Sensor Networks (BSN). The main focus is taken to a high level specification of requirements
and generation of both the sensor and smart phone code. Case studies relate to energy efficiency
and mobility aware network reliability, showing whether the resulting implementation satisfies the
requirements set forth in the design phase.

Motivation of our research. The provided literature review is by no means comprehensive due
to the broadness of the topics and the extremely intensive research activities in the field. The obtained
facts have enabled us to motivate our research and conclude as follows. The IoT-oriented research
in healthcare is very active with a variety of introduced proposals. A great deal of the proposals
focuses on model-driven design frameworks, security, privacy, and energy issues in developing
the applications in this field. These issues are indeed challenging even in the case when they are
treated separately. In addition, in many IoT solutions, they are common and not dependent on the
type of application. If we want to enhance the quality of service of those applications, we need
to consider the synergistic effect of the energy-security and environmental factors on the overall
functionality of the application [30]. Such a vision requires the use of systematic approaches and
adequate methodologies. Though there are many solutions proposed in the literature on security
and energy issues, so far, little is known about how those factors are to be integrated into the
application software and the overall design stream. Due to the increased complexity of the applications,
modeling and model-driven transformations should be seen as a relevant solution when the main
focus is the design prototyping, automation and reuse. Therefore, in the next sections, we introduce
and discuss a computational framework and its implementation as a part of the modern design
methodologies in creating IoT-oriented PHM applications with the capabilities of reuse through
adaptation and personalization.

3. Computational Framework: A Stack-Based Model

This framework describes the basic idea and the way in which the IoT-based applications such as
PHM are to be implemented. The vision focuses on prototyping and high-level modeling. Prototyping
is concerned with the development of a reference architecture that bears basic properties (requirements)
of possible PHM applications. High-level modeling is concerned with the discovery of models and
their transformations in the context of using the PLE approach [5]. Both the prototyping and modeling
cover overall processes from the requirements statement to the implementation. In this way therefore,
it is possible to reveal difficulties and bottlenecks that may occur in designing real systems using
that approach.

A set of pre-defined requirements at the initial phase stands for the source of data to deal with
design activities within the framework. Typically, functional requirements depend on the type of an
application. They might be highly specific, though there are also common attributes such as those
related to the communication within the internet-based infrastructure. We accept and deal with
security-energy and environmental factors as the main non-functional requirements. As each of them,
in fact, is a big issue, we firstly analyze them separately through analysis and modeling. Then we
combine them into a unified measure (called quality of service [30,31]) to represent non-functional
requirements uniformly to evaluate their synergistic effect to fit the needs of a particular application.

In Figure 1, we present our framework as a multi-layered stack that includes the modeling layer
at the top and the implementation layer at the bottom. Intermediate layers serve for narrowing the
design space in order we could be able to apply the model transformations and finally to customize
models to achieve the implementation layer. The aim of PHM domain modeling is first to extract

Symmetry 2016, 8, 65 5 of 18

the relevant knowledge and then to represent it adequately in order to apply the knowledge in the
subsequent layers as easily and effectively as possible. Typically, the resulting knowledge is a set of
models of the domain under consideration. The modeling procedure, to be systematic and most useful,
requires the use of a well-defined approach. When new designs with reuse in mind are considered (e.g.,
PLE approaches), typically feature-based modeling is applied [32,33]. We do the same for analyzing
the upper layer of our framework.

—

 —

features (if a parent feature is removed, all of the children’s features are removed as well).

Figure 1. Multi-layered stack to implement the computational framework for personalized health
monitoring (PHM) applications.

Firstly, in Section 3.1, we present a background along with basic definitions to understand the
introduced framework. Secondly, in Section 3.2, we describe the process-based implementation of the
proposed framework.

3.1. A Background of the Methodology

As our methodology at the top level of the computational framework uses the feature notion, we
need to define the relevant basic terms. As the notion is independent on the application, the definitions
we provide below are common for many other systems too (not only for PHM).

Definition 1. The feature is a distinguishing characteristic of a domain (e.g., system, component,
process, PHM), which is considered important by the stakeholder in the given context of use (for other
definitions, see [33]).

A feature is treated:

(i) as the mandatory feature that is always selected if its parent feature is selected;
(ii) as the optional feature that can be selected or not;

(iii) as the alternative feature(s) that are grouped, and the selection from the group is governed by
logical relations OR and XOR.

Definition 2. A feature model (further FM, also feature diagram) is a set of the following components:

(i) root tree: G = (F, r, E), where F is the finite set of features, r—root feature (r P F); E is a finite set of
the edges E Ď F ˆ F;

(ii) set Emand is the set of edges that define the mandatory features with their parents P(Emand Ď E);
(iii) the graph Gxor Ď P(E) ˆ F defines the alternative feature groups;
(iv) the graph Gor Ď P(E) ˆ F defines the optional feature groups (here P(E)—child features together

with their common parent (P) feature);
(v) RQ defines the finite set of constraints Requires;

(vi) EX defines the finite set of constraints Excludes (Definition 2 adapted from [32]).

Definition 3. Feature models hold the following properties:

(i) FM is said to be aggregated if it is created through combining two or more input FMs into one output
model using the pre-specified aggregating rules integrated within the adequate tools.

Symmetry 2016, 8, 65 6 of 18

(ii) FM is said to be specialized if it is derived from its ancestor FM through removing some features (if
a parent feature is removed, all of the children’s features are removed as well).

(iii) FM is said to be abstract if some features have no atomic features with concrete values, or, in the
other context, some features may be decomposed into parts.

(iv) FM is said to be concrete if atomic features have concrete values.
(v) FM configuration is the model that contains all mandatory nodes of the given FM, may contain

optional nodes and includes variation points, but only one variant for each variation point
is selected.

Transformation rules are the basis to implement the model transformation. There are two types of
FM transformation: (1) model-to-model (M2M) transformation that defines the correspondence between
elements of the input and output feature models; (2) model-to-program (M2P). The first covers the
transformation and specialization layers while the second covers the generation and implementation
layers. The transformation rules are to be supported by the adequate tools (they will be introduced in
Section 3.2).

Definition 4. Model-driven computational framework is the structure to enable the FM transformations
and software code generation governed by predefined requirements and capabilities of the
adequate tools.

3.2. Description of the Methodology

In Figure 2, we present the overall design processes to implement the framework. Each layer
represents the adequate process along with the input-output models and tools used to support the
process. As a result of modeling the different aspects of requirements are considered separately (due
to their complexity), i.e., a set of separate feature models (further input models) is created.

Figure 2. Design processes and tools to implement the framework.

Symmetry 2016, 8, 65 7 of 18

The transformation layer (process) serves for aggregating the input models into the resulting
model. The main intention is to ensure the reuse potential in using the model-driven paradigm. The
conditions of aggregating are as follows: the input models are consistent, being represented uniformly
using the feature-based notion, and general enough (meaning the adequate scope of domain expressed
by features) to support the pre-defined extent of reuse. Aggregation might be carried out not for all
input models but for the selected models. For example, the most likely aggregation could be composed
of the resulting model from the non-functional models (i.e., security and energy related models). The
aggregated model for reuse should be the abstract model. Consistency should be verified. Therefore,
the verification process is a part of both the modeling and transformation processes to be supported by
adequate tools (FAMILIAR [34] for modeling and aggregation and SPLOT [35] for verification).

The models created so far are too general, meaning that they are oriented to a variety of possible
applications that cover a huge space of possible functional and non-functional requirements. In other
words, they support a high extent of reuse. Therefore, before reusing they must be adapted to the
concrete context of use. The abstract models should be specialized. Model specialization is a kind
of transformation that aims at to achieve two goals: (1) to add the concrete values to some abstract
features; (2) to narrow the search space by introducing specific requirements related to the concrete
situation of use. Therefore, those layers (transformation-specialization) are about the model-to-model
(M2M) transformation that does not change the abstraction level.

As M2M transformation rules are based on properties (see Definition 3, Section 3.1) and are
hidden within tools FAMILIAR and SPLOT, we do not present more details on the rules here. Instead,
we focus on the next generation layer that is also about transformations. Here, the aim is to produce
the program code through model-to-program (M2P) transformations. This kind of transformation
results in lowering the level of abstraction. As there is a difference in representing the feature models
and the program to be created, it is difficult to perform the straightforward transformation. Therefore,
we implement the process through a series of lower-level transformations. The M2P transformation
rules are given below.

Tools indicated in Figure 2 are used to perform M2M transformations. M2P transformations (i.e.,
FM to class diagrams of the object oriented programming language (OOPL)) are performed using the
Microsoft Visual Studio tool applying the following rules:

(a) A high-level feature of the input FM corresponds to OOPL elements, such as Class, Class

specification, or Enumeration;
(b) A sub-feature of the input FM corresponds to the same elements plus Interface of the OOPL;
(c) The constraint Requires of the FM corresponds to the OOPL element Aggregation;
(d) The constraint Excludes of the FM corresponds to the OOPL element Composition;
(e) The mandatory feature of the FM corresponds to the OOPL class diagram association (1);
(f) The optional feature of the FM corresponds to the OOPL class diagram association (0..1);
(g) The alternative feature(s) that are grouped and the selection from the group is governed by logical

relations (OR decomposition) corresponds to the OOPL class diagram association (1..*);
(h) The alternative feature(s) that are grouped and the selection from the group is governed by logical

relations (XOR decomposition) corresponds to the OOPL class diagram association (1..1).

Finally, the implementation layer (see again Figure 1) is concerned with the introduction of the
hardware part (i.e., sensors, data concentrator, communicating and transferring facilities) according to
the predefined reference architecture (Figure 3). Then, by embedding the program components created
in the generation layer into the architecture, it is possible to make the prototype system function within
the predefined scope, requirements, and functionality.

Symmetry 2016, 8, 65 8 of 18

facilities (e.g., patients’ health histories database (PHHD), patients’ database and application server

parts of the patient’s body. In case of t
aspects: (1) typical measurements (e.g., measuring the patient’s temperature, blood pressure, pulse,

see Node3 in Figure 3). Therefore, the sensor’s type predefines the use of the adequate protocol. The

Figure 3. Reference architecture of the PHM prototype contained within the nodes of a distributed
wireless sensors network (DWSN).

4. A Case Study: Implementation of the Computational Framework

In this section, we describe a case study to show the implementation of the proposed framework.
To do so, firstly we consider the architectural aspects by introducing a prototype of the IoT-related
PHM applications. Then we describe results obtained for each layer in detail.

4.1. The IoT-Based PHM Application Prototype

In Figure 3, we present the three-level reference architecture of the prototype as a result of healthcare
domain analysis. Its highest level contains PHM application module (HAM) with adequate facilities
(e.g., patients’ health histories database (PHHD), patients’ database and application server (PDAS)).
The standard Internet module (SIM) with connecting facilities represents the intermediate level. The
distributed wireless sensors network (DWSN) represents the lowest level. The latter is identified as the
IoT Node or IoTN for short. In fact, it represents a sub-net of the DWSN along with additional facilities.
In terms of our application, it is treated as a PHM or another medical-related system. As we focus
on data collection, communication, and functional aspects here, the module IoTN represents the core
of the reference architecture. The module is responsible for providing the initial data. In healthcare
applications, there is a need to collect a huge number of data from different parts of the patient’s
body. In case of the prototype, however, it is more important to focus on two aspects: (1) typical
measurements (e.g., measuring the patient’s temperature, blood pressure, pulse, gases) and (2) different
functionality of the sensors used for measuring. As the body parameters of each patient may be specific,
we need to have sensors for different functionalities. Therefore, we assume that there are (i) simple

sensors that are able to transfer the measured data only (say, measurement of gases); (ii) functional

sensors with the restricted functionality (say, measurement of temperature); and (iii) multi-functional

sensors to provide various calculations before transferring data (say, measurement of pulse).
Typically, the measured data are private and are not to be allowed to be captured and misused.

The security protocols ensure that; however, the security level may be different for various applications
or for the specific cases of the same application as it is in our case (e.g., for different patients). Therefore,
PHM applications are concerned with choosing the adequate protocol from the set of available
ones. As it is highlighted in the structure of IoTN, different sensors may require different protocols.
Typically, multi-functional sensors require more advanced protocols (e.g., Wi-Fi, see Node3 in Figure 3).
Therefore, the sensor’s type predefines the use of the adequate protocol. The collected data from

Symmetry 2016, 8, 65 9 of 18

different sensors are to be combined and presented as a common structure before being transferred to
the HAM. The sub-module, identified as the heterogeneous network concentrator (HNC) within the
component IoTN (see Figure 3) fills this role. As the modules IoTN and HAM are typically located in
remote places, the sub-module HNC also ensures the interfacing facilities with SIM.

The procedure of obtaining initial data and then transferring them according to the selected
protocol is also concerned with energy consumption. The latter highly depends on the mode of
using IoTN (e.g., intensiveness of the data stream, sensor type, protocol to be used, and state of the
environment). For telemedicine applications, energy issues are important too, because there are many
battery-charged medical devices in use. All these factors in building the PHM application should
be taken into account at the initial phase when the requirements for the application are to be stated.
Therefore, the requirements fall into two categories: non-functional (related to energy and security,
environmental factor) and functional (related to the measured data and their transferring). Note that
the medical interpretation and the use of the data is not the concern of the prototype. Even in this
simplified example, there are many variants of the factors to be considered and evaluated. However,
the real IoT applications are far more complex. In fact, they are systems of systems with a huge
variability space of interacting factors.

4.2. Implementation of Transformation Layers

In Figure 4, we present the feature model (FM) that specifies a set of the non-functional
requirements with the focus on the security, energy, and environmental aspects as related to the
component IoTN. Those aspects are considered as mandatory features (see Section 3.1, for this and
other definitions). All the features are decomposed to achieve the level of atomic features (variants).
The variation points and variants specify variability (Figure 4, e.g., Security level, Physical obstacle, etc.);
therefore, the requirements cover the set of the possible alternatives in representing requirements for
different systems. The variants can be also treated as fuzzy variables because of the lack of preciseness.
The values of the variables are to be selected using either expert knowledge or previous knowledge of
the designer. For example, values of the security level were taken from [31]; the others were estimated
on the basis of the experimental results given in [18]. Here, physical obstacle values (Min, Max, Aver)
mean the environmental factor influencing to signal transferring (noise) in rural regions, city regions,
and between adequately.

Figure 4. Non-functional requirements of the PHM prototype: initial (a) and specialized (b) feature
models (FMs).

In fact, Figure 4 presents two models: initial (Figure 4a) and specialized (Figure 4b). In terms of
the introduced definitions (Section 3.1), both are concrete models. The specialized model is derived

Symmetry 2016, 8, 65 10 of 18

from the first. Further, we analyze the specialized model aiming at simplifying the task. We have
also omitted some other constraints for simplicity. The specialized model should be correct. The
model has been created and verified using the tools FAMILIAR [34] (for modeling) and SPLOT (for
verification) [35].

Similarly, using the expert knowledge and adequate tools, we are able to construct the correct

model to represent functional requirements of our prototype. We omit the visualization of this model
here. As both requirements (non-functional and functional) in the same project are to be considered
together, we need to create the aggregated model that includes both FMs. Therefore, in Figure 5, we
outline the aggregated FM of both functional and non-functional requirements. Here, as compared
with the architecture (Figure 3), sensors are defined as concrete functional units (pulse, temperature,
and gas sensors). Each sensor, as the parent feature, consists of other features to define the functionality
of the sensor (operating range, distance, protocol, and accuracy).

The remaining part of the functionality is represented by the feature “Communication” with its

Figure 5. Specialized concrete FM to represent the aggregated IoT nodes (during customization
fragment of FM (a) transforms to (b)).

The remaining part of the functionality is represented by the feature “Communication” with its
own sub-features. This feature model (Figure 5) is also a concrete specialized model (again constraints
of the type Requires and Excludes are missed). It is reasonable to present constraints separately due to
the readability and understandability issues. It is created using the same tools that support these types
of transformations.

In Table 1, we present the constraint relationships within the aggregated model. The result of
the modeling and verification processes (they also include aggregation) is the construction of the
correct feature models. They are represented in two formats: graphical and textual. The latter is being
specified in SXML (should be interpreted as simple XML).

The verification tool SPLOT also yields a set of characteristics of the aggregated FMs along with
results of debugging analysis (see Table 2; in fact, there is a reduced number of the characteristics).
As the initial aggregated model specifies a set of possible alternatives predefined by the anticipated
requirements, the variability space (it is evaluated by count configurations, see Table 2) may be too
large to implement the created model. Therefore, we provide the specialization of the initial aggregated
model in order to narrow the solution space.

Symmetry 2016, 8, 65 11 of 18

Table 1. Constraint relationships of the IoTN (specialized aggregated and concrete FM).

No. Features Constraints Features

1 Pulse Wi-Fi Requires Wi-Fi
2 Gas ZigBee Requires ZigBee
3 Temperature Bluetooth Requires Bluetooth
4 25 Kb Requires 150 kb/s
5 2 Mb Requires 5 Mb/s
6 0.5 Mb Requires 1.5 Mb/s
7 5 Mb/s Requires Wi-Fi
8 1.5 Mb/s Requires Bluetooth
9 150 kb/s Requires ZigBee
10 Bluetooth Requires C
11 ZigBee Excludes TS
12 TS Requires Wi-Fi
13 Pulse sensor Requires Max:(15; 30]
14 Gas sensor Requires Aver:(5; 15]
15 Temperature sensor Requires Min:[1; 5]
16 Pulse Wi-Fi Requires Pmax
17 Temperature Bluetooth Requires Paver
18 Gas ZigBee Requires Pmin
19 Pulse sensor Requires 1 s
20 Gas sensor Requires 5 s
21 Temperature sensor Requires 10 s
22 Pulse Wi-Fi Requires 2 Mb
23 Temperature Bluetooth Requires 25 kb
24 Gas ZigBee Requires 0.5 Mb

Table 2. Feature model characteristics of initial, specialized and customized models.

Characteristics Initial FM
Specialized FM for

the Prototype
Customized FM for

Implementation

#Features 147 69 68
- Optional 0 0 0

- Mandatory 103 46 49
- Grouped 72 22 18
- Groups 25 7 6

Tree Depth 7 5 5
#Extra constraints 26 24 24

Debugging Analyses

#Dead Features 0 0 0
Count Configurations 6.04 ˆ 107 8 1

The essential characteristics of the verified model (there are no dead features) are the constraints,
the count of features, and their types, the configuration count. The latter defines the reuse scope (the
number of the family members) for further analysis and implementation.

4.3. Implementation of the Code Generation Layer

For this layer, input data is obtained for the specialized feature model. In fact, the configuration
count predefines the set (see Table 2, line “Count Configurations”, Column 3). The specialized model
has eight configurations. At this level, all or some configurations might be taken into account because
we apply the ‘product line’ approach. Having several variants, it is possible to make a comparison
and investigation to define the one that fits best in a given situation. However, as we have selected
Microsoft Visual Studio tools that require also manual code writing, we need to customize specialized
FM configurations to only one configuration (see the selected fragment (b) in Figure 5 obtained from
FM (a)) for implementing the code generation. Note that the selected FM fragment contains mandatory

Symmetry 2016, 8, 65 12 of 18

features that are linked with the sensors nodes through constraints (see Table 1). The configuration has
been selected taking into account the Pareto optimal solution [30].

There are different tools with slightly different capabilities to support the approach. The main
requirements in selecting the tools are (1) support of feature-based models and (2) type of the target
language to develop the system. As the software designer’s choice was the target OOPL C#, we have
used Microsoft Visual Studio tools. The other choice, for example, for programmers in Java may use
Eclipse tools and environment. The tool Visual Studio accepts OOPL class diagrams as input and
produces C# code templates as output. Therefore, generation is run as the two-stage transformation
process: (1) FM – OOPL class diagram; (2) OOPL class diagram—C# code. Here, OOPL class diagrams
stands for the tool’s input language to specify intermediate models. The templates of the C# code
stand for the output model. Therefore, the overall functionality of the tools is specified by the set
transformation rules we discussed in Section 3.2.

In Figure 6, we present the OOPL class diagram fragment (a) and the generated C# code (b). Here,
the class diagram PulseSensor corresponds to the FM fragment “Pulse sensor” (see Figure 5). In Table 3,
we summarize the overall results (i.e., the main characteristics of the transformation process) gained at
the generation phase. It is important to highlight some characteristics of the process. For example, the
automatically generated code covers the eight possible configurations (products in terms of product
line). A great deal of code either does not require human intervention at all, or the manually written
code is minimal. However, the physical implementation of the concrete sensor functionality requires a
substantial number of lines of code (LOC) to be written manually (see the three last lines in Table 3) for
the customized concrete configuration. However, in this regard, one should take into account the fact
that the designer has a template telling him/her where the code should be placed and what code must
be created. The latter is the significant enforcement of the design productivity.

Table 3. Count of the automatically generated and manually produced C#.

Features of FM
OOPL Classes

Derived from FM
C# Enumerators Derived

from FM

C# Interfaces
Derived from

FM

of LOC
Generated by

the Tool

of LOC
Written

Manually

Specialized concrete
FM to represent
the aggregated

IoT nodes

Functional
Requirements

Non Functional
Requirements

– – 50 0

Non-functional
requirements

Security Level
Energy Consumption

Environment

Environment Distance
Environment Physical Obstacle

– 99 12

Pulse Sensor Pulse Sensor

Pulse Operating Range
Pulse Operating Distance

Pulse Accuracy
Pulse Communication

IProtocol 49 1

Temperature Sensor Temperature Sensor

Temperature Operating Range
Temperature Operating

Distance
Temperature Accuracy

Temperature Communication

IProtocol 49 1

Gas Sensor Gas Sensor

Gas Operating Range
Gas Operating Distance

Gas Accuracy
Gas Communication

IProtocol 49 1

Communication Communication

Communication Data Amount
Communication Data

Sending Frequency
Communication Protocol

Communication Data Transfer

IProtocol 72 38

Wi-Fi CP Pulse WiFi – – 31 412

Bluetooth CP Temperature Bluetooth – – 31 307

ZigBee CP Gas ZigBee – – 31 281

Total 12 classes 18 Enumerators 1 Interface 461 1053

Symmetry 2016, 8, 65 13 of 18

– –

– –

– –

(temperature, gas, and pulse) have been provided at the patient’s side in a few sessions, each lasting

(doctor’s) side over the Internet. In fact, in our experiments, that side was the other room, where the

(a)

(b)

Figure 6. Fragment of OOPL class diagram derived from the adequate FM (a) and generated C#
code (b).

4.4. Implementation in Hardware and Experiments

The solution of the generation layer is the C# code template that represents the overall software
architecture. It covers all eight selected configurations of the prototype (see Table 3). In other words,
using this prototype software, we are able to create the eight possible software components (for the
three nodes of the IoT) for different applications. However, to do that, we first need to fulfill the
template-based software using manually written code for concrete customized application (see Table 3,

Symmetry 2016, 8, 65 14 of 18

column on right), meaning also the use of concrete hardware (i.e., sensors). We have selected adequate
sensors and, on the basis of the reference architecture (Figure 3) and produced software, created the
experimental system for testing and experimentation. Three types of measurements (temperature,
gas, and pulse) have been provided at the patient’s side in a few sessions, each lasting about two
hours. During the sessions, the measured data were continuously transferred to the remote (doctor’s)
side over the Internet. In fact, in our experiments, that side was the other room, where the stream of
measurements was monitored on a PC via the Internet. The experiment enabled us to conclude the
following issues: (a) all three standard data-transfer protocols were working correctly (meaning the
requirements fulfillment, i.e., software produced through the computational framework was correct);
(b) the data transfer sessions allowed for evaluation, analysis, and decision-making; (c) monitoring
changes and creating histories of transferring the data in real time (Figure 7). As the selected sensors
were not for the medical use, some deviations from the norm of the measured values were observed
(e.g., for temperature, see Figure 7b). Furthermore, we were able to monitor the significant changes
of signal values only for the pulse signal, as it is depicted in Figure 7. If the designer wants to
implement the IoT nodes for another application, he/she needs to start not from the beginning but
from the generation layer by fulfilling generated templates with specific, manually specified code for
the other configuration.

Figure 7. The views of the implemented hardware of the gas sensor (a) and real-time measurements
and measurements history for monitoring over the Internet by the remote user (b).

5. Summary, Discussion and Evaluation

In this paper, we have discussed the approach for developing the IoT-based PHM applications.
We have sought two goals: (1) to cover the design cycle as much as possible (from requirements to
code and from code to its testing on adequate hardware) and (2) to perform the process as effectively
as possible (meaning automation). First, we developed an adequate computational framework. Within
the framework, development activity was interpreted as a stack of multiple processes subdivided
into layers. The known model-driven vision has been applied using feature models to analyze the
prototype. Within the vision, we focused on two major activities. The first is concerned with creating
the feature models and their transformations (identified as model-to-model (M2M) transformations) on
the basis of the pre-defined functional and non-functional requirements of the prototype. The second
is concerned with model-to-program (M2P) transformations. The transformations are supported by
adequate tools. For the first activity (i.e., modeling, model verification, model transformation), we

Symmetry 2016, 8, 65 15 of 18

used the available FAMILIAR and SPLOT tools. For the second activity, we used the Microsoft Visual
Studio programming environment.

In general, the feature models enable to capture the essential attributes of the systems to be
modeled and to express them through the features and their relationships in the development cycle as
early as possible. As systems (such as the IoT) are indeed very complex, the feature models fit well to
represent the initial requirements of the domain under consideration. Features are abstract entities,
and therefore, using the feature-based notation, it is possible to represent the domain attributes at the
different level of abstraction and to model the domain variability explicitly. Here, by domain we mean
a possible set of systems within the IoT applications. As it has been shown, even in the case of the
simplified version of the introduced prototype, we had 8 different configurations, each represented as
a feature model for further analysis and implementation.

Therefore, we are able—already at the early design stages (requirements modeling)—to analyze the
system at the highest level of abstraction, to understand its core functionality features, to introduce
changes into its functionality, and to model changes not from the scratch but systematically with reuse
and automation in mind. It is possible to reason about the bottlenecks of the system to be designed
and to exclude them with much less effort and resources. Furthermore, we are able to collect a set of
approved artifacts (models are syntactically correct for the explicit variability management) for future
applications. That is so because the models are the value per se. They can be used in multiple cases
(as the tested knowledge units for experimentation, decision making, etc.). As the feature models
also have the textual representation in some language (in our case SXML), it makes the lower-level
transformations possible. Next, we are able to achieve a high reuse extent through automation using the
available transformation and generation tools. The feature models enable us to represent requirements
uniformly, despite their quite different nature (energy, security, environmental factors).

The top-level of our approach, i.e., feature-based modeling, model transformation and
specialization, is independent upon the hardware and software platforms; however, generation
and implementation layers are platform-dependent. To implement the IoT applications in particular
platforms, one can reuse the existing software components. Therefore, the IoT nodes can be created
using a variety of sensors and actuators. If one prefers to use standardized sensors, it would be possible
to reuse the ready-to-use software components, such as sensor's control programs.

As a result of the provided research, we have also identified some limitations of the approach. First,
for the seamless integration of M2M-based and M2P-based transformations, the adequate tools should
be compatible. That was not the case with the tools we used because the modeling and verification
tools are experimental. Therefore, in order to close this incompatibility gap, human interaction was
needed (for transforming SXML [the output of SPLOT] into the XML format that is supported by
Microsoft Visual Studio). Therefore, the choice of the available tools is an issue. Though the use of
more powerful tools can increase the automation level, the methodology we propose does not suffer
from the capabilities of the adequate tools. The other issue is that the template-based code, which is
created after generation, is to be completed manually. Therefore, the need for manual interactions
decreases the level of automation.

These are purely technical limitations. They have restricted, to some extent, the experimental
investigation we were able to provide. Even the restricted experiment has enabled us to achieve aims
of the research and approve the soundness of our approach.

6. Conclusions and Future Work

1. Though the proposed framework has been implemented as prototype oriented to the use in PHM
applications, it is general enough and can be helpful for developing other medical applications as
well. The following attributes ensure that: (a) feature modeling and model transformations are
independent upon the applications because the process Microsoft Visual Studio tools support
the product line vision, i.e., it ensures a high extent of variability in creating related systems;
(b) narrowing the variability space through the model specialization enables to adapt requirements

Symmetry 2016, 8, 65 16 of 18

to the needs of the possible use; and (c) the implementation covers the full design cycle, in which
the product line concept is preserved until the need to create the concrete software part for the
specific application hardware arises.

2. The framework provides the possibility for a wide-scale experimentation to test and monitor the
behavior of the prototype in the real-time mode through an Internet browser so that it is possible
to obtain and select the most suitable characteristics for real applications.

3. The processes and tools introduced and discussed within the framework are seen as a
computational framework that aims to support flexibility through reuse and automation. Due to
complexity issues, the computational framework does not ensure full automation; though some
handwork in designing IoT software is needed, the framework brings a systematic view and
helps in writing the needed domain-specific code manually.

4. The static feature modeling has proven to be an adequate top-level approach in the context
of the stated aims and requirements of our framework. However, more strict requirements
(especially in terms of energy awareness and possible environmental changes) may require the
introduction of dynamic feature modeling approaches. Researching those aspects as well the
seamless integration of different models and transformation tools into the unified design stream
are left for a future work.

Author Contributions: All the authors contributed equally to this work. All authors read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Crosby, G.V.; Ghosh, T.; Murimi, R.; Chin, C.A. Wireless Body Area Networks for Healthcare: A Survey.
Int. J. ad hoc Sens. Ubiquitous Comput. 2012, 3. [CrossRef]

2. Adeluyi, O.; Lee, J.-A. Medical Virtual Instrumentation for Personalized Health Monitoring: A Systematic
Review. J. Healthc. Eng. 2015, 6, 739–777. [CrossRef] [PubMed]

3. Li, K.J.; Warren, S. GumPack: A Personal Health Assistant with Reconfigurable Surface Components.
J. Healthc. Eng. 2013, 4, 145–166. [CrossRef] [PubMed]

4. Chun, S.M.; Park, J.T. Policy-Based Approach to Emergency Bio-Data Management for Mobile Healthcare.
J. Healthc. Eng. 2014, 5, 185–204. [CrossRef] [PubMed]

5. Thüm, T.; Apel, S.; Kästner, C.; Schaefer, I.; Saake, G. A classification and survey of analysis strategies for
software product lines. ACM Comp. Surv. 2014, 47. [CrossRef]

6. Schirner, G.; Erdogmus, D.; Chowdhury, K.; Padir, T. The future of human-in-the-loop cyber-physical systems.
IEEE Comput. 2013, 46, 36–45. [CrossRef]

7. Stankovic, J.A. Research Directions for the Internet of Things. IEEE Int. Things J. 2014, 1, 3–9. [CrossRef]
8. Sallai, G. Future Internet Visions and Research Clusters. Acta Polytech. Hung. 2014, 11, 5–24.
9. Memon, M.; Wagner, S.R.; Pedersen, C.F.; Beevi, F.H.A.; Hansen, F.O. Ambient Assisted Living Healthcare

Frameworks, Platforms, Standards, and Quality Attributes. Sensors 2014, 14, 4312–4341. [CrossRef] [PubMed]
10. Alcaraz, C.; Najera, P.; Lopez, J.; Roman, R. Wireless sensor net-works and the internet of things: Do we need

a complete integration? In Proceedings of the 1st International Workshop on the Security of the Internet of
Things, Tokyo, Japan, 29 November 2010.

11. Babar, S.; Mahalle, P.; Stango, V.; Prasad, N.; Prasad, R. Proposed security model and threat taxonomy for the
internet of things (IoT). Recent Trends Netw. Secur. Appl. 2010, 89, 420–429.

12. Venckauskas, A.; Jusas, N.; Kazanavicius, E.; Stuikys, V. An energy efficient protocol for the internet of things.
J. Electr. Eng. 2015, 66, 47–52. [CrossRef]

13. Slavin, R.; Lehker, J.-M.; Niu, J.; Breaux, T.D. Managing Security Requirements Patterns using Feature
Diagram Hierarchies. In Proceedings of the 22nd International Requirements Engineering Conference (RE),
Karlskrona, Sweden, 25–29 August 2014; pp. 193–202.

14. Gupta, L. Security in Low Energy Body Area Networks for Healthcare. 2014. Available online: http:
//www.cse.wustl.edu/~jain/cse57114/ftp/ban/index.html (accessed on 31 May 2016).

http://dx.doi.org/10.5121/ijasuc.2012.3301
http://dx.doi.org/10.1260/2040-2295.6.4.739
http://www.ncbi.nlm.nih.gov/pubmed/27010194
http://dx.doi.org/10.1260/2040-2295.4.1.145
http://www.ncbi.nlm.nih.gov/pubmed/23502254
http://dx.doi.org/10.1260/2040-2295.5.2.185
http://www.ncbi.nlm.nih.gov/pubmed/24918183
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1109/MC.2013.31
http://dx.doi.org/10.1109/JIOT.2014.2312291
http://dx.doi.org/10.3390/s140304312
http://www.ncbi.nlm.nih.gov/pubmed/24599192
http://dx.doi.org/10.1515/jee-2015-0007
http://www.cse.wustl.edu/~jain/cse57114/ftp/ban/ index.html
http://www.cse.wustl.edu/~jain/cse57114/ftp/ban/ index.html

Symmetry 2016, 8, 65 17 of 18

15. Selimis, G.; Huang, L.; Massé, F.; Tsekoura, J.; Ashouei, M.; Catthoor, F.; Huisken, J.; Stuyt, J.; Dolmans, G.;
Penders, J.; et al. A Lightweight Security Scheme for Wireless Body Area Networks: Design, Energy
Evaluation and Proposed Microprocessor Design. J. Med. Syst. 2011, 35, 1289–1298. [CrossRef] [PubMed]

16. Al Ameen, M.; Liu, J.; Kwak, K. Security and Privacy Issues in Wireless Sensor Networks for Healthcare
Applications. J. Med. Syst. 2012, 36, 93–101. [CrossRef] [PubMed]

17. Hughes, L.; Wang, X.; Chen, T. A Review of Protocol Implementations and Energy Efficient Cross-Layer
Design for Wireless Body Area Networks. Sensors 2012, 12, 14730–14773. [CrossRef] [PubMed]

18. Venckauskas, A.; Jusas, N.; Kazanavicius, E.; Stuikys, V. Identification of Dependency among Energy
Consumption and Wi-Fi Protocol Security Levels within the Prototype Module for the IoT. Elektron. Elektrotech.

2014, 20, 132–135. [CrossRef]
19. Vu, T.M.; Williamson, C.; Safavi-Naini, R. Simulation Modeling of Secure Wireless Sensor Networks.

In Proceedings of the 4th International ICST Conference on Performance Evaluation Method and Tools, Pisa,
Italy, 20–22 October 2009.

20. Ortiz, O.; Garcia, A.B.; Capilla, R.; Bosch, J.; Hinchey, M. Runtime Variability for Dynamic Reconfiguration
in Wireless Sensor Network Product Lines. In Proceedings of the 16th International Software Product Line
Conference, Salvador, Brazil, 2–7 September 2012.

21. Fajar, M.; Nakanishi, T.; Tagashira, V.; Akira, F. Introducing Software Product Line Development for Wireless
Sensor/Actuator Network Based Agriculture Systems. In Proceedings of the International Conference, the
Quality Information for Competitive Agricultural Based Production System and Commerce (AFITA2010),
Bogor, Indonesia, 4–7 October 2010; pp. 83–88.

22. Schreier, G. The internet of things for personalized health. Stud. Health Technol. Inform. 2014, 200, 22–31.
[PubMed]

23. Yperzeele, L.; van Hooff, R.J.; de Smedt, A.; Valenzuela Espinoza, A.; van Dyck, R.; van de Casseye, R.;
Convents, A.; Hubloue, I.; Lauwaert, D.; de Keyser, J.; et al. Feasibility of AmbulanCe-Based Telemedicine
(FACT) Study: Safety, Feasibility and Reliability of Third Generation in-ambulance Telemedicine. PLoS ONE

2014, 9. [CrossRef]
24. Mehmood, N.Q.; Culmone, R.; Mostarda, L. An Ontology Driven Software Framework for the Healthcare

Applications Based on ANT+ Protocol. In Proceedings of the 28th International Conference on Advanced
Information Networking and Applications Workshops (WAINA), Victoria, Canada, 13–16 May 2014;
pp. 245–250.

25. Mavatera, N.; Kroeze, J.H. An ontology-driven software development framework. In Proceedings of the 14th
International Business Information Management Association Conference (14th IBIMA), Istanbul, Turkey,
23–24 June 2010; pp. 1713–1724.

26. Ruiz-Zafra, A.; Noguera, M.; Benghazi, K.; Ochoa, S.F. A Model-Driven Approach for Wearable Systems
Developments. Int. J. Distrib. Sens. Netw. 2015, 5. [CrossRef]

27. Ruiz-Zafra, Á.; Noguera, M.; Benghazi, K. Towards a Model-Driven Approach for Sensor Management in
Wireless Body Area Networks. In Internet and Distributed Computing Systems; Springer: Berlin, Germany,
2014; pp. 335–347.

28. Kim, J.; Chung, K.Y. Ontology-based healthcare context information model to implement ubiquitous
environment. Multimed. Tools Appl. 2014, 71, 873–888. [CrossRef]

29. Banerjee, A.; Verma, S.; Bagade, P.; Gupta, S.K. Health-dev: Model based development pervasive health
monitoring systems. In Wearable and Implantable Body Sensor Networks (BSN), Ninth International
Conference on IEEE), London, UK, 9–12 May 2012; pp. 85–90.

30. Venčkauskas, A.; Štuikys, V.; Jusas, N.; Burbaitė, R. Model-Driven Approach for Body Area Network
Application Development. Sensors 2016, 16. [CrossRef] [PubMed]

31. Venckauskas, A.; Stuikys, V.; Damasevicius, R.; Jusas, N. Modelling of Internet of Things Units for
Estimating Security-Energy-Performance Relationships for Quality of Service and Environment Awareness.
Secur. Commun. Netw. 2016. to be published. [CrossRef]

32. Czarnecki, K.; Helsen, S. Feature-based survey of model transformation approaches. IBM Syst. J. 2006, 45,
621–645. [CrossRef]

33. Apel, S.; Kastner, Ch. An Overview of Feature-Oriented Software Development. J. Object Technol. 2009, 8,
49–84. [CrossRef]

http://dx.doi.org/10.1007/s10916-011-9669-2
http://www.ncbi.nlm.nih.gov/pubmed/21373804
http://dx.doi.org/10.1007/s10916-010-9449-4
http://www.ncbi.nlm.nih.gov/pubmed/20703745
http://dx.doi.org/10.3390/s121114730
http://www.ncbi.nlm.nih.gov/pubmed/23202185
http://dx.doi.org/10.5755/j01.eee.20.6.7285
http://www.ncbi.nlm.nih.gov/pubmed/24851958
http://dx.doi.org/10.1371/journal.pone.0110043
http://dx.doi.org/10.1155/2015/637130
http://dx.doi.org/10.1007/s11042-011-0919-6
http://dx.doi.org/10.3390/s16050670
http://www.ncbi.nlm.nih.gov/pubmed/27187394
http://dx.doi.org/10.1002/sec.1537
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.5381/jot.2009.8.5.c5

Symmetry 2016, 8, 65 18 of 18

34. Acher, M.; Collet, P.; Lahire, P.; France, R.B. FAMILIAR: A domain-specific language for large scale
management of feature models. Sci. Comput. Program. 2013, 78, 657–681. [CrossRef]

35. Mendonca, M.; Branco, M.; Cowan, D. SPLOT: Software product lines online tools. In Proceedings of
the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages and
applications, Orlando, FL, USA, 25–29 October 2009; pp. 761–762.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.scico.2012.12.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Computational Framework: A Stack-Based Model
	A Background of the Methodology
	Description of the Methodology

	A Case Study: Implementation of the Computational Framework
	The IoT-Based PHM Application Prototype
	Implementation of Transformation Layers
	Implementation of the Code Generation Layer
	Implementation in Hardware and Experiments

	Summary, Discussion and Evaluation
	Conclusions and Future Work

