
 

A Model-Driven Penetration 

Test Framework for Web Applications 

 

 
Pulei Xiong 

 
 

Thesis submitted to the 

Faculty of Graduate and Postdoctoral Studies 

In partial fulfillment of the requirements 

For the Ph.D. degree in Computer Science 

 

 

University of Ottawa 

Ottawa, Ontario, Canada 

January 1, 2012 

 

© Pulei Xiong, Ottawa, Canada, 2012



 

i 

Abstract 

Penetration testing is widely used in industry as a test method for web application 

security assessment. However, penetration testing is often performed late in a software 

development life cycle as an isolated task and usually requires specialized security 

experts. There is no well-defined test framework providing guidance and support to 

general testers who usually do not have in-depth security expertise to perform a 

systematic and cost-efficient penetration test campaign throughout a security-oriented 

software development life cycle. 

In this thesis, we propose a model-driven penetration test framework for web 

applications that consists of a penetration test methodology, a grey-box test architecture, 

a web security knowledgebase, a test campaign model, and a knowledge-based PenTest 

workbench. The test framework enables general testers to perform a penetration test 

campaign in a model-driven approach that is fully integrated into a security-oriented 

software development life cycle. Security experts are still required to build up and 

maintain a web security knowledgebase for test campaigns, but the general testers are 

capable of developing and executing penetration test campaigns with reduced complexity 

and increased reusability in a systematic and cost-efficient approach.  

A prototype of the framework has been implemented and applied to three web 

applications: the benchmark WebGoat web application, a hospital adverse event 

management system (AEMS), and a palliative pain and symptom management system 

(PAL-IS). An evaluation of the test framework prototype based on the case studies 



 

ii 

indicates the potential of the proposed test framework to improve how penetration test 

campaigns are performed and integrated into a security-oriented software development 

life cycle. 

  



 

iii 

Acknowledgements 

I would like to express my appreciation and gratitude to my supervisor Professor 

Liam Peyton for his guidance, encouragement and financial support throughout my thesis 

research.  

My deepest love and respect to my wife and my parents for their encouragement 

and selfless support to help me achieve this. 

  



 

iv 

Table of Contents 

ABSTRACT ................................................................................................................................................... I 

ACKNOWLEDGEMENTS ....................................................................................................................... III 

TABLE OF CONTENTS ........................................................................................................................... IV 

LIST OF FIGURES .................................................................................................................................... IX 

LIST OF TABLES ........................................................................................................................................ X 

LIST OF ACRONYMS .............................................................................................................................. XI 

CHAPTER 1. INTRODUCTION.............................................................................................................1 

1.1. PROBLEM STATEMENT ..................................................................................................................1 

1.2. THESIS MOTIVATION .....................................................................................................................3 

1.3. THESIS CONTRIBUTIONS ................................................................................................................4 

1.4. THESIS METHODOLOGY AND LIMITATIONS ...................................................................................5 

1.5. SECURITY TERMS USED IN THIS THESIS ........................................................................................9 

CHAPTER 2. BACKGROUND ............................................................................................................. 12 

2.1. WEB APPLICATION ARCHITECTURE AND TECHNOLOGIES ........................................................... 12 

2.1.1 Web Application Open Architecture ...................................................................................... 12 

2.1.2 Fundamental Web Technologies ............................................................................................ 15 

2.1.3 Web Application Functionality .............................................................................................. 22 

2.2. WEB APPLICATION SECURITY ..................................................................................................... 23 

2.2.1 Core Defense Mechanisms..................................................................................................... 23 

2.2.2 Basic Attack Categories and Common Vulnerabilities .......................................................... 26 

2.3. SOFTWARE SECURITY ENGINEERING ........................................................................................... 30 

2.3.1 Software Security Development Life Cycle ............................................................................ 31 

2.3.2 Software Quality Assurance................................................................................................... 32 

2.3.3 Software Security Testing ...................................................................................................... 32 



 

v 

2.4. MODEL-DRIVEN SOFTWARE TESTING ......................................................................................... 33 

2.4.1 Software Testing Fundamentals............................................................................................. 33 

2.4.2 Model-Based Testing ............................................................................................................. 35 

2.4.3 Model Driven Engineering .................................................................................................... 35 

2.4.4 Model-Driven Testing ............................................................................................................ 36 

2.5. WEB SECURITY KNOWLEDGEBASE ............................................................................................. 37 

2.5.1 Web Application Security Knowledge Sources ...................................................................... 37 

2.5.2 Security Knowledge Representation ...................................................................................... 38 

CHAPTER 3. RELATED RESEARCH AND INDUSTRIAL PRACTICE ....................................... 39 

3.1. MICROSOFT SECURITY DEVELOPMENT LIFECYCLE ..................................................................... 39 

3.2. THE COMMON CRITERIA EVALUATION ....................................................................................... 40 

3.3. WEB APPLICATION PENETRATION TESTING ................................................................................ 42 

3.3.1 Best Practices in Industry ...................................................................................................... 43 

3.3.2 Expert Security Assessment ................................................................................................... 46 

3.3.3 Tool Support .......................................................................................................................... 49 

3.4. OTHER SECURITY ASSURANCE APPROACHES .............................................................................. 50 

CHAPTER 4. MODEL-DRIVEN PENETRATION TEST FRAMEWORK..................................... 52 

4.1. PROBLEM DEFINITION ................................................................................................................. 52 

4.2. EVALUATION CRITERIA ............................................................................................................... 56 

4.3. TEST FRAMEWORK OVERVIEW .................................................................................................... 59 

4.4. PENETRATION TEST METHODOLOGY .......................................................................................... 61 

4.4.1 Overview ................................................................................................................................ 61 

4.4.2 Roles and Objectives.............................................................................................................. 64 

4.4.3 Test Analysis .......................................................................................................................... 65 

4.4.4 Test Design ............................................................................................................................ 68 

4.4.5 Test Execution ........................................................................................................................ 73 

4.4.6 Application Maintenance ....................................................................................................... 77 



 

vi 

4.5. GREY-BOX TEST ARCHITECTURE ................................................................................................ 78 

4.5.1 Web Application Architecture ................................................................................................ 79 

4.5.2 Entry Point ............................................................................................................................. 80 

4.5.3 Check Point............................................................................................................................ 82 

4.6. WEB SECURITY KNOWLEDGEBASE ............................................................................................. 84 

4.6.1 Attack Anatomy ...................................................................................................................... 84 

4.6.2 Characteristics of Attack Vectors .......................................................................................... 85 

4.6.3 Characteristics of Fuzz Vectors ............................................................................................. 86 

4.6.4 Penetration Test Security Model ............................................................................................ 87 

4.7. PENETRATION TEST CAMPAIGN MODEL ...................................................................................... 89 

4.8. KNOWLEDGE-BASED PENTEST WORKBENCH ............................................................................. 92 

CHAPTER 5. TEST CAMPAIGN CASE STUDIES ........................................................................... 94 

5.1. OVERVIEW OF TEST CAMPAIGNS ................................................................................................. 94 

5.1.1 WebGoat Test Campaign ....................................................................................................... 94 

5.1.2 AEMS Test Campaign ............................................................................................................ 95 

5.1.3 PAL-IS Test Campaign .......................................................................................................... 96 

5.1.4 The Roles of the Thesis Researcher in the Case Studies ........................................................ 98 

5.2. TEST FRAMEWORK PROTOTYPE .................................................................................................. 99 

5.2.1 Test Artifacts and Documents .............................................................................................. 100 

5.2.2 Test Campaign Model .......................................................................................................... 100 

5.2.3 Knowledge-Based PenTest Workbench Implementation ..................................................... 102 

5.2.4 Web Security Knowledgebase .............................................................................................. 106 

5.3. WEBGOAT TEST CAMPAIGN ..................................................................................................... 108 

5.3.1 Introduction ......................................................................................................................... 108 

5.3.2 Test Requirement Analysis ................................................................................................... 108 

5.3.3 Test Case Design ................................................................................................................. 109 

5.3.4 Test Execution ...................................................................................................................... 112 

5.3.5 Test Result Summary............................................................................................................ 113 



 

vii 

5.4. AEMS TEST CAMPAIGN ............................................................................................................ 114 

5.4.1 Introduction ......................................................................................................................... 114 

5.4.2 Test Requirement Analysis ................................................................................................... 115 

5.4.3 Test Case Design ................................................................................................................. 115 

5.4.4 Test Execution ...................................................................................................................... 118 

5.4.5 Test Result Summary............................................................................................................ 120 

5.4.6 The Refinement of the Test Framework ............................................................................... 121 

5.5. PAL-IS TEST CAMPAIGN .......................................................................................................... 122 

5.5.1 Introduction ......................................................................................................................... 122 

5.5.2 Test Requirement Analysis ................................................................................................... 122 

5.5.3 Test Case Design ................................................................................................................. 124 

5.5.4 Test Execution ...................................................................................................................... 128 

5.5.5 Test Result Summary............................................................................................................ 136 

CHAPTER 6. EVALUATION ............................................................................................................. 137 

6.1. INTENDED USE OF FRAMEWORK AND CASE STUDIES ................................................................ 138 

6.2. COMPARE WITH THE MS SDL ................................................................................................... 140 

6.3. COMPARISON OF SECURITY ASSURANCE APPROACHES ............................................................. 149 

6.4. COMPLEMENTARY NATURE OF THE PROPOSED TEST FRAMEWORK .......................................... 154 

6.4.1 Supplement to the Microsoft Secure Development Lifecycle ............................................... 154 

6.4.2 Use Vulnerability Scanner in the Test Framework .............................................................. 155 

6.5. WEBGOAT REFERENCE ANALYSIS AND PERFORMANCE ............................................................ 156 

6.6. LIMITATIONS ............................................................................................................................. 158 

6.6.1 Design-Oriented Research Methodology ............................................................................. 158 

6.6.2 Software Development Life Cycle Model ............................................................................. 159 

6.6.3 Web Application Architecture .............................................................................................. 159 

6.6.4 Simple Web Security Knowledgebase .................................................................................. 160 

6.6.5 Limited Scope of the Case Studies ....................................................................................... 160 



 

viii 

CHAPTER 7. CONCLUSIONS ........................................................................................................... 163 

7.1. SUMMARY OF CONTRIBUTIONS ................................................................................................. 163 

7.2. FUTURE WORK .......................................................................................................................... 165 

7.2.1 Build Up More Sophisticated Web Security Knowledgebase .............................................. 165 

7.2.2 Conduct Case Study in Larger Scope .................................................................................. 166 

7.2.3 Develop a Model-Drive Test Architecture ........................................................................... 167 

7.2.4 Extend the Proposed Test Framework ................................................................................. 167 

BIBLIOGRAPHY...................................................................................................................................... 169 

APPENDIX A1 WEBGOAT TEST ANALYSIS DOCUMENT ............................................................ 176 

APPENDIX A2 WEBGOAT TEST DESIGN DOCUMENT ................................................................. 177 

APPENDIX A3 WEBGOAT TEST EXECUTION DOCUMENT ........................................................ 192 

APPENDIX B1 AEMS TEST ANALYSIS DOCUMENT ..................................................................... 193 

APPENDIX B2 AEMS TEST DESIGN DOCUMENTS ........................................................................ 194 

APPENDIX B3 AEMS TEST EXECUTION DOCUMENT ................................................................. 205 

APPENDIX C1 PAL-IS TEST ANALYSIS DOCUMENT .................................................................... 207 

APPENDIX C2 PAL-IS TEST DESIGN DOCUMENT ......................................................................... 209 

APPENDIX C3 PAL-IS TEST EXECUTION DOCUMENT ................................................................ 222 

  



 

ix 

List of Figures 

FIGURE 1 HTTP URL ..................................................................................................................................... 16 

FIGURE 2 SECURE SOFTWARE DEVELOPMENT PROCESS MODEL AT MICROSOFT ............................................. 39 

FIGURE 3 PENETRATION TEST DEVELOPMENT – CURRENT PRACTICE ............................................................ 53 

FIGURE 4 MODEL-DRIVEN PENETRATION TESTING ........................................................................................ 55 

FIGURE 5 TEST FRAMEWORK OVERVIEW ....................................................................................................... 61 

FIGURE 6 ITERATIVE SOFTWARE DEVELOPMENT & TEST PROCESS ................................................................ 62 

FIGURE 7 METHODOLOGY: TEST ANALYSIS ................................................................................................... 66 

FIGURE 8 TEST ANALYSIS DOCUMENT TEMPLATE ......................................................................................... 67 

FIGURE 9 METHODOLOGY: TEST DESIGN ....................................................................................................... 69 

FIGURE 10 TEST DESIGN DOCUMENT TEMPLATE ........................................................................................... 72 

FIGURE 11 METHODOLOGY: TEST EXECUTION ............................................................................................... 73 

FIGURE 12 TEST EXECUTION DOCUMENT TEMPLATE ..................................................................................... 76 

FIGURE 13 AJAX WEB APPLICATION ARCHITECTURE ................................................................................... 79 

FIGURE 14 WEB APPLICATION PENETRATION TEST SECURITY MODEL .......................................................... 87 

FIGURE 15 PENETRATION TEST CAMPAIGN MODEL ....................................................................................... 90 

FIGURE 16 A KNOWLEDGE-BASED PENTEST WORKBENCH ........................................................................... 93 

FIGURE 17 TEST CAMPAIGN MODEL ............................................................................................................ 101 

FIGURE 18 TEST ARCHITECTURE AND THE KNOWLEDGE-BASED PENTEST WORKBENCH ............................ 103 

FIGURE 19 A SAMPLE XSS VULNERABILITY ................................................................................................ 106 

FIGURE 20 A SAMPLE ATTACK VECTOR FOR XSS ....................................................................................... 106 

FIGURE 21 A SAMPLE FUZZ VECTOR FOR XSS............................................................................................. 107 

FIGURE 22 WEBGOAT APPLICATION FOOTPRINT ......................................................................................... 109 

FIGURE 23 A SAMPLE USER SCENARIO IN THE WEBGOAT TEST CAMPAIGN ................................................ 109 

FIGURE 24 USE WEBSCARAB TO IDENTIFY ENTRY POINT ............................................................................. 110 

FIGURE 25 A SAMPLE ENTRY POINT IN THE WEBGOAT TEST CAMPAIGN .................................................... 111 

FIGURE 26 SAMPLE ATTACKS IN THE WEBGOAT TEST CAMPAIGN .............................................................. 111 

FIGURE 27 A SAMPLE CHECK POINT IN THE WEBGOAT TEST CAMPAIGN .................................................... 112 

FIGURE 28 AEMS APPLICATION FOOTPRINT ............................................................................................... 115 

FIGURE 29 A SAMPLE USER SCENARIO IN THE AEMS TEST CAMPAIGN ...................................................... 115 

FIGURE 30 A SAMPLE ENTRY POINT IN THE AEMS TEST CAMPAIGN .......................................................... 116 

FIGURE 31 SAMPLE ATTACKS IN THE AEMS TEST CAMPAIGN .................................................................... 117 

FIGURE 32 A SAMPLE CHECK POINT IN THE AEMS TEST CAMPAIGN .......................................................... 118 

FIGURE 33 “VALIDATOR” CODE SNIPPET IN AEMS ..................................................................................... 119 

FIGURE 34 PAL-IS APPLICATION FOOTPRINT .............................................................................................. 123 

FIGURE 35 PAL-IS FUNCTIONALITIES .......................................................................................................... 123 

FIGURE 36 A SAMPLE PAL-IS FUNCTIONALITY AND ITS POTENTIAL VULNERABILITY ................................ 124 

FIGURE 37 A SAMPLE ENTRY POINT IN THE PAL-IS TEST CAMPAIGN ......................................................... 124 

FIGURE 38 SAMPLE ATTACKS IN THE PAL-IS TEST CAMPAIGN ................................................................... 125 

FIGURE 39 SAMPLE CHECK POINTS IN THE PAL-IS TEST CAMPAIGN ........................................................... 126 

FIGURE 40 A SAMPLE TEST CASE IN THE PAL-IS TEST CAMPAIGN ............................................................. 127 

FIGURE 41 SCREENSHOT OF THE ERROR MESSAGE FOR AN XSS ATTACK IN THE PAL-IS TEST CAMPAIGN 130 

FIGURE 42 SCREENSHOT OF THE APPLICATION LOGS IN THE PAL-IS TEST CAMPAIGN ................................ 131 

FIGURE 43 SCREENSHOT OF A SUCCESSFUL XSS ATTACK IN THE PAL-IS TEST CAMPAIGN ........................ 132 

FIGURE 44 A SAMPLE PAL-IS TEST REPORT ............................................................................................... 135 

  



 

x 

List of Tables 

TABLE 1 COMPARISON OF ENTRY POINTS ...................................................................................................... 81 

TABLE 2 COMPARISON OF CHECK POINTS ...................................................................................................... 83 

TABLE 3 THE WEBGOAT TEST CAMPAIGN SUMMARY ................................................................................. 113 

TABLE 4 THE WEBGOAT TEST RESULT SUMMARY ...................................................................................... 114 

TABLE 5 THE AEMS TEST CAMPAIGN SUMMARY ....................................................................................... 121 

TABLE 6 THE PAL-IS TEST CAMPAIGN SUMMARY ...................................................................................... 136 

TABLE 7 COMPARISON WITH THE MS SDL .................................................................................................. 141 

TABLE 8 COMPARISON OF SECURITY ASSURANCE APPROACHES ................................................................. 150 

TABLE 9 WEBGOAT REFERENCE ANALYSIS AND PERFORMANCE ................................................................ 158 

 

  



 

xi 

List of Acronyms 

Acronym Definition 

AJAX Asynchronous JavaScript and XML 

AEMS Adverse Event Management System 

API Application programming interface 

ASCII 
American Standard Code for Information 
Interchange 

AVDL 
Application Vulnerability Description 
Language 

CAPEC 
Common Attack Pattern Enumeration and 
Classification 

CC Common Criteria 

CCRA Common Criteria Recognition Arrangement 

CCS Common Criteria Schema 

CEM Common Evaluation Methodology 

CSRF Cross-Site Request Forgeries 

CSS Cascading Style Sheets 

CVE Common Vulnerabilities and Exposures 

CWE Common Weakness Enumeration 

DBMS Database Management System 

DOM Document Object Model 

DTD Document Type Definition 

FTP File Transfer Protocol 

GUI Graphical User Interface 

HTML Hyper Text Markup Language 

HTTP HyperText Transfer Protocol 



 

xii 

HTTPS Hypertext Transfer Protocol Secure 

IDE Integrated Development Environment 

IETF Internet Engineering Task Force 

IP Internet Protocol 

ISECOM 
The Institute for Security and Open 
Methodologies 

JSON JavaScript Object Notation 

MDA Model Driven Architecture 

MDE Model Driven Engineering 

MS SDL Microsoft Security Development Lifecycle 

NVD National Vulnerability Database 

OS Operation System 

OSSTMM 
Open Source Security Testing Methodology 
Manual 

OSVDB The Open Source Vulnerability Database 

OVAL 
Open Vulnerability and Assessment 
Language 

OWASP The Open Web Application Security Project 

OWL Web Ontology Language 

PAL-IS Palliative Care Information System 

PHP Hypertext Preprocessor 

PIM Platform-Independent-Model 

QA Quality Assurance 

RFC Request for Comments 

RUP Rational Unified Process 

SDL Security Development Lifecycle 

SGML Standard Generalized Markup Language 



 

xiii 

SOA Service Oriented Architecture 

SOAP Simple Object Access Protocol 

SQA Software Quality Assurance 

SQL Structured Query Language 

SSL Secure Sockets Layer 

TCP Transmission Control Protocol 

TLS Transport Layer Security 

URI Uniform Resource Identifier 

URN Uniform Resource Name 

URL Uniform Resource Locator 

US-CERT 
The United States Computer Emergency 
Readiness Team 

UTF Unicode Transformation Format 

WASC Web Application Security Consortium 

XML Extensible Markup Language 

XSS Cross-Site Scripting 



 

Chapter 1 Introduction    1 

Chapter 1. Introduction 

1.1. Problem Statement 

Over the last two decades, web applications have evolved from web sites with 

static content, to database-driven and N-Tiered applications that implement complex 

business logic to provide critical services. Web applications are now the predominant 

type of enterprise application. Web applications run on the Internet or Intranet, and are 

open to all web users – both legitimate users and malicious users. There are tremendous 

amounts of attacks against web applications every day. Often the primary focus for these 

attacks is to exploit vulnerabilities in the web applications themselves, rather than the 

operating system or web server where the web applications run (Microsoft Security 

Development Lifecycle: Risks and Impacts of Computer Crime, 2011). 

Vulnerabilities can be introduced into applications at various phases in a 

traditional software development life cycle due to either flaws in the software 

development or configuration issues at the time of deployment. Furthermore, as web 

applications evolve and new technologies are adopted, new types of vulnerabilities, 

attack vectors and fuzz vectors emerge as the result of either unintended deficiencies in 

the new technologies or defects in applications due to errors that developers have made 

when they start to use the new technologies (Allen, Barnum, Ellison, McGraw, & Mead, 

2008) (Wysopal, Nelson, Zovi, & Dustin, 2007). 

Penetration testing is widely used in industry as a method for security assessment 

to identify vulnerabilities in web applications. It is often performed by security experts as 



 

Chapter 1 Introduction    2 

a post-deployment, isolated test task to measure an application’s security posture. It has 

been proposed by many researchers that penetrating testing should be leveraged for 

security assurance when an application is still under development, and it is well 

recognized that the testing should be performed early in a software development life 

cycle so that any security defects can be fixed with less cost (Arkin, Stender, & McGraw, 

2005) (Potter & McGraw, 2004). This is especially true for those vulnerabilities that are 

introduced by deficient analysis and design (Thomas & Chase, 2005) (Bishop, 2007).  

However, in current practice, penetration testing often suffers from the following 

issues: 

1. It is an isolated test process and is often performed late at the application 

verification phase or in some cases after it is deployed for user acceptance 

testing. Testers cannot systematically leverage the collaboration with 

application developers and cannot utilize development artifacts for testing 

purposes. This makes the penetration testing time-consuming and error-prone. 

2. Penetration testing is considered an art. In-depth web security knowledge, 

solid penetration test skills and extensive experience are essential to a 

competent tester. Most of time, an internal test team does not have the 

required web security expertise. While external security experts can be invited 

to perform a penetration test campaign as a method of security assessment, 

they are usually not available on a continuous basis during the life cycle of the 

applications. It is very expensive to keep them in the application project for 

anything other than short, scheduled assessments. 



 

Chapter 1 Introduction    3 

3. A test campaign is managed as a one-time task. There is no consideration for 

test maintenance and regression testing. In an iterative development process, 

tests need to be re-executed many times and regression testing takes 

significant effort. It is important to take into consideration the maintenance 

and reuse of existing test artifacts for regression testing.  

1.2. Thesis Motivation 

To address the issues stated in section 1.1, a penetration test framework for web 

applications is required that provides guidance to perform systematic and cost-efficient 

test campaigns, supports testers with reasonable security expertise to produce quality test 

results, and supports systematic test campaign management. Such a test framework 

should have the following characteristics: 

1. It provides guidance and support to general penetration testers to perform 

systematic and cost-efficient penetration testing in a security-oriented 

software development life cycle. Penetration testers can collaborate with 

developers and utilize development artifacts to improve the efficiency and 

effectiveness of test campaigns. 

2. Web security expertise brought in by external security experts and test 

artifacts created in a test campaign can be captured and retained in the test 

campaigns. The retained security expertise can be reused by general testers, 

who usually are not security experts, to perform test campaigns and produce 

quality and consistent test results. 



 

Chapter 1 Introduction    4 

3. It supports systematic test campaign management, including test maintenance 

and regression testing by reusing existing test artifacts.  

1.3. Thesis Contributions 

In this thesis, we proposed a model-driven penetration test framework for web 

applications to fill the gap in methodology and tool support for effective and efficient 

web application penetration test campaigns that are integrated into a security-oriented 

software development life cycle. General testers with reasonable security expertise can 

leverage the test framework to efficiently produce quality test results that are 

reproducible, reliable and assessable. The research in this thesis makes the following 

contributions: 

1. Proposed a systematic web application penetration test methodology that is 

fully integrated into a security-oriented software development life cycle. The 

methodology defines three fundamental roles in a test campaign – security 

expert, developer, and penetration tester; identifies the key development 

artifacts utilized and the key test artifacts produced in the test campaign; and 

specifies an iterative test process throughout a security-oriented software 

development life cycle. The proposed methodology facilitates the 

collaboration between testers and developers, and the utilization of security, 

test and development artifacts. 

2. Proposed a model-driven penetration test framework that reduces the 

complexity of test development and increases the reusability of test artifacts in 

support of the above methodology. The framework leverages a grey-box test 



 

Chapter 1 Introduction    5 

architecture for classic AJAX web applications, a simple web security 

knowledgebase to capture and retain security expertise, and a penetration test 

campaign model that captures and maintains the test artifacts throughout the 

development lifecycle of a web application. 

3. Proposed and implemented a prototype Knowledge-based PenTest 

Workbench, in support of the above framework, that includes a set of tools 

and utilities in an integrated test environment to automate some aspects of 

penetration testing, a simple Web Security Knowledgebase, and a Test 

Campaign Database. 

Some aspects of the above contributions have been published in the following 

papers: 

 Pulei Xiong, Liam Peyton, “A Model-Driven Penetration Test Framework for 

Web Applications”, PST2010 Eighth Annual Conference on Privacy, Security 

and Trust, Ottawa, Canada, August, 2010. pp 173-180 

 Pulei Xiong, Bernard Stepien, Liam Peyton, “A Model-based Penetration Test 

Framework for Web Applications Using TTCN-3”, 4th International MCeTech 

Conference on eTechnologies, Ottawa, Canada, May, 2009. LNBIP 26, 

Springer, pp 141-154 

1.4. Thesis Methodology and Limitations 

The methodology used in this thesis was design-oriented research as described in 

(Hevner, March, Park, & Ram, 2004). By applying the design-oriented research 

approach, the research was conducted as a “search process to discover an effective 

solution to a problem” (Hevner, March, Park, & Ram, 2004). The research work was 



 

Chapter 1 Introduction    6 

evaluated using methods such as case study and analysis to demonstrate utility over the 

other approaches. 

The thesis research work followed the five stages of design science research: 

identification of problem relevance, framework design, framework evaluation, 

revaluation and improvement of framework, and communication and discussion of 

research (Bell, Cesare, Iacovelli, Lycett, & Merico, 2007). In particular the process in this 

thesis research includes the following steps: 

1. Investigate the literature and industry best practices for web application 

penetration testing.  

2. Identify and analyze the issues in applying the current web application 

penetration test practices in the context of a security-oriented software 

development life cycle. 

3. Build an initial framework to address the issues. 

4. Conduct a penetration test campaign against WebGoat, a deliberately 

vulnerable, benchmark web application, by applying the initial framework. 

5. Evaluate the initial framework based on test result analysis and 

comparison to current practice, and identify issues to be improved. 

6. Refine the framework to address the identified issues. 

7. Conduct the second penetration test campaign against AEMS, a real web 

application for the hospital adverse event management, which was in the 

middle of its development process. 



 

Chapter 1 Introduction    7 

8. Evaluate the refined framework based on test result analysis and 

comparison to current practice, and identify issues to be improved. 

9. Refine the framework to address the identified issues. 

10. Conduct the third penetration test campaign against PAL-IS, a real web 

application for palliative pain and symptom management, throughout its 

entire development process. 

11. Evaluate the refined framework based on test result analysis and 

comparison to current practice. 

12. Draw conclusions and identify future work. 

The focus of our research has been to demonstrate the possibility of creating a 

framework that enables general penetration testers to perform a systematic penetration 

testing integrated in a security-oriented software development life cycle with well-

structured interactions with developers and systematic leverage of retained web security 

knowledge. The framework also enables systematic test campaign management. 

It has NOT been a focus of our research to create a tool that will enable testers to 

be better than experts on their own. The results of this thesis will be limited by the fact 

that there is still a need for a security expert to set up the knowledgebase for the 

framework and review the results accomplished by testers.  

It is also beyond the scope of this thesis to do large industry-size case studies to 

establish ROI (Return on Investment). Rather we first wish to demonstrate that our 

approach is viable and has potential before investing in large scale validation. We have 

focused on improving the workload distribution between experts and tester/developers, 



 

Chapter 1 Introduction    8 

retain expert knowledge when it is provided, and systematically define a penetration test 

methodology integrated with general secure software development methodology. 

It has also not been a focus of our research to build a complete model-driven 

architecture. We do leverage models in the framework and a formal model-driven 

architecture might be beneficial in future work, but the engineering of the tool support in 

our framework was not taken to that level of detail.  Rather, we wanted to establish the 

viability of our approach first before tackling such an initiative.  

In our future work section, we do discuss what might be involved in taking the 

results of our research in these directions.  

The thesis is organized as follows: 

In chapter 2, the background for the thesis is presented on web application 

architecture and technologies, web application security, software security engineering 

and model-driven testing. Methods of knowledge representation are also discussed in the 

context of web application security and penetration testing. 

In chapter 3, the context for the issues to be addressed in this thesis is established 

by briefly reviewing the current industry best practice, including the Microsoft Security 

Development Lifecycle, and the Common Criteria Evaluation. Web application 

penetration testing is discussed, the advantages and weaknesses are analyzed, and 

potential improvements are identified. Other relevant security assessment approaches that 

have been done in the field are also analyzed. 



 

Chapter 1 Introduction    9 

In chapter 4, the proposed test framework is presented.  First, the problem is 

clearly defined, and a set of evaluation criteria is identified based on identified issues, the 

literature review, and a gap analysis of current practices with respect to web application 

penetration testing. Then, the proposed model-driven penetration test framework is 

discussed in detail, including a penetration test methodology, a grey-box test architecture, 

a web security knowledgebase, a penetration test campaign model, and a knowledge-

based PenTest workbench. 

In chapter 5, the implementation of a framework prototype is described in the 

context of three different test campaign case studies that were undertaken to evaluate the 

proposed test framework. The three test campaigns are described in detail, including the 

steps taken to perform the test campaigns by applying the framework prototype, the 

analysis of the test results, and the refinement of the framework after the second test 

campaigns. 

In chapter 6, the results of the case studies are summarized and the framework is 

evaluated against the pre-defined evaluation criteria and is compared to the relevant 

approaches in current practice. 

In chapter 7, the thesis research is concluded and future work is identified. 

1.5. Security Terms Used in This Thesis 

There is a wide variety of literature on security. Not all terms that we use in this 

thesis are used consistently in the literature. We provide definitions for some specific 

terms here, to make it clear about the use of these terms in this thesis.  



 

Chapter 1 Introduction    10 

A vulnerability is a defect in software or hardware due to poor design, 

inappropriate or insecure coding techniques, or configuration mistakes that a malicious 

individual can exploit (Manzuik, Gold, & Gatford, 2007) (Meier, Mackman, Vasireddy, 

Dunner, Escamilla, & Murukan, 2003).  

Vulnerability assessment is a set of activities that identify security liabilities 

within a system (network, system software, and applications), and verify that no known 

security vulnerability is present on the target system (Manzuik, Gold, & Gatford, 2007) 

(Splaine, 2002).  

Penetration testing, also known as ethical hacking, is a process that goes one step 

further to substantiate the vulnerabilities reported during vulnerability assessment by 

attempting to recreate the trickery and creativity that a real attacker would use (Manzuik, 

Gold, & Gatford, 2007) (Splaine, 2002). 

A threat is a potential event in which a set of circumstances that may lead to 

compromise – damage, loss, or harm to a system or its users (Hollar & Murphy, 2006) 

(Meier, Mackman, Vasireddy, Dunner, Escamilla, & Murukan, 2003).  

An attack is a malicious action to exploit a vulnerability or enact a threat (Meier, 

Mackman, Vasireddy, Dunner, Escamilla, & Murukan, 2003). 

A countermeasure is a set of controls put in place to protect vulnerable 

components from attacks (Hollar & Murphy, 2006). 



 

Chapter 1 Introduction    11 

In addition to the terms above, there are a few terms that are frequently used in 

the context of web application penetration testing, but no precise and formal definitions 

for them were found during the literature research. Alternatively, we provide informal 

descriptions for them so that the content of this thesis can be clearly understood. 

 Entry Point: any place where a potential hacker can interface within the web 

application to launch an attack, e.g. user input via browser or an HTTP request 

in the form of HTTP GET/POST request message. 

 Check Point: any information that can be used to verify if an attack succeeds or 

not, e.g. an HTTP response message or an entry in a log file at the server-side. 

 Attack Vector: a scenario of interaction in which a hacker can launch an attack 

through an entry point against an application. 

 Attack Surface: the set of attack vectors for a web application defines its attack 

surface. 

 Fuzz Vector: specific values that can be used to parameterize or replace part of 

an entry point as a malicious payload in an attack. 

 Application Footprint (Signature): system information of an application that 

might be relevant to an attack vector or fuzz vector. 

 True Negative: if a test indicates that an attack was not blocked, when it should 

have been blocked (i.e. the test accurately reports that the vulnerability is not 

handled). 

 False Negative: if a test of an attack at an entry point indicates that an attack 

was not blocked, when in fact the attack was not successful. (i.e. the 

vulnerability is being handled properly, but the test does not report this). 

 True Positive: if a test indicates that an attack was blocked and it was (i.e. the 

test accurately reports that the vulnerability is handled). 

 False Positive: if a test of an attack at an entry point incorrectly indicates that 

the attack was blocked, when in fact it was not (i.e. the test result is incorrect, 

there is a vulnerability that is not being handled).  



 

Chapter 2 Background    12 

Chapter 2. Background 

2.1. Web Application Architecture and Technologies 

N-Tier database-driven web applications have become the predominant 

architecture for both Internet and enterprise applications. Much of the information 

processed in web applications is private and highly confidential. Security is therefore an 

important consideration in the development of web applications (Stuttard & Pinto, 2008). 

A new generation of Web 2.0 applications is also starting to appear. When new 

technologies, such as AJAX, Flash, and Web Services, are used to build Web 2.0 

applications, they create a new set of security concerns, for example with regard to client-

side security and information sources (Shah, 2008). Vulnerabilities may exist on either 

the server or client side of the web application. Web applications are increasingly 

vulnerable to malicious attacks on the Web over an increasingly profound attack surface, 

due to their open and sophisticated architecture and complex business logic. 

2.1.1 Web Application Open Architecture 

Web applications are built upon a client-server architecture and run on public 

Internet protocols and technologies. The protocols and technologies used can introduce 

vulnerabilities due to flaws in the technologies or mistakes that developers make when 

they apply the technologies during web application development. 

N-Tier Web Application Architecture 

The classic web application accessed from a client browser consists of three main 

components: a Web Server, a Web Application that runs on the Web server, and a 



 

Chapter 2 Background    13 

backend Data Store (Palmer, 2007). The architecture of a typical web application consists 

of tiers,  which usually include a presentation tier, a business tier, and a database tier, that 

logically separate Presentation, Business Logic, and Data processing aspects of the 

application. This web application architecture is often referred to as an “N-Tier 

architecture” (Andreu, 2006). In addition, the J2EE architecture also includes a client tier, 

which could be a simple HTML page displayed in browser or a full application running at 

the client-side (Singh, Stearns, Johnson, & Team, 2002). 

The N-Tiered architecture that separates functionalities over different tiers is 

significant from a security perspective. Each tier has its own specific vulnerabilities and 

interfaces that must be protected. Attackers have full control over the client so usually 

they launch attacks from there and leverage the interactions between the tiers in 

sophisticated ways to deliver attacks across the architecture from an entry point in one 

tier to the actual target in another tier. 

AJAX Application 

AJAX is an important innovation for Web 2.0 applications (Hoffman & Sullivan, 

2008). AJAX is a collection of technologies that allows the client-side code of a web 

application to make asynchronous, non-blocking requests for fragments of the web page. 

The fragments can be raw data, for example, JavaScript Object Notation (JSON) or 

Simple Object Access Protocol (SOAP) that is then transformed into HTML at the client, 

or HTML fragments that are ready to be inserted directly into the HTML document. In 

either case, after the server fulfills the request and returns the fragment to the client, the 



 

Chapter 2 Background    14 

client-side code modifies the web page Document Object Model (DOM) to incorporate 

the new data.  

From an architecture perspective, AJAX applications are evenly-balanced – they 

do not fit into either traditional thin-client architecture or thick-client architecture. AJAX 

applications have the inherent security vulnerabilities of both architectures. Furthermore, 

the AJAX architecture has actually created new potential vulnerabilities by impacting 

application security in three major ways (Hoffman & Sullivan, 2008): AJAX applications 

usually have more complex architecture; the internal logic of AJAX applications are 

exposed to the client-side; and the existence of a server API increases the attack surface. 

Web Browser 

With new web technologies such as AJAX pushing more responsibility onto the 

client-side, browser security becomes more important in web application security design 

and testing (Wells, 2007). Although, in general, a lot of vulnerabilities are still discovered 

on the server, it is now also common to find vulnerabilities at the client-side. Many of 

these vulnerabilities are related to DOM-based Cross-Site Scripting (Grossman, Hansen, 

Petkov, Rager, & Fogie, 2007). 

A modern web browser is a complex system. Conceptually, advanced components 

in a browser include user interface, request generation, response processing, content 

interpretation, cache, state maintenance, authorization etc. (Shklar & Rosen, 2009). The 

most important thing for security vulnerabilities is that, due to the complexity of the 

modern browser, it is very difficult to know what behavior a browser will exhibit for a 

given user input. 



 

Chapter 2 Background    15 

2.1.2 Fundamental Web Technologies 

Web applications are built upon a pyramid of technologies including protocols, 

standards, server-side program and script languages, and client-side browser script 

languages (Shklar & Rosen, 2009). Among them, three mechanisms are fundamental to 

the World Wide Web (Raggett, Hors, & Jacobs, 1999): 

 A uniform naming scheme for locating resources on the Web, e.g. URL. 

 Protocols for access to named resources over the Web, e.g. HTTP. 

 Hypertext for easy navigation among resources, e.g. HTML. 

Uniform Resource Locator (URL) 

Uniform Resource Identifier (URI) is a compact sequence of characters that 

identifies an abstract or physical resource on the Internet (Berners-Lee, Fielding, & 

Masinter, 2005). The generic URI syntax consists of a hierarchical sequence of 

components referred to as the scheme, authority, path, query, and fragment. The URI 

specification (IETF RFC 3986) does not define a generative grammar for URIs. That task 

is performed by the individual specifications of each URI scheme such as HTTP(s) and 

FTP. 

A URI can be further classified as a locator (URL), a name (URN), or both. A 

Uniform Resource Locator (URL) is a subset of the URI that, in addition to identifying a 

resource, provides a means of locating the resource by describing its primary access 

mechanism (e.g. its network "location"). An HTTP URL uses the "http" scheme to locate 

network resources via the HTTP protocol. It takes the form as shown in Figure 1 



 

Chapter 2 Background    16 

(Berners-Lee, Masinter, & McCahill, 1994) (Berners-Lee, Fielding, & Masinter, 2005) 

(Fielding, et al., 1999). 

Figure 1 HTTP URL 

HyperText Transfer Protocol (HTTP) 

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for 

distributed, collaborative, hypermedia information systems (Fielding, et al., 1999). It is 

the core communications protocol used to access the Web and is used by all of today's 

web applications. 

HTTP is a client-server, request/response protocol. A client makes an HTTP 

request to a server using user agents such as a web browser, spider, or other client-side 

tool.  Then, the server retrieves or creates resources such as HTML files and images and 

responds to the request. In between the user agent and the server there may be several 

intermediaries such as a proxy (forwarding agent), a gateway (receiving agent), or a 

tunnel (relay point). All HTTP transactions follow the same general format (Fielding, et 

al., 1999): each request message and response message has three parts – the request or 

response line, a header section, and the entity body; typically, an HTTP client initiates a 

transaction over a connection with a server; and  the server responds with a status line 

followed by a header and optional body content. 

   http://<host>:<port>/<path>?<searchpart>#<fragment> 
 
   host = the fully qualified domain name of a network host, or its IP address; 
case-insensitive 
 port = the port number to connect to; optional, the default is 80 
 path = the location on the server of the file or program specified; case-
sensitive 
 searchpart (query string) = name/value pairs data to be passed to web 
applications 

fragment (anchor) = a location on the page 



 

Chapter 2 Background    17 

HTTP defines eight methods (also known as “verbs”) that specify the desired 

action to be performed on the identified resource (Fielding, et al., 1999). The most 

commonly used methods are GET and POST. The GET method retrieves information (in 

the form of an entity) identified by the Request-URI from the origin server. The POST 

method is used to request that the origin server accepts the entity enclosed in the request 

as a new subordinate of the resource identified by the Request-URI. 

HTTP defines five categories of status codes used in the response, that is, 

Informational (1xx), Successful (2xx), Redirection (3xx), Client Error (4xx), and Server 

Error (5xx) (Fielding, et al., 1999). 

Hypertext Transfer Protocol Secure (HTTPS) is a combination of the HTTP and a 

cryptographic protocol such as SSL/TLS to protect sensitive HTTP transactions on the 

Internet (Rescorla, 2000). HTTPS ensures reasonable protection from eavesdroppers and 

man-in-the-middle attacks, provided that adequate cipher suites are used and that the 

server certificate is verified and trusted. HTTPS requests and responses function in 

exactly the same way as the counterparts in HTTP. 

HTTP natively provides two forms of authentication scheme: Basic 

Authentication Scheme and Digest Access Authentication Scheme (Franks, et al., 1999). 

Basic authentication places credentials in unencrypted form in the header section of an 

HTTP Get request, so usually basic authentication is used with HTTPS to protect itself 

from eavesdropping. The authentication is processed by the web server.  



 

Chapter 2 Background    18 

Most of the time, web applications use their own authentication module. The most 

common form of web application authentication is form-based HTML by which user 

credentials (e.g. user name and password) are placed in an HTTP POST message that is 

sent to the web application for authentication. Same as the HTTP basic authentication, 

the form-based HTML authentication has to be used with HTTPS to be protected from 

eavesdropping. Authentication is a common functionality that is frequently attacked by 

hackers to either bypass authentication or steal user’s credentials. 

HTTP is a stateless protocol. There are several ways to manage HTTP state such 

as URL Rewriting and Hidden Field. IETF RFC 2965 specifies a way of using cookies to 

create a stateful session with HTTP requests and responses (Kristol & Montulli, 2000).  It 

defines three new headers, Cookie, Cookie2, and Set-Cookie2, which carry state 

information between participating origin servers and user agents. 

A cookie is a small amount of data stored either in a text file on client’s file 

system or in memory in a client browser session (Andreu, 2006), in order to keep 

persistent state information on the client. Cookie is resent to server with each request. 

Just like authentication, cookies must be protected from eavesdropping.  HTTPS can be 

used to protect cookies during transmission. Cookie data need to be encrypted to protect 

it from tampering in memory or on the client’s file system (Hoffman & Sullivan, 2008). 

Hyper Text Markup Language (HTML) 

HTML is the predominant markup language for web pages (Raggett, Hors, & 

Jacobs, 1999). HTML was defined as an application of the Standard Generalized Markup 

Language (SGML) – a meta‐markup language for defining markup languages (Shklar & 



 

Chapter 2 Background    19 

Rosen, 2009). The latest version of HTML specification is 4.01, which was released in 

December 1999. An HTML 4 document must contain a reference to an HTML version, a 

header section containing document‐wide declarations, and the body of the document. 

The version declaration names the DTD (Document Type Definition) that should be used 

to validate the document.  

XHTML (eXtensible HyperText Markup Language) is a reformulation of HTML 

4 in XML 1.0 (XHTML 1.0 Home Page, 2002), which provides better extensibility and 

interoperability. HTML 5, the latest version of HTML, is under development (HTML 5 

Home Page, 2011), which defines a single language for both HTML syntax and XML 

syntax, and introduces markup and APIs for web applications. 

There are two HTML elements used to generate HTTP requests in web 

applications: <FORM> and link (hyperlink) (Raggett, Hors, & Jacobs, 1999). An HTML 

form is a section of a document that is usually used to submit content to a server for 

processing. A link is a connection from one web resource to another. A link that points to 

a document is evaluated only upon request, while a link that requests to load images is 

executed automatically when the page is rendered. 

Cascading Style Sheets (CSS) is a mechanism for controlling the style such as 

fonts, colors, and spacing for HTML rendering (Cascading Style Sheets home page).  

DOM 

DOM (Document Object Model) is a World Wide Web Consortium (W3C) 

specification that defines the object model for representing XML and HTML structures 

http://en.wikipedia.org/wiki/Document_Object_Model


 

Chapter 2 Background    20 

(Grossman, Hansen, Petkov, Rager, & Fogie, 2007). HTML pages are represented and 

processed internally within a Browser using an HTML DOM. When a page is loaded, the 

browser parses the page into a DOM object. Client-side scripts such as JavaScript can 

modify the DOM object in response to user input and internal browser events in a manner 

that changes the browser display and affects application behavior. 

Same Origin Policy 

The Same Origin Policy is a crucial element of the browser security model 

(Hoffman & Sullivan, 2008), which states that scripts in one domain should not be able to 

access resources or run code in a different domain. The term "Origin" is defined by the 

triplet of Domain Name, Application Layer Protocol, and TCP Port specified in the URL 

used to access an HTML document (Hoffman & Sullivan, 2008). Two resources are 

considered the same origin if and only if all these values are exactly the same. JavaScript 

implements an important extension to the same origin policy for DOM access in that two 

sites that share a common top-level domain may opt to communicate despite failing the 

"same host" check (Hoffman & Sullivan, 2008). 

Character Encoding System 

Character encoding, also known as character set, is a method (algorithm) for 

presenting characters in digital form by mapping sequences of code numbers of 

characters into sequences of octets (Korpela, 2006). American Standard Code for 

Information Interchange (ASCII) and Unicode Transformation Format (UTF) are two of 

the most popular character encoding systems. 



 

Chapter 2 Background    21 

ASCII has a very small character repertoire so it can only represent English and 

other western languages (Korpela, 2006). It includes definitions for 128 characters: 94 

printable characters including English letters “A” to “Z” and “a” to “z” and digits “0” to 

“9”, and 33 non-printing control characters. ASCII is a 7-bit character code that each 

code number can be represented as an integer in binary notation using 7 bits. 

Unicode has a much bigger character space. It can represent all the characters of 

other languages, in addition to the ASCII codes. Unicode encoding model has four levels 

(Korpela, 2006): an Abstract Character Repertoire that defines the full set of abstract 

characters; a Coded Character Set that assigns a code number to the character according 

to a character code; a Character Encoding Form, including UTF-8, UTF-16 and UTF-32, 

that specifies how the code number is mapped to a sequence of code units; and a 

Character Encoding Scheme maps code units to strings of octets. 

Most modern web browsers can detect character encoding automatically. Hackers 

often use a variety of character encoding schema, especially together with URL encoding 

mechanism (discussed below), to construct malicious data for attacks that can bypass web 

application security mechanisms (such as white list, black list, and sanitization that are 

discussed in more detail in section 2.2.1) and still can be recognized and accepted by 

browsers as either input data or output content in web page. 

Percent-Encoding in URL and HTTP 

There are a set of “reserved’ characters defined in URI that are used to delimit 

URI components and subcomponents. When reserved characters need to be used for 

some other purpose in a URI scheme, the characters must be encoded. URI uses a 



 

Chapter 2 Background    22 

percent-encoding mechanism (also known as URL encoding) to encode the reserved 

characters (Berners-Lee, Fielding, & Masinter, 2005). A percent-encoded octet is 

encoded as a character triplet, consisting of the percent character “%” followed by the 

two hexadecimal digits representing that octet’s numeric value. 

Percent-encoding a reserved character involves converting the character to its 

corresponding byte value in ASCII and then representing that value as a pair of 

hexadecimal digits. For a non-ASCII character, it is typically converted to its byte 

sequence in UTF-8. Characters from the unreserved set, or reserved characters that have 

no reserved purpose in a particular context, may also be percent-encoded but are 

equivalent to those that are not. 

Percent-encoding is also used to encode data of the "application/x-www-form-

urlencoded" media type, which is the default content type for HTML form data that is 

sent to the server in an HTTP request message (Raggett, Hors, & Jacobs, 1999). 

2.1.3 Web Application Functionality 

With the support of a large number of web technologies, web applications can 

implement rich functionalities to support complex business logic. The content presented 

by a web application to users is generated dynamically on the fly, and is often tailored to 

each specific user. Most N-Tier web applications provide a set of common functionalities 

to make the business logic available to end users. These include Login and Logout, 

Session Tracking, User Permissions Enforcement, Role Level Enforcement, Data Access 

such as HTML form-based data collection and Search, and Application Logic (Palmer, 

2007). The implementation of these functionalities can cut across all the different 



 

Chapter 2 Background    23 

components of a web application architecture including browser, web server, services, 

and database. They may also be geographically and organizationally distributed in that 

each component may be located on servers that are geographically separate, and different 

organizations can be responsible for the processing logic.  

Any flaws in any aspect of the implementation of a functionality may cause a 

security vulnerability. Hackers often try to exploit these vulnerabilities against a web 

application by analyzing the application’s functionalities to identify potential 

vulnerabilities and then launch attacks to attempt to exploit them. 

2.2. Web Application Security 

Web application security is a broad topic that encompasses many software 

development disciplines, technologies, and design concepts (Grossman, Hansen, Petkov, 

Rager, & Fogie, 2007). In this thesis, we focus on addressing security issues in the testing 

of customized web applications throughout a security-oriented development lifecycle. 

2.2.1 Core Defense Mechanisms 

Before the current popularity and proliferation of web applications, efforts to 

secure organizations against external attacks were mainly focused on the network 

perimeter. Security measures like firewalls, SSL, intrusion detection systems, network 

scanners, and passwords were used. However, these technologies are not effective to 

protect the system against insecure web applications since they are not applied up to the 

application layer (Grossman, Hansen, Petkov, Rager, & Fogie, 2007). In fact, web 



 

Chapter 2 Background    24 

applications have become the most popular attack route for system compromise 

(Hoffman & Sullivan, 2008). 

Each web application is different and may contain unique vulnerabilities. 

Developers and testers have to take responsibility for securing the web applications 

against vulnerabilities like Cross-Site Scripting (XSS) and Structured Query Language 

(SQL) Injection that malicious users (hackers) may exploit. During application 

development, developers need to consider the following questions (Palmer, 2007): if a 

web application can be compromised due to vulnerabilities within the application; if users 

of a web application can be compromised due to vulnerabilities within the application; 

and if the web server or other web services that communicate to a web application be 

compromised due to vulnerabilities within the application. 

The core security problem in web applications is due to the nature of the web 

application client: the browser (Stuttard & Pinto, 2008). Because the browser is outside 

of a web application’s control, users have full control over the application code at the 

client-side and can submit completely arbitrary input to the server-side application. The 

most common Web application security weakness is the failure to properly validate 

inputs from the client-side (OWASP Testing Guide, 2008). This weakness leads to major 

vulnerabilities in web applications such as Cross-Site Scripting, SQL Injection, 

interpreter injection, file system attacks, and buffer overflows. Complex applications 

often have a large number of entry points, which makes it difficult for developers to 

validate every possible input. 



 

Chapter 2 Background    25 

A number of security mechanisms have been employed to address the 

fundamental security problem with web applications that all user input is untrusted. 

These include (Stuttard & Pinto, 2008): restricting user access to an application's data and 

functionality by applying security measures such as authentication, session management, 

and access control; validating user input to an application's functions by applying security 

mechanisms such as white-list , black-list , and sanitization; defending targeted attacks to 

ensure that an application behaves appropriately by means of appropriate error handling, 

audit logs, security alters, etc.; and managing an application itself by enabling 

administrators to monitor its activities and configure its functionality. 

The effectiveness of these security mechanisms is dependent on the run-time 

environment. For example, web applications usually employ different types of input 

filtering mechanisms to validate users’ input. It is important for the input filtering control 

to be aware of the character encoding (discussed in detail in “Character Encoding 

System” of section 2.1.2) that is used. If the filter can only detect UTF-8 encoded 

injections, a different encoding scheme may be employed to bypass the filter. 

Classical web application vulnerabilities are still the primary sources of 

vulnerabilities for AJAX applications. However, the architecture of AJAX introduces 

new attack possibilities, and it makes many existing web application vulnerabilities more 

easily exploited due to the increased granularity and transparency of AJAX applications 

(Hoffman & Sullivan, 2008).  

The attack surface of an AJAX application is essentially composed of the 

complete attack surface of a classical web application and the complete attack surface of 



 

Chapter 2 Background    26 

web services (extra server-side functionalities) invoked asynchronously by the client 

(Hoffman & Sullivan, 2008), including: Form Inputs, Hidden Form Inputs, Cookies, 

Headers, Query Parameters, and Uploaded Files (the attack surface of a classical web 

application); and Individual parameters of the methods in the client-side scripts, which 

asynchronously call server-side AJAX functionalities (the attack surface of web 

services). 

2.2.2 Basic Attack Categories and Common Vulnerabilities 

Attacks against web applications typically fall into three high-level categories 

(Hoffman & Sullivan, 2008): resource enumeration, parameter manipulation, and a third 

category that includes all the attacks that cannot be classified into the two categories 

above. The third category can be further classified as weakness in session management 

such as Cross-Site Request Forgeries (CSRF), user credential attack such as phishing 

scams, Denial of Service (DoS) attacks, etc. 

Resource enumeration is used to find content that may be present on the server 

but is not publicly advertised. There are two types of resource enumeration: one is called 

blind resource enumeration that makes educated guesses for commonly named files or 

directories based on pre-defined lists that contain these common files and directories. 

Web application vulnerability scanners such as Nikto (Nikto Home Page, 2011) maintain 

and use such lists. A more advanced form of resource enumeration is called knowledge-

based resource enumeration. This form of resource enumeration makes more educated 

guesses based on known web pages or directories on the site, e.g. searching for backup 

files. 



 

Chapter 2 Background    27 

Parameter manipulation is used to manipulate data sent between a browser and a 

web application to inject malicious code into the server logic or client logic, where the 

code is then executed or stored, or the code is sent as part of the response back to a 

victim’s browser where the code gets executed. The canonical examples of this type of 

attack include Cross-Site Scripting and SQL Injection. 

Cross-Site Scripting (XSS) 

Cross-Site Scripting (XSS) is the most prevalent vulnerability on the Web 

(OWASP TOP 10, 2007). XSS vulnerabilities exist in web applications that fail to 

validate, filter, escape, and encode user-controllable input before it is placed in output 

that is used in a web page (Grossman, Hansen, Petkov, Rager, & Fogie, 2007). XSS 

violates the intention of the web browser's “same-origin policy”.  

Cross-Site Scripting is a unique parameter manipulation attack that gets executed 

in the browser, while in all of the other parameter manipulation attacks the injected code 

gets executed on the web server (Hoffman & Sullivan, 2008). In XSS, the user is the 

intended victim, not the server. XSS allows attackers to execute script in the victim's 

browser to hijack user sessions, deface web sites, insert hostile content, conduct phishing 

attacks, or take over the user’s browser, etc. The malicious script is usually HTML tags 

and JavaScript, but any scripting language supported by the victim’s browser, such as 

VBScript, Flash and ActiveX, is a potential target for this attack.  

There are three main types of XSS: Reflected, Stored, and DOM Injection 

(Grossman, Hansen, Petkov, Rager, & Fogie, 2007) (OWASP Cross-site Scripting, 2011) 

(OWASP DOM Based XSS, 2011). Reflected XSS attacks, also known as non-persistent 



 

Chapter 2 Background    28 

XSS attacks, are those where the injected code is reflected off the web server, such as in 

an error message, search result, or any other response that includes some or all of the 

input sent to the server as part of the request. Reflected attacks are delivered to victims 

via another route, such as in an e-mail message, or on some other web server. Stored XSS 

attacks, also known as persistent XSS attacks, are those where the injected code is 

permanently stored on the target servers, e.g. in a database. Stored XSS attacks most 

often occur in either community content-driven web sites or web mail sites. DOM-based 

XSS are those where the attack payload is executed as a result of modifying the DOM in 

the victim’s browser by the original client-side script. AJAX applications push much of 

the business logic to the client. Therefore, the chances of finding DOM-based XSS in 

AJAX applications are quite high. DOM-based XSS vulnerabilities can be persistent or 

non-persistent. DOM-based XSS is unique form of XSS in that the malware payload does 

not get sent to web server, therefore the general XSS filtering and detection mechanisms 

are impotent against such attacks.  

XSS vulnerabilities occur when different encodings are used. Various input filters 

employed in web applications can be evaded or bypassed by encoding the input into 

something that is understandable by the browser and completely valid for the filter. In 

addition, browsers differ in how they render HTML and JavaScript. It is very common 

that one vector will work in one browser, yet not work in another. 

To detect XSS vulnerabilities, a tester will analyze each input vector and use 

specially crafted input data with each input vector. Such input data is typically harmless, 

but triggers responses from the browser that manifest the vulnerability. A complete test 



 

Chapter 2 Background    29 

will include instantiating a variable with several attack vectors by applying various fuzz 

vectors. Automated testing such as web spiders and vulnerability scanners can detect only 

the simplest XSS vulnerabilities. Persistent and DOM-based XSS vulnerabilities are 

almost always missed (Grossman, Hansen, Petkov, Rager, & Fogie, 2007)(OWASP 

Testing Guide, 2008).  

SQL Injection  

SQL Injection is a type of injection attack where SQL commands are inserted via 

the input data from users to a web application in order to affect the execution of 

predefined SQL commands (OWASP Testing Guide, 2008). SQL Injection allows the 

execution of SQL code under the privileges of the user used to connect to the database. A 

successful SQL Injection exploit can read sensitive data from the database, modify 

database data, execute administration operations on the database, recover the content of a 

given file existing on the DBMS file system and, in some cases, issue commands to the 

operating system. 

The use of dynamic SQL opens the door to SQL Injection attacks (OWASP 

Testing Guide, 2008). If user input is not filtered for escape characters, malicious code 

can be passed into a SQL statement. The techniques used to attack a specific database 

vary by the brand of the DBMS and the version of the DBMS since different databases 

use some different functions, syntax, and comment styles. 

There are three classes of SQL Injection attack techniques to retrieve data related 

to a web application (OWASP Testing Guide, 2008): the most straightforward type of 

attack called Inband is to retrieve data that is presented directly in application web pages; 



 

Chapter 2 Background    30 

a way called Out-of-band is to retrieve data using a different channel, e.g. an email; and a 

way called Inferential is to reconstruct information based on the data collected by sending 

particular requests to a web application or DB server and observing the resulting 

behavior.  

SQL Injection attacks that manipulate the existing query criteria and/or 

parameters are classified as “Standard SQL Injection”. Attacks that involve the use of the 

UNION operator to join a purposely forged query to the original query are called “Union 

Query SQL Injection” (OWASP Testing Guide, 2008). Another type of attacks is known 

as “Blind SQL Injection” in that it needs to analyze the logic of the original queries in 

order to construct an attack.  

To detect a SQL Injection vulnerability in a web application, the first step is to 

understand when an application connects to database. Some application functionalities 

from section 2.1.3 that are likely to invoke a database connection include Login and 

Logout, and Data Access such as HTML form-based data collection and Search.  Places 

where a user enters free text into a field that will be used in a SQL query are vulnerable; 

for example a username field during Login or a search term in Search. A simple test for 

SQL Injection consists of adding a single quote (') or a semicolon (;) to the field under 

test and observing the response from the web application (OWASP Testing Guide, 2008). 

2.3. Software Security Engineering 

Weaknesses in software, such as defects and bad configurations, may cause the 

software to be vulnerable to malicious attacks. It is generally considered good software 

engineering practice to adopt a security-oriented software development process to 



 

Chapter 2 Background    31 

eliminate potential vulnerabilities as early as possible in the software development life 

cycle  (McGraw, 2006) (Howard & Lipner, 2006). As a result, the number of exploitable 

weaknesses in the software can be reduced before it is released. 

2.3.1 Software Security Development Life Cycle 

Software security is fundamentally a software engineering issue that must be 

addressed in a systematic way throughout the software development life cycle (McGraw, 

2006), which sometimes is an iterative process e.g. Rational Unified Process (Arlow & 

Neustadt, 2005).  

Defects and other weaknesses in software that are caused by the increased 

complexity of software systems (including unintended interactions between software 

components especially those provided by third parties), flawed specifications, flawed 

designs, or defective implementations, can affect software security (Allen, Barnum, 

Ellison, McGraw, & Mead, 2008) (Wysopal, Nelson, Zovi, & Dustin, 2007). Adopting a 

software development life cycle that includes secure development practices can reduce 

the number of exploitable defects and weaknesses in the software. Through the adoption 

of a security-oriented software development life cycle, potential vulnerabilities can get 

addressed more quickly and at a lower cost (OWASP Testing Guide, 2008). This is far 

more cost-effective than attempting to diagnose and correct such security defects after the 

system is deployed into production.  



 

Chapter 2 Background    32 

2.3.2 Software Quality Assurance 

Software Quality Assurance (SQA) is a systematic, planned set of actions to 

provide adequate confidence that a software system product conforms to established 

functional and technical requirements, including security requirements, within managerial 

scheduling and budgetary requirements (Galin, 2004). Cooperation and collaboration 

between a software development team and other teams such as a QA team is an important 

consideration in the development of SQA methodologies and their implementation. 

Software testing is the primary software quality assurance process applied to 

control the software product’s quality before its release in that it consumes the most 

software quality assurance resources (Galin, 2004). Tests must be repeatable and 

reusable. Testing should be integrated into the software life cycle and should be 

performed efficiently and effectively (Burnstein, 2003). Basically, there are three types of 

test approaches for test design that aim to achieve different coverage criteria, including 

black-box, white-box and grey-box. 

2.3.3 Software Security Testing 

Security testing plays a critical role in a security-oriented software development 

life cycle (Allen, Barnum, Ellison, McGraw, & Mead, 2008). It ensures that the software 

being tested is robust and continues to function even in the presence of malicious attacks. 

Security testing is different from traditional functional testing as there is no system 

specifications for security testing that can be used directly as test requirements. A few 

security test methods, including code reviews, risk analysis, automated tools and 

penetration testing, are widely used in security testing (McGraw, 2006). 



 

Chapter 2 Background    33 

Penetration testing is often conducted as a black-box test method that is 

performed to detect vulnerabilities in information systems (Howard & Lipner, 2006). In 

industry, penetration testing is typically performed by security experts as a one-time 

security audit just before or just after it is released from development. However, a few 

researchers have proposed the idea of integrating penetration testing into the software 

development life cycle. In (Arkin, Stender, & McGraw, 2005) and (Potter & McGraw, 

2004), the authors advocate integrating application penetration testing into a complete 

security-oriented software development life cycle. In (Thompson, 2005), the author 

presents a comprehensive penetration testing process, including test analysis (with threat 

modeling), test design, test execution and report. In (Bishop, 2007), the author discusses 

the analysis of threats and potential attackers as a means of providing valuable input to 

perform effective and efficient penetration testing. Neither researcher discussed their 

penetration testing approach in a level of detail such that it is ready-to-use in industry, 

e.g. they did not define the methodology used in the integrated penetration test campaign 

or the design of tools supporting the methodology.   

2.4. Model-Driven Software Testing 

In model-driven software testing, models are used to express application 

requirements that can be used to generate test cases. Model-driven test approaches can be 

used to reduce the complexity in test design and increase test reusability. 

2.4.1 Software Testing Fundamentals 

“Testing is the process of executing a program with the intent of finding errors” 

(Myers, 2004). Testing is an expensive task in software development. Risk analysis can 



 

Chapter 2 Background    34 

be used to choose a cost-efficient test approach to identify the greatest number of critical 

defects with the least cost (Allen, Barnum, Ellison, McGraw, & Mead, 2008). 

There are three basic test approaches: black-box, white-box, and grey-box 

(Binder, 1999) (Patton, 2000). Black-box testing is a test method in which a tester tests an 

application based on the specified or expected responsibilities of a unit, subsystem, or 

system without knowing the details of how the application works. In white-box testing, a 

tester has access to the application’s source code and develops test cases based on the 

analysis of the source code. Grey-box is a test approach that is a combination of black-

box and white-box. An application is still tested as a black-box but supplemented with 

the application’s internal information. It is particularly suited to the testing of modern 

web applications (Patton, 2000), which are often comprised of many components across 

an N-Tier architecture. In grey-box testing of web applications, each component of a web 

application is treated as a black-box but the interactions and communications between 

components are known and tests can be based on an analysis of those communications. 

Testing usually means dynamic testing – running and using an application 

(Patton, 2000). An application can be tested without running the application. This is 

called static testing (Patton, 2000). Code review is a static white-box testing technique.  

An oracle is a generation and comparison mechanism in software testing which 

produces the expected results for an input and checks the actual results against the 

expected results (Binder, 1999). In penetration testing, this means how to identify 

expected results in a web application for every test attack, and how to verify actual results 

against the expected results.  



 

Chapter 2 Background    35 

Regression testing is a specific test process where selective retesting of an 

application is performed to verify that no new defects were introduced by any 

modifications in the application (Binder, 1999) (Patton, 2000). In a security-oriented 

software development life cycle, penetration testing may need to be re-executed during 

regression testing if there are any modifications in a web application, or if there are new 

emerging threats that have to be addressed (OWASP Testing Guide, 2008). 

2.4.2 Model-Based Testing 

Model-Based Testing is a software testing method that automatically generates 

test cases and provides an oracle to determine test results from the models that describe 

application expected behaviors (Jacky, Veanes, Campbell, & Schulte, 2008). Test models 

can be extracted from application specifications, design artifacts, or program source code 

(Pezz & Young, 2008). Test case specifications that are generated from the test model are 

used to reveal discrepancies between actual program behavior and the model. Model-

Based Testing achieves systematic and automated software testing (Binder, 1999).  

2.4.3 Model Driven Engineering 

Model Driven Engineering (MDE) is a systematic approach that can be leveraged 

to reduce the complexity of application development by utilizing explicit models of the 

application domain (Schmidt, 2006). MDE technologies usually involve domain-specific 

modeling languages, which model the key concepts in the domain and the relationships 

between them, combined with transformation engines or generators that can generate 

some artifact(s) related to the development of the system such as source code, tests, 

deployment descriptions etc. 



 

Chapter 2 Background    36 

Model Driven Architecture (MDA) is an important research initiative in Model 

Driven Engineering (Model Driven Architecture Home Page, 2011). In MDA, modeling 

languages are used as a sort of programming language (Frankel, 2003) that raises the 

level of abstraction and reuse in software development. A system is first modeled as a 

Platform-Independent-Model (PIM) using a domain specific language. The PIM is then 

transformed, usually with the support of automation tools, to one or more Platform-

Specific-Models (PSMs), and then transformed into code which is executed in computers 

(Mellor, Scott, Uhl, & Weise, 2004) (Kleppe, Warmer, & Bast, 2003) (Stahl & Voelter, 

2006). 

2.4.4 Model-Driven Testing 

While Model-Driven Architecture is primarily used for software development, it 

can be applied to software testing as well to improve efficiency and effectiveness. For 

example, in (Baker, Dai, Grabowski, Haugen, Schieferdecker, & Williams, 2008), the 

authors discussed how to apply Model-Driven approaches to functional testing and 

performance testing at the unit, integration and system levels, as well as for SOA (Service 

Oriented Architecture) applications testing.  

Model-Driven Testing includes test artifacts modeling and automated test cases 

generation using the typical MDA transformation mechanism (Baker, Dai, Grabowski, 

Haugen, Schieferdecker, & Williams, 2008) (Dai, 2004) (Javed, Strooper, & Watson, 

2007). Model-Driven testing is often combined with data-driven approaches (Baker, Dai, 

Grabowski, Haugen, Schieferdecker, & Williams, 2008). To the best of our knowledge 

there is no application of a Model-Driven approach in the field of security testing. 



 

Chapter 2 Background    37 

2.5. Web Security Knowledgebase 

Vulnerabilities found in web applications in the past can be learned and 

catalogued for reuse to ensure that the same errors are avoided (Wells, 2007). Web 

application security knowledge exists in a variety of publications as well as on the Web. 

However, the format and terminology are not often used in a consistent way. The 

information is continuously being extended and updated as new vulnerabilities appear.  

Developers and testers have to keep their web application security knowledge updated so 

that they are capable of recognizing and uncovering new vulnerabilities in web 

applications. Ideally, web application security knowledge should be represented in a 

well-structured format so that it can be maintained and leveraged efficiently and 

effectively by security experts, developers and testers. 

2.5.1 Web Application Security Knowledge Sources 

Web application security knowledge, including architecture security, design 

security, coding security, and security testing, can be found in textbooks, papers, articles 

etc. The most up to date knowledge is usually available on the Web. Specifically, for 

penetration testing, there are many publicly available knowledgebases on the Web 

including OWASP Top 10 Most Critical Web Application Security Vulnerabilities 

(OWASP TOP 10, 2007), WASC Threat Classification version 2.0 (WASC, 2010), 

SANS Top 20 Cyber Security Risk (SANS TOP 20, 2011), SNAS Top 25 Most 

Dangerous Software Errors (SANS TOP 25, 2009), MITRE Common Weakness 

Enumeration (MITRE CWE Home Page, 2011), MITRE Common Attack Pattern 

Enumeration and Classification (MITRE CAPEC, 2011). There are also security testing 

guides such as OWASP Testing Guide (OWASP Testing Guide, 2008), and a large 



 

Chapter 2 Background    38 

volume of articles and blogs that are posted on the Web by security experts, e.g. XSS 

(Cross Site Scripting) cheat sheet (Hansen, 2011), SQL Injection cheat sheet (Daw, SQL 

Injection Cheat Sheet, 2009), and Input Validation cheat sheet (Daw, Input Validation 

Cheat Sheet, 2009). 

These knowledgebases and documents classify known, generic web application 

vulnerabilities, attack vectors and fuzz vectors. They are fundamental references used by 

web application developers and penetration testers for self-education and for secure web 

application development and testing. These knowledgebases exist as text-based, 

unstructured documents. 

2.5.2 Security Knowledge Representation 

Web security knowledge is profound and complicated. In general, there are a 

number of different types of human knowledge, including procedural knowledge, 

declarative knowledge, structural knowledge, and ontological knowledge (Gaševic, 

Djuric, & Devedzic, 2006). Ontological knowledge provides a number of useful features 

for knowledge representation to support knowledge sharing and reuse. It identifies classes 

of objects, their relations, and concept hierarchies. Most web security knowledge is 

expressed in natural language. However, the Open Vulnerability and Assessment 

Language (OVAL) (OVAL, 2011) and Application Vulnerability Description Language 

(AVDL) (Bialkowski & Heineiman, 2004) are two examples of XML-based languages to 

represent security knowledge. In this thesis, we build an object model to represent a 

simple web security knowledgebase, and implement it in a relational database. 

  



 

Chapter 3 Related Research and Industrial Practice    39 

Chapter 3. Related Research and Industrial Practice 

3.1. Microsoft Security Development Lifecycle 

The Microsoft Security Development Lifecycle (the MS SDL) is a software 

security assurance process that defines a comprehensive security-oriented software 

development life cycle from a developer’s perspective. The MS SDL was developed 

based on the traditional Microsoft product development process by adding steps to the 

development process to address all elements of SD3+C – the Microsoft secure 

development principles: Secure by Design, Secure by Default, Secure in Deployment, 

and Communications. The MS SDL consists of the phases of training, requirements, 

design, implementation, verification, release, and response (see Figure 2 excerpted from 

Microsoft Security Development Lifecycle Version 5.0). It also defines a set of 

mandatory security activities with tool support (many are based on Microsoft .Net 

platform) to leverage a variety of security test methods, such as threat modeling, static 

code analysis, and dynamic fuzz testing (About the SDL Process, 2011) (Howard & 

Lipner, 2006).  

 

Figure 2 Secure software development process model at Microsoft 

In the MS SDL, penetration testing is an optional task at the verification phase 

that is performed independently (isolated from the MS SDL) by security experts external 



 

Chapter 3 Related Research and Industrial Practice    40 

to the development team (Simplified Implementation of the Microsoft SDL, 2010) 

(Microsoft Security Development Lifecycle Version 5.0, 2010). Any issues identified by 

penetration testing must be addressed and resolved before an application can be released. 

Threat modeling can be used to prioritize tests (attacks) against an application (Microsoft 

Security Development Lifecycle Version 5.0, 2010). The MS SDL though does not 

define “how” the penetration testing should be performed and does not suggest any tools 

to be leveraged. It relies on the external security expert resource to apply the best industry 

practice. It is not supposed to retain the external expert’s knowledge and test artifacts to 

be reused by internal test team later on when re-running tests is required. 

3.2. The Common Criteria Evaluation 

The Common Criteria (CC) is an international standard ISO/IEC 15408 (ISO 

Freely Available Standards, 2011) that defines a set of commonly agreed criteria for 

security evaluation and certification of IT products or systems. The CC originated out of 

three standards: the European standard ITSEC, the Canadian standard CTCPEC, and the 

United States standard TCSEC (The Common Criteria Introduction). The US TCSEC, 

also known as the Orange Book, was used to evaluate and classify computer systems for 

processing sensitive or classified information (The US DoD Trusted Computer System 

Evaluation Criteria, 1985). The Orange Book was cancelled in 2002 (Department of 

Defense Directive Number 8500.01E, 2002). 

The CC is currently in version 3.1. The CC standard includes three parts: Part I 

Introduction and general model (The Common Criteria Part I: Introduction and general 

model, 2009), Part II Security functional requirements (The Common Criteria Part II: 



 

Chapter 3 Related Research and Industrial Practice    41 

Security functional requirements, 2009), and Part III Security assurance requirements 

(The Common Criteria Part III: Security assurance requirements, 2009). In the 

framework of CC evaluation, vendors implement and make claims about the security 

features and attributes of their products specified based on the standard functional 

requirements defined in the CC part II; security evaluation laboratories evaluate the 

products based on the CC part III assurance requirements to gain confidence at a certain 

Evaluation Assurance Level (EAL), from the entry level 1 to the top level 7, that the 

claimed security measures are effective and have been implemented correctly; customers 

can select desired products based on the claimed security functions and the evaluation 

assurance level (The Common Criteria Part I: Introduction and general model, 2009).  

A common methodology (CEM) (The Common Methodology for Information 

Technology Security Evaluation, 2009) was developed, as an effort of international 

collaboration, for guiding the IT security evaluation based on the CC standards. The 

CEM defines an evaluation methodology for only up to EAL4, the highest level that is 

recognized by all the members of the Common Criteria Recognition Arrangement (The 

Common Criteria Portal Home Page, 2011). Accredited security laboratories 

independently conduct CC evaluation by following the CEM. The evaluation (up to 

EAL4) is an isolated process from the product development. The evaluation activities 

include document review, very limited code review, site visit, and independent functional 

testing and vulnerability assessment (penetration testing). The CEM does not touch upon 

any tool support or security knowledgebase for the penetration testing (as well as all other 

evaluation activities), and it does not have considerations for test re-execution, e.g. for 

the assurance continuity. 



 

Chapter 3 Related Research and Industrial Practice    42 

The CEM is supposed to be used by certified CC evaluators, rather than general 

testers. CC evaluation is supervised under a schema that is developed by each member of 

the Common Criteria Recognition Arrangement. In Canada, it is Common Criteria 

Schema (CCS) developed and maintained by Communications Security Establishment 

Canada (Common Criteria Schema Overview). The CCS ensures CC evaluation is 

performed to a high degree of quality. Specifically, it relies on the expertise and integrity 

of certified evaluators to achieve such a high quality: a certified evaluator should possess 

a suitable combination of IT security education and relevant experience and receive a 

passing grade on a CCS evaluator exam, and has been granted security clearance 

(Common Criteria Scheme Guide #3 Evaluation Facility Approval, 2010). 

3.3. Web Application Penetration Testing 

Penetration testing is widely used in industry to test web application security. It 

can be used to identify “known” vulnerabilities in off the shelf applications that exist in a 

network, or it can be used to discover “unknown” vulnerabilities in custom-built web 

applications. Our thesis is primarily concerned with the latter, but it is still relevant to 

understand both types. 

When the purpose of penetration testing is to identify any “known” vulnerability 

in off the shelf applications running in a network, it falls into the category of network 

security assessment. Open source network scanners such as Nmap (Nmap Home Page, 

2011) and vulnerability scanners such as Nessus (Nessus Home Page, 2011) can be used 

together to reconnaissance a network, enumerate the live services (including web 

applications) on the network, and identify any known vulnerabilities logged in open 



 

Chapter 3 Related Research and Industrial Practice    43 

source vulnerability databases such as OSVDB (The OSVDB Hoem Page, 2011), US-

CERT (US-Cert Vulnerability Notes Database Home Page, 2011), NVD (NVD Home 

Page, 2011), Bugtraq mailing list (Bugtraq Home Page, 2011), and MITRE CVE 

(MITRE CVE Home Page, 2011). A number of methodologies have been created which 

guide a tester through the process of doing such testing, of which a typical methodology 

is the ISECOM Open Source Security Testing Methodology Manual (ISECOM 

OSSTMM Home Page, 2011). 

Penetration testing to discover vulnerabilities that have never been identified in a 

custom-built web application is often performed by security experts as a method of 

security assessment for the application. There are also tools available that experts will use 

when performing penetration testing, although increasingly they are being automated and 

promoted as stand-alone tools which can be used without the help of an expert – a set of 

such tools is discussed in detail in section 3.3.3.  

In the next a few subsections, we give an overview of several penetration 

methodologies being used in industry, and summarize these industry best practices as 

Expert Security Assessment (ESA) in section 3.3.2 that is used as a representative 

composite of the current industrial best practices.  

3.3.1 Best Practices in Industry 

In this section, we present several best practices in industry based on our literature 

research, including three well-sold textbooks on penetration testing and an open source 

security testing guide from OWASP. 



 

Chapter 3 Related Research and Industrial Practice    44 

Web Application Vulnerabilities Detect, Exploit, Prevent 

In this book (Palmer, 2007), the authors present a penetration test (hacking) 

methodology that includes:  

 intelligently scanning the application server for relevant information of 

deployment and configuration 

 walking through the application to identify all of the interactive pages and 

related functionalities, parameters, GET/POST methods etc. that the pages take 

 fuzzing the identified parameters – manipulate it to be used for attacks 

 running tests to validate vulnerabilities 

 reporting every vulnerability and security related issue that was found 

The authors also describe in detail some categories of common web application 

vulnerabilities and sample attack vectors, including server-side vulnerabilities such as 

XSS and client-side scripting vulnerabilities such as those related to JavaScript and CGI. 

The Web Application Hacker's Handbook: Discovering and Exploiting 

Security Flaws  

 This book (Stuttard & Pinto, 2008) explicitly defined a web application 

penetration test methodology: 

 during the Recon and Analysis phase, a tester explores and analyze a web 

application to identify its functionalities, entry points, and technologies being 

used such as client side scripting, backend HTTP server and database etc. 

(footprint), and then identify potential vulnerabilities based on the 

functionalities to further construct attack surface 

 during the Test Execution phase, for each identified potential vulnerabilities, 

launch attacks based on the categorized attack vectors 



 

Chapter 3 Related Research and Industrial Practice    45 

The attack vectors are categorized aligned with Application Logic including 

client-side controls and logic flaws, Access Handling including authentication, session 

management and access control, Input Handling, Application Hosting such as shared 

hosting issue and web server security issue, and Miscellaneous security issues. 

Professional Pen Testing for Web Applications 

The author defined an informal penetration test methodology in this book 

(Andreu, 2006). It includes the following steps:  

 discover and analyse system information (OS footprint, web server footprint 

etc.) to understand the test target  

 discover application footprint (technology/platform), enumerate entry points, 

and discover areas of weakness 

 launch attacks on target to probe for areas of weakness 

 analyse attack results to verify discovered vulnerabilities  

 document test results and present them with recommendations to the project 

stakeholders 

OWASP Testing Guide 

 OWASP Testing Guide version 3.0 (OWASP Testing Guide, 2008) was 

developed by a group of security experts to provide a best practice of web application 

penetration testing with low-level guidance. It was released as an open source document. 

The testing is divided into major two phases (OWASP Testing Guide, 2008): 

Passive Mode and Active Mode. The passive mode is for a tester to understand an 

application’s logic and play with the application for information gathering such as testing 



 

Chapter 3 Related Research and Industrial Practice    46 

for application’s footprint and identifying entry points. The active mode is to run tests 

based on well-categorized attack vectors by applying appropriate fuzz vectors.  

At the end of the tests, the tester will estimate the risks to the business of any 

identified vulnerabilities based on factors such as likelihood and impact, and then create a 

well-informed test report. 

3.3.2 Expert Security Assessment 

The test methodologies defined/described in the literatures (Stuttard & Pinto, 

2008) (Palmer, 2007) (Andreu, 2006) (OWASP Testing Guide, 2008) may look slightly 

different from each other, e.g. vary on the name of the test phases and test activities, or 

the activities divided in each phase, but they essentially talk about the same things. That 

is, at a high level, a security expert typically will perform Information Gathering to 

understand the characteristics (footprint) of an application and its running environment, 

Application Analysis to enumerate entry points and identify their functionalities, Test 

Construction and Execution to create concrete test cases by applying feasible attack 

vectors and fuzz vectors, and Test Reporting to document discovered vulnerabilities. In 

practice, the exact set of steps will vary between experts and between the specific 

applications they are testing. Below we describe in detail a prototypical penetration 

methodology that a security expert will go through. 

At a first step, the expert attempts to gather information about the application and 

its running environment including: 

 Examining client-side content, such as HTML and script. 



 

Chapter 3 Related Research and Industrial Practice    47 

 Installing a web application proxy, e.g. WebScarab (OWASP WebScarab, 

2011), and then configuring the browser to access the server via the proxy. 

 Analyzing communications between the client and server, e.g. how a user is 

authenticated and how cookies are used to manage application state. 

 Sending malformed requests to the server and attempting to receive verbose 

error messages, either from prompting error message windows or from the 

server’s responses, which reveal the application footprint and information about 

components in the application architecture. 

Second step, the expert walks through the application to enumerate all entry 

points and map them to web application functionalities (as described in section 2.1.3):  

 Using a web application proxy to monitor the HTTP traffic between the 

browser and the application, the expert documents all the HTTP requests sent to 

the server and the responses received. 

 Mapping each HTTP request to a web application functionality. 

Third Step, the expert launches penetration tests against the web application: 

 Based on the functionality tagged to each HTTP request, the expert identifies 

any potential vulnerabilities of which the expert has knowledge. 

 For each potential vulnerability, the expert lists all attack vectors that they are 

aware of. 

 For each attack vector, the expert uses all fuzz vectors that they are aware of to 

create specific tests. 

 The expert has a few ways to run the tests:  

o launch the tests through the browser directly 

o use browser extensions, e.g. FireBug, to intercept and manipulate 

DOM events or client-side scripts, and then send them out 

o use a web application proxy to intercept and manipulate outgoing 

HTTP requests, and then send them out 



 

Chapter 3 Related Research and Industrial Practice    48 

o develop and use a customized client application  

 The expert then observes the responses at the client-side by either looking at the 

HTML content rendered in the browser, or inspecting DOM in memory, or 

checking the raw HTTP responses captured in the web application proxy. Based 

on what is observed, the expert determines if the attacks succeeded or not to 

confirm the existence of the vulnerabilities. 

 The expert may use various tools to assist his tests during the testing, e.g. using 

an XSS cheat sheet or a SQL Injection cheat sheet to pick up attack vectors and 

fuzz vectors, and using an Encoder, e.g. the built-in encoder called Transcoder 

in WebScarab, to help manipulate parameters in HTTP requests. 

Finally, the expert collects and analyzes the vulnerabilities that have been found, 

and creates a report. 

These activities are challenging to general testers who usually do not have 

adequate security expertise to perform these steps on their own. The coverage of the test 

cases and the quality of the tests are determined by, or constrained by, the testers’ 

knowledge, skills and experience in web application security (Arkin, Stender, & 

McGraw, 2005). In addition, real hackers have more resources than general penetration 

testers (Bishop, About Penetration Testing, 2007). Taken as a whole, hackers all over the 

world have more comprehensive and in-depth knowledge, more solid skills and more 

extensive experience in web application security than the average team of general 

purposes testers. Hackers usually are not restricted to any tight schedule, and they only 

need to detect and then exploit a single vulnerability in a web application in order to 

compromise the application, while the test team in an application development project is 

expected to uncover all vulnerabilities in the application within an aggressive project 

schedule.  



 

Chapter 3 Related Research and Industrial Practice    49 

3.3.3 Tool Support 

There are lots of tools or utilities, either open source or commercial, that 

penetration testers can leverage to help their test efforts. Many books on penetration 

testing, for example “Professional Pen Testing for Web Applications” (Andreu, 2006), 

recommend a toolkit that has a variety of different types of utilities for different aspects 

of penetration testing, e.g. web spiders (crawlers) that traverse a web application 

automatically to collect possible HTTP requests to the web application, HTTP proxies 

that act as an interacting service between browser and web server to capture and intercept 

HTTP requests and responses, fuzzers that generate invalid, unexpected, or random data 

to be used for input parameter manipulation.  

There are also utilities designed for addressing specific vulnerabilities. For 

example, several Firefox extensions including DOM Inspector, Web Developer, FireBug, 

LiveHTTPHeaders, ModifyHeaders, and TamperData, can be used for XSS detection and 

exploitation (Grossman, Hansen, Petkov, Rager, & Fogie, 2007); SqlDumper is 

recommended to generate high volume of queries for blind SQL Injection attacks 

(OWASP Testing Guide, 2008). There are several client-side web application 

exploitation frameworks that integrate different techniques to detect, exploit, and provide 

insight into the problems in web applications, e.g. AttackAPI, BeEF, CAL9000, and 

XSS-Proxy (Grossman, Hansen, Petkov, Rager, & Fogie, 2007). 

These tools and utilities are from different vendors, they are not designed based 

on a common, integrated platform. When they are used for different aspects of 



 

Chapter 3 Related Research and Industrial Practice    50 

penetration testing, testers have to manually interpret and convert the output of one tool 

to the input of another tool that is used at a following step. 

3.4. Other Security Assurance Approaches 

In addition to penetration testing, there are a variety of other approaches for web 

application security testing, including (OWASP Testing Guide, 2008)  

 manual, static inspection approaches such as Code Reviews that systematically 

examines source code of a web application to improve the overall quality of the 

application and the developers’ skills; 

 automated, static approaches such as using a Code Analyzer that scans source 

code of a web application to discover weakness e.g. unsafe API in the code; 

 and automated, dynamic approaches such as using a Vulnerability Scanner 

that scans a running web application for potential vulnerabilities. 

Manual inspection approaches, such as code reviews, can be effective if they are 

done systematically and thoroughly by security experts (OWASP Testing Guide, 2008). 

In some cases, code reviews can be more efficient if they are used with penetration 

testing (OWASP TOP 10, 2007). However, in the cases where source code is not 

accessible, code reviews are not feasible. And in the cases where the code base is large, 

code reviews can be time-consuming and error-prone.  

Automated tools, including code analyzers and vulnerability scanners, are very 

efficient for some specific vulnerabilities, e.g. a vulnerability scanner is efficient to detect 

“resource enumeration” attacks (Hoffman & Sullivan, 2008). Usually, vulnerability 

scanners have their own propriety vulnerability knowledgebase (Palmer, 2007). Security 

experts may leverage vulnerability scanners during their security assessment.  



 

Chapter 3 Related Research and Industrial Practice    51 

While the automated tools can be quite efficient on certain security issues, the 

customized nature of most web applications significantly reduces the effectiveness of the 

tools. These tools can’t detect all types of vulnerabilities, especially those deeply 

intertwined in business logic and custom application design, e.g. cross-site scripting 

(OWASP Testing Guide, 2008) (Grossman, Hansen, Petkov, Rager, & Fogie, 2007). And 

these tools are not necessarily faster than manual methods because it takes much time to 

set up the tools before running and it takes a significant amount of time after running to 

analyze a large number of reported issues that turn out to be non-issues (OWASP Testing 

Guide, 2008) (Scambray, Shema, & Sima, 2006). So far, no automation tool can replace 

the skills of an experienced security expert, and the most effective tools should be chosen 

carefully for their performance on specific types of vulnerabilities (Sutton, Greene, & 

Amini, 2007). 

 

  



 

Chapter 4 Model-Driven Penetration Test Framework    52 

Chapter 4. Model-Driven Penetration Test Framework 

4.1. Problem Definition 

Security is a critical aspect that needs to be considered at the very beginning when 

a web application is developed. Currently, such penetration testing effort is typically 

undertaken by external security experts as an isolated testing campaign performed at a 

late phase of a software development life cycle. For example, in the MS SDL, penetration 

testing is an optional task that is performed by external security experts as late at the 

verification phase that is just before the release phase (as presented in detail in section 

3.1). Many researchers have proposed to leverage penetration testing as a test method for 

web application security assurance when the application is still under development. 

However, there is no well-defined test methodology which guides penetration testers on 

how to perform a systematic penetration test campaign within the context of a security-

oriented software development lifecycle. 

Security experts typically run a penetration test campaign against a deployed web 

application by following the steps of information gathering, entry point enumeration, test 

execution, and test result analysis and reporting (as presented in detail in section 3.1). 

The security experts have in-depth knowledge, solid skills and extensive experience in 

web application security. To uncover as many vulnerabilities in the application as they 

can, the security experts work diligently and creatively with out-of-the-box thinking and 

apply their vast security expertise appropriately to develop test cases, execute tests, and 

interpret test results. Specifically, when the security experts develop test cases, as shown 

in Figure 3, for each Entry Point they need to determine: 



 

Chapter 4 Model-Driven Penetration Test Framework    53 

 All potential Vulnerability based on the Application Footprint and possible 

Attack Vectors. (See section 1.5 for definitions of italicized words) 

 For each attack vector, which Fuzz Vectors can be applied based on the 

Application Footprint to instantiate Test Cases. 

 Finally when each Test Case is executed, which Check Points can be used to 

determine Test Results (whether a Vulnerability is confirmed or not). 

 

Figure 3 Penetration Test Development – Current Practice 

Based on this approach, the quality of a test campaign relies on the expertise and 

diligence of the security experts. Considering an application development project may 

take months or even longer, external security experts may not always be available, and 

even if they are available, it is very expensive to keep them in the project all the time. 

However, on the other hand, general testers in an internal test team usually do not have 

the required security expertise to successfully accomplish such a penetration test 

campaign.  



 

Chapter 4 Model-Driven Penetration Test Framework    54 

In addition, in such a penetration test campaign, the testing performed by security 

experts is often a one-time, post-deployment task. There is no need to re-run the tests 

against the same application many times. But in a software development life cycle, a web 

application is developed in an iterative process. Test cases need to be updated from time 

to time in various situations, such as when new features are added in, implementation is 

changed due to bug fixes, or new vulnerabilities, attack vectors, and fuzz vectors are 

discovered. The test cases therefore need to be updated and re-run frequently to verify 

that bugs have been fixed appropriately and there is no regression in the application that 

have introduced new bugs. Test maintenance and regression testing both need significant 

effort and support. 

In this thesis, we propose a model-driven penetration test framework for web 

applications that focuses on addressing the issues discussed above: 

 Defines a test methodology that guides and supports general penetration testers 

to perform systematic and cost-efficient penetration testing in a security-

oriented software development life cycle.  

 Captures and retains web security knowledge and test artifacts so that they can 

be reused by general testers to produce quality and consistent test results. 

 Supports systematic test campaign management, including test maintenance and 

regression testing by reusing existing test artifacts. 



 

Chapter 4 Model-Driven Penetration Test Framework    55 

 

Figure 4 Model-Driven Penetration Testing  

As shown in Figure 4, our proposed framework, with its supporting methodology 

and workbench will make possible a model-driven approach to penetration testing. 

Security artifacts, development artifacts, and test artifacts are represented in a declarative 

model that can be processed and supported by a variety of utilities and tools for managing 

a penetration test campaign. In particular, “Test Case Generator” utility can be used to 

generate test cases from explicitly modeled artifacts. A general tester works on the 

modeled artifacts and provides necessary application specific information to the Test 

Case Generator, e.g. tags an Entry Point with its associated functionality and marks the 

fields that will be manipulated to create attacks, and then uses the utility to process 

relevant security artifacts and development artifacts to generate concrete Test Cases 



 

Chapter 4 Model-Driven Penetration Test Framework    56 

automatically in a systematic consistent manner. All feasible Attack Vectors and 

appropriate Fuzz Vectors to construct each Test Case are automatically selected and 

applied. 

Furthermore, since all the relevant artifacts in a test campaign are captured and 

retained using the model, they can be reused when test maintenance and regression 

testing are required. 

4.2. Evaluation Criteria 

The proposed test framework is intended to address the issues described in section 

4.1. A careful literature review was conducted to identify the key criteria related to those 

issues. Then based on both the literature review, our analysis of the issues facing 

development teams in our case studies in Chapter 5, and discussions with both software 

engineering and security experts, a gap analysis was conducted to understand where the 

current approaches to penetration testing are problematic and deficient. Accordingly, the 

following set of evaluation criteria were identified that a framework for web application 

penetration testing should meet if they wish to address the issues outlined in section 4.1. 

The criteria are used in Chapter 6 to evaluate how well the proposed test framework 

improves on current practice for those particular issues.  There may be other criteria that 

organizations and researchers will want to use, e.g. Resultant Quality which would 

measure whether or not the software created has better security using our framework and, 

Return on Investment (ROI) which evaluates the efficiency by quantitatively 

calculating the costs (e.g. learning curve, testing effort etc.) of the proposed framework 

versus that of current practices, in evaluating a test framework for penetration testing. 



 

Chapter 4 Model-Driven Penetration Test Framework    57 

However, as the limitations mentioned in section 1.4, these criteria are outside the scope 

of our thesis. In this thesis we do not aim to do better than the quality of Expert Security 

Assessment (ESA), nor do we develop a rich enough toolset so that ROI can be evaluated 

in a major case study out in industry. Instead, we want to first focus on evaluating the 

framework in Chapter 6 against the criteria defined as below, and then we can justify any 

additional effort that will be required to address other constraints such as Resultant 

Quality and ROI. 

Integrated Penetration Test Methodology 

The test framework should provide a test methodology that guides internal testers 

on how to perform test campaigns throughout a security-oriented software development 

life cycle in collaboration with other members of the development team. 

 Integrated Penetration Test Process: support a penetration test process that is 

completely integrated into a security-oriented software development life cycle 

 Collaboration with Developers: facilitate collaboration between developers and 

testers throughout the security-oriented software development life cycle 

 Development Artifacts Utilization: facilitate the use of development artifacts 

for testing purposes and provide feedback to developers on those artifacts 

 Grey-Box Test Architecture: support penetration testing at any interface within 

a web application architecture using knowledge of the communications that 

take place between components 

 Use with Other Security Test Methods: support the use of penetration testing in 

combination with other security test methods 



 

Chapter 4 Model-Driven Penetration Test Framework    58 

Feasible for General Testers 

General testers should be capable of leveraging the test framework to perform test 

campaigns in a cost-efficient approach and produce quality test results. They are not 

required to be a security expert and cannot be expected to have the knowledge and 

experience, on their own, to know all the types of vulnerabilities, attack vectors, and fuzz 

vectors that may be required for testing. 

 Web Security Knowledgebase: provide a web security knowledgebase that 

retains and represents security expertise in a well-structured model that can be 

processed by computer programs and understood by general testers 

 Test Campaign Modeling: test artifacts in a test campaign are identified and 

modeled so that they can be processed by computer programs, understood by 

general testers, and can be reused 

 Workbench Tool Support: provide a PenTest workbench for general testers 

based on the web security knowledgebase and the test campaign model to 

support penetration testing at each phase 

 Consistent Test Coverage: produce consistent test coverage with respect to 

entry points and types of vulnerabilities 

Systematic Test Campaign Management 

The test framework should provide guidance and tool support for systematic test 

campaign management, specifically, for test maintenance and regression testing. 

 Reports and Documentation: provide a systematic approach to reporting 

progress in a test campaign based on well-defined reports and documentation 

 Test Maintenance: support a systematic approach to test maintenance on a 

continuous base with respect to when and how to perform test maintenance  

 Regression Testing: support a systematic approach to regression testing on a 

continuous base with respect to when to perform regression testing 



 

Chapter 4 Model-Driven Penetration Test Framework    59 

4.3. Test Framework Overview 

To be able to discuss and build up a tangible test framework in a feasible scale for 

our thesis research, we developed the proposed test framework based on three 

fundamental assumptions about software development process, application architecture, 

and web security knowledgebase: 

Assumption 1: The development of web applications under test follows a classic 

iterative lifecycle process that follows a classic waterfall methodology within each 

iteration. This is typical of classic software development methodologies (e.g. RUP, the 

MS SDL) as discussed in section 2.3. In such a software development process, each 

iteration has three major phases: analysis, design, and implementation, and in each phase 

development artifacts such as functional specification, system architecture, API etc. are 

well documented and available to penetration testers. In addition, developers are 

available to assist in test efforts when required. This assumption has a direct impact on 

the test methodology of the framework. 

Assumption 2: Web applications under tested using our framework are built 

based on a classic AJAX architecture. In other words, the web applications primarily 

process HTML-based information and may have rich client-side scripts, but they do not 

process multimedia content and do not interact with any plug-ins/add-ons in the browser 

that have security implications. This assumption has a direct impact on the grey-box test 

architecture, including the types and attributes of entry points and check points.  

Assumption 3: For a penetration test campaign, security experts are available and 

relied on to build up and maintain the web security knowledgebase that is a critical 



 

Chapter 4 Model-Driven Penetration Test Framework    60 

component of the proposed test framework. The security experts ensure the web security 

knowledgebase is comprehensive and updated. 

The proposed test framework consists of five major components, as shown in 

Figure 5, which will be discussed in detail in subsequent sub-sections: 

 A penetration test methodology that provides guidance to testers for 

conducting a penetration test campaign that is integrated into a security-

oriented software development life cycle. The test methodology defines the 

roles played by developers, penetration testers and security experts, and 

specifies the interactions between them in terms of the development artifacts 

utilized and the test artifacts produced in a test campaign. 

 A grey-box test architecture that identifies the types of entry points and check 

points that exist across the complete architecture of a web application, that can 

be used while penetration testing. 

 A web security knowledgebase which represents web security expertise about 

potential vulnerabilities in a web application using a well-structured format that 

can be processed by computer programs. 

 A penetration test campaign model that captures the test artifacts, the 

development artifacts, and the web security artifacts in a test campaign 

throughout an entire security-oriented software development lifecycle including 

application maintenance. The test campaign model is leveraged to drive test 

development. 

 A knowledge-based PenTest workbench that is built upon the penetration test 

campaign model and the grey-box test architecture to support the penetration 

test methodology using the web security knowledgebase. The PenTest 

workbench is designed to leverage various third party tools to facilitate test 

development and execution. 



 

Chapter 4 Model-Driven Penetration Test Framework    61 

 

Figure 5 Test Framework Overview  

 

4.4. Penetration Test Methodology  

The penetration test methodology is designed to fully integrate penetration testing 

into a security-oriented software development life cycle. It provides guidance and support 

to an internal test team that initially does not have web security expertise built into the 

team. 

4.4.1 Overview 

Penetration testing is an ongoing activity throughout the entire security-oriented 

software development life cycle. Corresponding to the analysis, design and 



 

Chapter 4 Model-Driven Penetration Test Framework    62 

implementation phases in a typical software development life cycle, a penetration test 

campaign is an iterative process consisting of test analysis, test design, and test execution, 

as shown in Figure 6. New versions of test documents and other test artifacts are created 

or updated at the end of each phase in each iteration of the software development life 

cycle.  

 

Figure 6 Iterative Software Development & Test Process 

A penetration test campaign starts as early as the analysis phase of a software 

development life cycle. A Web Security Expert is invited to build up a web security 

knowledgebase for the web application, including identifying lists of Functionality, 

Vulnerability, Attack Vector, and Fuzz Vector. By utilizing application analysis artifacts 

and the web security knowledgebase, a Penetration Tester identifies the Application 

Footprint of the web application, and creates a list of Potential Vulnerability that 

potentially exists in the web application. The list of Potential Vulnerability is sent to a 



 

Chapter 4 Model-Driven Penetration Test Framework    63 

Developer so that the security mechanisms for the vulnerabilities can be considered in the 

application design. 

Once the test analysis is done and the application design starts, a Penetration 

Tester starts test design. By utilizing various application design artifacts and the web 

security knowledgebase, a Penetration Tester enumerates a list of Entry Point of the web 

application, generates a list of Attack and identifies Check Point for each Attack, and 

generates a list of Test Case to be executed.  

At the test execution phase, when the web application is implemented and 

deployed to a test environment, the list of Test Case created at the test design phase are 

executed. A Penetration Tester analyzes the Test Result to confirm the identified 

vulnerabilities. 

At the end of each test execution, any identified vulnerability defects are sent to a 

Developer to prioritize and fix. The defect fixes may result in changes in application 

implementation, design, or even analysis artifacts. Once the defects are fixed, test 

artifacts, e.g. Test Case, may need to be updated accordingly, and then a subset of or 

entire Test Case are re-executed to exclude any regression due to defect fixes.  

When all the defects have been fixed and the application passes the final 

regression test, the application is released and the development and test process enters 

into the application maintenance phase. During the application maintenance phase, an 

application may be updated for various reasons, including new application or system 

requirements, new defects, and emerging vulnerabilities, attack vectors, fuzz vectors. As 



 

Chapter 4 Model-Driven Penetration Test Framework    64 

the result, test artifacts are updated accordingly, and a subset of or entire test cases are re-

executed for security assurance. 

Test documents to capture the test artifacts are created or updated at the end of 

each test phase.  

4.4.2 Roles and Objectives 

During a test campaign, a Penetration Tester works closely with an application 

Developer and a Web Security Expert to leverage development artifacts and security 

expertise.  

The Web Security Expert builds up a web security knowledgebase at the 

beginning of the test analysis phase and transfers it to the Penetration Tester. 

Occasionally the Web Security Expert may re-visit the application development team to 

maintain and update the web security knowledgebase. At the end of the test execution 

phase, the Web Security Expert can also review test campaign artifacts and test results 

with the Penetration Tester and the Developer. 

The Developer provides relevant development artifacts and application 

knowledge at each test phase for test analysis and test case design. At the end of the test 

analysis phase, the Developer takes a list of Potential Vulnerability from the Penetration 

Tester and utilizes it in the design of the web application security mechanisms. During 

the test design phase, the Developer assists the Penetration Tester with identifying 

appropriate check point(s) for each attack. At the end of the test execution phase, the 

Developer is responsible for addressing all the identified vulnerabilities. The term 



 

Chapter 4 Model-Driven Penetration Test Framework    65 

Developer represents various members on a development team, such as system analyst, 

designer, and programmer. 

The Penetration Tester is responsible for managing a test campaign, including 

the test development by utilizing development artifacts and web security knowledgebase, 

the test execution, the delivery of test result (report), and the test maintenance of all 

relevant artifacts. The Penetration Tester also ensures that the Web Security Expert and 

the Developer provide all required inputs and addresses all feedback provided. 

4.4.3 Test Analysis 

As shown in Figure 7, there are five basic activities occurring during the test 

analysis phase: 

System Analysis 

The Developer performs system analysis for an application under development 

and produces two development artifacts: a list of Use Case that identifies what main 

interactions the web application must support and the Functional Specification that 

describes in detail the functionalities provided by the web application. 

Build Up Web Security Knowledgebase 

The Web Security Expert is engaged to build up a web security knowledgebase 

for the web application. The web security knowledgebase includes structured descriptions 

of all the types of Vulnerability and related Functionality, Attack Vector, and Fuzz Vector 

that are relevant to the web application. 



 

Chapter 4 Model-Driven Penetration Test Framework    66 

 
Figure 7 Methodology: Test Analysis 

Derive Functionalities 

The Security Expert identifies and categorizes the list of Functionality that the 

web application provides based on the analysis of the list of Use Case provided by the 

Developer. This list is used to identify the list of Potential Vulnerability. Penetration 

Tester will refer to the functionalities specified in the security knowledgebase later on 

when they enumerate entry points. 

Derive Application Footprint 

The Penetration Tester derives the platform and configuration details relevant to 

the web application from the Functional Specification and produces the test artifact 



 

Chapter 4 Model-Driven Penetration Test Framework    67 

Application Footprint. This is used to more precisely identify a platform specific list of 

Potential Vulnerability. 

Identify Potential Vulnerabilities 

The list of Functionality and Application Footprint are used by the Penetration 

Tester to index into the web security knowledgebase to identify the list of potential 

Vulnerability and Attack Vector that exist in the application, and produces the test 

artifact: list of Potential Vulnerability. 

Figure 8 Test Analysis Document Template 

At the end of the test analysis phase, the Penetration Tester produces a test 

analysis document that compiles all the created test artifacts at this phase and lists the 

development artifacts that are utilized. Figure 8 shows a simple template for such a test 

analysis document which includes a list of the utilized development artifacts and the 

description of the test artifacts including Application Footprint, Functionality and 

Document: Phase I Penetration Test Analysis 
Project: 
Author: 
Date: 
 
1. Purpose 
 
2. Development Artifacts 
 
3. Application Footprint 

Platform  

Components  

Database  

Operating System  

Web Server  

Encoding  

 
4. Potential Vulnerabilities with related application Functionalities 
 

Functionality Vulnerability Attack Vector Description 

 



 

Chapter 4 Model-Driven Penetration Test Framework    68 

Potential Vulnerability identified at the test analysis phase. Appendixes A1, B1, C1 

present the test analysis documents for the three case studies described in Chapter 5. 

4.4.4 Test Design 

The test design phase is coordinated with the application design phase. At the 

beginning of the application design phase, as shown in Figure 9, the list of Potential 

Vulnerabilities identified at the test analysis phase is sent to the development team so 

they can design appropriate countermeasures into the web application. 

There are five basic activities occurring during the test design phase that are 

discussed in detail below: 

System Design 

The Developer performs system design and produces three development artifacts: 

list of Web API that defines a set of HTTP request messages along with the descriptions 

of parameters and response messages, System Architecture that specifies the structure of a 

web application in terms of sub-systems and/or components and the interactions between 

the sub-systems and components, and list of User Scenario that describes the interactions 

between end users and the web application. 

Enumerate Entry Points 

A Penetration Tester enumerates all entry points and identifies which 

functionality, from the list of Functionality created at the analysis phase, is provided by 

each entry point.  The test artifact Entry Point is created which defines precisely how the 

entry point is invoked, and what arguments are passed in, in terms of the Web API. 



 

Chapter 4 Model-Driven Penetration Test Framework    69 

 

Figure 9 Methodology: Test Design 

Create Attacks 

Based on the functionality of each entry point (any user input that can be used to 

attack a web application, as defined in section 1.5) and the list of Potential Vulnerability 



 

Chapter 4 Model-Driven Penetration Test Framework    70 

identified at the test analysis phase, a Penetration Tester looks up Fuzz Vector in the web 

security knowledgebase that are relevant to the Application Footprint to create list of 

Attack that will be used to generate list of Test Case.  

Identify Check Points & Update Application Footprint 

For each attack, based on the development artifact System Architecture and the 

interaction with a Developer, a Penetration Tester identifies Check Point(s) with expected 

result(s) that will be used to determine if the attack succeeds or not. A Penetration Tester 

produces the test artifact Check Point at this phase. A Penetration Tester may also update 

the Application Footprint to identity which application footprint components are intended 

to provide built-in protection against vulnerabilities. For example, if the web application 

is using the .Net Framework there are some built-in filters that protect against some basic 

XSS attacks.   

Create Test Cases 

Based on the created list of Attack with the identified Check Point(s) that provide 

functionality corresponding to a Use Case, the Penetration Tester chooses an appropriate 

user scenario from the development artifact User Scenario to create executable test cases, 

and produces the test artifact: list of Test Case. 

At the end of the test design phase, the Penetration Tester produces a test design 

document that compiles all the created and updated test artifacts at this phase and lists the 

development artifacts that are utilized. Figure 10 shows a simple template for such a test 

design document which includes a list of the utilized development artifacts and the 

description of the test artifacts including Application Footprint, Entry Point, Attack and 



 

Chapter 4 Model-Driven Penetration Test Framework    71 

Check Point, and Test Case. Appendixes A2, B2, C2 present the test design documents 

that were created for our three case studies that are described in Chapter 5. 



 

Chapter 4 Model-Driven Penetration Test Framework    72 

Figure 10 Test Design Document Template 

Document: Phase II Penetration Test Design 

Project: 

Author: 

Date: 

 

1. Purpose 

 

2. Development Artifacts 

 

3. Application Footprint 

 
4. Entry Points with Attacks & Check Points 
--------------- List of Entry Points -------------- 
# of entry points:  
# of attacks:  
 
Entry point: <Page name> (ID: <ID>) 
GET <URL>  
Functionality: <One of Navigation, Log On etc.> 
 
Entry point: <Page name> (ID: <ID>) 
POST <URL> 
Form Fields: 
   <list of field names> 
Functionality: <One of Navigation, Log On etc.> 
Vulnerability: <List of possible vulnerabilities> 
Attack: <ID> 
  Attack Description: <Description of the attack> 
  POST <URL> 
  Manipulated Form Field: <Field to be manipulated> 
  Defense Mechanism: <Type of defense mechanism, e.g. Application Specific, 
APS.net etc.> 
  Check Point <ID>: <Location of the check point, e.g. Page Name, Application 
Log file etc.> 
    Expected Result: 
----------------------------------------------------- 
 

 

5. User Scenarios 

--------------- List of User Scenarios -------------- 
# of user scenarios: 
 
User Scenario <ID>: <Description of the user scenario> 
  Step <ID>: Entry Point: <Name of the entry point> (ID: <ID>) 
  Description: <Description of the step> 
----------------------------------------------------- 
 

 

6. Test Cases 

--------------- List of Test Cases -------------- 
# of test cases: 
 
Test Case: <ID> 
Scenario <ID>:  <Name of the scenario> 
  Step <ID>: GET/POST <URL> 
  Step <ID>: Attack <ID> 

----------------------------------------------------- 



 

Chapter 4 Model-Driven Penetration Test Framework    73 

4.4.5 Test Execution 

As shown in Figure 11, there are three basic activities occurring during the test 

execution phase that are discussed in detail below: 

 

Figure 11 Methodology: Test Execution 

Implementation 

The Developer implements the application design and builds an application 

deliverable that is deployed in the test environment. At least one application deliverable 

is built and deployed for each iteration of the software development lifecycle. 

Test Execution (Regression Testing) 

The Penetration Tester executes the list of Test Case created in the test design 

phase and produces the test artifact Test Result for each test case executed. During this 

phase, many, if not all, of the test cases will need to be re-executed a few times to follow 



 

Chapter 4 Model-Driven Penetration Test Framework    74 

up on bug fixes. A complete re-execution of all test cases (regression testing) will be 

done once at the end of the phase to ensure that there were no side effects that broke tests 

which had previously been successful. 

Test Result Analysis 

The Penetration Tester reviews the test results with Developer to analyze failed 

test cases to confirm the existence of uncovered vulnerabilities. There are four possible 

results of test review: True Negative, False Negative, True Positive, False Positive (as 

defined in section 1.5). 

If an uncovered vulnerability does exist (True Negative), a Developer needs to 

evaluate its exploitability and risk, and take appropriate countermeasures, e.g. fix the 

flaws in application, to remedy the vulnerability. The remediation measures may need to 

be verified by a Security Expert (internal or external) to make sure they are adequate and 

appropriate. The fix may result in changes in application implementation, system design, 

or system analysis, as shown in Figure 6. Consequently, a Penetration Tester may need to 

perform test analysis and test design to update existing test artifacts such as Potential 

Vulnerability, Entry Point, Test Case etc., and then execute the updated test cases to 

validate the fix in addition to the impacted test cases for regression; or simply re-execute 

the updated test cases to validate the fix. 

If an uncovered vulnerability does not exist (False Negative), a Penetration Tester 

will work with a Developer to improve the design of the checkpoint so that the test result 

can be verified more precisely. Usually a False Negative means that the application is 

blocking the attack appropriately, but it is not logging or returning a result that would 



 

Chapter 4 Model-Driven Penetration Test Framework    75 

enable a test to confirm for sure that the attack was blocked.  Consequently, the test case 

may need to be updated accordingly, and it will need to be re-executed to ensure the false 

negative has been eliminated. 

Usually, during test review Penetration Tester and Developer do not examine any 

passed test case in order to confirm that it is a “True Positive” (which means a test 

correctly confirmed that an attack was blocked and there is no need for any further 

action). In general, it would be hard in our framework to identify a “False Positive 

(which means a test seemed to confirm that an attack was blocked, when it was 

not).However, in case a “False Positive” is identified by any chance during the test result 

review, a Penetration Tester needs to figure out why the security defect is not uncovered 

in the test campaign (for example, it may be due to a coding error at either the entry point 

or the check point. A test result is logged indicating that the attack was blocked when in 

fact it succeeded. Or it could be that the set of fuzz vectors is not sufficient. All tests 

passed, but there was a different fuzz vector that could exploit the vulnerability that was 

not tried). Then a correction action is taken accordingly, e.g. fix the entry point or check 

point code, or update the web security knowledgebase by replenishing new vulnerability 

information (in this case, a Security Expert may be required to get involved). New test 

case(s) or updated test case(s) is generated afterwards, and then is executed to make sure 

the security defect is uncovered. The test case(s) will then be re-executed when the defect 

is fixed. 

Based on the test result analysis, a Penetration Tester creates the test artifact Test 

Report to summarize the results of test execution. 



 

Chapter 4 Model-Driven Penetration Test Framework    76 

At the end of the test execution phase, a Penetration Tester produces a test 

execution document that compiles all the created test artifacts at this phase. Figure 12 

shows a simple template for such a test execution document which includes the 

application under test and the version information and the description of the test artifacts 

including Test Result, and Test Report. Appendixes A3, B3, C3 present the test execution 

documents that were created for our three case studies that are described in Chapter 5. 

Figure 12 Test Execution Document Template 

Document: Phase III Penetration Test Execution 

Project: 

Author: 

Date: 

 

1. Purpose 

 

2. Test Result Summary 

2.1 Application under Test:  

 

2.2 Test Report 

------------- Test Campaign Summary -------------- 
# of test cases executed:  
# of failed tests:  
# of identified vulnerabilities:  
# of entry points tested:  
# of vulnerable entry points:  
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities:  
# of attack vectors:  
# of fuzz vectors:  
-------------------------------------------------- 
 
----------------Test Result Details--------------- 
Test Case <ID>: <Test Case description> 
Result: <Pass/Failed> 
-------------------------------------------------- 
 
------- Identified Vulnerability Details --------- 
Vulnerability: <Description> 
probably exists on: 
  Entry Point: <ID> 
-------------------------------------------------- 

 



 

Chapter 4 Model-Driven Penetration Test Framework    77 

4.4.6 Application Maintenance  

During the application maintenance phase, an application may change for a 

variety of reasons, such as adding new features, fixing reported defects, and upgrading 

third-party system components. In addition, any updates to the web security 

knowledgebase may require test artifacts be updated. These changes may require re-

running the test campaign, as shown in Figure 6: 

 ∆ Requirements: when new features are added in an application this can result 

in new entry points (and associated functionalities), as well as new use cases 

and user scenarios etc. While a Developer needs to go through the whole 

development process, a Penetration Tester will need to go through the process 

of Test Analysis/Test Design/Test Execution as well. Consequently, new 

Potential Vulnerability may be identified, new Entry Point enumerated, and 

new Test Case created. New test cases, in addition to the whole or a subset of 

existing test cases, are executed and the list of Test Result is analyzed and 

reported. 

 New Defects: when new defects are fixed during the application maintenance 

phase, a Developer goes through the same process as in the test execution 

phase. Depending on the impact of the defect fix, a Developer will need to 

perform application analysis, or design or implementation. Consequently, a 

Penetration Tester will need to perform test analysis and test design to create 

new test artifacts of such as Potential Vulnerability, Entry Point, Test Case etc., 

and then execute the updated test cases plus the impacted test cases for 

regression to validate the fix; or simply re-execute the impacted test cases to 

validate the fix. 

 ∆ System Components: when the third-party components used in an 

application change, e.g. a new third-party component is used or an existing 

third-party component is upgraded, the application footprint may change. As a 

result, a Penetration Tester will need to perform test analysis and test design to 



 

Chapter 4 Model-Driven Penetration Test Framework    78 

identify new potential vulnerabilities, or new feasible fuzz vectors which will 

be used create new test cases. In addition, a Penetration Tester may need to 

update the existing check points due to changes in the third-party component. 

All these require updates in the test artifacts such as Potential Vulnerability, 

Attack, Check Point, Test Case etc. The updated test cases, in addition to a 

subset of existing test cases, need be re-executed for regression.  

 ∆ Vulnerabilities/Attach Vectors: when the web security knowledgebase is 

updated with new vulnerabilities or attack vectors, a Penetration Tester needs to 

perform test analysis to identify new potential vulnerabilities and/or attack 

vectors. Consequently, a Penetration Tester may update the test artifacts of 

Potential Vulnerability, Attack, and Test Cases. The new test cases are executed 

for regression. 

 ∆ Fuzz Vectors: when the web security knowledgebase is updated with new 

fuzz vectors, a Penetration Tester needs to perform test design to create 

additional attacks. Consequently, the Penetration Tester may update the test 

artifacts of Attack, and Test Cases. The new test cases are executed for 

regression. 

4.5. Grey-Box Test Architecture  

In a security-oriented software development life cycle, testers can take a grey-box 

approach to penetration testing by taking advantage of their access to development 

artifacts, application components, and developers’ expertise. The grey-box test approach 

provides greater flexibility of identifying and defining entry points and check points.  In 

the following sub-sections, we describe in detail how a grey-box test architecture 

integrates well with web application architecture, and give a complete description of 

entry points and check points. 



 

Chapter 4 Model-Driven Penetration Test Framework    79 

4.5.1 Web Application Architecture 

Figure 13 shows the architecture of a typical AJAX web application.  

 

Figure 13 AJAX Web Application Architecture 

At the client-side, a user interacts with a web application via a Browser, which 

supports User Input and a Web Page Display. There are two types of HTTP traffic 

between the Browser and the Web Application. The solid line shows the Browser directly 

sending an HTTP request to the Web Application and then receives an HTTP response 

from the Web Application that is used to refresh the Web Page Display. The dashed line 

shows that User Input to the Browser triggers a DOM event that in turn triggers an AJAX 

script to send a JSON/SOAP message to the Web Application and then receive a 

JSON/SOAP message back from the Web Application. Using the received JSON/SOAP 

message, another AJAX script updates the DOM that is then loaded into the Browser to 

update the Web Page Display. 



 

Chapter 4 Model-Driven Penetration Test Framework    80 

At the server-side, the Web Application saves and retrieves persistent data in the 

Database. The Web Application interacts with the Services to delegate certain 

functionalities, which can run locally on the same server or run remotely on a different 

server. Both the Web Application and the Database produce logs, the Application Log 

and the Database log, that can be used as check points to verify if an attack succeeds or 

not. 

Developing such a grey box test architecture with visibility into the entire 

application architecture is advantageous to penetration testing as it gives a rich set of 

entry points and check points that can be used for constructing test attacks and verify the 

test results. These are described in the following sections. 

4.5.2 Entry Point 

An Entry Point is any place where a potential hacker can interface with the web to 

launch an attack against a web application. Like a hacker, a penetration tester can launch 

attacks against a web application at the client-side from various points. An attack can be 

launched simply by User Input via Browser, or by DOM Event via DOM inspector, or by 

directly manipulating HTTP requests via a HTTP proxy. The HTTP requests can be a 

standard HTTP request (“HTTP Request” in Figure 13) sent out by Browser, or specific 

HTTP request such JSON or SOAP message (“HTTP Request: JSON/SOAP” in Figure 

13) sent out by an AJAX Application. 

In Figure 13, the points with right arrow are the potential entry points, including 

User Input on a web page in browser, DOM Event, or HTTP Request message (standard 



 

Chapter 4 Model-Driven Penetration Test Framework    81 

HTTP request message or JSON/SOAP message). Table 1 shows a comparison of the 

three types of entry points. 

Table 1 Comparison of Entry Points 

User Input 
advantage 1) Easy to identify and to launch attacks 

2) Intuitive to a general penetration tester 
disadvantage 1) Limited types of attack surface: only URL and input fields 

2) Difficult to manipulate hidden fields 
3) Attacks are constrained by GUI controls and client-side validation  

DOM Event 
advantage Can launch all types of DOM related attacks 
disadvantage Need tool support, e.g. DOM inspector 
HTTP Request (standard HTTP request message or JSON/SOAP message) 
advantage It may provide the most flexibility in attack manipulation:  

1) All types of attack surface except client-side DOM attack 
2) HTTP protocol 
3) Arbitrary encoding schema 

disadvantage 1) Need tools support, e.g. HTTP proxy 
2) Not intuitive to a general penetration tester 

User Input entry points are straight forward to identify if they are specified in a 

design document such as what we have referred to in our thesis as the Web Application 

API.  It is also straight forward to use a Browser or simulation tools to launch attacks. It 

is the most intuitive approach for a penetration tester. However, it has limited capabilities 

to manipulate attacks. 

DOM Event entry points is the best choice for manipulating attacks related to 

DOM, including those client-side DOM attacks that do not generate HTTP traffic from 

the client to the server. Tool support is required in order to manipulate entry points and 

launch attacks. 

HTTP Request entry points may provide the most flexibility in attack 

manipulation. Tool support is needed to manipulate entry points and launch attacks. Since 



 

Chapter 4 Model-Driven Penetration Test Framework    82 

the entry points are presented in the format of HTTP request messages, it is not intuitive 

to a general penetration tester to interpret and manipulate such entry points. 

4.5.3 Check Point 

A Check Point is any information that can be used to verify if an attack succeeds 

or not. A penetration tester who uses a grey-box test architecture has more flexibility to 

choose check points that can be at the client-side and/or at server-side. Choosing an 

appropriate check point(s) for an attack is determined by the nature of an attack, e.g. 

where the attack occurs – at the server-side or at the client-side, and the nature of the 

application component that is implemented to defend against the attack. 

As shown in Figure 13, the points with the left-up arrow are the potential check 

points, including the content on Web Page Display in Browser, the content in DOM, 

HTTP Response message (“HTTP Response” and “HTTP Response: JSON/SOAP” in 

Figure 13) at the client-side, and the states in the Web Application memory, the content 

in the Database, the entries in the Application Log or the Database Log at the server-side. 

Table 2 shows the comparison of the various types of check points. 

 

 

 

 

 



 

Chapter 4 Model-Driven Penetration Test Framework    83 

Table 2 Comparison of Check Points 

Client Side 
Web Page Display 

advantage Intuitive, and is reliable to check the attacks that occur at the client-side, e.g. 
all types of XSS. 

disadvantage May need to run a test against all brands and versions of web browser if a 
vulnerability is browser-specific. 

DOM 
advantage Suited to verify the attacks that exploit client-site scripting. 
disadvantage Less intuitive, and need a DOM inspector to verify check points. 
HTTP Response (standard HTTP response message or JSON/SOAP message) 
advantage Easy to build a utility to intercept and analyze response messages as there are 

many HTTP API available. 
disadvantage 1) For some types of attacks that occur at the client-side and are interrelated 

to specific browsers, e.g. XSS, only checking HTTP responses may result in 
false negative or false positive.  
2) Cannot detect attacks that do not involve HTTP communications, e.g. 
DOM-based XSS. 

Server Side 
Web Application memory 
advantage Can observe dynamic behavior of attacks. 
disadvantage It may be complicated to build a utility to monitor and check the states in 

server memory. 
Database 
advantage Can reliably check the permanent data changes caused by attacks. 
disadvantage May need to build a utility to parse and check records in database. 
Application Log & Database Log 
advantage Can focus on those abnormal events and exceptions that are usually related to 

malicious attacks. 
disadvantage May need to build a utility to parse and check log data. 

For each check point, an expected result (oracle) should be specified. The 

expected result can be a general oracle that adheres to an attack vector, e.g. “Bypass 

Logon authentication” is a general oracle for a successful SQL Injection attack against 

“Logon” functionality. A general oracle can be vague and less precise, as it does not 

consider the context of a specific application. Application-specific expected results are 

more precise so that they can be utilized to reduce false positives and false negatives in 

test results, although extra efforts are required to identify and specify application-specific 

expected result for a check point. 



 

Chapter 4 Model-Driven Penetration Test Framework    84 

Penetration testers work with developers to utilize their expertise in an application 

domain to identify and specify check points and expected results. This collaboration 

process is a good opportunity for both the developers and the testers to get a better 

understanding of how defense mechanisms in an application work, and therefore where 

and what to check to determine if any attack has been trapped and reported.  

4.6. Web Security Knowledgebase 

Security experts bring web security expertise into an application development 

project. In order for an organization to effectively use that knowledge, and retain it after 

the experts have left, it is important to be able to declaratively represent their knowledge 

in a form that can be processed by computer programs. In the proposed test framework, a 

web security knowledgebase is proposed to achieve this. The completeness and 

consistency of the web security knowledgebase is a critical element in determining the 

level of security provided by the test framework. In the following subsections we detail 

the expert knowledge that is relevant to penetration testing in terms of attack anatomy, 

attack vectors and fuzz vectors, and then introduce the model used to represent 

knowledge in our web security knowledgebase.   

4.6.1 Attack Anatomy 

The purpose of penetration testing is to ensure that the web application cannot be 

compromised by an attack. In general, launching an attack involves three security 

artifacts: vulnerabilities, attack vectors, and fuzz vectors. 



 

Chapter 4 Model-Driven Penetration Test Framework    85 

Vulnerability 

A vulnerability is a security defect in a web application. It exists in an 

application’s code at either server-side or client-side. For example, Stored XSS, Reflected 

XSS, and SQL Injection are types of vulnerabilities that can exist in server-side 

application code, while DOM-based XSS and DOM-based injections are types of 

vulnerabilities that can exist in client-side application code. 

Attack Vector and Fuzz Vector 

An attack vector is a scenario of interaction in which a hacker can launch an 

attack through an entry point against an application. A fuzz vector is a specific value that 

can be used to parameterize or replace part of an entry point as a malicious payload in an 

attack. Attacks are actions to exploit the vulnerabilities in a web application by loading 

malicious payloads. While an attacker always launches an attack on the client-side to 

exploit a vulnerability, the attack may occur at either server-side or client-side. The attack 

does not necessarily occur at the same place where the vulnerability exists. For example, 

SQL Injection attacks occur at the server-side where also the vulnerability exists, while 

all XSS attacks occur at the client-side no matter where the vulnerability exists. An 

attacker can attack against a web application directly, e.g. SQL Injection attack, or 

against a legitimate user of the web application, e.g. XSS attack.  

4.6.2 Characteristics of Attack Vectors 

An analysis of attack vectors documented in (OWASP TOP 10, 2007), (SANS 

TOP 20, 2011), and (WASC, 2010), reveals the following characteristics: 



 

Chapter 4 Model-Driven Penetration Test Framework    86 

 Many attacks are performed via “URL manipulation” – manipulating HTTP 

requests including cookie, URL parameter or path, and form fields. 

 Although many attack vectors are applicable to any web application platform, 

there are some attack vectors which target specific platforms or components. 

For example, PHP applications are particularly vulnerable to “Malicious File 

Execution”. 

 Most attacks are based on deliberately misusing the most common 

functionalities of a web application. Therefore, the functionality of an entry 

point is a key indicator to identify potential attack vectors. For example, 

“search” is very likely vulnerable to reflected XSS attacks; in a public forum, 

“viewing” contents that were entered by other users is vulnerable to stored XSS 

attacks; and password-based “Login” is vulnerable to SQL Injection attacks. 

4.6.3 Characteristics of Fuzz Vectors 

An analysis of fuzz vectors documented in (OWASP Testing Guide, 2008), 

(Hansen, 2011), (Daw, SQL Injection Cheat Sheet, 2009), and (Daw, Input Validation 

Cheat Sheet, 2009), reveals the following characteristics: 

 Fuzz vectors are categorized by attack vectors, e.g. fuzz vectors for XSS, fuzz 

vectors for Buffer Overflows, and fuzz vectors for Format String Errors. 

 Some fuzz vectors are database specific. For example, fuzz data of SQL 

Injection for Oracle, SQL Server, and MySQL might be different. 

 Some fuzz vectors are OS specific. For example, on a Unix OS, root directory 

is "/", and directory separator is "/”, while on a Windows OS, root directory is 

"<drive letter>:\", and directory separator is "\" but also "/". 

 All fuzz vectors may be obfuscated using different encoding schemas. This is 

an efficient mechanism to bypass filtering/sanitization defenses in web 

applications. 



 

Chapter 4 Model-Driven Penetration Test Framework    87 

4.6.4 Penetration Test Security Model 

Based on the characteristics of the security artifacts (in the color of orange) – 

Vulnerability, Attack Vector, Fuzz Vector and Functionality, and the test artifacts (in the 

color of blue) – Entry Point and Application Footprint, a penetration test security object 

model that captures key entities in each artifact and the relationships between the artifacts 

was created, as shown in Figure 14: 

 

Figure 14 Web Application Penetration Test Security Model 

 Entry Point: a test object that consists of the attributes that represent the 

possible fields that can be manipulated to construct an attack. It has six 

attributes – URL, QueryString, Fragment that marks a location on a web page, 

Method that is an HTTP method used in this entry point, Header that is the 

header of an HTTP message, and FormField that is the name of the input field 

in a form. An entry point may have one or more vulnerabilities or no 

vulnerability at all. An entry point performs a particular functionality. 



 

Chapter 4 Model-Driven Penetration Test Framework    88 

 Application Footprint: a test object that consists of the attributes that 

characterize a web application. It is used to select relevant web security objects 

such as attack vector and fuzz vector and identify appropriate check points. It 

has six attributes – Platform that is the language and running environment on 

which a web application is developed and runs, Components that specifies 

third-party security components used in a web application that defense attacks 

and therefore can be used to check if a test attack succeeds or not, Database 

that is the database used by the web application, Operating System on which the 

web application runs, Web Server on which the web application runs, and 

Encoding that is the encoding schema used by the web application. A particular 

application footprint may be related to many attack vectors and fuzz vectors. 

 Vulnerability: a web security object that represents a web application 

vulnerability. A vulnerability is related to one or various types of 

functionalities. A vulnerability has one or more attack vector(s). 

 Functionality: a web security object that represents a function can be used to 

characterize vulnerabilities that potentially exist in a web application. A Web 

Security Expert creates such vulnerability-related functionalities during the 

setup of a web security knowledgebase for a web application. A functionality 

may exist on one or many entry points. A functionality may has many potential 

vulnerabilities and attack vectors. 

 Attach Vector: a web security object that represents an attack vector. An attack 

vector is applied via performing a function. An attack vector may be applied on 

applications with many different footprints. An attack vector has one or more 

fuzz vector(s). 

 Fuzz Vector: a web security object that represents Payload that is used to 

manipulate a specific field in an entry point. A fuzz vector may be applied to 

applications with many different footprints. 

This object model can be used to implement a web security knowledgebase in a 

variety of different repositories, e.g. a relational database, an object database, or an XML 

database. 



 

Chapter 4 Model-Driven Penetration Test Framework    89 

4.7. Penetration Test Campaign Model 

The web security knowledgebase is just one input into the process of penetration 

testing. As shown in the figures that document the penetration test methodology in 

sections 4.4.1, 4.4.3, 0, and 4.4.5 there is a larger set of artifacts that must be maintained 

and managed throughout a penetration test campaign. As with the web security 

knowledgebase, it is advantageous if these artifacts can be declaratively represented in a 

well-structured format that can be processed both by computer programs and by 

developers and testers.  Figure 15 shows the penetration test campaign model that we 

have built to manage and maintain a test campaign. In particular we have classified the 

objects in this model into three domains: web security domain (corresponds to the web 

security knowledgebase) which is maintained by the Web Security Expert, a development 

domain which is managed by the Developer, and the penetration test domain which is the 

responsibility of the Penetration Tester. We have further classified objects in the 

penetration test domain as to which test phase (test analysis, test design, or test execution) 

when they are created. 



 

Chapter 4 Model-Driven Penetration Test Framework    90 

 

Figure 15 Penetration Test Campaign Model 

In a test campaign, the Penetration Tester follows the test methodology proposed 

in section 4.4 building and interacting with the penetration test campaign model to 

manage the test efforts: 

 Test Analysis Phase. At the test analysis phase, a Web Security Expert is 

invited to the project team to build up a web security knowledgebase that is 

relevant to the application based on the characteristics of the application e.g. its 

functionalities. The web security knowledgebase includes four artifacts: 

Vulnerability, Attack Vector, Fuzz Vector, and Functionality. A Penetration 

Tester starts to create the test artifacts Application Footprint based on the 



 

Chapter 4 Model-Driven Penetration Test Framework    91 

development artifact Functional Specification. Then based on the application 

functionalities and footprint, a set of potential vulnerabilities that may exist in 

the application can be identified and the results are saved as test artifact 

Potential Vulnerability.  

 Test Design Phase. At the test design phase, a Penetration Tester collects a 

complete list of Entry Points based on the development artifact Web API, and 

identifies the functionality for each entry point. Based on the functionality, 

potential vulnerabilities can be identified, and for each of them a set of attacks 

are created by applying viable attack vectors and fuzz vectors with respect to 

the application footprint to manipulate the entry point. The results are saved in 

the test artifact Attack. For each attack, based on the development artifact 

System Architecture, a Penetration Tester works with a Developer to identify 

one or more check points and saves the results in the test artifact Check Point. 

Based on the discussion with a Developer during the process of identifying 

check points, a Penetration Tester may need to update the “Components” field 

in the Application Footprint to specify any component in the application that 

plays a security role to defend one or more types of attacks. At the end, for each 

attack, a viable user scenario that has the entry point corresponding to the attack 

is selected based on the development artifact User Scenario, and then a test case 

is created based on the user scenario and the attack. The results are saved in the 

test artifact Test Case.  

 Test Execution Phase. At the test execution phase, a Penetration Tester 

executes the created test cases and saves the Test Results. The Penetration 

Tester works with a Developer to analyze the test results to identify any false-

positives. A Test Report is created based on the test results and test analysis. A 

subset of or the entire test cases will be re-executed to validate the fixes that a 

Developer develops to remedy the confirmed vulnerabilities and exclude any 

regression. 

In such a model-driven penetration test campaign, a Penetration Tester does not 

directly work out concrete test cases. Instead, based on the test campaign model, a 



 

Chapter 4 Model-Driven Penetration Test Framework    92 

Penetration Tester systematically collects test data from the development domain and the 

web security domain, and then populates the model step by step with the test data to 

produce a set of test artifacts in a data-driven approach.  

4.8. Knowledge-Based PenTest Workbench 

Based on the test campaign model and the grey-box test architecture, a 

knowledge-based PenTest workbench can be developed to support the entire test process 

from test analysis to test execution. Figure 16 shows the core functionalities such a 

PenTest workbench should support. The purpose of the PenTest workbench is to support 

these functionalities by leveraging the artifacts represented in the penetration test 

campaign model as well as the knowledge in the web security knowledgebase and to use 

third party tools to enable tool-based execution of the penetration test campaign. With the 

core functionalities integrated into one test environment, output of one functionality can 

be used seamlessly as input to another. 



 

Chapter 4 Model-Driven Penetration Test Framework    93 

 

Figure 16 A Knowledge-Based PenTest Workbench 

Below is an explanation of each of the core functionalities. In Chapter 5, we will 

discuss how the functionalities were implemented in our case studies.  

 Identify Potential Vulnerabilities: at the test analysis phase, Application 

Footprint and application Functionalities are mapped to Vulnerabilities and 

Attack Vectors in order to generate a list of Potential Vulnerabilities. 

 Generate Attacks: at the test design phase, the Potential Vulnerabilities, Entry 

Points, Application Footprint, and Fuzz Vectors are used to generate Attacks. 

 Generate Test Cases: at the test design phase, the Attacks, Check Points, and 

User Scenarios are used to generate a set of Test Cases. 

 Run Tests: at the test execution phase, the Test Cases are loaded and run, with 

the test results captured and saved. 

 Report Results: at the test execution phase, a Test Report is generated based 

on the test results. 

  



 

Chapter 5 Test Campaign Case Studies    94 

Chapter 5. Test Campaign Case Studies 

The test framework proposed in Chapter 3 was evaluated and refined by 

conducting three test campaigns with respect to the penetration test methodology, the 

grey-box test architecture, the web security knowledgebase, the test campaign model, and 

the PenTest workbench. The first test campaign was run against a reference test web 

application.  The second and third test campaigns were run against real web applications.  

In section 5.1, we give an overview of the three test campaigns. In section 5.2, the 

implementation of the test framework prototype that was applied to the test campaigns is 

explained.  Section 5.3 describes the test campaign for WebGoat. Section 5.4 describes 

the test campaign for AEMS. Section 5.5 describes the test campaign for PAL-IS. 

5.1. Overview of Test Campaigns 

5.1.1 WebGoat Test Campaign 

The first test campaign was run with WebGoat (OWASP WebGoat Project, 

2011), a deliberately insecure J2EE web application developed and maintained by the 

Open Web Application Security Project (OWASP). The purposes of this test campaign 

were to level set the web security knowledgebase and verify the test campaign model and 

the PenTest workbench. However, since WebGoat is an existing, completed reference 

web application, the test campaign was an isolated test activity and there was no 

interaction with developers. 



 

Chapter 5 Test Campaign Case Studies    95 

5.1.2 AEMS Test Campaign 

The second test campaign was run with AEMS – Adverse Event Management 

System (Behnam, Amyot, Forster, Peyton, & Shamsaei, May, 2009). The application was 

developed on the Microsoft .Net platform. The test campaign started in the middle of the 

development of AEMS during the development of a beta version.  

The Development Team 

AEMS was developed by a team at the University of Ottawa. The developers on 

the AEMS team were aware of the common web application vulnerabilities that might 

exist in the application. They had some knowledge of the .Net security and relied on the 

.Net built-in security mechanisms and ibatis (mybatis Home Page, 2011), a third-party 

persistence framework, to protect the application from the attacks exploiting the 

vulnerabilities. But they did not exactly understand how the security mechanisms work so 

they were not sure if the vulnerabilities had been remediated or not. The developers were 

aware of the Microsoft Security Development Lifecycle (the MS SDL) principles and 

tools, and stated that they followed the MS SDL in the application development.  

However, from our discussions and observations, their adherence to MS SDL seemed ad 

hoc at best. They planned to engage an external security expert to assess the security 

posture of AEMS and address any security issues at the verification phase. 

The Security Development Practices  

The development team more or less followed the MS SDL process in AEMS 

development as follows: 



 

Chapter 5 Test Campaign Case Studies    96 

 A primary developer took an undergraduate security course for the education in 

web application security fundamentals. 

 The development team performed a threat analysis to understand the potential 

vulnerabilities might exist in AEMS, which include Stored Cross-Site Scripting 

and Standard SQL Injection. 

 The development team analyzed the potential vulnerabilities. Based on their 

knowledge, they thought the build-in security mechanism in ASP.Net could 

protect AEMS from Stored Cross-Site Scripting attacks, and ibatis could 

prevent AEMS from Standard SQL Injection attacks. The development team 

did not implement any application-specific security measures for the potential 

vulnerabilities as they left it as an effort at the verification phase.  

 The development team planned to engage an external security expert to perform 

penetration testing at the verification phase to assess the security posture of 

AEMS, and to address any security issues then as they arose. 

 The Penetration Test Framework was introduced into the AEMS project during 

the development of the beta version of AEMS. There were two iterations of 

penetration testing that tested a representative subset of AEMS functionalities. 

One false negative was fixed, and one true negative was identified but the team 

chose not to fix it at that time. 

The Refinement of the Test Framework 

Based on the experience with the AEMS test campaign, the test framework was 

refined significantly (section 5.4.6 discusses the refinement in more detail). The refined 

framework was then applied to the PAL-IS test campaign. 

5.1.3 PAL-IS Test Campaign 

The third test campaign was run with PAL-IS – Palliative Care Information 

System. The application was developed on the Microsoft .Net platform. The test 



 

Chapter 5 Test Campaign Case Studies    97 

campaign was fully integrated into the security-oriented software development life cycle 

for the application. 

The Development Team 

PAL-IS was developed by a different team at the university of Ottawa. The 

developers on the PAL-IS team were aware of the common web application 

vulnerabilities that might exist in the application. They had some knowledge of the .Net 

security and knew there were some built-in security mechanisms in .Net, but they did not 

know how the security mechanisms worked and therefore did not have any idea which 

vulnerabilities had been remediated and which had not. The developers were aware of the 

Microsoft Security Development Lifecycle (the MS SDL) principles and tools, and they 

would follow the MS SDL in the application development (although, based on our 

observations, it appeared to be done in an ad hoc manner at best). The AEMS team had 

more experience in web application security than the PAL-IS team when the both started 

their projects, e.g. the AEMS development team had knowledge of the typical XSS and 

Standard SQL Injection vulnerabilities in web applications and the defense mechanism in 

ASP.Net and ibaits. 

The Security Development Practices 

We worked with the development team by following the proposed test 

methodology and leveraging the prototyped PenTest workbench: 

 At the analysis phase, the penetration tester identified a list of potential 

vulnerabilities that might exist in PAL-IS, and sent it to the development team 



 

Chapter 5 Test Campaign Case Studies    98 

so that they were aware of the potential threats and could design appropriate 

countermeasures.   

 At the design phase, the development team analyzed the potential 

vulnerabilities. They thought the build-in security mechanism in .Net would 

provide protections for PAL-IS against Stored Cross-Site Scripting and 

Standard SQL Injection attacks. They finished the PAL-IS design without 

considering application specific security measures against the two types of 

vulnerabilities. In parallel, the penetration tester developed test cases based on a 

representative subset of the functionality in PAL-IS. 

 At the implementation phase, there were three rounds of penetration testing. 

After the first round of testing, the penetration tester worked with the 

development team to analyze the test results. An additional check point in the 

application logs was added to eliminate suspicious false negatives in the second 

round. Five XSS test cases passed as the result of the more comprehensive 

check points, and five true negatives were identified this time. The Standard 

SQL Injection vulnerability was then remedied, and all the four SQL Injection 

test cases passed in the third round of testing. There was one true negative XSS 

test case that the team chose not to address at that time. 

5.1.4 The Roles of the Thesis Researcher in the Case Studies 

The thesis researcher introduced, coordinated, and iteratively improved the 

framework during the case studies (especially after the AEMS case study). The 

framework was introduced to both development teams. The thesis researcher showed 

them how a tester uses the framework. The development teams agreed to adopt the 

framework instead of following an approach where they brought in an expert at the end 

of development cycle for the application security assessment (with AEMS they were 

already in the middle of the development cycle). The thesis researcher coordinated with 



 

Chapter 5 Test Campaign Case Studies    99 

the person responsible for testing and played the major role of penetration tester using the 

framework.  

The thesis researcher got informal feedback from the development teams (their 

tester, their developers and the development manager) for the case studies on what it was 

like to try out the framework. In particular, these feedbacks were the basis for many of 

the improvements that were made after the AEMS case study and before the PALIS case 

study. The improvements resulted in the test artifacts/documents that were used in the 

PALIS case study. 

The thesis researcher does not feel himself in anyway to be a security expert. In 

the case studies, the researcher consulted with websites and textbooks, captured web 

security knowledge as best he could, and then built the sample web security 

knowledgebase. The thesis researcher received feedback from Prof. Guy-Vincent Jourdan 

and Prof. Anil Somayaji in the role of security experts on the web security 

knowledgebase during the thesis proposal review after the AEMS case study was 

completed and before the PALIS case study was done. 

5.2. Test Framework Prototype 

A prototype version of the proposed test framework was implemented and was 

used for all three test campaigns. The test framework prototype includes a Java-based 

PenTest workbench that facilitates the test tasks such as potential vulnerability 

identification, test case generation, test execution, and test reporting, along with a test 

campaign model and a sample web security knowledgebase. The test framework was 



 

Chapter 5 Test Campaign Case Studies    100 

significantly refined based on the experience with the AEMS test campaign (section 5.4.6 

discusses the refinement in more detail).  

5.2.1 Test Artifacts and Documents 

Below are the test artifacts in a test campaign that are created at each phase of the 

software development life cycle:  

 Test Analysis Document: to document the test artifacts and relevant web 

security artifacts created at the test analysis phase, including Application 

Footprint, Potential Vulnerability and Attack Vector, and to list the web 

security and development artifacts utilized at this phase, including 

Functionality, Use Case and Functional Specification. 

 Test Design Document: to document the test artifacts created at the test design 

phase, including Entry Point, Attack, Check Point, and Test Case, and to list the 

development artifacts utilized at this phase, including Web API, System 

Architecture, and User Scenario. 

 Test Execution Document: to document the test artifacts created at the test 

execution phase, including Test Result and Test Report. 

5.2.2 Test Campaign Model 

The general test campaign model showed in Figure 15 was implemented in the 

test campaigns as specified in Figure 17. The artifacts fall into three categories: test 

campaign artifacts, development artifacts, and web security knowledgebase. 



 

Chapter 5 Test Campaign Case Studies    101 

 

Figure 17 Test Campaign Model 

In the WebGoat test campaign and the AEMS test campaign, Entry Point was 

defined as an HTTP request, and Check Point was defined as an HTTP response. In the 

PAL-IS test campaign, Entry Point was defined as user inputs on web pages in browser, 

and Check Point was defined as content in web pages rendered in browser and an entry in 

the application logs at server-side. Check Point is linked to Application Footprint by 

specifying in a check point the component that is to trap an attack. 

Attack is a special entry point in that one of its fields is manipulated with a fuzz 

vector payload. An attack has one or more check points. 



 

Chapter 5 Test Campaign Case Studies    102 

Use Case, Functional Specification, Web API, and System Architecture were not 

implemented as a table in database. They were defined in MS Word documents that were 

processed manually. User Scenarios, however, were entered and stored in the database. 

5.2.3 Knowledge-Based PenTest Workbench Implementation 

A prototype knowledge-based PenTest workbench, as discussed in Chapter 4, was 

implemented for the three test campaigns. It uses the following open source technologies:  

 J2SE 1.6 (Java SE 6, 2011): it is used to build up the PenTest workbench 

 HttpClient 4.0 (Apache HTTPClient Home Page, 2011): a third-party 

component used to process http requests and http responses  

 MySQL Server 5.1.34 (MySQL Home Page, 2011): it is used to permanently 

store test artifacts and the sample web security knowledgebase 

 Eclipse 3.4.2 (Eclipse Home Page, 2011): IDE used to develop the PenTest 

workbench 

 SQuirreL 3.0.1 (SQuirreL SQL Client Home Page, 2011): a SQL client used to 

maintain the web security knowledgebase and the test campaign database  

 WebScarab: an HTTP proxy used to assist in test design and test execution  



 

Chapter 5 Test Campaign Case Studies    103 

 

Figure 18 Test Architecture and the Knowledge-Based PenTest Workbench 

Figure 18 shows the test architecture and the PenTest workbench that was used in 

the test campaigns. The PenTest workbench consists of five major tools: 

 Potential Vulnerability Identifier 



 

Chapter 5 Test Campaign Case Studies    104 

Potential Vulnerability Identifier is a generic tool that generates all potential 

vulnerabilities and feasible attack vectors for a given web application based on its 

functionalities, the application footprint, and the web security knowledgebase. It saves 

the identified potential vulnerabilities and attack vectors to the test campaign database, 

and can print out the list of the identified vulnerabilities and attack vectors so that it can 

be sent to the development team. 

 Test Case Generator 

Test Case Generator is a generic tool. For each entry point, based on the identified 

potential vulnerabilities and attack vectors, and the application footprint, it generates test 

attacks by applying relevant and feasible fuzz vectors. Then for each attack and its check 

point, Test Case Generator picks up a feasible user scenario based on a pre-defined 

algorithm, e.g. shortest paths, to generate a test case. Test Case Generator saves the 

generated test cases to the test campaign database, and can print out the test cases so that 

a tester can read and follow the test steps to execute them manually. 

 Test Runner  

Test Runner is a generic test tool that loads and executes test cases as sequences 

of HTTP(s) requests, and verifies test results as HTTP(s) responses against expected 

ones. The Test Runner uses an application-specific Test Runner Adaptor to handle 

application specific settings and processing. 

 Test Runner Adaptor 



 

Chapter 5 Test Campaign Case Studies    105 

Test Runner Adaptor is an HTTP(s) messaging based utility that handles 

application specific setting or processing such as creating SSL connections, generating 

dynamic query strings, etc. on behalf of the Test Runner. An application specific adaptor 

was written for each of WebGoat and AEMS test campaigns. However, because of the 

complexity of .Net generated HTTP requests in PAL-IS, User Inputs in browser, rather 

than HTTP requests, were used to drive tests so that the HTTP Test Runner was not 

needed. 

 Test Report 

Test Report is a generic utility for documenting and summarizing the test results 

from a test execution in a test campaign. 

 Database 

The sample web security knowledgebase was implemented using MySQL. Each 

web security object (including Vulnerability, Attack Vector, Fuzz Vector, and 

Functionality) defined in Figure 17 is represented as a table. The implementation from 

the conceptual model is straightforward. Primary keys and foreign keys were created 

when necessary. In addition, a set of SQL scripts was developed to load sample 

vulnerabilities, attack vectors and fuzz vectors (discussed in detail in section 5.2.4). For 

those special characters in the sample fuzz vectors, backsplash escape is used in the SQL 

scripts. There are 5 rows in the Vulnerability table, 9 rows in the Attack Vector table, and 

26 rows in the Fuzz Vector table. 



 

Chapter 5 Test Campaign Case Studies    106 

Similarly, the test campaign and development artifacts, except Use Case, 

Functional Specification, System Artifact and WEB API, were implemented in the same 

database. We did not capture the four development artifacts in the database because they 

are not the focus of the thesis research, e.g. they do not have significant impact on the 

design of the proposed test framework in this thesis.  

5.2.4 Web Security Knowledgebase 

The sample web security knowledgebase used in the three test campaigns was 

gathered from several web security knowledgebases available publically on the Web, 

including OWASP TOP 10 Web Application Vulnerabilities (OWASP TOP 10, 2007), 

OWASP Testing Guide (OWASP Testing Guide, 2008), XSS cheat sheet (Hansen, 2011), 

and SQL Injection cheat sheet (Daw, SQL Injection Cheat Sheet, 2009). The five most 

prevalent web application vulnerabilities, namely Reflected XSS, Stored XSS, DOM 

Based XSS, Standard SQL Injection, and Cross Site Request Forgery (CSRF), and their 

related attack vectors and fuzz vectors, were gathered and represented in the web security 

knowledgebase. Figure 19 shows a sample vulnerability entry. Figure 20 shows a sample 

attack vector entry. Figure 21 shows a sample fuzz vector entry. 

Figure 19 A Sample XSS Vulnerability 

Vulnerability: Reflected XSS 
Attack Vector: Manipulate the input field whose value is to be searched 
Application Footprints: 
  Platform: *  
  Components: * 
  Database: * 
  Operating System: * 
  Web Server: * 
  Character Encodings: * 

Figure 20 A Sample Attack Vector for XSS 

Vulnerability: Reflected XSS 
Vulnerability Type: Cross-Site Scripting 
Functionalities: Search; Personalize a Welcome Page with User Name; Cause an 
error message response with user inputs embedded 



 

Chapter 5 Test Campaign Case Studies    107 

Vulnerability: Reflected XSS 
Attack Vector: Manipulate the input field whose value is to be searched 
Payload: <script>alert(“This is a sample XSS attack”);</script> 
Application Footprints: 
  Platform: *  
  Components: * 
  Database: * 
  Operating System: * 
  Web Server: * 
  Character Encodings: * 

Figure 21 A Sample Fuzz Vector for XSS 

In the sample web security knowledgebase, five functionalities were categorized 

and populated. They are the samples of most common functionalities that one sees in web 

applications, as discussed in section 2.1.3. The following case studies focused on the 

sample set of functionalities. 

Login: Login is an authentication procedure used to get access to an application, 
e.g. Form-based username/password Login. It may be vulnerable to Standard SQL 
Injection attacks. 

Search: Search is a common function in a web application that finds relevant 
information based a set of criteria, e.g. Search for a user, Search Patient etc. It may be 
vulnerable to Standard SQL Injection attacks and Reflected Cross-Site Scripting attacks. 

Form Data Collection: HTML form is often used in web application for general 
data entry. It may be vulnerable to Stored Cross-Site Scripting attacks. 

User Profile Management (Edit/View): It is a common function in a web 
application to edit and/or review users’ profile. It may be vulnerable to Stored Cross-Site 
Scripting attacks. 

Load Attachments: Some web applications may be able to load attachments, e.g. 
pdf files, and then save them on server that can be accessed by users later on. It may be 
vulnerable to Stored Cross-Site Scripting attacks. 

The web security knowledgebase used in the case studies was implemented in a 

relational database.  



 

Chapter 5 Test Campaign Case Studies    108 

5.3. WebGoat Test Campaign 

5.3.1 Introduction 

WebGoat is a deliberately insecure J2EE web application for the purpose of web 

application security training and a benchmark for security test tools evaluation (OWASP 

WebGoat Project, 2011). WebGoat runs over plaintext HTTP. It uses HTTP basic 

authentication. The WebGoat system studied in this case study is version 5.2 and it was 

deployed in a Lab environment. 

The primary purposes of this case study were to level set the web security 

knowledgebase, and verify the test campaign model and the PenTest workbench. 

WebGoat is an existing, completed reference web application. We were not involved with 

its development process, nor was there any interaction with its developers. All the test 

artifacts in the WebGoat test campaign were created by various indirect ways such as 

inspecting the WebGoat installation, searching the relevant information on the Web, 

checking WebGoat inline help, etc., instead of being based on the development artifacts 

as specified in the test methodology in section 4.4. The test campaign was in effect black 

box testing. Therefore we can only evaluate the test campaign model, the PenTest 

workbench, and the sample web security knowledgebase in this case study. 

5.3.2 Test Requirement Analysis 

WebGoat Application Footprint was gathered by inspecting the WebGoat 

installation and searching the relevant information on the Web. Figure 22 is the 

application footprint of WebGoat v5.2.  



 

Chapter 5 Test Campaign Case Studies    109 

Figure 22 WebGoat Application Footprint 

WebGoat v5.2 has over 30 lessons that illustrate various web application 

vulnerabilities. The three most common vulnerabilities, Reflected XSS, Stored XSS, and 

Standard SQL Injection, were selected and tested against WebGoat in this case study, as 

shown in Appendix A1. Accordingly, four scenarios were selected that have one of the 

vulnerabilities, and then the four scenarios were entered into the database manually. 

Figure 23 shows a scenario that has an entry point containing a Reflected XSS 

vulnerability. All the test scenarios used in the WebGoat test campaign are listed in 

Appendix A2. 

Figure 23 A Sample User Scenario in the WebGoat Test Campaign 

5.3.3 Test Case Design 

The test design followed the four major steps below: 

Platform: J2EE 1.4, JRE 1.6.0_01 
Components: -  
Database: Derby 10.2.1.6  
Operating System: Windows XP 
Web Server: Apache Tomcat 5.5 
Encoding: UTF8 

User Scenario 1: Phishing with XSS 
Step1: Launch WebGoat Home Page 
Description: In Browser, enter URL “http://127.0.0.1:80/WebGoat/attack” to open 
login page. 
 
Step2: Log on using HTTP Basic Authentication 
Description: Enter “guest” as username, “guest” as password, and click on “Log 
In” button to log on WebGoat. 
 
Step3: Launch WebGoat Course Page 
Description: Click on “Start WebGoat” button to launch WebGoat course page. 
 
Step4: Navigate to the “Phishing with XSS” page 
Description: Click on “Cross-Site Scripting (XSS)” navigation menu at the left 
of the web page to expand it, and then click on “Phishing with XSS” link to 
launch the page. 
 
Step5: Search Employee 
Description: Enter “Tom” in the search text field, and then click on “Search” 
button. 
 
Step6: Entry Point: Logout 
Description: Click on “Logout” link to log out WebGoat.  



 

Chapter 5 Test Campaign Case Studies    110 

Identify Entry Points 

In this test campaign, an Entry Point is an HTTP request. Based on the scenarios 

identified above, the entry points in the scenarios were identified manually using a HTTP 

proxy called WebScarab. Figure 24 shows how an HTTP request can be captured and 

intercepted using WebScarab. 

 

Figure 24 Use WebScarab to identify entry point 

Functionality for each entry point was also identified at this step. The WebGoat 

web application itself was used to identify the functionalities. Figure 25 is a sample entry 

point. All the entry points used in this case study are listed in Appendix A2. 

 



 

Chapter 5 Test Campaign Case Studies    111 

Figure 25 A Sample Entry Point in the WebGoat Test Campaign 

Generate Attacks 

For each entry point, the potential vulnerabilities and the feasible attack vectors 

were identified, based on the functionality of the entry point, using the tool “Potential 

Vulnerability Identifier” 1 (shown in Figure 18). We compared the list of identified 

vulnerabilities with the WebGoat documentation to ensure that we had proper coverage. 

Then based on the identified potential vulnerabilities, we identified the parameters to be 

manipulated to create attacks. Attacks were then generated using a utility in the tool “Test 

Case Generator” which applies feasible fuzz vector payloads to the manipulated 

parameters of the entry points with the consideration of the application footprint. The 

generated test attacks were saved as interim results in the database. Figure 26 shows two 

attacks against entry point “Search Employee”. 

Figure 26 Sample Attacks in the WebGoat Test Campaign 

                                                 
 
 
1 Figure 18 shows the latest test architecture that was refined after the AEMS test campaign. In this case 
study, “Potential Vulnerability Identifier” was a utility used in the test design phase. 

Entry point: Launch WebGoat Home Page (ID: ep001) 
GET http://127.0.0.1:80/WebGoat/attack 
Functionality: Navigation 

Entry point: Search Employee 
 
Attack: 1 
Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: Username=<script>alert('XSS');</script> 
 
Attack: 2 
Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: Username=>"><script>alert('XSS')</script>&  



 

Chapter 5 Test Campaign Case Studies    112 

Identify Check Points 

A Check Point in the WebGoat test campaign is an HTTP response. One check 

point was identified for each attack. The course instruction in WebGoat, which explains 

how an attack is constructed and how it was handled in WebGoat, was used to identify 

the check points. Figure 27 shows a sample attack with a check point.  

Figure 27 A Sample Check Point in the WebGoat Test Campaign 

Generate Test Cases 

Based on the selected scenarios, for each attack, a Test Case was generated using 

the tool “Test Case Generator” (shown in Figure 18). All the generated test cases are 

listed in Appendix A2. 

5.3.4 Test Execution 

The generated test cases were loaded and executed automatically using the tool 

“Test Runner” (shown in Figure 18), and the Test Results were saved in the database. 

Each test step was sent out by “Test Runner” as an HTTP request in sequence. If an 

HTTP response was a check point, “Test Runner” checked the response against the 

specified expected result to determine if the attack succeeded or not. “Test Runner” was 

designed as a generic tool to any test campaign. It called the application specific utility 

“Test Runner Adaptor” to handle those application specific tasks. In the WebGoat test 

Entry point: Search Employee 
 
Attack: 1 
Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: Username=<script>alert('XSS');</script> 
 
Defense Mechanism: None 
Check Point: “Search Employee” Page 
   Expected result -> the response page is displayed with a popup window with 
“XSS” message. 



 

Chapter 5 Test Campaign Case Studies    113 

campaign, basic authentication and dynamic URL parsing were handled by the “Test 

Runner Adaptor”.  

When the test execution was completed, the tool “Test Report” was run to 

generate and print out the Test Report based on the test results. The test report was 

documented in the test execution document (Appendix A3). 

5.3.5 Test Result Summary 

Table 3 shows the WebGoat test campaign summary. 

Table 3 The WebGoat Test Campaign Summary 

Web Security Knowledgebase 
   Vulnerability 5 
   Attack Vector 9 
   Fuzz Vector 26 
Test Effort 
   Entry Points 13 
   Potential Vulnerable Entry Points 4 
   Test Cases 13 
Test Result 
3 types of vulnerabilities were identified on 4 entry points correctly 

Table 4 is the test result summary by comparing the identified vulnerabilities to 

its intended design. It shows that all the planted vulnerabilities were identified 

successfully, and no identified vulnerability was a false negative. 

 

 

 



 

Chapter 5 Test Campaign Case Studies    114 

Table 4 The WebGoat Test Result Summary 

Entry Point Intended Vulnerability Identified Vulnerability Comments 

ep001 None None True Positive 
ep002 None None True Positive 
ep003 None None True Positive 
ep004 None None True Positive 
ep005 Reflected XSS Reflected XSS True Negative 
ep006 None None True Positive 
ep007 None None True Positive 
ep08 Stored XSS Stored XSS True Negative 
ep009 None None True Positive 
ep010 None None True Positive 
ep011 Numeric SQL Injection  Numeric SQL Injection  True Negative 
ep012 None None True Positive 
ep013 String SQL Injection  String SQL Injection  True Negative 
 

5.4. AEMS Test Campaign 

5.4.1 Introduction 

AEMS is a .Net based web application that was developed at the University of 

Ottawa to manage adverse events at the Ottawa Hospital. AEMS is configured to run 

over HTTPS. It uses form-based authentication. An alpha version of AEMS had been 

implemented and deployed (Behnam, Amyot, Forster, Peyton, & Shamsaei, May, 2009). 

The application studied in this case study was a beta version of AEMS hosted in a 

development environment, where it was under active development. 

The primary purpose of this case study is to evaluate the test framework by 

applying it to a real web application. The penetration test campaign was introduced 

during the development of a beta version of AEMS, therefore we could not fully validate 

the integrated penetration test process. In addition, not all of the required development 

artifacts were available that could be utilized directly in the penetration test development 

according to what is described in the test methodology in section 4.4. Instead, we met 



 

Chapter 5 Test Campaign Case Studies    115 

with the development team to informally elicit the relevant information (if it was 

missing), and developed the test artifacts based on the gathered information. 

5.4.2 Test Requirement Analysis 

The development artifacts, including Functional Specification and Use Case, 

were acquired informally at a system walkthrough meeting held by the development 

team. Based on the information gathered at the meeting, the Application Footprint for 

AEMS was identified (Figure 28). A subset of User Scenarios that would be studied in 

this test campaign was documented. Figure 29 shows a sample user scenario. All the user 

scenarios used in this case study are listed in Appendix B2. 

Figure 28 AEMS Application Footprint 

Figure 29 A Sample User Scenario in the AEMS Test Campaign 

5.4.3 Test Case Design 

The test design followed the four major steps below: 

Platform: .NET Framework (.NET ASP) 3.5 SP1 
Components: -  
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: * 

User Scenario 1: Login and then Logout 
Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL 
“HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f” to open login 
page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “pxiong” for field “username”, input 
“123456” for field “password”, and click on “Log In” button to log in AEMS as 
user “pxiong” 
 
Step3: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” button to log out AEMS 



 

Chapter 5 Test Campaign Case Studies    116 

Identify Entry Points 

In the AEMS test campaign, an Entry Point is an HTTP request. Based on the 

scenarios identified above, the entry points in the scenarios were identified by walking 

through the application during the meeting with the development team, and were 

confirmed by using WebScarab to capture and intercept the HTTP requests. Functionality 

for each entry point was also identified at this step. Figure 30 is a sample entry point. All 

the entry points used in this case study are listed in Appendix B2. 

Figure 30 A Sample Entry Point in the AEMS Test Campaign 

Generate Attacks 

For each entry point, based on its functionality and the application footprint, the 

Potential Vulnerability and the feasible attack vectors were identified using the tool 

“Potential Vulnerability Identifier”2:  

Input: Entry Point, Application Footprint, Vulnerability, Attack Vector 

Manual Action: None 

Tool: Potential Vulnerability Identifier 

Output: Potential Vulnerability, feasible Attack Vector 

Then based on the identified potential vulnerabilities and the feasible attack 

vectors, the penetration tester manually identified the parameter(s) in the entry point to be 

manipulated to create attacks. Attack was then generated using a utility in the tool “Test 

                                                 
 
 
2 Figure 18 shows the latest test architecture that was refined during the PAL-IS test campaign. In this case 
study, “Potential Vulnerability Identifier” was a tool used in the test design phase. 

Entry point: Launch Login Page (ID: ep001) 
GET HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Functionality: Navigation 



 

Chapter 5 Test Campaign Case Studies    117 

Case Generator” which applies feasible fuzz vector payloads to the manipulated 

parameters of the entry points based on the application footprint. The generated attacks 

were saved as interim results in the database: 

 Input: Entry Point, Potential Vulnerability, feasible Attack Vector, Fuzz Vector 

Manual Action: Identify parameter(s) to be manipulate 

Tool: Test Case Generator 

Output: Attack 

Figure 31 shows two attacks against entry point “Log On”. 

Figure 31 Sample Attacks in the AEMS Test Campaign 

Identify Check Points 

A Check Point in the AEMS test campaign is an HTTP response that is rendered 

in a browser as a web page. The check points were identified by walking through the 

application. One check point was identified for each attack. Figure 32 shows a sample 

check point. 

Entry point: Log On (ID: ep002) 
 
Attack: 1 
Attack Description: Standard SQL Injection attack 
POST HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Manipulated Form Field: password=1 or 1=1-- 
 
Attack: 2 
Attack Description: Standard SQL Injection attack 
POST HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Manipulated Form Field: password=a' or 'a'='a  



 

Chapter 5 Test Campaign Case Studies    118 

Figure 32 A Sample Check Point in the AEMS Test Campaign 

Generate Test Cases 

Based on the selected scenarios in section 5.4.2, for each attack, a Test Case was 

generated using the tool “Test Case Generator” (shown in Figure 18): 

Input: Attack, Check Point, User Scenario 

Manual Action: None 

Tool: Test Case Generator 

Output: Test Case 

All the generated test cases are listed in Appendix B2. 

5.4.4 Test Execution  

The generated test cases were loaded and executed automatically using the tool 

“Test Runner” (shown in Figure 18), and the Test Results were saved in the database. 

Each test step was sent out by “Test Runner” as an HTTP request in sequence. If an 

HTTP response was a check point, “Test Runner” checked the response against the 

specified expected result to determine if the attack succeeded or not. An application 

specific “Test Runner Adaptor” was developed for the AEMS test campaign, including 

HTTPS connection and form based authentication. 

Entry point: Log On (ID: ep002) 
 
Attack: 1 
Attack Description: Standard SQL Injection attack 
POST HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Manipulated Form Field: password=1 or 1=1-- 
 
Defense Mechanism: ibatis component 
Check Point: “Login” Page 
   Expected result -> the Login web page is displayed with error message: Your 
login attempt was not successful. Please try again. 



 

Chapter 5 Test Campaign Case Studies    119 

First Round of Testing 

Two vulnerabilities were identified in the first round of testing: Standard SQL 

Injection on the entry point ep006 and Stored XSS on the entry point ep004.  

The test result was sent to the development team. The development team 

performed code reviews to analyze the Standard SQL Injection vulnerability. A piece of 

source code (Figure 33) that was relevant to the defect shows that the Standard SQL 

Injection vulnerability was not a real vulnerability. It was a false negative. It was actually 

a functional defect in the code of an application specific input validation & filtering 

module – when a search text contains any non-alphabetic character, instead of rejecting 

the input as an invalid search text (since it is reasonably assumed that nobody’s name 

contains non-alphabetic character), it converts the search text to “” which is in turn 

treated as “search all patients”. As a result, the test returned all patients in the database as 

the search result, which looked like a successful SQL Injection attack. 

Figure 33 “Validator” Code Snippet in AEMS 

For the Stored XSS vulnerability, the penetration tester did some research on the 

Web. The test failure is due to a known issue in .Net 3.5 SP1 (XSS vulnerabilty in 

ASP.Net, 2005). Although in general, .Net 3.5 SP1 framework provides a built-in 

security mechanism against Stored XSS attacks, it fails to trap a special fuzz vector that 

uses an obscure character encoding that was used in the test. This is a known defect in 

         if (searchID == lastname || searchID == firstname ) 
            { 
                if (IsAlpha(textSearched)) 
                { 
                    return textSearched; 
                } 
                else { 
                    textSearched = ""; 
                } 
            } 



 

Chapter 5 Test Campaign Case Studies    120 

.Net, that Microsoft has no plans to fix as it was considered a very rare case and does not 

have serious security impact, so the development team felt that it could be ignored as 

well, at least for the Beta release. This security issue was analyzed more extensively in 

the PAL-IS test campaign. Section 5.5.4 has more detailed discussion on this.  

Second Round of Testing (Regression Testing) 

When the functional defect related to the test of Standard SQL Injection was 

fixed, the same set of test cases was executed. In this case, since the defect fix did not 

change the entry point, there was no need to update the test cases. The second round of 

test was simply to re-run the existing test cases automatically using the tool “Test 

Runner”. The Standard SQL Injection false negative was eliminated this time. 

When the test execution was completed, the tool “Test Report” was run to 

generate and print out the Test Report based on the test results. The test report was 

documented in the test execution document (Appendix B3). 

5.4.5 Test Result Summary 

Table 5 shows the AEMS test campaign summary. 

 

 

 

 



 

Chapter 5 Test Campaign Case Studies    121 

Table 5 The AEMS Test Campaign Summary 

Web Security Knowledgebase  
   Vulnerability 5 
   Attack Vector 9 
   Fuzz Vector 26 
Test Effort 
   Entry Points 6 
   Potential Vulnerable Entry Points 3 
   Test Cases 10 
Test Result 
  First round 2 test cases failed. 2 types of vulnerabilities 

were identified on 2 entry points 
  Second round 1 test case failed. 1 type of vulnerability 

(known MS XSS) was identified on 1 entry 
point 

5.4.6 The Refinement of the Test Framework 

With the experience in the AEMS test campaign, the test framework was refined 

significantly: 

 The test methodology was fully integrated into the security-oriented 

development life cycle – from the analysis phase to the application maintenance 

phase. 

 In each test phase, the utilized development artifacts and the created test 

artifacts were precisely defined. A set of templates for documenting the test 

artifacts were also well defined.  

 In each test phase, the communication between developer and penetration tester 

were well defined. 

 The test artifact Check Point was precisely defined to represent various types of 

check points on the both client-side and server-side. In addition, the systematic 

approach to identify check points was also defined. By following the process 

and with the collaboration between developer and penetration tester, every test 

case is supposed to have a check point that contains adequate information to 

determine if an attack has been trapped or not.  



 

Chapter 5 Test Campaign Case Studies    122 

5.5. PAL-IS Test Campaign 

5.5.1 Introduction 

PAL-IS is a .Net based web application that was under active development at the 

University of Ottawa for the palliative pain and symptom management consultation 

service. PAL-IS has been developed iteratively as a series of prototypes. A beta release of 

the application is now deployed as a pilot project at the Élisabeth Bruyère Hospital in 

Ottawa. 

The primary purpose of this case study is to evaluate the entire test framework 

that was refined significantly after the AEMS test campaign. The penetration testing 

effort was started at the beginning of the development of PAL-IS when the very first 

PAL-IS prototype was implemented and deployed in a test environment. The penetration 

test campaign has been integrated with the development lifecycle from the initial analysis 

to the prototype design to the alpha testing and then the beta release of the application.  

5.5.2 Test Requirement Analysis 

At the system analysis phase, development artifacts – Use Cases and Functional 

Specifications, are utilized to create test requirement artifact – Application Footprint and 

web security artifact – Functionality. In this test campaign, specifically, the PAL-IS 

Project Specification document and PAL-IS Use Cases (for Demo) document, were used 

to identify PAL-IS Application Footprint (Figure 34) and the PAL-IS Functionalities 

(Figure 35).  



 

Chapter 5 Test Campaign Case Studies    123 

Figure 34 PAL-IS Application Footprint 

Figure 35 PAL-IS Functionalities 

Based on the security knowledgebase, the functionalities and the application 

footprint, a set of Potential Vulnerability and related attack vectors against PAL-IS were 

generated using the tool “Potential Vulnerability Identifier” (shown in Figure 18):  

Input: Functionality, Application Footprint, Vulnerability, Attack Vector 

Manual Action: None 

Tool: Potential Vulnerability Identifier 

Output: Potential Vulnerability, feasible Attack Vector 

The identified potential vulnerabilities were sent to the development team so that 

the developers could consider the risks and design defense mechanisms as needed. Figure 

36 shows a potential vulnerability and its attack vector against the PAL-IS “Login” 

functionality.  

A subset of the functionalities that potentially have Stored XSS or standard SQL 

Injection vulnerabilities was selected for the study in this test campaign. The application 

footprint, the subset of functionalities, and the identified potential vulnerabilities, were 

documented in the test analysis document (Appendix C1). 

Platform: .NET Framework (ASP.NET) 3.5 SP1 
Components: - 
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: *  

1. Login: User login 
2. Search Patient: Search a patient or patients 
3. Form Data Collection: Various form-based data view and edit 
4. User Profile Management: User profile view and edit 
5. Load Attachments: Load and view attachments 



 

Chapter 5 Test Campaign Case Studies    124 

Figure 36 A Sample PAL-IS Functionality and Its Potential Vulnerability 

5.5.3 Test Case Design 

The test design followed the four major steps: 

Identify Entry Points 

Based on the API for URL on PAL-IS provided by the development team, a 

representative subset of the APIs that were related to the main functionalities were 

analyzed. The corresponding Entry Points together with their functionalities were 

enumerated and saved in the database. Figure 37 shows a sample entry point. All the 

entry points used in this case study are listed in Appendix C2. 

Entry Point: Log On 
ID: ep002 
POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Form Fields:  
  username 
  password 
  LoginButton=Log In 
Functionality: Log On 

Figure 37 A Sample Entry Point in the PAL-IS Test Campaign 

Generate Attacks 

For each entry point, based on its functionality and the identified potential 

vulnerabilities and the feasible attack vectors, the parameter(s) in the entry point to be 

manipulated to create attacks were identified. The Attacks were then generated using a 

utility in the tool “Test Case Generator” which applies feasible fuzz vector payloads to 

the manipulated parameters of the entry points with the consideration of the application 

footprint:  

Functionality: Login 
Vulnerability: Standard SQL Injection 
Attack Vector: Attack against password-based logon to bypass authentication 



 

Chapter 5 Test Campaign Case Studies    125 

Input: Entry Point, Potential Vulnerability, feasible Attack Vector, Fuzz Vector 

Manual Action: Identify parameter(s) to be manipulate 

Tool: Test Case Generator 

Output: Attack 

The generated attacks were saved as interim results in the database. Figure 38 

shows two attacks against the entry point “Log On”. 

Entry Point: Log On 
 
Attack: 1 
Attack Description: SQL Injection attack 
POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Manipulated Form Field: password=1 or 1=1-- 
 
Attack: 2 
Attack Description: SQL Injection attack 
POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Manipulated Form Field: password=a' or 'a'='a 

Figure 38 Sample Attacks in the PAL-IS Test Campaign 

Identify Check Points 

Based on the PAL-IS System Architecture and the discussion with the developers,  

two check points were identified for each attack – one check point consists of expected 

web page content in browser, another check point consists of an expected entry in the 

application logs. When we were considering a check point, we identified where a defense 

mechanism takes effect, where an expected result can be checked, and what was the 

expected result. Figure 39 shows a sample check point. 

 

 

 



 

Chapter 5 Test Campaign Case Studies    126 

Entry Point: Log On 
 
Attack: 1 
Attack Description: Standard SQL Injection attack 
POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Manipulated Form Field: password=1 or 1=1-- 
 
Defense Mechanism: Application Specific 
Check Point 1: “Login” Page 
   Expected result -> the Login web page is displayed with error message: Your 
login attempt was not successful. Please try again. 
Check Point 2: Application log 
   Expected result -> an entry in the application log with error message: A 
potentially dangerous SQL injection attack was detected from the client on 

login (lpeyton=1 or 1=1--) 

Figure 39 Sample Check Points in the PAL-IS Test Campaign 

The task of identifying check points was an iterative process. Initially, we relied 

on the information rendered in the response web page to check if an attack succeeds or 

not. But when we analyzed the test results of the first test round, we realized that the 

information in the response web page cannot provide adequate evidence to assert if an 

attack succeeds or not. For example, when we launched the standard SQL Injection 

attacks on the “Log On” page, although the logon failed (that may indicate that the 

attacks failed and no SQL Injection vulnerability exists), we did not have a good idea if 

the SQL scripts had still been executed against the database (therefore SQL Injection 

vulnerability might exist). This example shows that only relying on a check point in 

browser may lead to a false positive. On the other hand, if we treat all inappropriate error 

messages in response web pages as an indicator of test failures, it may lead to a false 

negative, as we will discuss in more detail in section 5.5.4 about the XSS false negative 

in the first test round. We needed to leverage the system and/or application logs as an 

additional check point to eliminate these false negatives/positives as they provide 

additional information about how the system built-in and application-specific security 

mechanisms trap the attacks. The design of this checkpoint in the application logs was 

done in collaboration between the developers and the penetration tester. The application 



 

Chapter 5 Test Campaign Case Studies    127 

logs were accessible as a web page returned by an HTTP request (the “application log 

query” showed on Figure 18). At the end, the check points in this test campaign consist of 

the content on response web pages at the client-side and the entries in the application logs 

at the server-side. 

Generate Test Cases 

A subset of user scenarios that includes the identified entry points were selected 

from PAL-IS Use Cases (for Demo) document, and then were saved in the database 

manually. For each attack, a test case was generated using the tool “Test Case Generator” 

(shown in Figure 18) which selects an appropriate PAL-IS User Scenario based on a 

shortest-path-scenario algorithm by which the least steps are needed to run a test:  

Input: Attack, Check Point, User Scenario 

Manual Action: None 

Tool: Test Case Generator 

Output: Test Case 

Figure 40 shows a sample test case.  

Figure 40 A Sample Test Case in the PAL-IS Test Campaign 

Test Case: 1 
Scenario:  Login and then Logout 
Step1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step2: Attack 1 
POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  
username=lpeyton  
password=1 or 1=1— 
LoginButton=Log In 
 
Step3 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 



 

Chapter 5 Test Campaign Case Studies    128 

All the test design artifacts, including the Entry Points, Attacks and Check Points, 

and Test Cases, were documented in the test design document (Appendix C2).  

5.5.4 Test Execution 

In this test campaign, the tests were executed manually by entering user inputs to 

a web page in browser, and then observing the response web page in addition to checking 

the application logs on the server side. The Test Results were then saved in the database 

manually. For the test case #7 and #10, since the length of the user input (as an fuzz 

vector payload) exceeds the maximum limit of the field on the web page, we leveraged a 

HTTP proxy – WebScarab to intercept the HTTP request and then apply the fuzz vector 

payloads directly through the proxy to assist the test execution (shown in Figure 18). 

The manual approach to test execution in this case study is due to the complexity 

of the PAL-IS entry points on .Net platform, which requires significantly additional effort 

to develop a PAL-IS specific test adaptor to load and execute the test cases automatically. 

Since test automation is not a major issue to be addressed in this thesis research, we 

decided not to pursue the PenTest workbench enhancement but instead ran the tests 

manually. 

First Round of Testing 

In the first round of test, the check point was the error message displayed on the 

response web page for each attack – such as “potentially dangerous form input” or 

“potential dangerous SQL Injection”. All the 10 test cases failed since none of the 



 

Chapter 5 Test Campaign Case Studies    129 

response web pages renders appropriate error message showing that the attacks had been 

trapped. 

The test results were sent to the development team, and then a meeting was set 

between the penetration tester and the developers. The developers believed that all the 

attacks, including standard SQL Injection and stored XSS, should have been trapped by 

.Net framework (ASP.Net). The failures were false negatives and they suggested using 

the application logs on the server side as an additional check point. Meanwhile, the 

developers agreed to explicitly display appropriate error messages on the response web 

pages to demonstrate that the attacks have been trapped. Based on the developer’s 

feedback, a check point in the application logs was added for each attack, and the test 

cases were updated accordingly. 

Second Round of Testing (Regression Testing) 

The same set of test cases with the updated check points were executed for the 

second round.   

Five XSS attack test cases passed at this time – a customized error message was 

displayed on the response web page (Figure 41) and an error message entry was logged in 

the application logs (Figure 42). The failures in the first round of test were false negatives 

that were eliminated in this test round as a result of the more comprehensive check 

points.  

One XSS attack was not trapped by the .Net XSS defense mechanism – no 

corresponding entry was found in the application logs and the user profile was updated 



 

Chapter 5 Test Campaign Case Studies    130 

successfully without any error message displayed (Figure 43). Similarly, all four standard 

SQL Injection attacks were not trapped since there were no log entries and no error 

messages displayed. The penetration tester was pretty sure that five true negatives were 

found in this testing. 

 

Figure 41 Screenshot of the Error Message for an XSS Attack in the PAL-IS Test Campaign 



 

Chapter 5 Test Campaign Case Studies    131 

 

Figure 42 Screenshot of the Application Logs in the PAL-IS Test Campaign 



 

Chapter 5 Test Campaign Case Studies    132 

 

Figure 43 Screenshot of a Successful XSS Attack in the PAL-IS Test Campaign 

Another meeting was then set up. The developers and the penetration tester 

analyzed the failed test cases together: 

For the failed test case #7 (a Stored XSS attack), while in general .Net 3.5 SP1 

provides a built-in defense mechanism against stored XSS attacks, it fails to trap a 

specific fuzz vector (XSS vulnerabilty in ASP.Net, 2005) that uses an obscure character 

encoding. Microsoft did not consider it a serious security issue, so they listed it as a 

known issue but did not plan to fix it (Widescale Unicode Encoding Implementation 

Flaw Discovered, 2007). Therefore, the development team decided it was not a priority to 

fix too. 



 

Chapter 5 Test Campaign Case Studies    133 

For the failed SQL Injection test cases, it was found out that .Net 3.5 SP1 itself 

does not provide any defense mechanism against standard SQL Injection attacks. ibatis, a 

third-party component that was used in AEMS, provides such protection to an 

application. However, ibatis was not used in the current PAL-IS design. The development 

team decided to develop an application specific defense mechanism against the standard 

SQL Injection attacks. They introduced a hand-crafted validator that carefully validates 

user input, e.g. password and patient searches, and rejected input that was not of the 

correct format and length, in particular rejecting user input that contained spaces. This 

follows the Microsoft Guidelines about SQL Injection (Microsoft Security and 

Protection: SQL Injection, 2011) to protect PAL-IS from the standard SQL Injection 

attacks used in this test campaign. 

Third Round of Testing (Regression Testing) 

When the implementation of the defense mechanism was completed, the same set 

of test cases was executed to validate the fix and exclude any regression caused by the 

fix. At this time, the four SQL Injection test cases passed. 

Based on the security analysis during the test executions, we realized that it is 

important to document the third-party components that play a security role in a web 

application. The test campaign model was then refined by adding a new attribute in 

Check Point to specify the defense component that traps attacks, and a new attribute in 

Application Footprint to explicitly represent third-party security components used in a 

web application. This security knowledge can help developers to understand which 

security vulnerabilities are not protected in the web application so that they need to 



 

Chapter 5 Test Campaign Case Studies    134 

consider application specific security measures. It can also help penetration testers to 

identify additional check points to determine if attacks are trapped or not. In addition, the 

information of third-party components can facilitate test maintenance and regression 

testing. For example, in a later release if ibatis is integrated into PAL-IS, then it is 

straightforward to identify an additional check point for the SQL Injection test cases. Or 

when the XSS issue in ASP.Net is fixed in the future .Net version and PAL-IS is 

upgraded to this new version, the relevant test cases can be executed to verify if the 

attacks are trapped this time. 

When the test execution was completed, the tool “Test Report” was run to 

generate and print out the Test Report based on the test results. The test report was 

documented in the test execution document (Appendix C3). Figure 44 shows a sample 

test report. 



 

Chapter 5 Test Campaign Case Studies    135 

Figure 44 A Sample PAL-IS Test Report 

------------- Test Campaign Summary -------------- 
# of test cases executed: 10 
# of failed tests: 5 
# of identified vulnerabilities: 2 
# of entry points tested: 8 
# of vulnerable entry points: 3 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 9 
-------------------------------------------------- 
 
----------------Test Result Details--------------- 
Test Case 1: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 2: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 3: launch an SQL Injection attack against <Search Patient> page 
Result: Failed 
 
Test Case 4: launch an SQL Injection attack against <Search Patient> page 
Result: Failed 
 
Test Case 5: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 6: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 7: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 8: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 9: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 10: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
-------------------------------------------------- 
 
------- Identified Vulnerability Details --------- 
 
Vulnerability: SQL Injection 
probably exists on: 
  Entry Point: ep002(Log On) 
  Entry Point: ep005(Search Patient) 
 
Vulnerability: Stored XSS 
probably exists on: 
  Entry Point: ep008(Update Profile) 
-------------------------------------------------- 



 

Chapter 5 Test Campaign Case Studies    136 

5.5.5 Test Result Summary 

There were three iterations of text execution using the same set of test cases in 

this test campaign. Table 6 shows the PAL-IS test campaign summary. 

Table 6 The PAL-IS Test Campaign Summary 

Web Security Knowledgebase  
   Vulnerability 5 
   Attack Vector 9 
   Fuzz Vector 26 
Test Effort 
   Entry Points 8 
   Potential Vulnerable Entry Points 3 
   Test Cases 10 
Test Result 
   First round 10 test cases failed, 2 types of vulnerabilities were 

identified on 3 entry points 
   Second round 5 test cases failed, 2 types of vulnerabilities were 

identified on 3 entry points 
Third round 1 test cases failed, 1 vulnerability (known MS 

XSS) was identified on 1 entry point 

 

  



 

Chapter 6 Evaluation    137 

Chapter 6. Evaluation 

The evaluation of our framework is largely based on the three case studies 

presented in Chapter 5. In section 6.1, we discuss the intended use of the proposed 

penetration test framework as well as the categorization of the case studies in terms of 

how representative they are.   

In section 6.2, we evaluate the framework by comparing it with the Microsoft 

Security Development Lifecycle (SDL) as followed by typical small .NET development 

teams. The criteria identified in section 4.2, are the focus of that evaluation.  

In section 6.3, we compare the framework with the other security assurance 

approaches mentioned in section 3.4. We use the major high level criteria from section 

3.2 in the comparison (integrated penetration test methodology, feasible for general 

testers, and systematic test campaign management), but also consider the more basic 

common criteria that are usually used to classify these other approaches.  

In section 6.4, we discuss this complementary nature of our framework, to 

indicate that the greatest value of our framework is not as an alternative to other 

approaches but as a complement to them.  

In section 6.5, the WenbGoat case study is further analyzed with respect to the 

representative and the effectiveness of the test campaign.  

In section 0, we analyze the limitations in this thesis research, including the thesis 

research methodology, the generic software development model and the simplified web 



 

Chapter 6 Evaluation    138 

application architecture based on which the test framework is proposed, the simple web 

security knowledgebase used in the case studies, and the case studies themselves. 

6.1. Intended Use of Framework and Case Studies 

The proposed test framework is not intended to be used as a “one solution fits 

all”. Neither is it intended to be used to replace the expert security assessment. Actually, 

security experts should be leveraged to build security knowledgebase for penetration test 

campaigns, and they may be invited to help develop adequate and appropriate security 

remediation measures for security defects identified in penetration test campaigns. It is 

intended to assist general testers, who are responsible for penetration testing in the 

context of a security-oriented software development life cycle, by providing them with a 

well-defined test methodology supported by a model-driven penetration test approach in 

which the security knowledgebase, the utilized development artifacts, and the produced 

test artifacts are represented declaratively so that they can be processed by computer 

programs to automate some aspects of the testing. 

Considering the assumptions based on which the proposed test framework was 

developed (section 4.3), the framework is intended to apply to penetration test 

campaigns, which are conducted in a classic iterative software development life cycle 

where development artifacts and developers’ assistance are available to penetration 

testers, for web applications that are developed based on a classic AJAX architecture that 

do not process multimedia content and do not have interacts with plug-ins/add-ons in 

browser that have security implications. 



 

Chapter 6 Evaluation    139 

Two of the three case studies (AEMS and PALIS) were developed in a classic 

iterative software development life cycle. They are significant but relatively small web 

applications developed by small .NET teams. However, in the three case studies, the test 

campaigns are quite different with respect to the development phase when the test 

campaign got started and the application footprint.  

WebGoat is an existing reference web application that was useful for testing our 

PenTest workbench and validating our web security knowledgebase and penetration test 

campaign model. However, our test campaign for WebGoat was not integrated into its 

software development life cycle and there was no interaction between testers and 

developers. AEMS is a real web application that was still in development, approaching its 

beta release, when our penetration test campaign started. As a result, we did not integrate 

over the entire software development lifecycle and some development artifacts were not 

well documented. PAL-IS is a real web application that was just beginning development 

when our penetration test campaign s started.  As a result, our complete test methodology 

was applied across an entire software development lifecycle and the development effort 

benefited from fruitful collaboration between the development team and the test 

campaign.  

The framework includes a generic, knowledge-based prototype PenTest 

workbench to support the test campaigns in the three case studies in which the three 

applications have different application footprints. WebGoat is a J2EE application that 

uses HTTP base authentication and can be accessed via HTTP, while both AEMS and 

PAL-IS are .NET applications, use form-based authentication, and AEMS was 



 

Chapter 6 Evaluation    140 

configured to be accessed over HTTPS. The same PenTest workbench was used to 

automate the test tasks including the generation of potential vulnerabilities, attacks, and 

test cases in all the three test campaigns. It was also used to load and run test cases 

automatically in the WebGoat and AEMS test campaigns. The test cases for PAL-IS test 

campaigns were executed manually, as justified in section 5.5.3. We believe, though, 

with extra effort to develop a PAL-IS specific test adaptor, the PenTest workbench can be 

enhanced to load and run the PAL-IS test cases automatically. 

6.2. Compare with the MS SDL 

As shown in Table 7, based on our case studies, we evaluate the proposed test 

framework using the evaluation criteria defined in section 4.2, by comparing the results 

obtained in our case studies using the Microsoft Security Development Lifecycle (MS 

SDL) on its own, versus results obtained using the MS SDL integrated with support from 

our test framework in a systematic manner. We want to use the evaluation to demonstrate 

our framework, as a complement to the MS SDL, how it enhances penetration testing 

practice in such a security-oriented software development life cycle. We do not compare 

our framework with the OWASP testing guide since the OWASP testing guide is 

primarily to define what kinds of attacks a penetration tester needs to do, rather than what 

tasks a tester needs to perform in each phase of software development life cycle and how 

they should collaborate with developers and security experts. 

The evaluation is based on what we observed in the case studies, because in this 

thesis research we are simply evaluating whether the framework is feasible for general 

testers, rather than to the level of what is the best design of such a framework. 



 

Chapter 6 Evaluation    141 

Each criteria is evaluated on a scale of Yes, Ad Hoc, and No, where Yes means the 

criterion is addressed in a systematic fashion, Ad Hoc means it is possible to address the 

criterion but how to do so is not well-defined and is very much dependent on the style 

and expertise of a tester or security expert, and No means the criterion is not addressed at 

all. Abbreviations are used in Table 7 for better readability: MDPT stands for the 

proposed Model-Driven Penetration Test framework, and MS SDL stands for the 

Microsoft Security Development Lifecycle. 

Table 7 Comparison with the MS SDL 

 MDPT-integrated 

MS SDL 

Standalone       

MS SDL 

Integrated Test Methodology 

Integrated Penetration Test Process Yes, Well Defined No 
Collaboration with Developers Yes, Well Defined Ad Hoc 

Development Artifacts Utilization Yes, Well Defined Ad Hoc 
Grey-Box Test Architecture Yes (Simple one) Ad Hoc 

Use with Other Security Test Methods Ad Hoc Ad Hoc 
Feasible for General Testers 

Web Security Knowledgebase Yes (Prototype, 
Limited) 

Ad Hoc 

Test Campaign Modeling Yes, Well Defined No 
Workbench Tool Support Yes (Prototype) Ad Hoc 
Consistent Test Coverage Yes, Well Defined Ad Hoc 

Systematic Test Campaign Management 

Reports and Documentation Yes (Simple 
Templates) 

Ad Hoc 

Test Maintenance Yes, Well Defined Ad Hoc 
Regression Testing Yes, Well Defined Ad Hoc 

Integrated Penetration Test Process 

 MDPT-integrated MS SDL: It is a penetration test process completely 

integrated into a security-oriented software development life cycle. 

Vulnerabilities identified in a test campaign can be addressed by developers 

before an application is released. 



 

Chapter 6 Evaluation    142 

In the PAL-IS test campaign, the tester got involved in the very beginning of 

the development of PAL-IS. The test campaign was fully integrated with the 

application development. The test campaign was developed starting from the 

initial system analysis to prototype design to alpha testing and then beta testing 

of the application. In the AEMS test campaign, the tester got involved in the 

middle of the development of AEMS (a beta version) and went through test 

development and beta testing. The vulnerabilities identified in the two test 

campaigns got addressed by the developers before the web application is 

released to production. The fixes were validated promptly and the regression 

testing was also performed. 

 Standalone MS SDL: In both the PAL-IS and the AEMS development, the 

developers, who more or less followed the MS SDL in their development 

process, left the penetration testing as an afterthought and were to rely on 

external security experts to come in and test the web application after 

development was complete before they were going into full production. 

Collaboration with Developers 

 MDPT-integrated MS SDL: It facilitates the collaboration between developers 

and penetration testers by explicitly specifying the roles of developers and 

penetration testers, the touch points, and the development and test artifacts 

involved. Both developers and penetration testers can benefit from the 

collaboration.  

In the PAL-IS test campaign, at the end of the analysis phase, the penetration 

tester sent a list of potential vulnerabilities to the developers who were then 

aware of the potential vulnerabilities (Cross-Site Scripting and Standard SQL 

Injection). They thought that the .Net platform provides build-in security 

mechanisms to protect the application from the vulnerabilities.  

Before the second round of test execution in the PAL-IS test campaign, the 

developers assisted the penetration tester to enhance the check points by adding 



 

Chapter 6 Evaluation    143 

a check point in the application logs for each test case. As the result, five false-

positives in the first round of test execution were eliminated in the second 

round of test execution. 

Furthermore, the process of adding the additional check points helped the 

developers get a better understanding how the defense mechanisms work – with 

the four failed Standard SQL Injection test cases in the second round of test 

execution, the developers realized that the .Net platform itself does not provide 

a built-in defense mechanism against Standard SQL Injection attacks. As a 

result, the developers developed an application-specific defense mechanism to 

remedy the Standard SQL Injection vulnerability. 

 Standalone MS SDL: It is possible, but not required for security experts to work 

with developers to facilitate their penetration test effort, but there is no well-

defined process to follow. 

Development Artifacts Utilization 

 MDPT-integrated MS SDL: It specifies the development artifacts that can be 

utilized at each test phase. The corresponding test artifacts can be derived from 

the development artifacts directly. 

In the PAL-IS test campaign, at the test analysis phase, the tester derived the 

test artifacts Application Footprint and Functionality from PAL-IS Project 

Specification  (Section 4.2 – Functionality) and PAL-IS Use Cases (for Demo). 

At the test design phase, the tester enumerated Entry Point from API for URL 

on PAL-IS; identified Check Point based on the PAL-IS Project Specification 

Document (Section 5 – Architecture); and retrieved User Scenario from PAL-IS 

Use Cases (for Demo) to generate Test Case. 

 Standalone MS SDL: Security experts may leverage development artifacts in 

penetration testing, but there are no development artifacts that have been 

explicitly specified to be used in a test campaign. 



 

Chapter 6 Evaluation    144 

Grey-Box Test Architecture 

 MDPT-integrated MS SDL: It defines a grey-box test architecture that 

explicitly specifies possible entry points and check points that can be used in a 

test campaign. The grey-box test architecture discussed in the case studies was 

developed based on simple AJAX web applications that only have HTML 

pages and limited client-side scripts. 

In the PAL-IS test campaign, the check points in the application logs were 

created and used in the second round of test execution so that the five false-

positives in the first round of test execution were eliminated effectively (see the 

test result analysis in section 5.4.5 for more details). 

 Standalone MS SDL: Security experts may use the knowledge of internal 

structure of web applications in penetration testing, but there is no grey-box test 

architecture defined that explicitly specifies possible entry points and check 

points that can be used in a test campaign. 

Use with Other Security Test Methods 

 MDPT-integrated MS SDL: It is not a major issue we address in the proposed 

test framework. We think with the well-defined collaboration between 

developers and testers, other security test methods can be used to enhance the 

penetration test effort, e.g. confirm the vulnerability findings in a test campaign. 

For example, in the AEMS test campaign, the developers did code reviews with 

the tester for the false negative of Standard SQL Injection vulnerability (see 

section 5.4.4 for more details). 

 Standalone MS SDL: Security experts may use other security test methods with 

their penetration test effort to improve test quality or test efficiency, but there is 

no well-defined process to follow.  



 

Chapter 6 Evaluation    145 

Web Security Knowledgebase 

 MDPT-integrated MS SDL: It defines a simple, relational database based web 

security knowledgebase that was populated with limited but common types of 

vulnerabilities and related attack vectors and fuzz vectors. The web security 

knowledgebase was used directly in the test campaigns to support test 

development. 

The same web security knowledgebase was used in all the three case studies. 

The penetration tester generated the test artifacts Potential Vulnerability, 

Attack, and Test Case by using the PenTest work bench that interacts with the 

web security knowledgebase to retrieve the required security knowledge. The 

penetration tester did not need to worry about the updates and maintenance of 

the security knowledgebase. 

 Standalone MS SDL: Security experts may have their own web security 

knowledgebase, or use tools that come with knowledgebase but none are 

provided or defined by MS SDL. Typically their format is not standardized nor 

are they typically made available to development teams to use as a resource for 

learning and reuse. 

Test Campaign Modeling 

 MDPT-integrated MS SDL: It defines a test campaign model that captures and 

retains the test artifacts and the development artifacts involved in penetration 

test campaigns.  

The same test campaign model was used in all the three case studies. During the 

test development, the penetration tester focused on populating the model by 

using the development artifact e.g. User Scenario and the test artifacts e.g. 

Functionality, Entry Point, Check Point etc., and then used the utilities in the 

PenTest workbench to generate the test artifacts e.g. Potential Vulnerability, 

Attack, Test Case etc. During the test maintenance, the modeled artifacts were 



 

Chapter 6 Evaluation    146 

reused to update the impacted test artifacts. The test campaign model is also 

important for enabling the tool support that was provided in the prototype 

workbench. 

 Standalone MS SDL: No test or development artifacts are modeled for 

penetration testing. 

Workbench Tool Support 

 MDPT-integrated MS SDL: A prototype of knowledge-based PenTest 

workbench, which consists of a small set of model-driven utilities, was 

developed to support the proposed penetration test tasks at each test phase. The 

workbench provides an integrated test platform that streamlines the test effort in 

a way that an output of a utility can be used as an input of another utility at the 

next step. 

The PenTest workbench was used in all the three test campaigns to generate the 

potential vulnerabilities at the test analysis phase, the attacks and the test cases 

at the test design phase, and the test execution reports at the test execution 

phase. In the WebGoat test campaign and the AEMS test campaign, the test 

cases were loaded and executed automatically using the PenTest workbench. 

 Standalone MS SDL: There are some tools available for web application 

penetration testing that security experts can leverage based on their own choice. 

But these tools are not built on an integrated test platform so that the security 

experts have to interpret and transform the output of one tool to input of another 

tool which can be time-consuming and error-prone. 

Consistent Test Coverage 

 MDPT-integrated MS SDL: It defines a systematic process, with tool support, 

to achieve consistent test coverage across test campaigns, in terms of the 

coverage of entry points and the coverage of potential vulnerabilities.  



 

Chapter 6 Evaluation    147 

In the PAL-IS test campaign, the web security artifact Functionality that was 

used to identify the Potential Vulnerability was derived from the development 

artifact PAL-IS Project Specification Document (Section 4.2 – Functionality). 

The test artifact Entry Point was derived from the development artifact API for 

URL on PAL-IS. In the AEMS test campaign, the similar development artifacts 

were acquired from the developers and the relevant test artifacts were derived 

from the development artifacts in the same systematic way. 

In all the three test campaigns, the same web security knowledgebase, which 

determines the types of vulnerabilities that can be uncovered, were used to 

generate the test artifacts Potential Vulnerability and Attack by using the 

PenTest workbench. 

 Standalone MS SDL: Test coverage is determined by the expertise and 

diligence of security experts. The test quality may vary from one security expert 

to another. 

Reports and Documentation 

 MDPT-integrated MS SDL: It defines a set of simple templates that can be used 

for test documentation at the test analysis, test design, and test execution phase. 

The standard test documents can facilitate the communication between 

developers and testers at the various phases. 

The same test templates were used in all three case studies to record test 

artifacts and test results. The test execution reports were generated 

automatically based on the test results by using the PenTest workbench.  

 Standalone MS SDL: Security experts may have their own test document 

templates. The test templates may vary from one expert to another.  



 

Chapter 6 Evaluation    148 

Test Maintenance 

 MDPT-integrated MS SDL: It defines when and how to perform test 

maintenance in test campaigns. As the test artifacts and development artifacts 

are modeled and processed by computer programs, they can be reused across 

multiple test campaigns on a continuous base. 

In both the AEMS and the PAL-IS test campaigns, after the first round of test 

execution, only the test artifact Check Point was updated due to the fixes in the 

implementation that addressed the failures in the first round of test execution 

and the enhancement in the check points (additional check points were added 

for each attacks). Other test artifacts, such as Entry Point and Attack, were 

reused to re-generate test cases. And then the updated test cases were executed 

in the second round of test execution, and the third round of test execution in 

the PAL-IS test campaign. 

 Standalone MS SDL: Penetration testing is an optional, one-time task so that 

there is no consideration for test maintenance. Security experts may have their 

own way to manage test maintenance that may vary from one expert to another, 

but there is no well-defined methodology that can be followed. 

Regression Testing 

 MDPT-integrated MS SDL: It defines when regression testing is required. 

Since test artifacts (such as test cases) are modeled and can be processed by 

computer programs, regression testing can be automated. 

In the AEMS test campaign, in the second round of test execution the updated 

test cases were loaded and executed automatically using the PenTest workbench 

to ensure the failure (Standard SQL Injection attack against the entry point 

ep006) in the first round of test execution was fixed and there was no 

regression. 



 

Chapter 6 Evaluation    149 

In the PAL-IS test campaign, the updated test cases were manually executed in 

the second round of test execution to ensure the failures (Stored XSS attack 

against the entry point ep008) was fixed and there was no regression. The same 

test cases were manually executed in the third round of test execution to ensure 

the failures (Standard SQL Injection against the entry points ep002 and ep005) 

were fixed and there was no regression.  

 Standalone MS SDL: Penetration testing is an optional, one-time task so that 

there is no consideration for regression testing. Security experts may have their 

own way to manage regression testing that may vary from one expert to 

another, but there is no well-defined methodology that can be followed. 

6.3. Comparison of Security Assurance Approaches 

As shown in Table 8, we compare the framework with the other security 

assurance approaches mentioned in section 3.4, including Code Reviews that 

systematically examines source code of a web application to improve the overall quality 

of the application, Code Analyzer that scans source code of a web application to discover 

weaknesses in the code, Vulnerability Scanner that scans a running web application for 

potential vulnerabilities; and Expert Security Assessment as described in section 3.3.2. 

We use the major high level criteria from section 4.2 in the comparison (integrated 

penetration test methodology, feasible for general testers, and systematic test campaign 

management), but also consider the more basic common criteria that are usually used to 

classify these other approaches, including: 

 Coverage of Entry Points/Code Base: is it feasible to systematically achieve 

coverage of all entry points or code base 

 Coverage of Vulnerability Types: is it feasible to consistently identify various 

types of vulnerabilities 



 

Chapter 6 Evaluation    150 

 Test Automation: is test automation supported 

Table 8 Comparison of Security Assurance Approaches 

 MDPT VS CR CA ESA 

Common Criteria 

Coverage of Entry Points/Code 
Base 

Yes Yes To Some 
Degree 

Yes Yes 

Coverage of Vulnerability 
Types 

Yes To Some 
Degree 

Yes To Some 
Degree 

Yes 

Test Automation To Some 
Degree 

Yes No Yes To Some 
Degree 

Categories of the Evaluation Criteria  

Integrated Test Methodology Yes No Yes No No 
Feasible for General Testers Yes Yes No No No 
Systematic Test Campaign 

Management 
Yes To Some 

Degree 
No To Some 

Degree 
No 

The security assurance approaches are compared on a scale of Yes, To Some 

Degree, and No, where Yes means an approach completely meets a criterion, To Some 

Degree means it meets a criterion partially, and No means it does not meet a criteria at 

all. Abbreviations are used in Table 8 for better readability: MDPT stands for the 

proposed Model-Driven Penetration Test framework, VS stands for Vulnerability 

Scanner, CR stands for Code Reviews, CA stands for Code Analyzer, and ESA stands for 

Expert Security Assessment. 

Coverage of Entry Points/Code Base 

 MDPT: Entry points are enumerated based on design documents such as Web 

API in a systematic way, as what was done in the PAL-IS test campaign.  

An implementation of a web application may contain entry points that are not 

specified in the design document, and vulnerabilities may exist in these entry 

points. We did not address this issue in the proposed test framework. We think 

tools such as a web spider (crawler) can be leveraged at the implementation 



 

Chapter 6 Evaluation    151 

phase to gather all existing entry points and identify any ones that are not 

specified in the design document. 

 VS: Vulnerability scanner can browse a web application and identify all 

existing entry points. It may fail, though, to identify any entry points that are 

specified in the design document but missed in the implementation of the web 

application. 

 CR: Code reviews is a time consuming task that is usually not applied to the 

entire code base of a web application with a typical scale. 

 CA: Code analyzer can be used to scan the entire code base of a web 

application to identify insecure coding practice.  

 ESA: It is assumed that security experts can examine all possible entry points in 

a web application within reasonable time frame by leveraging their expertise 

and with tool support. 

Coverage of Vulnerability Types 

 MDPT: The test campaigns are developed and managed in a systematic, model-

driven approach with tool support. Security experts are expected to create and 

maintain a web security knowledgebase that retains their security expertise and 

determines the types of vulnerabilities that can be identified in a test campaign. 

In the three case studies, the key test artifacts, specifically Test Case and Test 

Result (identified vulnerabilities), can be consistently reproduced by applying 

the test framework.  

A simple web security knowledgebase, which includes limited types of 

vulnerabilities, was defined and used in the case studies. The effort required 

and difficulty of creating a large complete security knowledgebase is a major 

issue for our test framework and is a significant issue that needs to be 

researched in future work. 



 

Chapter 6 Evaluation    152 

 VS: Vulnerability scanner is efficient in identifying some specific types of 

vulnerabilities in a web application but it is not good at finding other types that 

are more complex or application specific. 

 CR: Code reviews can find all types of insecure design and coding practice 

when it is performed by people with adequate security expertise, e.g. security 

experts. 

 CA: Code analyzer is efficient in finding some specific types of insecure coding 

practice but is not good at finding all types of insecure coding.  

 ESA: It is assumed that security experts can identify all types of vulnerabilities 

in a web application with their expertise and with tool support. 

Test Automation 

 MDPT: Some test artifacts, including Potential Vulnerability, Attack, and Test 

Case, can be generated automatically using the PenTest workbench based on 

other development artifacts, test artifacts and the web security knowledgebase, 

as demonstrated in the three case studies. In addition, the test artifacts can be 

reused across multiple test campaigns. 

 VS: In general, it is a test automation tool. It may require significant effort to 

set it up before running. 

 CR: In general, it is a manual test process. 

 CA: In general, it is a test automation tool. 

 ESA: Security experts utilize a variety of tools to assist in the security 

assessment. However, the tools are not built into an integrated test environment 

so that the output of one tool has to be manually interpreted and transformed to 

the input of another tool. 

Integrated Test Methodology 

 MDPT: It provides a test methodology that is completely integrated into a 

security-oriented software development life cycle.  



 

Chapter 6 Evaluation    153 

 VS: It is run against a deployment of web application to identify any 

vulnerability. It can be integrated into a security-oriented development life 

cycle at a specific phase, e.g. verification phase. But this is not a mandatory 

usage of vulnerability scanners. 

 CR: It can be performed as an integrated process in a security-oriented software 

development life cycle. 

 CA: It is run against source code of a web application to identify any insecure 

coding practice. It can be integrated into a security-oriented development life 

cycle at a specific phase, e.g. application implementation phase. But this is not 

a mandatory usage of code analyzers. 

 ESA: It is usually performed by security experts as an isolated, one-time test 

process that is not considered in the context of a security-oriented software 

development life cycle. 

Feasible for General Testers 

 MDPT: General testers are capable of performing penetration test campaigns on 

a continuous base by taking a model-driven test approach that is supported by 

the PenTest workbench and the web security knowledgebase. 

 VS: General testers can utilize it for security assurance, although special 

training may be required.  

 CR: Usually, it is performed by developers with adequate security expertise or 

by security experts themselves. 

 CA: Developers utilize it for ensuring secure coding practice. 

 ESA: It is performed by security experts, external or internal. 

Systematic Test Campaign Management 

 MDPT: The integrated test methodology provides guidance on when and how 

test maintenance and regression testing are required. The model-driven test 

approach enables the created test artifacts can be reused across multiple test 

campaigns. 



 

Chapter 6 Evaluation    154 

 VS: It provides the feature of test artifact management and supports regression 

testing. It does not, though, provide a systematic guidance for test artifact 

maintenance and regression testing. 

 CR: In general, it does not provide systematic support for regression testing. 

 CA: Usually, a code analyzer is used to scan source code that does not need test 

maintenance.  

 ESA: In general, it is a one-time task without consideration for test maintenance 

and regression testing. 

6.4. Complementary Nature of the Proposed Test Framework 

We have been comparing our framework to other approaches. However, the most 

significant potential utility of our framework is not as an alternative to other approaches 

but rather as a complement that supports them effectively. In the sub-sections below, we 

illustrate the complementary nature of the test framework by discussing how the test 

framework can be used with the MS SDL and with vulnerability scanners. 

6.4.1 Supplement to the Microsoft Secure Development Lifecycle 

The Microsoft Security Development Lifecycle (SDL) defines a security-oriented 

software development life cycle with tool support for each phase. In the MS SDL, 

penetration testing is an optional task that is performed by external security experts at the 

verification phase.  

Both the proposed test framework and the MS SDL propose an integrated security 

assurance process. The MS SDL was developed from the development perspective and 

leverages a range of security assurance methods such as threat modeling, static analysis 

and dynamic fuzz testing, but it does not define “how” the penetration testing should be 



 

Chapter 6 Evaluation    155 

performed. The proposed test framework only focuses on penetration testing and 

specifies a detailed test methodology with tool support. The framework can be used as a 

supplement to the MS SDL in that it provides detailed guidance to general testers to 

perform systematic penetration test campaigns, including: 

 Defined a test process that is fully integrated into a security-oriented software 

development life cycle, such as the MS SDL, with explicitly specified touch 

points between developers and testers, and specified the development artifacts 

that can be used for test development. 

 Defined three basic roles in a penetration test campaign, namely security expert, 

developer, tester, and their responsibilities. 

 Defines a model-driven penetration test approach based on the web security 

knowledgebase and test campaign model. 

6.4.2 Use Vulnerability Scanner in the Test Framework 

Web application vulnerability scanners provide an automated approach to security 

assurance. Vulnerability scanners alleviate the requirements of security expertise to 

testers. General testers can run a scanner to uncover potential vulnerabilities existing in a 

web application, and the scanning can be repeated easily. Scanners are very efficient at 

finding some specific types of vulnerabilities, e.g. denial of service; redundant backup 

files; or path traversal vulnerability. However, scanners can’t find all types of 

vulnerabilities, especially those deeply intertwined in business logic and custom 

application design. Therefore, testers can leverage a scanner as a supplementary tool in 

the proposed test framework in that they can use it to scan for the specific types of 

vulnerabilities that it is really good at, and get themselves focus on the types of 

vulnerabilities that are more relevant to application specific flaws. 



 

Chapter 6 Evaluation    156 

6.5. WebGoat Reference Analysis and Performance 

The WebGoat application used in the case study is version 5.2. It includes 55 

“attack lessons”3 – each lesson is to demonstrate an attack scenario (against a deliberately 

planted security defect in WebGoat), or just explain an attack method (e.g. how to browse 

a WSDL file for a published web service to find all operations provided in the web 

service), or simply show possible weakness in a system (e.g. the strength of various 

password scheme). Some attacks are pretty straightforward, e.g. using WebScarab to 

intercept and alter an HTTP request or even simply adding “&admin=true” to the URL in 

browser to bypass access control scheme, or simply review HTML source code to look 

for any sensitive information. Some attacks are trickier, e.g. SQL Injection attacks and 

XSS attacks that require dedicatedly manipulating specific parameters. The 55 lessons 

cover various types of web application vulnerabilities, such as Cross-Site Scripting, 

Injection flaws (e.g. standard SQL Injection), session management flaws, access control 

flaws, authentication flaws, AJAX specific vulnerabilities, or web service specific 

vulnerabilities. 

 I went through and exercised all the lessons during the WebGoat case study. 

Then I picked up the defects in four lessons: a reflected XSS, a stored XSS, a numeric 

SQL Injection, and a string SQL Injection, based on the considerations that the four 

attack vectors are “complicated” ones and they are the types of vulnerabilities in the 

sample web security knowledgebase.  

                                                 
 
 
3 Based on (OWASP WebGoat User and Install Guide, 2011), WebGoat includes around 30 “lessons”. But 
we found 55 lessons in the version we installed and used. 



 

Chapter 6 Evaluation    157 

The WebGoat test includes 13 entry points, 4 user scenarios, and 13 generated test 

cases. All four defects were uncovered by the tests successfully (true negative), and the 

test did not produce any false negative and false positive. See section 5.3 and Appendix 

A1 – A3 for details. Below are the major steps and related effort that I took to run the test 

campaign by applying the test framework: 

 Identified the footprint of WebGoat and populated it into the test campaign 

database manually: 2 hours 

 Identified 13 entry points (and its functionality) using WebScarab and 

populated it into the test campaign database manually: 4 hours 

 Identified the parameter(s) to be manipulated for each entry point that has the 

security defect, and populated it into the test campaign database manually: 2 

hour 

 Generated 13 attacks using the PenTest workbench: mere seconds for each 

attack, plus a few minutes to double check the result, once we had a bug-free 

implementation of our PenTest workbench. (But it did take several weeks of 

coding effort before the PenTest workbench was finalized). 

 Identified check points for each attack by referring to the solution notes in 

WebGoat, and populated it into the test campaign database manually: 1 hour 

 Identified 4 user scenarios for the attacks by walking through WebGoat and 

capturing relevant HTTP requests using WebScarab, and populated it into the 

test campaign database manually: 2 hours 

 Generated 13 test cases using the PenTest workbench: seconds for each test 

case, plus a few minutes to double check the result, once we had a bug-free 

implementation of our PenTest workbench. (But it did take several weeks of 

coding effort before the PenTest workbench was finalized). 

 Ran the test cases using the PenTest workbench and analyzed the test results: 

seconds to run the test cases, but several hours (~ 3 hours) were spent verifying 

and validating that the results were correct. 



 

Chapter 6 Evaluation    158 

Table 9 shows the summary of the discussions above.  

Table 9 WebGoat Reference Analysis and Performance 

# lessons # defects # tested defects # test cases false negative/positive test effort 

55 40 4 13 none 14 hours 

 

6.6. Limitations 

There are some limitations to the results obtained in our thesis that should be 

acknowledged in terms of the research methodology applied in this thesis, the proposed 

test framework, and the case studies used for the evaluation of the framework. 

6.6.1 Design-Oriented Research Methodology 

A design-oriented research methodology was followed in this thesis research (as 

was described in section 1.4). By conducting a literature research and gap analysis, we 

identified a set of outstanding issues existing in current penetration test practice. Then we 

designed and proposed a test framework to address these specific issues (namely the 

criteria identified in section 4.2). However, there may be other issues and criteria that are 

relevant (for example the ones listed in section 6.3), which may not be present in our 

framework. We have not attempted to validate in a comprehensive fashion that our 

framework is better in all ways for testing of all web applications. Instead, we focused on 

the issues that we identified, and evaluated and demonstrated that the proposed test 

framework can be better than other approaches with respect to the identified issues for 

certain types of web applications by conducting case studies and problem analysis. A 



 

Chapter 6 Evaluation    159 

more comprehensive evaluation of our framework across a much wider spectrum of web 

applications and development teams is needed, but that is beyond the scope of this thesis. 

6.6.2 Software Development Life Cycle Model 

The test methodology in the proposed test framework was developed based on the 

assumption (see the assumption 1 in section 4.3) that the development of web 

applications under test follows a classic iterative software development process. 

However, there are a variety of software development life cycle models available that 

web application development may follow, e.g. less formal agile methodology or more 

complex and structured RUP approach. In these different development processes, the 

available development artifacts that are relevant to penetration testing and the possible 

interactions between developers and penetration testers may be different. The test 

methodology in the proposed test framework would need to be amended to adapt to such 

situations. 

6.6.3 Web Application Architecture 

In the proposed test framework, the grey-box test architecture was developed 

based on classic AJAX web applications that do not process multimedia content and do 

not interact with any plug-ins/add-ons in browser (see the assumption 2 in section 4.3). 

The grey-box test architecture, including the possible entry points and check points, and 

the consequently developed test campaign model, are discussed based on this simplified 

architecture. However, many web applications have a more sophisticated architecture that 

is capable of processing multimedia content and can interact with various plug-ins/add-

ons components in browser. These web applications may have different types of 



 

Chapter 6 Evaluation    160 

vulnerabilities and different types of entry points and check points. Consequently, the 

grey-box test architecture, the test campaign model, the PenTest workbench, and 

especially the content of the web security knowledgebase would need to be amended and 

enhanced to adapt to the penetration testing for the web applications built on more 

complex architecture. 

6.6.4 Simple Web Security Knowledgebase  

The proposed test framework includes a simple web security knowledgebase that 

was created by us from text-based security knowledgebases available on the Web. This 

simple web security knowledgebase has very limited types and instances of web 

application vulnerabilities and related attack vectors and fuzz vectors. The proposed test 

framework relies on security experts to build up a web security knowledgebase that is 

more comprehensive and updated (see the assumption 3 in section 4.3). This might lead 

to a more complex security model.  

It is not a focus in this thesis to address how to build such a comprehensive and 

updated web security knowledgebase. This is significant, because the effectiveness of the 

testing using our framework is limited by how well the security knowledgebase is 

populated, e.g. with attack vectors. It remains a significant issue that can be an important 

future work, as discussed in more detail in section 7.2.1. 

6.6.5 Limited Scope of the Case Studies 

Two real web application projects, namely AEMS and PAL-IS, were used to 

evaluate the proposed test framework. While the five major components of the 



 

Chapter 6 Evaluation    161 

framework – the penetration test methodology, the grey-box test architecture, the web 

security knowledgebase, the test campaign model, and the knowledge-based PenTest 

workbench, were all applied in the experimental test campaigns and therefore got 

validated by the case studies to some degree, the validity of the evaluation is weakened 

due to the limited scope of the case studies in terms of the size and duration of the 

projects and the size of the web security knowledgebase.  

Based on the case studies, the thesis researcher does not know for sure how 

effectively average testers can use the framework efficiently since the researcher was 

always available as a resource. In the case studies, the thesis researcher was there to 

coordinate and guide the development and test teams through the framework both for the 

test campaign management and the interactions between developers and testers defined 

by the methodology. In the AEMS case study the development and test team would not 

have been able to follow the framework that was used during that case study. But based 

on the experience the thesis researcher formalized the documents and structured the 

interaction better including the creation of guidelines on how to handle false negatives 

etc. Based on the experience with the PALIS development and test team, the thesis 

researcher feels that a tester could follow the framework to performance penetration 

testing if a well-written user guide is provided and a 1 – 5 day training course is offered 

to them. 

Eventually, a case study should be done more formally with bigger industrial 

projects to further validate the approach and remove the thesis researcher’s participation 

as a penetration tester from the case study. 



 

Chapter 6 Evaluation    162 

The Size and Duration of the Projects 

Both projects have a small size of development team that consists of three to five 

system analysts and developers and one penetration tester. Although we observed active 

collaboration occurring between the developers and the tester, and how the security 

knowledge was retained and transferred within the team, it is insufficient to evaluate the 

benefits gained in such a small team size. Specifically, it is difficult to measure the 

improvements on test efficiency in quantity when there is only one penetration tester. 

Both projects were developed in less than one year with a couple of alpha and 

beta releases. Although we observed the benefits by reusing the test artifacts and the 

retained security expertise during the test maintenance and regression testing when 

AEMS and PAL-IS were under development, we did not follow up the two applications 

in their application maintenance phase. It is difficult to measure the improvements on test 

efficiency in quantity with only a couple of test cycles. 

The Complexity of the Web Application Architecture 

Both AEMS and PAL-IS are .NET based classic database-driven web application 

with trivial client-side scripting. The experience with the experimental test campaigns is 

not sufficient to provide solid indication to the efficiency and effectiveness of the test 

framework when it is applied to more sophisticated AJAX web applications with rich 

client-side scripting. 

  



 

Chapter 7 Conclusions    163 

Chapter 7. Conclusions 

This thesis is concluded by summarizing the major contributions of the thesis 

research while highlighting some limitations that point towards future research work. 

The proposed test framework is complementary to the existing methodologies, 

security tools, and best industry practices for web application security assurance. The 

framework can be integrated into a security-oriented software development life cycle, 

like the MS SDL, to enhance the penetration testing practice. Security tools, like 

vulnerability scanner, are still used in the framework, while the framework may help to 

eliminate false negatives. The framework does not guarantee to produce a vulnerability 

free, completely secure system. Even if the framework is correctly applied in the 

development of a web application, it is still very likely that a security expert will find 

vulnerabilities in the application. Rather the application of the framework in software 

development can act as a benchmark to ensure that basic security has been achieved. It 

provides an indicator to a security expert of the quality of development team’s work: if 

there are significant failures in the penetration test results, it demonstrates that the 

development team probably did not apply all security defense mechanisms appropriately.   

7.1. Summary of Contributions  

In this thesis, we proposed a model-driven penetration test framework for web 

applications in the context of a security-oriented software development life cycle. The 

thesis research has made the following major contributions: 

Contribution 1: 



 

Chapter 7 Conclusions    164 

We proposed a systematic web application penetration test methodology that is 

fully integrated into a security-oriented software development life cycle. The test 

methodology specifies the fundamental roles in a test campaign; the development 

artifacts utilized and the test artifacts produced; and the interactions between penetration 

tester and developer. The test methodology was completely followed in the PAL-IS case 

study. In the PAL-IS test campaign, the development artifacts were utilized directly to 

develop penetration tests. The failures in the test results were addressed at a timely pace: 

the real defects (the SQL Injection vulnerability found in the first round of testing) were 

fixed in the following build, and the false negatives (the XSS vulnerability found in the 

first round of testing) were eliminated using a more comprehensive check point in the 

application log as a result of collaboration between the penetration tester and the 

developers. 

The test methodology was developed based on a classic iterative, waterfall 

development process. It needs to be amended to adapt to different development situations 

when different software development methodologies are adopted. 

Contribution 2: 

We proposed a model-driven penetration test framework that was applied in all 

the three case studies. Some test artifacts, including Potential Vulnerability, Attack, and 

Test Case, were generated automatically using the PenTest workbench. The test artifacts 

and development artifacts were saved in the test campaign database and were reused in 

the test campaigns. 



 

Chapter 7 Conclusions    165 

The web security knowledgebase proposed and used in the case studies is simple 

with limited content. It is one of major limitations in the test framework as well as in the 

case studies. It needs significant improvements as an important future work. 

Contribution 3: 

We implemented a prototype Knowledge-based PenTest Workbench, together 

with a simple Web Security Knowledgebase and a Test Campaign Database, which were 

used in all the three case studies to support the model-driven test approach.  

The prototype PenTest workbench includes a few primitive tools that have to be 

enhanced when the test framework is applied to a larger scale, more complex case study 

as a future work. 

7.2. Future Work 

There are three major directions we think that would be worth to pursue in future 

work. 

7.2.1 Build Up More Sophisticated Web Security Knowledgebase 

The web security knowledgebase used in the case studies was created from a 

simple object model that was developed based on the analysis of limited types of 

vulnerabilities and related attack vectors and fuzz vectors. The web security 

knowledgebase is implemented in a relational database. As a future work, we think it is 

important to build a more sophisticated web security knowledgebase for the test 



 

Chapter 7 Conclusions    166 

framework which can represent a broader spectrum of vulnerabilities, attack vectors, and 

fuzz vectors. Specifically, future research could address three issues below: 

 Leverage an ontology management system, e.g. Protégé-OWL (Protege Home 

Page), which is capable of representing and managing sophisticate knowledge 

system to build up a more advanced web security knowledgebase. 

 Evaluate the effort for a security expert to create and maintain such an 

advanced web security knowledgebase for a single web application. 

 Explore if it is possible to create a single generic web security knowledgebase 

that can be applied to any web application, or at least, security experts can 

select a subset from such a generic web security knowledgebase for a single 

web application. 

7.2.2 Conduct Case Study in Larger Scope 

As the case studies conducted in the thesis research have limited scope which 

impairs the validity of the evaluation of the proposed test framework, a case study in a 

larger scope should be pursued so that more systematic, quantified and rigorously 

conducted test campaigns can be made to fully evaluate the framework. This includes 

more objective means of evaluating the benefits of the approach. For example, a set of 

pre-defined questionnaires that used to characterize developers and testers at the 

beginning of the case study, and questionnaires that used to assess the efficiency and 

effectiveness at the end of the case study. Specifically, this case study could be used to 

evaluate the proposed framework against the criteria of Resultant Quality and Return on 

Investment (ROI), which was discussed in section 4.2 but deliberately excluded in the 

evaluation of this thesis. 



 

Chapter 7 Conclusions    167 

7.2.3 Develop a Model-Drive Test Architecture 

The model-driven test approach defined and used in the proposed framework is an 

informal approach, in that it does not formally define Platform Independent Model (PIM), 

Platform Specific Model (PSM) and model transformation rules, which are three 

fundamental components in a formalized Model-Driven Architecture (MDA), for the 

penetration test framework. 

We are not aware of any existing MDA that can be used directly for the proposed 

test framework. It will be interesting to explore the development of such MDA as a future 

research work. Essentially, the future work will include: 

 Present formally a PIM for penetration testing, which involves the investigation 

of existing PIM modeling languages for one that is feasible to penetration 

testing, and construct the PIM using the modeling language. If there is no such 

PIM modeling language, a new one would need to be created. 

 Same work as above for PSM for penetration testing. 

 When both the PIM and the PSM are formally defined, transformation 

knowledge (rules) could be specified using a language like QVT 

(Query/View/Transformation). 

 Implement a prototype of the PIM, the PSM, the transformation knowledge, 

and a transformer. Then apply the prototype to a case study, and then evaluate 

the prototype based on the case study. 

7.2.4 Extend the Proposed Test Framework 

The proposed framework in this thesis deals with the most basic penetration test 

activities and artifacts at each test phase. There are other security assurance tasks that 

may provide useful inputs to the framework, e.g. to increase vulnerability coverage that 



 

Chapter 7 Conclusions    168 

the framework can achieve. Specifically, the output of threat analysis for a web 

application and the security policies with which the IT environment (where the web 

application will run) must comply, can be leveraged by the framework as useful inputs to 

provide additional security test requirements. The framework can be extended by 

defining a specific task at the test analysis phase to process the inputs from threat analysis 

and security policies, together with the identified potential vulnerabilities, to form more 

comprehensive test requirements. 

 



 
 
 

Bibliography  169 

 
 

Bibliography 

The US DoD Trusted Computer System Evaluation Criteria. (1985, December 26). 
Retrieved September 27, 2011, from NIST Computer Security Resource Center: 
http://csrc.nist.gov/publications/history/dod85.pdf 

Department of Defense Directive Number 8500.01E. (2002, Octomber 24). Retrieved 
September 27, 2011, from The US Defense Technical Information Center. 

XHTML 1.0 Home Page, Second Edition. (2002, August 1). Retrieved October 10, 2011, 
from W3C XHTML: http://www.w3.org/TR/xhtml1/ 

XSS vulnerabilty in ASP.Net. (2005, February 17). Retrieved March 2, 2011, from 
SecurityFocus BugTraq: 
http://www.securityfocus.com/archive/1/390751/30/0/threaded 

Widescale Unicode Encoding Implementation Flaw Discovered. (2007, May 22). 
Retrieved March 2, 2011, from CGISecurity: 
http://www.cgisecurity.com/2007/05/widescale-unico.html 

The Common Criteria Part I: Introduction and general model. (2009, July). Retrieved 
September 27, 2011, from The Common Criteria Portal: 
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf 

The Common Criteria Part II: Security functional requirements. (2009, July). Retrieved 
September 27, 2011, from The Common Criteria Portal: 
http://www.commoncriteriaportal.org/files/ccfiles/CCPART2V3.1R3.pdf 

The Common Criteria Part III: Security assurance requirements. (2009, July). Retrieved 
September 27, 2011, from The Common Criteria Portal: 
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf 

The Common Methodology for Information Technology Security Evaluation. (2009, July). 
Retrieved September 27, 2011, from The Common Criteria Portal: 
http://www.commoncriteriaportal.org/files/ccfiles/CEMV3.1R3.pdf 

Common Criteria Scheme Guide #3 Evaluation Facility Approval. (2010, October). 
Retrieved September 28, 2011, from Common Criteria Scheme Documentation: 
http://www.cse-cst.gc.ca/its-sti/services/cc/documentation-eng.html 

Microsoft Security Development Lifecycle Version 5.0. (2010, March 31). Retrieved 
March 2, 2011, from Microsoft Security Development Lifecycle: 
http://www.microsoft.com/downloads/en/confirmation.aspx?FamilyID=7d8e6144
-8276-4a62-a4c8-7af77c06b7ac&displaylang=en 

Simplified Implementation of the Microsoft SDL. (2010, Feburary 2). Retrieved March 2, 
2011, from Microsoft Security Development Lifecycle: 
http://www.microsoft.com/downloads/en/confirmation.aspx?FamilyID=0baff8e8-
ab17-4e82-a1ff-7bf8d709d9fb&displaylang=en 



 
 
 

Bibliography  170 

 
 

About the SDL Process. (2011, March 2). Retrieved March 2, 2011, from Microsoft 
Security Development Lifecycle: 
http://www.microsoft.com/security/sdl/about/process.aspx 

Apache HTTPClient Home Page. (2011, March 2). Retrieved March 2, 2011, from 
Apache HTTPClient: http://hc.apache.org/index.html 

Bugtraq Home Page. (2011, Maarch 2). Retrieved March 2, 2011, from SecurityFocus 
BugTraq: http://www.securityfocus.com/archive/1 

Eclipse Home Page. (2011, March 2). Retrieved March 2, 2011, from Eclipse: 
http://www.eclipse.org/ 

HTML 5 Home Page, Draft Version. (2011, May 25). Retrieved October 10, 2011, from 
W3C HTML 5: http://www.w3.org/TR/html5/ 

ISECOM OSSTMM Home Page. (2011, March 2). Retrieved March 2, 2011, from 
ISECOM Open Source Security Testing Methodology Manual: 
http://www.isecom.org/osstmm/ 

ISO Freely Available Standards. (2011, September). Retrieved September 27, 2011, from 
ISO Standards Maintenance Portal: 
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html 

Java SE 6. (2011, March 2). Retrieved March 2, 2011, from Java SE 6 Home Page: 
http://www.oracle.com/technetwork/java/javase/overview/index-jsp-136246.html 

Microsoft Security and Protection: SQL Injection. (2011, September 21). Retrieved 
Septemeber 21, 2011, from MSDN Library: http://msdn.microsoft.com/en-
us/library/ms161953.aspx 

Microsoft Security Development Lifecycle: Risks and Impacts of Computer Crime. (2011, 
March 2). Retrieved March 2, 2011, from Microsoft Security Development 
Lifecycle: http://www.microsoft.com/security/sdl/about/whysdl.aspx 

MITRE CVE Home Page. (2011, March 2). Retrieved March 2, 2011, from Mitre 
Common Vulnerabilities and Exposures: http://cve.mitre.org/ 

MITRE CWE Home Page. (2011, March 2). Retrieved March 2, 2011, from Mitre 
Common Weakness Enumeration: http://cwe.mitre.org/ 

Model Driven Architecture Home Page. (2011, March 2). Retrieved March 2, 2011, from 
OMG Model Driven Architecture: http://www.omg.org/mda/ 

mybatis Home Page. (2011, March 2). Retrieved March 2, 2011, from ibaitis: 
http://www.mybatis.org/ 

MySQL Home Page. (2011, March 2). Retrieved March 2, 2011, from MySQL: 
http://www.mysql.com/ 

Nessus Home Page. (2011, March 2). Retrieved March 2, 2011, from Nessus: 
http://nessus.org/products/professional-
feed/?gclid=CPrsmpqct6UCFRLLKgodXHcGXw 



 
 
 

Bibliography  171 

 
 

Nikto Home Page. (2011, March 2). Retrieved March 2, 2011, from Nikto: 
http://www.cirt.net/nikto2 

Nmap Home Page. (2011, March 2). Retrieved March 2, 2011, from Nmap: 
http://nmap.org/ 

NVD Home Page. (2011, March 2). Retrieved March 2, 2011, from National 
Vulnerability Database Version 2.2: http://nvd.nist.gov/ 

OWASP Cross-site Scripting. (2011, March 2). Retrieved March 2, 2011, from OWASP 
Cross-site Scripting: http://www.owasp.org/index.php/Cross-
site_Scripting_(XSS) 

OWASP DOM Based XSS. (2011, March 2). Retrieved March 2, 2011, from OWASP 
DOM Based XSS: http://www.owasp.org/index.php/DOM_Based_XSS 

OWASP WebGoat Project. (2011, October 2). Retrieved October 2, 2011, from The Open 
Web Application Security Project: 
https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project 

OWASP WebGoat User and Install Guide. (2011, October). Retrieved October 2, 2011, 
from The Open Web Application Security Project: 
https://www.owasp.org/index.php/WebGoat_User_and_Install_Guide_Table_of_
Contents 

SQuirreL SQL Client Home Page. (2011, March 2). Retrieved March 2, 2011, from 
SQuirreL SQL Client: http://squirrel-sql.sourceforge.net/ 

The Common Criteria Portal Home Page. (2011, September). Retrieved September 28, 
2011, from The Common Criteria Portal: http://www.commoncriteriaportal.org/ 

The OSVDB Hoem Page. (2011, March 2). Retrieved March 2, 2011, from The Open 
Source Vulnerability Database: http://osvdb.org 

US-Cert Vulnerability Notes Database Home Page. (2011, March 2). Retrieved March 2, 
2011, from Unite State Computer Emergency Readiness Team: 
http://www.kb.cert.org/vuls 

Allen, J. H., Barnum, S., Ellison, R. J., McGraw, G., & Mead, N. R. (2008). Software 

Security Engineering: A Guide for Project Managers. Addison Wesley. 

Andreu, A. (2006). Professional Pen Testing for Web Applications. Wrox Press. 

Arkin, B., Stender, S., & McGraw, G. (2005, January-February). Software Penetration 
Testing. IEEE Security & Privacy, Volume 3(Issue 1), pp. 84-87. 

Arlow, J., & Neustadt, I. (2005). UML 2 and the Unified Process: Practical Object-

Oriented Analysis and Design (Second ed.). Addison Wesley. 

Baker, P., Dai, Z. R., Grabowski, J., Haugen, Ø., Schieferdecker, I., & Williams, C. 
(2008). Model-Driven Testing Using the UML Testing Profile. Springer. 

Behnam, S. A., Amyot, D., Forster, A. J., Peyton, L., & Shamsaei, A. (May, 2009). Goal-
Driven Development of a Patient Surveillance Application for Improving Patient 



 
 
 

Bibliography  172 

 
 

Safety. 4th International MCeTech Conference on eTechnologies. LNBIP Volume 

26, pp. 65 - 76. Ottawa, Canada: Springer. 

Bell, D., Cesare, S. d., Iacovelli, N., Lycett, M., & Merico, A. (2007). A framework for 
deriving semantic web services. Information Systems Frontiers, 9(1), 69-84. 

Berners-Lee, T., Fielding, R. T., & Masinter, L. (2005, January). Uniform Resource 

Identifier (URI): Generic Syntax. Retrieved March 2, 2011, from IETF RFC 3986: 
http://www.ietf.org/rfc/rfc3986.txt 

Berners-Lee, T., Masinter, L., & McCahill, M. (1994, December). Uniform Resource 

Locators (URL). Retrieved March 2, 2011, from IETF RFC 1738: 
http://www.ietf.org/rfc/rfc1738.txt 

Bialkowski, J., & Heineiman, K. (Eds.). (2004, May). Application Vulnerability 

Description Language v1.0. Retrieved March 2, 2011, from http://www.oasis-
open.org/committees/download.php/7145/AVDL Specification V1.pdf 

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools. 
Addison-Wesley Professional. 

Bishop, M. (2007, November-December). About Penetration Testing. IEEE Security & 

Privacy, Volume 5(Issue 6), pp. 84-87. 

Burnstein, I. (2003). Practical Software Testing: A Process-Oriented Approach. 
Springer-Verlag. 

Cascading Style Sheets home page. (n.d.). Retrieved 12 31, 2011, from W3C Cascading 
Style Sheets Web Site: http://www.w3.org/Style/CSS/Overview.en.html 

Common Criteria Schema Overview. (n.d.). Retrieved September 28, 2011, from 
Canadian Common Criteria Schema: http://www.cse-cst.gc.ca/its-
sti/services/cc/ccso-vesccc-eng.html 

Dai, Z. R. (2004). Model-Driven Testing with UML 2.0. The Second European Workshop 

on Model Driven Architecture.  

Daw, M. (2009). Input Validation Cheat Sheet. Retrieved September 2009, from 
michaeldaw.org: http://michaeldaw.org/input_validation_cheat_sheet 

Daw, M. (2009). SQL Injection Cheat Sheet. Retrieved September 2009, from 
michaeldaw.org: http://michaeldaw.org/sql-injection-cheat-sheet 

Fielding, R. T., Gettys, J., Mogul, J. C., Nielsen, H. F., Masinter, L., Leach, P. J., et al. 
(1999, June). Hypertext Transfer Protocol -- HTTP/1.1. Retrieved March 2, 2011, 
from IETF RFC 2616: http://www.ietf.org/rfc/rfc2616 

Frankel, D. S. (2003). Model Driven Architecture: Applying MDA to Enterprise 

Computing. Wiley Publishing. 

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P. L., Sink, E., et al. 
(1999, June). HTTP Authentication: Basic and Digest Access Authentication. 
Retrieved March 2, 2011, from IETF RFC 2617 Home Page: 
http://www.ietf.org/rfc/rfc2617 



 
 
 

Bibliography  173 

 
 

Galin, D. (2004). Software Quality Assurance: From theory to implementation. Pearson 
Education Limited. 

Gaševic, D., Djuric, D., & Devedzic, V. (2006). Model Driven Architecture and Ontology 

Development. Springer. 

Grossman, J., Hansen, R., Petkov, P. D., Rager, A., & Fogie, S. (2007). XSS Attacks: 

Cross Site Scripting Exploits and Defense. (S. Fogie, Ed.) Syngress Publishing. 

Hansen, R. (2011, March 2). XSS (Cross Site Scripting) Cheat Sheet. Retrieved March 2, 
2011, from ha.ckers.org: http://ha.ckers.org/xss.html 

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information 
Systems Research. MIS Quarterly, 28(1), 75-105. 

Hoffman, B., & Sullivan, B. (2008). Ajax Security. Addison Wesley. 

Hollar, R., & Murphy, R. (2006). Enterprise Web Service Security. Charles River Media. 

Howard, M., & Lipner, S. (2006). The Security Development Lifecycle: SDL: A Process 

for Developing Demonstrably More Secure Software. Microsoft Press. 

Jacky, J., Veanes, M., Campbell, C., & Schulte, W. (2008). Model-Based Software 

Testing and Analysis with C#. Cambridge University Press. 

Javed, A. Z., Strooper, P. A., & Watson, G. N. (2007). Automated Generation of Test 
Cases Using Model-Driven Architecture. The Second International Workshop on 

Automation of Software Test. IEEE Computer Society. 

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA Explained: The Model Driven 

Architecture Practice and Promise. Addison-Wesley. 

Korpela, J. K. (2006). Unicode Explained. O'Reilly. 

Kristol, D. M., & Montulli, L. (2000, October). HTTP State Management Mechanism. 
Retrieved March 2, 2011, from IETF RFC 2965 Home Page: 
http://www.ietf.org/rfc/rfc2965 

Manzuik, S., Gold, A., & Gatford, C. (2007). Network Security Assessment: From 

Vulnerability to Patch. Syngress Publishing. 

McGraw, G. (2006). Software Security: Building Security In. Addison Wesley. 

Meier, J., Mackman, A., Vasireddy, S., Dunner, M., Escamilla, R., & Murukan, A. 
(2003). Improving Web Application Security: Threats and Countermeasures. 
Microsoft Press. 

Mellor, S. J., Scott, K., Uhl, A., & Weise, D. (2004). MDA Distilled: Principles of 

Model-Driven Architecture. Addison Wesley. 

MITRE CAPEC. (2011, March 2). Retrieved March 2, 2011, from Common Attack 
Pattern Enumeration and Classification: http://capec.mitre.org/ 

Myers, G. J. (2004). The Art of Software Testing (Second ed.). John Wiley & Sons. 



 
 
 

Bibliography  174 

 
 

OVAL, M. (2011, March 2). MITRE OVAL Home Page. Retrieved March 2, 2011, from 
Mitre Open Vulnerability and Assessment Language: 
http://oval.mitre.org/index.html 

OWASP Testing Guide. (2008, December). OWASP Testing Guide. Retrieved March 2, 
2011, from The Open Web Application Security Project: 
https://www.owasp.org/images/8/89/OWASP_Testing_Guide_V3.pdf 

OWASP TOP 10. (2007). OWASP TOP 10: The Ten Most Critical Web Application 

Security Vulnerabilities. Retrieved March 2, 2011, from The Open Web 
Application Security Project: 
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf 

OWASP WebScarab. (2011, March 2). OWASP WebScarab Project. Retrieved March 2, 
2011, from The Open Web Application Security Project: 
http://www.owasp.org/index.php/Category:OWASP_WebScarab_Project 

Palmer, S. (2007). Web Application Vulnerabilities: Detect, Exploit, Prevent. Syngress 
Publishing. 

Patton, R. (2000). Software Testing. Sams . 

Pezz, M., & Young, M. (2008). Software Testing and Analysis: Process, Principles and 

Techniques. John Wiley & Sons . 

Potter, B., & McGraw, G. (2004, September-October). Software Security Testing. IEEE 

Security & Privacy, Volume 2(Issue 5), pp. 81-85. 

Protege Home Page. (n.d.). Retrieved March 15, 2011, from Protege Project: 
http://protege.stanford.edu/ 

Raggett, D., Hors, A. L., & Jacobs, I. (1999, December 24). HTML 4.01 Specification. 
Retrieved March 2, 2011, from HTML 4.01 Specification Home Page: 
http://www.w3.org/TR/html401/ 

Rescorla, E. (2000, May). HTTP Over TLS. Retrieved March 2, 2011, from IETF RFC 
2818 Home Page: http://www.ietf.org/rfc/rfc2818 

SANS TOP 20. (2011, March 2). TOP 20 Cyber Security Risk. Retrieved March 2, 2011, 
from The SANS (SysAdmin, Audit, Network, Security) Institute: 
http://www.sans.org/top-cyber-security-risks/?ref=top20 

SANS TOP 25. (2009, July 27). 2009 CWE/SANS TOP 25 Most Dangerous 

Programming Errors. Retrieved March 2, 2011, from Common Weaknesses 
Enumeration: http://cwe.mitre.org/top25/pdf/2009_cwe_sans_top_25.pdf 

Scambray, J., Shema, M., & Sima, C. (2006). Hacking Exposed Web Applications 
(Second ed.). McGraw-Hill. 

Schmidt, D. C. (2006, February). Model-Driven Engineering. IEEE Computer, pp. 25-32. 

Shah, S. (2008). Web 2.0 Security - Defending AJAX, RIA, and SOA. Charles River 
Media. 



 
 
 

Bibliography  175 

 
 

Shklar, L., & Rosen, R. (2009). Web Application Architecture: Principles, Protocols and 

Practices (Second ed.). John Wiley & Sons. 

Singh, I., Stearns, B., Johnson, M., & Team, E. (2002). Designing Enterprise 

Applications with the J2EE Platform (Second ed.). Addison Wesley. 

Splaine, S. (2002). Testing Web Security: Assessing the Security of Web Sites and 

Applications. John Wiley & Sons . 

Stahl, T., & Voelter, M. (2006). Model-Driven Software Development: Technology, 

Engineering, Management. Wiley Publishing. 

Stuttard, D., & Pinto, M. (2008). The Web Application Hacker's Handbook: Discovering 

and Exploiting Security Flaws. John Wiley & Sons. 

Sutton, M., Greene, A., & Amini, P. (2007). Fuzzing: Brute Force Vulnerability 

Discovery. Addison Wesley. 

The Common Criteria Introduction. (n.d.). Retrieved September 27, 2011, from The 
Common Criteria Evaluation and Validation Scheme: http://www.niap-
ccevs.org/cc_docs/cc_introduction-v2.pdf 

Thomas, H., & Chase, S. (2005). The Software Vulnerability Guide. Cengage Charles 
River Media. 

Thompson, H. (2005, January-February). Application Penetration Testing. IEEE Security 

& Privacy, Volume 3(Issue 1), pp. 66-69. 

WASC. (2010, January). The WASC Threat Classification v2.0. Retrieved March 2, 2011, 
from Web Application Security Consortium: 
http://projects.webappsec.org/f/WASC-TC-v2_0.pdf 

Wells, C. (2007). Securing Ajax Applications. O’Reilly. 

Wysopal, C., Nelson, L., Zovi, D. D., & Dustin, E. (2007). The Art of Software Security 

Testing: Identifying Software Security Flaws. Addison Wesley. 

 

  



 
 
 

Appendix A1 WebGoat Test Analysis Document  176 

 
 

Appendix A1 WebGoat Test Analysis Document
4
 

Document: Phase I Penetration Test Analysis 

Project: WebGoat 

Author: Pulei Xiong 

Date: October, 2009 

 
1. Purpose: 
Identify potential vulnerabilities and attack vectors  
 
2. Development Artifacts 
WebGoat release (version 5.2) 
 
3. Application Footprint 

Platform: J2EE 1.4, JRE 1.6.0_01 
Components: -  
Database: Derby 10.2.1.6  
Operating System: Windows XP 
Web Server: Apache Tomcat 5.5 
Encoding: UTF8 

 
4. Potential Vulnerabilities with related application Functionalities 
WebGoat is a deliberately insecure web application. In this case study, four functionalities were selected 
which have known vulnerabilities of SQL Injection or Cross-Site scripting. 
 
Functionality Vulnerability Attack Vector 

Search for weather 
information by city name 

Standard SQL 
Injection 

To bypass SQL query criteria to get weather of all 
cities 

Search for a user Standard SQL 
Injection 

To bypass SQL query criteria to get all users’ data 

Post a message in 
message board 

Stored Cross-Site 
Scripting 

Insert malicious scripts in the posted message and 
get other users to view it 

Search Reflected Cross-Site 
Scripting 

Insert malicious scripts in search criteria that is 
returned to browser and gets executed at the client-
side  

 
 

  

                                                 
 
 
4 This document was not created originally in the case study. It was created later on based on the existing 
test artifacts by applying the test analysis document template for better presentation. 



 
 
 

Appendix A2 WebGoat Test Design Document  177 

 
 

Appendix A2 WebGoat Test Design Document
5
 

Document: Phase II Penetration Test Design 

Project: WebGoat 

Author: Pulei Xiong 

Date: October, 2009 

 
1. Purpose: 
Develop penetration test cases based on the sample web security knowledgebase to cover all the potential 
vulnerabilities that have been identified at the test analysis phase (Phase I).  
 
2. Development Artifacts 
WebGoat release (version 5.2) 
 
3. Application Footprint 

Platform: J2EE 1.4, JRE 1.6.0_01 
Components: -  
Database: Derby 10.2.1.6  
Operating System: Windows XP 
Web Server: Apache Tomcat 5.5 
Encoding: UTF8 

 
4. Entry Points with Attacks & Check Points 
--------------- List of Entry Points -------------- 
# of entry points: 13 
# of attacks: 13 
 
Entry point: Launch WebGoat Home Page (ID: ep001) 

GET http://127.0.0.1:80/WebGoat/attack 
Functionality: Navigation 
 
 
Entry point: Log on using HTTP Basic Authentication (ID: ep002) 

POST http://127.0.0.1:80/WebGoat/attack 
Form Fields: 
   Username=guest 
   Password=guest 
Functionality: Basic Authentication 
 
 
Entry point: Launch WebGoat Course Page (ID: ep003) 

POST http://127.0.0.1:80/WebGoat/attack 
Form Fields: 
  start=Start WebGoat 
Functionality: Navigation 

                                                 
 
 
5 This document was not created originally in the case study. It was created later on based on the existing 
test artifacts by applying the test design document template for better presentation. 



 
 
 

Appendix A2 WebGoat Test Design Document  178 

 
 

 
 
Entry point: Navigate to the “Phishing with XSS” page (ID: ep004) 
GET http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Functionality: Navigate 
 
 
Entry point: Search Employee (ID: ep005) 

POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Form Fields:  
   Username 
   SUBMIT=Search 
Functionality: Search 
 
 Vulnerability: Reflected Cross-Site Scripting 

 
Attack: 1 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
Username=<script>alert('XSS');</script> 
 
Defense Mechanism: None 

Check Point: “Search Employee” Page 
   Expected result -> the response page is displayed with a 
popup window with “XSS” message. 
 
 
Attack: 2 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
Username=>"><script>alert('XSS')</script>& 
 
Defense Mechanism: None 

Check Point: “Search Employee” Page 
   Expected result -> the response page is displayed with a 
popup window with “XSS” message. 
 
 
Attack: 3 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
Username=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
 
Defense Mechanism: None 

Check Point: “Search Employee” Page 
   Expected result -> the response page is displayed with a 
popup window with “XSS” message. 

 
 
Entry point: Logout (ID: ep006) 

GET http://127.0.0.1:80/WebGoat/attack?action=Logout 
Functionality: Logout 
 



 
 
 

Appendix A2 WebGoat Test Design Document  179 

 
 

 
Entry point: Navigate to “Stored XSS Attacks” page (ID: ep007) 
GET http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Functionality: Navigate 
 
 
Entry point: Post a message (ID: ep008) 

POST http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Form Fields:  
   title 
   message 
   SUBMIT=Submit 
Functionality: Post a message 
 
 Vulnerability: Reflected Cross-Site Scripting 

 
Attack: 4 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
message=<script>alert('XSS');</script> 
 
Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 
 
 
Attack: 5 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
message=>"><script>alert('XSS')</script>& 
 
Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 
 
 
Attack: 6 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
message=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
 
Defense Mechanism: None 

Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 

 
 

Attack: 7 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 



 
 
 

Appendix A2 WebGoat Test Design Document  180 

 
 

Manipulated Form Field: message=<IMG 
SRC="javascript:alert('XSS');"> 
 
Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 
 
 
Attack: 8 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: message=<IMG 
SRC=javascript:alert('XSS')> 
 
Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 
 
 
Attack: 9 

Attack Description: Reflected XSS attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Manipulated Form Field: 
message=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#114
;&#105;&#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>#114;&#
116;&#40;&#39;&#88;&#83<WBR>;&#83;&#39;&#41> 
 
Defense Mechanism: None 

Check Point: “View the Message” Page 
   Expected result -> when click on the link of the posted 
message, the response page is displayed with a popup window 
with “XSS” message. 

 
 
Entry point: View the message (ID: ep009) 

GET http://127.0.0.1:80/WebGoat/attack?Num=1 
Functionality: View a message 
 
 
Entry point: Navigate to the “Numeric SQL Injection” page (ID: ep010) 
GET http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Functionality: Navigate 
 
 
Entry point: Retrieve City Weather (ID: ep011) 

POST http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Form Fields:  
   Station 
   SUBMIT=Go! 
Functionality: Retrieve Data 
 
 Vulnerability: Reflected Cross-Site Scripting 

 
Attack: 10 



 
 
 

Appendix A2 WebGoat Test Design Document  181 

 
 

Attack Description: Standard SQL Injection attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Manipulated Form Field: Station=1 or 1=1-- 
 
Check Point: “Retrieve City Weather” Page 
   Expected result -> the response page is displayed with 
the weather information for all cities. 
 
 
Attack: 11 

Attack Description: Standard SQL Injection attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Manipulated Form Field: Station=a' or 'a'='a 
 
Check Point: “Retrieve City Weather” Page 
   Expected result -> the response page is displayed with 
error message “Error parsing station as a number: For input 
string: a' or 'a'='a”. 

 
 
Entry point: Navigate to the “String SQL Injection” page (ID: ep012) 
GET http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Functionality: Navigate 
 
 
Entry point: Retrieve Employee Profile (ID: ep013) 

POST http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Form Fields:  
   account_name 
   SUBMIT=Go! 
Functionality: Retrieve Data  
 
 Vulnerability: Reflected Cross-Site Scripting 

 
Attack: 12 

Attack Description: Standard SQL Injection attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Manipulated Form Field: account_name=1 or 1=1-- 
 
Check Point: “Retrieve Employee Profile” Page 
   Expected result -> the response page is displayed with 
message “No results matched. Try Again.”. 
 
 
Attack: 13 

Attack Description: Standard SQL Injection attack 
POST http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Manipulated Form Field: account_name=a' or 'a'='a 
 
Check Point: “Retrieve Employee Profile” Page 
   Expected result -> the response page is displayed with 
all employees’ information. 

 
 
 



 
 
 

Appendix A2 WebGoat Test Design Document  182 

 
 

5. User Scenarios 
--------------- List of User Scenarios -------------- 
# of user scenarios: 4 
 
User Scenario 1: Phishing with XSS 

Step1: Entry Point: Launch WebGoat Home Page (ID: ep001) 
Description: In Browser, enter URL “http://127.0.0.1:80/WebGoat/attack” 
to open login page. 
 
Step2: Entry Point: Log on using HTTP Basic Authentication (ID: ep002) 
Description: Enter “guest” as username, “guest” as password, and click 
on “Log In” button to log on WebGoat. 
 
Step3: Entry Point: Launch WebGoat Course Page (ID: ep003) 
Description: Click on “Start WebGoat” button to launch WebGoat course 
page. 
 
Step4: Entry Point: Navigate to the “Phishing with XSS” page (ID: ep004) 
Description: Click on “Cross-Site Scripting (XSS)” navigation menu at 
the left of the web page to expand it, and then click on “Phishing with 
XSS” link to launch the page. 
 
Step5: Entry Point: Search Employee (ID: ep005) 
Description: Enter “Tom” in the search text field, and then click on 
“Search” button. 
 
Step6: Entry Point: Logout (ID: ep006) 
Description: Click on “Logout” link to log out WebGoat. 
 
 
User Scenario 2: Stored XSS Attack 

Step1: Entry Point: Launch WebGoat Home Page (ID: ep001) 
Description: In Browser, enter URL “http://127.0.0.1:80/WebGoat/attack” 
to open login page. 
 
Step2: Entry Point: Log on using HTTP Basic Authentication (ID: ep002) 
Description: Enter “guest” as username, “guest” as password, and click 
on “Log In” button to log on WebGoat. 
 
Step3: Entry Point: Launch WebGoat Course Page (ID: ep003) 
Description: Click on “Start WebGoat” button to launch WebGoat course 
page. 
 
Step4: Entry Point: Navigate to the “Stored XSS Attack” page (ID: ep007) 
Description: Click on “Cross-Site Scripting (XSS)” navigation menu at 
the left of the web page to expand it, and then click on “Stored XSS 
Attack” link to launch the page. 
 
Step5: Entry Point: Post a message (ID: ep008) 
Description: Enter “Title1” in field “title”, enter “For test” in field 
“message”, and then click on “Submit” button. 
 
Step6: Entry Point: View the message (ID: ep009) 
Description: Click on the link to the title of the posted message to 
view the message. 
 



 
 
 

Appendix A2 WebGoat Test Design Document  183 

 
 

Step7: Entry Point: Logout (ID: ep006) 
Description: Click on “Logout” link to log out WebGoat. 
 
 
User Scenario 3: Numeric SQL Injection 

Step1: Entry Point: Launch WebGoat Home Page (ID: ep001) 
Description: In Browser, enter URL “http://127.0.0.1:80/WebGoat/attack” 
to open login page. 
 
Step2: Entry Point: Log on using HTTP Basic Authentication (ID: ep002) 
Description: Enter “guest” as username, “guest” as password, and click 
on “Log In” button to log on WebGoat. 
 
Step3: Entry Point: Launch WebGoat Course Page (ID: ep003) 
Description: Click on “Start WebGoat” button to launch WebGoat course 
page. 
 
Step4: Entry Point: Navigate to the “Numeric SQL Injection” page (ID: 
ep010) 
Description: Click on “Injection flaw” navigation menu at the left of 
the web page to expand it, and then click on “Numeric SQL Injection” 
link to launch the page. 
 
Step5: Entry Point: Retrieve City Weather (ID: ep011) 
Description: Select “Seattle” in the local weather station dropdown 
list, click on the “Go!” button to view the weather of the selected 
city. 
 
Step6: Entry Point: Logout (ID: ep006) 
Description: Click on “Logout” link to log out WebGoat. 
 
 
User Scenario 4: String SQL Injection 

Step1: Entry Point: Launch WebGoat Home Page (ID: ep001) 
Description: In Browser, enter URL “http://127.0.0.1:80/WebGoat/attack” 
to open login page. 
 
Step2: Entry Point: Log on using HTTP Basic Authentication (ID: ep002) 
Description: Enter “guest” as username, “guest” as password, and click 
on “Log In” button to log on WebGoat. 
 
Step3: Entry Point: Launch WebGoat Course Page (ID: ep003) 
Description: Click on “Start WebGoat” button to launch WebGoat course 
page. 
 
Step4: Entry Point: Navigate to the “String SQL Injection” page (ID: 
ep012) 
Description: Click on “Injection flaw” navigation menu at the left of 
the web page to expand it, and then click on “String SQL Injection” 
link to launch the page. 
 
Step5: Entry Point: Retrieve Employee Profile (ID: ep013) 
Description: Enter “Snow” in the last name input field, and then click 
on the “Go!” button to view the user profile. 
 
Step6: Entry Point: Logout (ID: ep006) 



 
 
 

Appendix A2 WebGoat Test Design Document  184 

 
 

Description: Click on “Logout” link to log out WebGoat. 
 
-------------------------------------------------- 

 
 
6. Test Cases 
--------------- List of Test Cases -------------- 
# of test cases: 13 
 
Test Case: 1 

Scenario 1: Phishing with XSS 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
 
Step 5: Attack 1 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Input Form Fields:  

Username=<script>alert('XSS');</script> 
SUBMIT=Search 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 2 

Scenario 1: Phishing with XSS 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 



 
 
 

Appendix A2 WebGoat Test Design Document  185 

 
 

GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
 
Step 5: Attack 2 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Input Form Fields:  

Username=>"><script>alert('XSS')</script>& 
SUBMIT=Search 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 3 

Scenario 1: Phishing with XSS 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
 
Step 5: Attack 3 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=13&menu=900 
Input Form Fields:  

Username=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
SUBMIT=Search 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 4 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 



 
 
 

Appendix A2 WebGoat Test Design Document  186 

 
 

 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
 
Step 5: Attack 4 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=<script>alert('XSS');</script> 
SUBMIT=Submit 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 
 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 5 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
 
Step 5: Attack 5 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=>"><script>alert('XSS')</script>& 
SUBMIT=Submit 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 
 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 6 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 



 
 
 

Appendix A2 WebGoat Test Design Document  187 

 
 

Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
 
Step 5: Attack 6 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
SUBMIT=Submit 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 
 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 7 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
 
Step 5: Attack 7 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=<IMG SRC="javascript:alert('XSS');"> 
SUBMIT=Submit 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 



 
 
 

Appendix A2 WebGoat Test Design Document  188 

 
 

 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 8 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
 
Step 5: Attack 8 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=<IMG SRC=javascript:alert('XSS')> 
SUBMIT=Submit 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 
 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 9 

Scenario 2: Stored XSS Attack 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 



 
 
 

Appendix A2 WebGoat Test Design Document  189 

 
 

 
Step 5: Attack 9 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=50&menu=900 
Input Form Fields:  

title=Title1 
message=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#114;&#105;&

#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>#114;&#116;&#40;&#39;&#88
;&#83<WBR>;&#83;&#39;&#41> 

SUBMIT=Submit 
 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?Num=1 
 
Step 7 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 10 

Scenario 3: Numeric SQL Injection 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
 
Step 5: Attack 10 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Form Fields:  

Station=1 or 1=1-- 
SUBMIT=Go! 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 11 

Scenario 3: Numeric SQL Injection 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 



 
 
 

Appendix A2 WebGoat Test Design Document  190 

 
 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
 
Step 5: Attack 11 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=67&menu=1200 
Form Fields:  

Station=a' or 'a'='a 
SUBMIT=Go! 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 12 

Scenario 4: String SQL Injection 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
 
Step 5: Attack 12 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Input Form Fields:  

account_name=1 or 1=1-- 
SUBMIT=Go! 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
 
Test Case: 13 

Scenario 4: String SQL Injection 
Step 1 
GET URL: “http://127.0.0.1:80/WebGoat/attack” 
 
Step 2 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields:  



 
 
 

Appendix A2 WebGoat Test Design Document  191 

 
 

Username=guest 
Password=guest 

 
Step 3 
POST URL: http://127.0.0.1:80/WebGoat/attack 
Input Form Fields: 

start=Start WebGoat 
 
Step 4 
GET URL: http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
 
Step 5: Attack 13 
POST URL: http://127.0.0.1:80/WebGoat/attack?Screen=58&menu=1200 
Input Form Fields:  

account_name=a' or 'a'='a 
SUBMIT=Go! 

 
Step 6 
GET URL: http://127.0.0.1:80/WebGoat/attack?action=Logout 
 
------------------------------------------------- 
 
  



 
 
 

Appendix A3 WebGoat Test Execution Document  192 

 
 

Appendix A3 WebGoat Test Execution Document 

Document: Phase III Penetration Test Execution 

Project: WebGoat 

Author: Pulei Xiong 

Date: October, 2009 

 
1. Purpose: 
Execute the test cases created at the design phase (Phase II), and then analyze test results and create a test 
report. 
 
2. Test Result Summary 

2.1 Application under Test 
WebGoat release, version 5.2 
 

2.2 Test Report 

------------- Test Campaign Summary -------------- 
# of identified vulnerabilities: 3 
# of vulnerable entry points: 4 
# of entry points tested: 13 
# of test cases executed: 13 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 26 
-------------------------------------------------- 
 
------- Identified Vulnerability Details ------- 
 
Vulnerability: Reflected XSS 
-->Entry Point: ep005 (Phishing with XSS) 
 
Vulnerability: Stored XSS 
-->Entry Point: ep008 (Stored XSS Attacks) 
 
Vulnerability: Standard SQL Injection 
-->Entry Point: ep011 (Numeric SQL Injection) 
-->Entry Point: ep013 (String SQL Injection) 
-------------------------------------------------- 
  



 
 
 

Appendix B1 AEMS Test Analysis Document  193 

 
 

Appendix B1 AEMS Test Analysis Document
6
 

Document: Phase I Penetration Test Analysis 

Project: AEMS 

Author: Pulei Xiong 

Date: January, 2010 

 
1. Purpose: 
Identify potential vulnerabilities and attack vectors  
 
2. Development Artifacts 
Software Prototype Implementation (Beta 1) 
 
3. Application Footprint 

Platform: .NET Framework (.NET ASP) 3.5 SP1 
Components: -  
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: * 

 
4. Potential Vulnerabilities with related application Functionalities 
The following table was created by walking through the functionalities of the software prototype 
implementation (Beta 1), picking up a subset of the functionalities, and evaluating all relevant 
vulnerabilities described in WebGoat. The functionality column is the link between the two. Vulnerabilities 
and Attack Vectors are defined in WebGoat. Notes contain the concise descriptions of the functionalities. 
 
Functionality Vulnerability Attack Vector Description  

Login Standard SQL 
Injection 

Attack against password-based logon to 
bypass authentication 

User login 

Password strength Online & offline attack 
Insecure 
communication 

Intercept HTTP traffic to steal login 
credentials 

DoS Consecutive login failure to lock a 
legitimate user 

Search Patient Standard SQL 
Injection 

Attack against various “search” to 
bypass role-based authorization 

Search a patient or 
patients 

Attack against various “search” to 
damage the database 

Search a patient or 
patients 

Form Data 
Collection 

Stored Cross-Site 
Scripting 

Get users to view/edit an existing form 
containing with malicious scripts  

Form-based data view 
and edit to add patients 

 

  

                                                 
 
 
6 This document was not created originally in the case study. It was created later on based on the existing 
test artifacts by applying the test analysis document template for better presentation. 



 
 
 

Appendix B2 AEMS Test Design Documents  194 

 
 

Appendix B2 AEMS Test Design Documents
7
 

Document: Phase II Penetration Test Design 

Project: AEMS 

Author: Pulei Xiong 

Date: January, 2010 

 
1. Purpose: 
Develop penetration test cases based on the sample web security knowledgebase to cover all the potential 
vulnerabilities that have been identified at the test analysis phase (Phase I).  
 
2. Development Artifacts 
Software Prototype Implementation (Beta 1) 
 
3. Application Footprint 

Platform: .NET Framework (.NET ASP) 3.5 SP1 
Components: ibatis  
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: * 

 
4. Entry Points with Attacks & Check Points 
--------------- List of Entry Points -------------- 
# of entry points: 6 
# of attacks: 10 
 
Entry point: Launch Login Page (ID: ep001) 

GET HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Functionality: Navigation 
 
 
Entry point: Log On (ID: ep002) 

POST HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Form Fields: 
   username 
   password 
   LoginButton=Log In 
Functionality: Log On 
 
 Vulnerability: Standard SQL Injection 

 
Attack: 1 

Attack Description: Standard SQL Injection attack 

                                                 
 
 
7 This document was not created originally in the case study. It was created later on based on the existing 
test artifacts by applying the test design document template for better presentation. 



 
 
 

Appendix B2 AEMS Test Design Documents  195 

 
 

POST 
HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2
f 
Manipulated Form Field: password=1 or 1=1-- 
 
Defense Mechanism: ibatis component 

Check Point: “Login” Page 
   Expected result -> the Login web page is displayed with 
error message: Your login attempt was not successful. 
Please try again. 
 
 
Attack: 2 

Attack Description: Standard SQL Injection attack 
POST 
HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2
f 
Manipulated Form Field: password=a' or 'a'='a 

 
Defense Mechanism: ibatis component 

Check Point: “Login” Page 
   Expected result -> the Login web page is displayed with 
error message: Your login attempt was not successful. 
Please try again. 

 
 
Entry point: Log Out (ID: ep003) 

GET HTTPS://peilos.servebeer.com:443/Account/Logout 
Functionality: Log Out 
 
 
Entry point: Add A Patient (ID: ep004) 

POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Form Fields: 
   Pid=-1 
   RecordNumber 
   FirstName 
   LastName 
   DateOfBirth 
   IllnessHistory 
   Gender 
   Location 
   Diagnosis 
   PhysicianName 
   CTUDate 
   CTUTime 
Functionality: Edit Profile 
 
 Vulnerability: Stored Cross-Site Scripting 

 
Attack: 3 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=<script>alert('XSS');</script> 



 
 
 

Appendix B2 AEMS Test Design Documents  196 

 
 

 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 

 

Attack: 4 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=>"><script>alert('XSS')</script>& 
 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 
 
Attack: 5 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=%uff1cscript%uff1ealert('XSS')%uff1c/script%
uff1e 
 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 
 
Attack: 6 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=<IMG SRC="javascript:alert('XSS');"> 
 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 
 
Attack: 7 



 
 
 

Appendix B2 AEMS Test Design Documents  197 

 
 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=<IMG SRC=javascript:alert('XSS')> 
 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 
 
Attack: 8 

Attack Description: Stored XSS attack 
POST 
HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Manipulated Form Field:  
IllnessHistory=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#9
9;&#114;&#105;&#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>
#114;&#116;&#40;&#39;&#88;&#83<WBR>;&#83;&#39;&#41> 
 
Defense Mechanism: ASP.NET 

Check Point: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
 
 
Entry point: Navigate to Patient List Page (ID: ep005) 

GET HTTPS://peilos.servebeer.com:443/Observer/PatientList 
Functionality: Navigate 
 

 

Entry point: Search A Patient (ID: ep006) 

GET 
HTTPS://peilos.servebeer.com:443/Observer/SearchPatient/search=First 
Name&value=Smith&OK= 
Functionality: Retrieve Data 
 
 Vulnerability: Standard SQL Injection 

 
Attack: 9 

Attack Description: Standard SQL Injection attack 
GET 
HTTPS://peilos.servebeer.com:443/Observer/SearchPatient/sea
rch=First Name&value=Smith&OK= 
Manipulated Form Field: value=1 or 1=1-- 
 
Defense Mechanism: ibatis component 

Check Point: “Search Patient” Page 
   Expected result -> the Search Patient web page is 
displayed with none patient, and with error message: the 
search text cannot contain any spaces 



 
 
 

Appendix B2 AEMS Test Design Documents  198 

 
 

 
 
Attack: 10 

Attack Description: Standard SQL Injection attack 
GET 
HTTPS://peilos.servebeer.com:443/Observer/SearchPatient/sea
rch=First Name&value=Smith&OK= 
Manipulated Form Field: value=a' or 'a'='a 
 
Defense Mechanism: ibatis component 

Check Point: “Search Patient” Page 
   Expected result -> the Search Patient web page is 
displayed with none patient 
 

-------------------------------------------------- 

 
 
5. User Scenarios 
--------------- List of User Scenarios -------------- 
# of user scenarios: 3 
 
User Scenario 1: Login and then Logout 

Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL 
“HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f” to open 
login page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “pxiong” for field “username”, 
input “123456” for field “password”, and click on “Log In” button to 
log in AEMS as user “pxiong” 
 
Step3: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” button to log out AEMS 
 
 
User Scenario 2: Add A Patient  
Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL 
“HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f” to open 
login page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “pxiong” for field “username”, 
input “123456” for field “password”, and click on “Log In” button to 
log in AEMS as user “pxiong” 
 
Step3: Add A Patient (ID: ep004)  
Description: On the “Add a patient” page, input “patient1” in field 
“FirstName”, input “test” in field “LastName”, input “01/02/2010” in 
field “DateOfBirth”, input “this is for test” in field “IllnessHistory”, 
select “Male” in field “Gender”, input “Medical Floor” in field 
“Location”, set “Diagnosis” flag as “1”, set “PhysicianName” as “1”, 
input “04/02/2010” in field “CTUDate”, input “9:49 PM” in field 
“CTUTime” 



 
 
 

Appendix B2 AEMS Test Design Documents  199 

 
 

 
Step4: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” button to log out AEMS 
 
 
User Scenario 3: Search a patient 

Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL 
“HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f” to open 
login page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “pxiong” for field “username”, 
input “123456” for field “password”, and click on “Log In” button to 
log in AEMS as user “pxiong” 
 
Step3: Entry Point: Navigate to Patient List Page (ID: ep005) 
Description: Click on “Patient List” link to navigate to Patient List 
page 
 
Step4: Entry Point: Search a Patient (ID: ep006) 
Description: On the Patient List page, select “First Name” as “search”, 
input “Smith” in field “value”, and click on “Search” button  
 
Step5: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” button to log out AEMS 
 
-------------------------------------------------- 

 

 

6. Test Cases 
--------------- List of Test Cases -------------- 
# of test cases: 10 
 
Test Case: 1 

Scenario 1:  Login and then Logout 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: Attack 1 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=1 or 1=1— 
LoginButton=Log In 

 
Step 3 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 2 

Scenario 1:  Login and then Logout 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 



 
 
 

Appendix B2 AEMS Test Design Documents  200 

 
 

Step 2: Attack 2 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=a' or 'a'='a 
LoginButton=Log In 

 
Step 3 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 

LoginButton=Log In 
 
 
Test Case: 3 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3: Attack 3 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=<script>alert('XSS');</script> 
Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 4 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 



 
 
 

Appendix B2 AEMS Test Design Documents  201 

 
 

Step 3: Attack 4 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=>"><script>alert('XSS')</script>& 
Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 5 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3: Attack 5 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 6 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 



 
 
 

Appendix B2 AEMS Test Design Documents  202 

 
 

 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3: Attack 6 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=<IMG SRC="javascript:alert('XSS');"> 
Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 7 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3: Attack 7 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=<IMG SRC=javascript:alert('XSS')> 
Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 



 
 
 

Appendix B2 AEMS Test Design Documents  203 

 
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 8 

Scenario 2:  Add A Patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3: Attack 8 
POST HTTPS://peilos.servebeer.com:443/Observer/PersistPatient 
Input Form Fields:  

Pid=-1  
RecordNumber= 
FirstName=patient2  
LastName=test  
DateOfBirth=01/02/2010  
IllnessHistory=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#114;

&#105;&#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>#114;&#116;&#40;&#
39;&#88;&#83<WBR>;&#83;&#39;&#41> 

Gender=Male  
Location=Medical Floor  
Diagnosis=1  
PhysicianName=1  
CTUDate=04/02/2010  
CTUTime=9:49 PM  
 

Step 4 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 9 

Scenario 3:  Search a patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3 
GET URL: HTTPS://peilos.servebeer.com:443/Observer/PatientList 
 
Step 4: Attack 9 



 
 
 

Appendix B2 AEMS Test Design Documents  204 

 
 

GET 
HTTPS://peilos.servebeer.com:443/Observer/SearchPatient/search=First 
Name&value=1 or 1=1--&OK= 
 
Step 5 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
 
Test Case: 10 

Scenario 3:  Search a patient 
Step 1 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
 
Step 2: 
POST URL: HTTPS://peilos.servebeer.com:443/Account/Login?ReturnUrl=%2f 
Input Form Fields:  

username=pxiong  
password=123456 
LoginButton=Log In 

 
Step 3 
GET URL: HTTPS://peilos.servebeer.com:443/Observer/PatientList 
 
Step 4: Attack 10 
GET 
HTTPS://peilos.servebeer.com:443/Observer/SearchPatient/search=First 
Name&value= a' or 'a'='a &OK= 
 
Step 5 
GET URL: HTTPS://peilos.servebeer.com:443/Account/Logout 
 
------------------------------------------------- 
 

  



 
 
 

Appendix B3 AEMS Test Execution Document  205 

 
 

Appendix B3 AEMS Test Execution Document 

Document: Phase III Penetration Test Execution 

Project: AEMS 

Author: Pulei Xiong 

Date: January, 2010 

 
1. Purpose: 
Execute the test cases created at the design phase (Phase II), and then analyze test results and create a test 
report. 
 
 
2. Test Result Summary (First round) 

2.1 Application under Test 
AEMS, version Beta 1  
 

2.2 Test Report 

------------- Test Campaign Summary -------------- 
# of identified vulnerabilities: 2 
# of vulnerable entry points: 2 
# of entry points tested: 6 
# of test cases executed: 10 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 26 
-------------------------------------------------- 
 
------- Identified Vulnerability Details ------- 
Vulnerability: Stored XSS 
-->Entry Point: ep004 (Add a Patient) 
 
Vulnerability: Standard SQL Injection  
-->Entry Point: ep007 (Search Patient Page) 
-------------------------------------------------- 
 
 

3. Test Result Summary (Regression) 

3.1 Application under Test 
AEMS, version Beta 2  
 

3.2 Test Report 
------------- Test Campaign Summary -------------- 
# of identified vulnerabilities: 1 
# of vulnerable entry points: 1 
# of entry points tested: 6 
# of test cases executed: 10 
-------------------------------------------------- 



 
 
 

Appendix B3 AEMS Test Execution Document  206 

 
 

 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 26 
-------------------------------------------------- 
 
------- Identified Vulnerability Details ------- 
Vulnerability: Stored XSS 
-->Entry Point: ep004 (Add a Patient) 
-------------------------------------------------- 
 

  



 
 
 

Appendix C1 PAL-IS Test Analysis Document  207 

 
 

Appendix C1 PAL-IS Test Analysis Document 

Document: Phase I Penetration Test Analysis 

Project: PAL-IS 

Author: Pulei Xiong 

Date: September 2, 2010 

 
1. Purpose: 
Identify potential vulnerabilities and attack vectors  
 
2. Development Artifacts 
PAL-IS Project Specification  Document 
 Section 4.2 – Functionality 
PAL-IS Project Use Cases (for demo) 
 Login and then logout 
 Search a patient 

Update the current user profile 
Registered Patient 

 Unregistered patient 
 Education Session 
Software Mockup (version 0.1) 
 
3. Application Footprint 

Platform: .NET Framework (.NET ASP) 3.5 SP1 
Components: -  
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: * 

 
4. Potential Vulnerabilities with related application Functionalities 
The following table was created by reviewing functionality described or shown in development artifacts 
and evaluating all relevant vulnerabilities described in WebGoat. The functionality column is the link 
between the two. Vulnerabilities and Attack Vectors are defined in WebGoat. Notes contain the concise 
descriptions of the functionalities. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Appendix C1 PAL-IS Test Analysis Document  208 

 
 

Functionality Vulnerability Attack Vector Description  

Login Standard SQL 
Injection 

Attack against password-based logon to 
bypass authentication 

User login 

Password strength Online & offline attack 
Insecure 
communication 

Intercept HTTP traffic to steal login 
credentials 

DoS Consecutive login failure to lock a 
legitimate user 

Search Patient Standard SQL 
Injection 

Attack against various “search” to 
bypass role-based authorization 

Search a patient or 
patients 

Attack against various “search” to 
damage the database 

Search a patient or 
patients 

Form Data 
Collection 

Stored Cross-Site 
Scripting 

Get users to view/edit an existing form 
containing with malicious scripts  

Various form-based 
data view and edit 

User Profile 
Management 

Stored Cross-Site 
Scripting 

Get users to view/edit an existing user 
profile containing with malicious 
scripts  

User profile view and 
edit 

Load 
Attachments 

Stored Cross-Site 
Scripting 

Get users to view a (faked) image/pdf 
etc. file planted with malicious scripts 

Load and view 
attachments 

N/A Resource 
enumeration 

Scan a deployment to find any .bak, 
.old etc files 

N/A 

Scan html pages to see if here is any 
userID or password embedded 
Scan a deployment to see if there is a 
hidden admin page can be exploited 

ESAS Score 
interface for 
IVR input. (Web 
service) 

? IVR server collects scores from patient 
and calls a web service or REST 
interface provided by PALIS to enter 
the ESAS score. 

Out of scope for now 

 
 
  



 
 
 

Appendix C2 PAL-IS Test Design Document  209 

 
 

Appendix C2 PAL-IS Test Design Document 

Document: Phase II Penetration Test Design 

Project: PAL-IS 

Author: Pulei Xiong 

Date: September 4, 2010 

 
1. Purpose: 
Develop penetration test cases based on the sample web security knowledgebase to cover all the potential 
vulnerabilities that have been identified at the test analysis phase (Phase I).  
 
2. Development Artifacts 
PAL-IS Project Specification  Document 
 Section 5 - Architecture 
API for URL on PAL-IS 
PAL-IS Project Use Cases (for demo) 
 Login and then Logout 
 Search a patient 

Update the current user profile 
Registered Patient 

 Unregistered patient 
 Education Session 
Software Mockup (version 0.1) 
 
3. Application Footprint 

Platform: .NET Framework (.NET ASP) 3.5 SP1 
Components: -  
Database: SQL Server 2005  
Operating System: Windows 2008 Server 
Web Server: IIS 7.0 
Encoding: * 

 
4. Entry Points with Attacks & Check Points 
--------------- List of Entry Points -------------- 
# of entry points: 8 
# of attacks: 10 
 
Entry Point: Launch Login Page (ID: ep001) 

GET: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Functionality: Navigation 
 
 
Entry Point: Log On (ID: ep002) 

POST: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Form Fields:  

username 
password 
LoginButton=Log In 

Functionality: Log On 
 
 Vulnerability: Standard SQL Injection 



 
 
 

Appendix C2 PAL-IS Test Design Document  210 

 
 

 
Attack: 1 

Attack Description: Standard SQL Injection attack 
POST: http://toh7.site.uottawa.ca/palis-
test/Secure/Login.aspx 
Manipulated Form Field: password=1 or 1=1-- 
 
Defense Mechanism: Application Specific 

Check Point 1: “Login” Page 
   Expected result -> the Login web page is displayed with 
error message: Your login attempt was not successful. 
Please try again. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous SQL injection attack 
was detected from the client on login (lpeyton=1 or 1=1--) 

 
 
Attack: 2 

Attack Description: Standard SQL Injection attack 
POST: http://toh7.site.uottawa.ca/palis-
test/Secure/Login.aspx 
Manipulated Form Field: password=a' or 'a'='a 

 
Defense Mechanism: Application Specific 

Check Point 1: “Login” Page 
   Expected result -> the Login web page is displayed with 
error message: Your login attempt was not successful. 
Please try again. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous SQL injection attack 
was detected from the client on login (lpeyton=’a’ or 
‘a’=’a’) 

 
 
Entry Point: Logout (ID: ep003) 

POST: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
Form Fields:  
Functionality: Log Out 
 
 
Entry Point: Navigate to Search Patient Page (ID: ep004) 

GET: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Functionality: Navigation 
 
 
Entry Point: Search a Patient (ID: ep005) 

POST: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Form Fields:  

SearchType 
SearchText 

Functionality: Retrieve Data 
 



 
 
 

Appendix C2 PAL-IS Test Design Document  211 

 
 

 Vulnerability: Standard SQL Injection 

 
Attack: 3 

Attack Description: Standard SQL Injection attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Manipulated Form Field: SearchText=1 or 1=1-- 
 
Defense Mechanism: Application Specific 

Check Point 1: “Search Patient” Page 
   Expected result -> the Search Patient web page is 
displayed with none patient, and with error message: the 
search text cannot contain any spaces 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: the search text cannot contain any spaces; A 
potentially dangerous SQL injection attack was detected 

from the client on Search (txtSearchText=1 or 1=1--) 

 
 
Attack: 4 

Attack Description: Standard SQL Injection attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Manipulated Form Field: SearchText=a' or 'a'='a 
 
Defense Mechanism: Application Specific 

Check Point 1: “Search Patient” Page 
   Expected result -> the Search Patient web page is 
displayed with none patient, and with error message: the 
search text cannot contain any spaces 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: the search text cannot contain any spaces; A 
potentially dangerous SQL injection attack was detected 

from the client on Search (txtSearchText='a' or 'a'=a') 

 
 
Entry Point: Navigate to My Profile Page (ID: ep006) 

GET: http://toh7.site.uottawa.ca:80/palis-test/Teams/MemberProfile.aspx 
Functionality: Navigate 
 
 
Entry Point: Navigate to Edit Profile Page (ID: ep007) 

GET: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Functionality: Navigate 
 
 
Entry Point: Update Profile (ID: ep008) 

POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Form Fields:  

FirstName 
LastName 
Email 



 
 
 

Appendix C2 PAL-IS Test Design Document  212 

 
 

Genders 
Approved=on 
Save=Save 

Functionality: Edit Profile 
 
 Vulnerability: Stored Cross-Site Scripting 

 
Attack: 5 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: 
FirstName=<script>alert('XSS');</script> 
 
Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="<scrip

t>alert('XSS')..."). 
 
 

Attack: 6 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: 
FirstName=>"><script>alert('XSS')</script>& 
 
Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="><scri

pt>alert('XSS')..."). 
 
 
Attack: 7 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: 
FirstName=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
 



 
 
 

Appendix C2 PAL-IS Test Design Document  213 

 
 

Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="=%uff1
cscript%uff1ealert('XSS')%uff1c/script%uff1e..."). 
 
 
Attack: 8 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: FirstName=<IMG 
SRC="javascript:alert('XSS');"> 
 
Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="=<IMG 
SRC="javascript:alert('XSS')..."). 
 
 
Attack: 9 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: FirstName=<IMG 
SRC=javascript:alert('XSS')> 
 
Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="=<IMG 
SRC=javascript:alert('XSS')>..."). 
 
 



 
 
 

Appendix C2 PAL-IS Test Design Document  214 

 
 

Attack: 10 

Attack Description: Stored XSS attack 
POST: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Manipulated Form Field: 
FirstName=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#1
14;&#105;&#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>#114;
&#116;&#40;&#39;&#88;&#83<WBR>;&#83;&#39;&#41> 
 
Defense Mechanism: ASP.NET 

Check Point 1: “System Error” Page 
   Expected result -> a System Error page is displayed with 
error message: A potentially dangerous value was detected 
in the form submitted. No changes were saved. Please make 

sure you don't have any HTML tags in the form. 
Check Point 2: Application log 

   Expected result -> an entry in the application log with 
error message: A potentially dangerous Request.Form value 
was detected from the client 

(ctl00$ctl00$MainContent$CenterContent$txtFirstName="=<IMGS
RC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#114;&#105;..."). 
 

-------------------------------------------------- 

 

 

5. User Scenarios
8
 

--------------- List of User Scenarios -------------- 
# of user scenarios: 3 
 
User Scenario 1: Login and then Logout 

Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL “http://toh7.site.uottawa.ca/palis-
test/Secure/Login.aspx” to open login page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “lpeyton” for field “username”, 
input “lpeyton” for field “password”, and click on “Log In” button to 
log in PAL-IS as user “lpeyton” 
 
Step3: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” link to log out PAL-IS 
 
 
User Scenario 2: Search a patient 

Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL “http://toh7.site.uottawa.ca/palis-
test/Secure/Login.aspx” to open login page 
 
Step2: Entry Point: Log On (ID: ep002) 

                                                 
 
 
8
 In this case study, the user scenarios were acquired from the development documented “User Scenarios: 

section 2”. The three user scenarios used in the case study are listed here for better reference. 



 
 
 

Appendix C2 PAL-IS Test Design Document  215 

 
 

Description: On the login page, input “lpeyton” for field “username”, 
input “lpeyton” for field “password”, and click on “Log In” button to 
log in PAL-IS as user “lpeyton” 
 
Step3: Entry Point: Navigate to Search Patient Page (ID: ep004) 
Description: Click on “Search Patients” link to navigate to Search 
Patient page 
 
Step4: Entry Point: Search a Patient (ID: ep005) 
Description: On the Search Patients page, select “LastName” as 
“SearchType”, input “Smith” in field “SearchText”, and click on “Search” 
button  
 
Step5: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” link to log out PAL-IS 
 
 
User Scenario 3: Update the current user profile  

Step1: Entry Point: Launch Login Page (ID: ep001) 
Description: In Browser, enter URL “http://toh7.site.uottawa.ca/palis-
test/Secure/Login.aspx” to open login page 
 
Step2: Entry Point: Log On (ID: ep002) 
Description: On the login page, input “lpeyton” for field “username”, 
input “lpeyton” for field “password”, and click on “Log In” button to 
log in PAL-IS as user “lpeyton” 
 
Step3: Entry Point: Navigate to My Profile Page (ID: ep006)  
Description: Click on “My Profile” link to navigate to My Profile page 
 
Step4: Entry Point: Navigate to Edit Profile Page (ID: ep007) 
Description: Click on “Edit this profile” link to navigate to Edit 
Profile page 
 
Step5: Entry Point: Update Profile (ID: ep008) 
Description: On the Edit Profile page, input “Liam” in field 
“FirstName”, input “Peyton” in field “LastName”, input 
“lpeyton@site.uOttawa.ca” in field “Email”, and click on “Save” button 
to submit updated profile 
 
Step6: Entry Point: Logout (ID: ep003) 
Description: Click on “logout” link to log out PAL-IS 
 
-------------------------------------------------- 

 

 

6. Test Cases 
--------------- List of Test Cases -------------- 
# of test cases: 10 
 
Test Case: 1 

Scenario 1:  Login and then Logout 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 



 
 
 

Appendix C2 PAL-IS Test Design Document  216 

 
 

Step 2: Attack 1 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton  
password=1 or 1=1— 
LoginButton=Log In 

 
Step 3 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 2 

Scenario 1:  Login and then Logout 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2: Attack 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=a' or 'a'='a 
LoginButton=Log In 

 
Step 3 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 3 

Scenario 2:  Search a patient 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
 
Step 4: Attack 3 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Input Form Fields:  

SearchType=LastName 
SearchText=1 or 1=1-- 

 
Step 5 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 4 

Scenario 2:  Search a patient 



 
 
 

Appendix C2 PAL-IS Test Design Document  217 

 
 

Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
 
Step 4: Attack 4 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Patients/SearchPatients.aspx 
Input Form Fields:  

SearchType=LastName 
SearchText=a' or 'a'='a 

 
Step 5 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 5 

Scenario 3:  Update the current user profile 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 5 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields:  

FirstName=<script>alert('XSS');</script> 
LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 



 
 
 

Appendix C2 PAL-IS Test Design Document  218 

 
 

Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 6 

Scenario 3:  Update the current user profile 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields:  

FirstName=>"><script>alert('XSS')</script>& 
LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 
Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 7 

Scenario 3:  Update the current user profile 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 



 
 
 

Appendix C2 PAL-IS Test Design Document  219 

 
 

GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 7 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields: 

FirstName=%uff1cscript%uff1ealert('XSS')%uff1c/script%uff1e 
LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 
Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 8 

Scenario 3:  Update the current user profile 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 8 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields:  

FirstName=<IMG SRC="javascript:alert('XSS');"> 
LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 
Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 9 

Scenario 3:  Update the current user profile 
Step 1 



 
 
 

Appendix C2 PAL-IS Test Design Document  220 

 
 

GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 9 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields:  

FirstName=<IMG SRC=javascript:alert('XSS')> 
LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 
Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
 
Test Case: 10 

Scenario 3:  Update the current user profile 
Step 1 
GET URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
 
Step 2 
POST URL: http://toh7.site.uottawa.ca/palis-test/Secure/Login.aspx 
Input Form Fields:  

username=lpeyton 
password=lpeyton 
LoginButton=Log In 

 
Step 3 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/MemberProfile.aspx 
 
Step 4 
GET URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
 
Step 5: Attack 10 
POST URL: http://toh7.site.uottawa.ca:80/palis-
test/Teams/EditProfile.aspx?UserName=lpeyton 
Input Form Fields:  



 
 
 

Appendix C2 PAL-IS Test Design Document  221 

 
 

FirstName=<IMGSRC=&#106;&#97;&#118;&#97;&<WBR>#115;&#99;&#114;&#1
05;&#112;&<WBR>#116;&#58;&#97;&#108;&#101;&<WBR>#114;&#116;&#40;&#39;&#
88;&#83<WBR>;&#83;&#39;&#41> 

LastName=Peyton 
Email=lpeyton@site.uOttawa.ca 
Genders=0 
Approved=on 
Save=Save 

 
Step 6 
POST URL: http://toh7.site.uottawa.ca:80/palis-test/default.aspx 
 
------------------------------------------------- 
  



 
 
 

Appendix C3 PAL-IS Test Execution Document  222 

 
 

Appendix C3 PAL-IS Test Execution Document 

Document: Phase III Penetration Test Execution 

Project: PAL-IS 

Author: Pulei Xiong 

Date: September 19, 2010 

 
1. Purpose: 
Execute the test cases created at the design phase (Phase II), and then analyze test results and create a test 
report. 
 
2. Test Result Summary (First Round) 

2.1 Application under Test 
PAL-IS, version Beta 1  
 

2.2 Test Report 
------------- Test Campaign Summary -------------- 
# of test cases executed: 10 
# of failed tests: 10 
# of identified vulnerabilities: 2 
# of entry points tested: 8 
# of vulnerable entry points: 3 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 26 
-------------------------------------------------- 
 
----------------Test Result Details--------------- 
Test Case 1: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 2: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 3: launch an SQL Injection attack against <Search Patient> 
page 
Result: Failed 
 
Test Case 4: launch an SQL Injection attack against <Search Patient> 
page 
Result: Failed 
 
Test Case 5: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 6: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 



 
 
 

Appendix C3 PAL-IS Test Execution Document  223 

 
 

Test Case 7: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 8: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 9: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 10: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
-------------------------------------------------- 
 
------- Identified Vulnerability Details --------- 
 
Vulnerability: SQL Injection 
probably exists on: 
  Entry Point: ep002(Log On) 
  Entry Point: ep005(Search Patient) 
 
Vulnerability: Stored XSS 
probably exists on: 
  Entry Point: ep008(Update Profile) 
-------------------------------------------------- 

 
 
3. Test Result Summary (Regression Testing) 

3.1 Application under Test 
PAL-IS, version Beta 2  
 

3.2 Test Report 
------------- Test Campaign Summary -------------- 
# of test cases executed: 10 
# of failed tests: 5 
# of identified vulnerabilities: 2 
# of entry points tested: 8 
# of vulnerable entry points: 3 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 
# of fuzz vectors: 26 
-------------------------------------------------- 
 
----------------Test Result Details--------------- 
Test Case 1: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 2: launch an SQL Injection attack against <Log On> page 
Result: Failed 
 
Test Case 3: launch an SQL Injection attack against <Search Patient> 
page 



 
 
 

Appendix C3 PAL-IS Test Execution Document  224 

 
 

Result: Failed 
 
Test Case 4: launch an SQL Injection attack against <Search Patient> 
page 
Result: Failed 
 
Test Case 5: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 6: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 7: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 8: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 9: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 10: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
-------------------------------------------------- 
 
------- Identified Vulnerability Details --------- 
 
Vulnerability: SQL Injection 
probably exists on: 
  Entry Point: ep002(Log On) 
  Entry Point: ep005(Search Patient) 
 
Vulnerability: Stored XSS 
probably exists on: 
  Entry Point: ep008(Update Profile) 
-------------------------------------------------- 

 
 
4. Test Result Summary (Regression) 

4.1 Application under Test 
PAL-IS, version Beta 3  
 

4.2 Test Report 
------------- Test Campaign Summary -------------- 
# of test cases executed: 10 
# of failed tests: 1 
# of identified vulnerabilities: 1 
# of entry points tested: 8 
# of vulnerable entry points: 1 
-------------------------------------------------- 
 
------- Web Security Repository Statistics ------- 
# of vulnerabilities: 5 
# of attack vectors: 9 



 
 
 

Appendix C3 PAL-IS Test Execution Document  225 

 
 

# of fuzz vectors: 26 
-------------------------------------------------- 
 
----------------Test Result Details--------------- 
Test Case 1: launch an SQL Injection attack against <Log On> page 
Result: Pass 
 
Test Case 2: launch an SQL Injection attack against <Log On> page 
Result: Pass 
 
Test Case 3: launch an SQL Injection attack against <Search Patient> 
page 
Result: Pass 
 
Test Case 4: launch an SQL Injection attack against <Search Patient> 
page 
Result: Pass 
 
Test Case 5: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 6: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 7: launch an Stored XSS attack against <Update Profile> page 
Result: Failed 
 
Test Case 8: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 9: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
Test Case 10: launch an Stored XSS attack against <Update Profile> page 
Result: Pass 
 
-------------------------------------------------- 
 
------- Identified Vulnerability Details --------- 
Vulnerability: Stored XSS 
probably exists on: 
  Entry Point: ep008(Update Profile) 
-------------------------------------------------- 
 

 


