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ABSTRACT 
We present here a new plasma-physics model of a stable active-region arch which corresponds 

to the structure observed in the EUV. Pressure gradients are seen, so that the equilibrium mag- 
netic field must depart from the force-free form valid in the surrounding corona. We take ad- 
vantage of the data and of the approximate cylindrical symmetry to develop a modified form of 
the commonly assumed sheared-spiral structure. The dynamic MHD behavior of this new 
pressure/field model is then evaluated by the Newcomb criterion, taken from controlled-fusion 
physics, and the results show short-wavelength stability in a specific parameter range. Thus we 
demonstrate the possibility, for pressure profiles with widths of the order of the magnetic-field 
scale, that such arches can persist for reasonable periods. Finally, the spatial proportions and 
magnetic fields of a characteristic stable coronal loop are described. 
Subject headings: hydromagnetics — Sun: corona 

I. INTRODUCTION 

It is difficult, from a plasma-physics viewpoint, to 
understand the relatively long-lived, large-scale loops 
observed in the solar corona near active regions 
(Kahler, Krieger, and Vaiana 1975; Foukal 1975; 
Vorpahl et al. 1975). This is true because of the known 
tendency of cylindrical and/or toroidal plasma struc- 
tures to be unstable on the very short magneto- 
hydrodynamic (MHD) time scale (Newcomb 1960; 
Goedbloed 1971). This time is of order S~li2 (S = 
magnetic Reynolds number > 109 for coronal struc- 
tures) smaller than the resistive flaring time (Van 
Hoven 1976), to say nothing of the observed quiescent 
period between flares. 

The only sure influence for stabilization is the im- 
pression of a strong axial magnetic field, 2?|, > 
(R/a)B1 » B±, where R is the loop radius of curvature, 
a the filament radius, and B± the field transverse to the 
axis, and the last inequality takes account of the large 
observed values of the (quasi-toroidal) aspect ratio 
R/a. Such a condition on the field components is 
difficult to justify in the case of a narrow free-standing 
solar arch since it requires the existence of large 
circulating currents in the external plasma. This does 
not correspond to the accepted picture of the structure 
of the surrounding coronal field, which must be nearly 
force-free. 

A clue to the resolution of this problem comes from 
some new EUV observations of the temperature and 
density structure of these elongated active-region loops 
(Foukal 1975, 1976; Levine and Withbroe 1976). 
These data indicate the existence of a shell structure, 
with positive radial pressure gradients near the core. 

Gradients of this sign should provide a stabilizing 
influence over the uniform-pressure, force-free case, 
which is unstable for relevant wavelengths (Voslamber 
and Callebaut 1962; Goedbloed and Hagebeuk 1972). 

In this paper we give preliminary results from our 
calculation of a new plasma model of such a loop, 
based particularly on the recent EUV data, which we 
briefly describe. We fit the observed pressure profile 
and determine the corresponding magnetic-field 
structure required for static equilibrium. We then draw 
on the plasma theory developed for the study of 
toroidal laboratory-fusion devices to treat the question 
of the dynamic MHD stability of this configuration 
with respect to the relevant global perturbations. 

II. OBSERVATIONS 

Elongated coronal active-region arches have been 
observed in X-rays and the EUV, with vastly improved 
spatial resolution, from the Apollo telescope mount on 
Skylab. The observed loop structures can be unstable 
(Kahler et al. 1975; Vorpahl, Tandberg-Hanssen, and 
Smith 1975) after varying periods, or sometimes can 
be stable for days (Landecker 1975; Vorpahl et al. 
1976). Their typical aspect ratios are of the order of 
10, with widths apparently sometimes less than the 
limit of resolution (~ 2000 km) and lengths greater 
than 104 km. 

For our present purposes the superior temperature 
resolution (at somewhat poorer spatial and temporal 
resolution) of the ATM EUV observations provides 
the more useful plasma information. To the extent 
that the X-ray and EUV active-region arches are 
similar, we can obtain a clue to their relative stability, 
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or metastability, from their observed pressure struc- 
ture. 

Foukal (1975) has determined that the visibility of 
these coronal loops in the softer EUV lines is the 
result of lower temperatures on their axes, by up to 
two orders of magnitude below those in the external 
corona. Less certain (more model-dependent) are 
spatially nonmonotonic density variations in con- 
centric shells, by a factor of 5. Levine and Withbroe 
(1976) have corroborated these temperature-variation 
results for a particularly well observed loop. Recent 
results by Foukal (1976) have emphasized the station- 
ary character of these loops and their uniformity along 
their axes. 

It has been shown that the observed global structure 
of systems of clustered loops can be approximated by 
a potential field (Poletto et al. 1975) or a small-«, 
force-free field (Vorpahl and Broussard 1977) built 
upon the measured photospheric sources. However, 
the present observations do not clearly distinguish 
between these possibilities, for reasons derivable from 
the work of Levine and Altschuler (1974). It is shown 
there that large currents, in relation to the fields and 
dimensions encountered, are required for significant 
twisting of fields of such large scale. 

III. FIELD STRUCTURE 

Here we use the observed small-scale pressure 
gradients to specify a magnetic structure which is 
locally non-force-free, yet is imbedded in a global 
force-free field. 

We take advantage of the large aspect ratio and 
observed longitudinal uniformity (Foukal 1976) to 
make the approximation of cylindrical symmetry, 
which has been used successfully in predictions of the 
stability of similarly shaped laboratory devices, such 
as the tokamak. In this case the allowable external 
force-free field, which remains so even in the presence 
of resistive diffusion, is that of Lundquist (1951 ; Jette 
and Sreenivasan 1969). 

The observed radial pressure profile is simulated by 
a simple Fourier expansion, which preserves its 
essential features. We write, for r < a9 

^ X Pj. - P2costt- - P3cos2tt-, (1) 
Pc a a a 

which provides for fitting the values of the pressure 
minimum at r = 0, a possible pressure maximum 
(Foukal 1975) at r # aß, and for a smooth connection 
to the uniform ambient coronal pressure /?c at r = a9 
the edge of the loop. 

Most of the stability calculations described here use 
the values P1 = 0.55, P2 = 0.45, and P2 = 0, de- 
scribing a pressure minimum at the origin p(0) = 0.1/?c 
which is indicated by Foukal’s recent (1976) data. 
Several nonmonotonic profiles, with pressure maxima 
Pm > Pc> have also been tested, as will be mentioned in 
the following section. 

Inside such a loop profile the equilibrium fields are 

found from the static momentum-transfer equation 
(Goedbloed 1971), 

0 = -Vp + /X£, 

where p, /, and B are the pressure, current density, and 
magnetic field. Separating the current density J into 
components parallel and perpendicular to B, we see 
that only J± enters this force-balance equation, so that 
we need another relation for /||. Since /h can always be 
written as = aB, where the constant of propor- 
tionality is in general a function of r and t9 we must 
only specify the dependence of a on these variables. In 
the following we will select the simplest case, namely a 
constant and uniform. This seems the most appropriate 
choice for problems which are stationary, at least on a 
certain time scale, since spatial and temporal varia- 
tions of a are strongly interrelated (Jette and Sreeni- 
vasan 1969). Moreover, with a constant a the field 
maintains its shape during the slow decay introduced 
by finite-resistivity effects. 

In Ampere’s law we then have 

V x 5 = Mo(/|| + Jl) 

X aB(r) + noB X Vp/B2 . (2) 

The r component of this equation specifies Be(r) in 
terms of Bs(r) and p(r). The parallel component can 
be put in the form of a Riccati equation (Davis 1962), 
which provides the unexpected result that Bd(r)/Bz(r) 
must be the same as that in the constant-pressure 
Lundquist (1951) field. [This is the Bessel-function 
solution of the equivalent force-free equation 
(V2 + a2)B = 0 in cylindrical geometry.] Thus in the 
present case we obtain 

Bz(r) = B0(r)J0(ar) 
and 

Be(r) = Boir^ar) , (3) 

where the common field amplitude B0(r) is given by 

È- ( R    dp 
dr^ 0 ' J0

2{pr) + J2(ar) dr ’ (4) 

from the r component of equation (2). The require- 
ment that Bq2 > 0 puts a weak constraint on the 
allowed values of the parameters y = aa and ßa = 
2fjL0PclB0

2(d)9 otherwise leaving considerable leeway in 
their choice. The continuity of B and /, and of their 
radial derivatives, ensures that the fields given by 
equation (3) also hold for r > a9 with the same value 
of a and B0(r) = B0(d) = constant. 

The equilibrium fields resulting from this construc- 
tion differ significantly from the Lundquist field (in the 
pertinent regime in which ßa is not infinitesimal) for 
r < a9 and then connect smoothly to this limiting 
force-free form in the external uniform-pressure region. 

IV. MAGNETOHYDRODYNAMIC STABILITY 

The next element of a plasma model is the de- 
termination of the short-time-scale stability (r æ a/vA9 
where vA is the Alfvén speed) of the static equilibrium. 
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In the absence of MHD stability, coronal arches 
would not persist long enough to be observed. The 
calculation of this condition must, in general, cover 
two kinds of perturbations, localized and global (in 
relation to the cross section of the loop). 

a) Local Stability 

This requirement is relevant to parts of the profile 
where dpjdr < 0, such as that where r ^ aß in 
equation (1) in those cases where P3 / 0. A stability 
criterion for localized perturbations of this kind has 
been given by Suydam (1958), and extended to toroidal 
geometry by Mercier (1960). 

The Suydam criterion dictates the minimum field 
shear necessary to stabilize the effects of a local 
negative pressure gradient. Since these two aspects of 
the equilibrium are already connected by the static 
considerations of the last section, localized stability 
has the effect of limiting the allowable ranges of the 
amplitude and the radial scale of the magnetic field. 

Our calculations of the result of this straight- 
forward necessary condition show that it indeed puts 
rather tight bounds on the acceptable values of y(#5) 
at noninfinitesimal pressures {ßa > 0.01), for those 
cases where P3 / 0 in equation (1), thus greatly 
restricting the stability boundaries at short wave- 
lengths. In addition, an absolute maximum limit is put 
on ßa (^0.15 at pjpc = 2) which effectively prevents 
the attainment of global stability, since this separate 
requirement demands large ßa values, as will be 
described in § IV&. These results effectively limit our 
consideration to positive radial pressure gradients, 
confirming the recent observations of Foukal (1976). 

b) Global Stability 

Having now specified and restricted the magnetic 
fields capable of supporting a significant pressure 
gradient, we must evaluate the more stringent require- 
ment of their stability to global perturbations, that is, 
those which extend over a significant range of radius. 
This is done, in the cylindrical approximation, by the 
method of Newcomb (1960), which is equivalent to a 
calculation of the condition of marginal stability 
(Goedbloed 1971) of the equilibrium. This is specified 
by the linearized momentum-transfer equation with 
dfdt = 0, along with the applicable boundary con- 
ditions. 

In this symmetry the marginal equation of motion 
for the small-amplitude radial displacement £r(r) x 
exp (imO + ikz) of a compressible fluid element is well 
known (see eq. [18] of Goedbloed 1971). The solution 
is singular at the zeros of 

F(r\ k, m) = k*B = kB3 + (m/r)Be 

= B0(r)[krJ0(ar) + m/1(ar)]/r , (5) 

so that it is more convenient to use a dependent 
variable of the form 

Rr(r) = ^Ur), 

related to the radial component of the perturbation 
magnetic field. The “small” solution (Newcomb 1960) 
of this transformed equation is well behaved at the 
singular points rs(k, m), where F(rs; k, m) = 0, if the 
Suydam criterion is satisfied (Goedbloed 1971). 

The Newcomb (1960) necessary and sufficient 
stability criterion may then be stated as follows, (i) 
Such a compressible cylindrical-pinch plasma equi- 
librium is MHD stable for all perturbations if it is 
stable for the m — l and very long wavelength 
{k 0)m = 0 modes, (ii) Stability must be tested 
independently in each interval{(0, rsl), (rsi, rs2),...} of 
r, where rsi{k, m) is the ith singular point, counting 
from the origin, (iii) In each interval one integrates the 
equation of motion, starting from the end points with 
the small solution (Newcomb 1960) as an initial 
condition, toward some interior point r0i; if i?r+ and 
Rr_ are the right and left solutions, they must not 
vanish before they reach r0i and, at this point, 

— (log Rr-.) > — (log Rr+) (6) 

must be satisfied. 
We have tested this criterion by computer integra- 

tion of the equation of motion for Rr, using the pres- 
sure and field profiles previously described. We find 
that stability is improved by the positive pressure 
gradient near the axis. That is, the plasma is stable for 
smaller values of \k/a\ than in the case of the pure 
force-free field (Voslamber and Callebaut 1962). 

The critical importance of stability down to low 
values of \k/a\ may be seen as follows. The axial 
wavelength of allowable perturbations must be less 
than twice the length of the loop, A = 27t/|A:| < 2ttR ä 
207ra. This condition may be restated in the form 
|A:/cc| > 0.1/y, providing a lower wavenumber limit 
beyond which all short-wavelength perturbations 
must be stable so that the loop itself will be stable. 

For nonmonotonic pressure gradients, the Suydam- 
determined local-stability restriction of y ä 5 (and 
ßa ^ 0.15) gives difficulty in this respect. We have 
tested pressure profiles with maxima pm P(aß) > 
Ipc and have found global stability only for wave- 
lengths A ^ 12a. Stable coronal arches could exist 
under these conditions, but their radius of curvature 
R is too small to be adequately treated by the cylindri- 
cal approximation used here. 

We turn then to the specific case of a monotonie 
pressure gradient (P3 = 0), with a central pressure 
/?(0) = 0.1/?c. Since the force-free case is known to be 
completely stable for ra # ± 1 and \kja\ > 1 (Voslam- 
ber and Callebaut 1962), and a positive pressure 
gradient only improves the situation, we need only 
consider m = 1 perturbations for \k\ < a (m — 1 
only changes k -> —k). 

Under these conditions, the central zone of the 
equilibrium 0 < r < rsl is known to be the most 
unstable for the pure force-free field (Voslamber and 
Callebaut 1962), with critical wavenumber limit 
I A: I > 0.27«, and so it must be considered first. 

Since it is an essential feature of our model that 
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TABLE 1 
Stable Parameters for the Monotonic 

Pressure Case* 

 ßa_   
y 0.8 1.0 1.25 2.0 

5.0   Sq.i Sq.i Sq . .. 
4.0   S0.i Sq ... Sq 
2.0.  U U So.i 
1.5   U U U So.i 

* So denotes stability for all k in the first singular 
zone. Since the second zone is unstable for \k¡a\ < 
0.093, the first need only have stability for \k¡a\ >0.1, 
which is denoted So.i. U means unstable. The blank 
entries have not yet been tested. 

there is a non-zero pressure gradient near the origin, 
the full non-force-free perturbation equation must be 
used, and the stability test of equation (6) made for 
each equilibrium configuration as specified by y and 
ßa. We have not yet, at this preliminary stage, made an 
exhaustive fine-scale scan of the (y, ßa)-plane, since 
considerable computer time is involved. However, we 
have found the approximate parameter boundaries for 
stable perturbations in the crucial (most unstable) first 
radial interval. 

The results of our preliminary calculations are 
detailed in Table 1. They show that the equilibrium 
structure described in § III is stable for a relatively 
wide range of y (the ratio of pressure scale width to 
field scale width) at larger values of ßa [the ratio of gas 
pressure to magnetic pressure divided by J0

2(y) + 
Ji2(y)]. We find complete stability for all wavenumbers 
in the range 1 ^ y ^ 6atßa = 10. When ßa æ l,all-/: 
stability is attained only for y # 4. At this value of ßa, 
\k¡a\ > 0.1 stability exists for 3 ^ y ^ 6. This weaker 
condition is sufficient, however, because it subsumes 
the separately determined stability behavior of the 
external singular zones. 

For y ^ 3.8, the positive pressure gradient does not 
penetrate into the second singular interval in r. Thus, 
in this and succeeding intervals, the fields are purely 
force-free. We have, for the first time in our knowledge, 
now calculated the stability limits in these zones. 
(Previously, the dominant instability was that of the 
first interval [Voslamber and Callebaut 1962], so 
further tests were less important.) The second zone is 
stable for \k¡a\ > 0.093, and succeeding intervals have 
smaller instability ranges. 

As a result of these considerations, all radial zones 
of the coronal loop model, with R = 10a, are stable 
for y ^ 1.1 when ßß ^ 3.6. This condition is obtained 
by equalizing the \k/a\ instability boundaries in the 
first and second singular intervals, thereby bracketing 
all of the remaining ones. 

For y ^ 4.2, the positive pressure gradient extends 
into the second singular interval, allowing stability for 
longer wavelengths. This could allow a shorter loop, 
with aspect ratio ~3.3, to be stable up to y £ 5 and 
therefore over a range of ßa values. 

The end result of these calculations indicates a 
reasonable, but not large, spectrum of magnetic-field 
parameters which will confine the observed coronal- 
loop structures. A specific description of the physical 
characteristics of such a stable arch will be given in the 
Conclusions. 

V. CONCLUSIONS 

We have described a complete plasma model for the 
pressure profile of a coronal loop, based specifically on 
EUV observations. We have derived the required 
equilibrium magnetic fields and have calculated the 
MHD stability of this configuration for a range of the 
relevant plasma parameters. 

The long-wavelength stability limits of a positive- 
pressure-gradient model are rather narrow, indicating 
a unique shape for the arch (within a length-scale 
factor). 

A loop with major/minor radius ratio (R/a) of 10, 
and with a central temperature (pressure) of one-tenth 
of that in the surrounding corona, is supported in 
equilibrium by fields of the form given in equation (3). 
This type of arch is completely MHD stable for values 
of y = aa ~ 1 and B0(a) x 0.45(/xoPc)1/2* 

For this particular stable combination of pressure/ 
field parameters, the magnetic field at the edge of the 
loop (computed from typical coronal active-region 
pressures) is of order 2 gauss and the axial field at the 
center is about 30 gauss. These are not felt to be un- 
acceptably large values for the active-region corona. 

A loop conforming to this model would persist for 
an indefinite time in the absence of the effects of finite 
resistivity (Van Hoven 1976). We plan a subsequent 
investigation of the flaring, or nonideal MHD, be- 
havior of such coronal arches. 
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