
A Model for Attribute-Based User-Role Assignment

Mohammad A. Al-Kahtani
George Mason University

malkahta@gmu.edu

Ravi Sandhu
SingleSignOn.net, Inc. &
George Mason University

sandhu@gmu.edu

Abstract

The Role-Based Access Control (RBAC) model is
traditionally used to manually assign users to appropriate
roles, based on a specific enterprise policy, thereby
authorizing them to use the roles' permissions. In
environments where the service-providing enterprise has
a huge customer base this task becomes formidable. An
appealing solution is to automatically assign users to
roles. The central contribution of this paper is to describe
a model to dynamically assign users to roles based on a
finite set of rules defined by the enterprise. These rules
take into consideration the attributes of users and any
constraints set forth by the enterprise’s security policy.
The model also allows dynamic revocation of assigned
roles based on conditions specified in the security policy.
The model provides a language to express these rules and
defines a mechanism to determine seniority among
different rules. The paper also shows how to use the
model to express Mandatory Access Controls (MAC).

1. Introduction

Role-Based Access Control (RBAC) has emerged as a
proven and superior alternative to traditional
discretionary and mandatory access controls [1, 2]. In
RBAC permissions are associated with roles, and users
are made members of appropriate roles, thereby
acquiring the roles' permissions. This greatly simplifies
management of permissions. Roles can be granted new
permissions as new applications and systems are
incorporated, and permissions can be revoked from
roles as needed. Usually, the enterprise security
officer(s) manually assign users to roles based on
criteria specified by the enterprise.
Today, an increasing number of service-providing
enterprises make their services available to their users
via the Internet. RBAC can be used to manage users’
access to the enterprise services and resources. In
many environments, the number of users can be in the

hundreds of thousands or millions. Typical examples
are banks, utility companies, and popular Web sites, to
name a few. This renders manual user-to-role
assignment a formidable task.
An appealing solution is to automatically assign users
to roles. This automatic assignment should be based on
what attributes users have. It should also take into
account any constraints laid down by the entity that
provides the service.
In this paper, we describe a model to automatically
assign users to roles based on a finite set of assignment
rules defined by authorized people in the enterprise.
These rules take into consideration the attributes users
own and any constraints set forth by the enterprise.
Users’ attributes can be provided along with
identification information or be retrieved from a
database.
The model provides a language to express assignment
rules and defines a mechanism to determine seniority
among them. When certain conditions hold, the model
also allows dynamic revocation of assigned roles.
Since Mandatory Access Controls (MAC) are widely
used in the military sphere, and are well understood,
the paper also shows how to use the model to express
MAC using the proposed language.
The paper is organized as follows. In section 2 we
summarize related research. Section 3 describes our
model. In sections 4 and 5 we show how our model can
be used in two real life examples: one from the private
sector and the other from the military sector. In section
6 we touch on issues that we have not explored in this
paper, though they are closely related to the topic
discussed. Section 7 concludes the paper.

2. Related Work

The central concept of RBAC is the role, which can be
viewed as a semantic construct around which access
control policy is formulated. Permissions are
associated with roles. Users are assigned to appropriate
roles based on factors such as their responsibilities and
qualifications. Users can be easily reassigned roles.
Roles can be granted new permissions, and organized
in role hierarchies to reflect the organization’s lines of

responsibility and authority. In this work we adopted
RBAC96 model presented in [2] after stripping out
sessions, as shown in Figure 1.

Figure 1 Simplified RBAC

When first developed, RBAC was intended for closed-
enterprise systems in which the security
administrator(s) assign roles manually to users. Park
and Sandhu presented RBAC as a sound candidate to
control users’ access to resources and services in large-
scale Web environments [3]. They identified
architectures that can be used to implement RBAC on
the Web. They also showed how existing technologies
can be utilized to support these architectures. However,
the architectures proposed were only in the context of
enterprise-wide systems in which systems
administrators assign users to roles on the basis of
users’ responsibilities in the enterprise.
In [4], Herzberg et al. presented a Trust Establishment
(TE) system that defines the mapping of strangers to
predefined business roles, based on certificates issued
by third parties. Part of the proposed system is an
XML-based Trust Policy Language to map users to
roles using well-defined logical rules. Each role has
one or more rules defining how a client can be
assigned that role. The TE system gathers certificates
related to a specific client and makes a decision
regarding the client’s eligibility for a specific role. The
system proposed in [4] does not pay attention to
relations that might exist among different rules.
Another drawback in the TE system is that it is based
on bottom-up buildup of the public key infrastructure
(PKI), which imports all the issues related to PKI.
Another work that is closely related to [4] and to ours
is found in [5] by Zhong, et al. They proposed a
schema to use RBAC on the Web and a procedure for
user-role assignment. Their schema assigns a client to
a role based on legitimacy of information gathered,
assignment policies, and the trustworthiness threshold
specified by system administrators. Trustworthiness of
a user is defined as clearance of the user. It represents
the degree to which the enterprise believes that a user
will not do harm to its Web site system. It is
accumulated gradually over time and drops if harmful
actions or potential harmful actions are discovered.
There is a major drawback to this approach. A

malicious user may logon to the system for long time
without doing any suspicious acts. As time goes on, he
acquires a high clearance, which might enable him to
inflict damage on the system. Also, the scheme
depends on many security parameters, which must be
given initial values. It leaves determining these values
to system administrator(s), but does not provide any
guidelines on how to determine them.
Lightweight Directory Access Protocol (LDAP) is
specifically targeted at management applications and
browser applications that provide read/write interactive
access to directories supporting the X.500 models [6].
Roles can be stored in directories and retrieved when
needed. LDAP has been augmented to support
dynamic groups. A dynamic group is an object with a
membership list of distinguished names that is
dynamically generated using LDAP search criteria.
The dynamic membership list may then be interrogated
by LDAP search and compare operations, and be used
to identify a group’s access control subjects [7]. This
feature could be used to automatically assign users to
roles in large enterprises. To retrieve the roles a
specific client is entitled to assume, the filter in the
search operation is configured to reflect the attributes
the client has. When the search operation is executed,
LDAP returns a list of the attributes extracted from
each entry that matches the search filter specified in
the search operation. The LDAP directory can be
configured in such a way that returned attributes store
the roles that match the search filter. However,
implementing LDAP solely for the sake of
dynamically assigning users to roles is an unwieldy
solution. Also, LDAP returns a simple list of attributes
(which represent roles in our case) with no logical
structure attached to them. If, for example, a client can
assume one of two mutually exclusive roles, LDAP
does not provide a simple mechanism to express this.
Yao et al. [8] present an RBAC model that does not
recognize role hierarchies explicitly. Instead, they
propose a role activation dependency that is dynamic.
A set of parameterized rules governs the activation of
every role. Their model is rich in terms of expressing
the rules, and associated conditions. However, we
think that eliminating role hierarchies is a debatable
issue to say the least. Role hierarchies have values not
only from the user-assignment perspective of roles but
also from the permission-assignment perspective. Also,
by making the hierarchies implicit via side effects of
role activation rules, the model does not explicitly
capture various relations that might exist among roles.

3. The Model

In the model we propose, we modify RBAC such that it
becomes rule-based, as discussed below. Thus, we named

U R P

(UA)
User

Assignment

(PA)
Permission
Assignment

Role
Hierarchy

it Rule-Based RBAC or RB-RBAC. In this model, an
enterprise defines the set of rules that are triggered to
automatically assign users to roles. These rules take into
account:
� The attributes of the client that are expressed

using attributes’ expressions as defined by the
language provided by the model.

� Any constraints on using roles.

Figure 2 RB-RBAC model

Figure 2 shows that users have many-to-many explicit
relation with attribute values. Further, they have many-
to-many implicit relation with attribute expressions.
One user could have one or more attribute expressions
depending on the information he provides. Conversely,
two or more users may provide identical attribute
expressions. A specific attribute expression
corresponds to one or more roles. An example of a rule
that yields multiple roles is when a client is entitled to
several mutually exclusive roles. The figure also shows
that a role may be hierarchically related to one or more
roles (in the usual partial order of roles). The figure
also shows that a role may correspond to one or more
attribute expressions.
In order to assign the role(s) specified by the rule to a
client, the following must hold:

� The client must provide attributes that
satisfy the attribute expressions.

� All constraints must be observed.
Conditions allow dynamic revocation of role
assignment if a condition required by the assignment
rule can no longer be satisfied.

3.1. Assumptions

1. Users are properly authenticated before our model is
triggered to assign them roles.

2. Role-permission assignment is relatively stable
compared to user-role(s) assignment. Thus automated
permission-to-role assignment constitutes a good
candidate for future work.

3.Users’ attributes are provided along with the
authentication information or can be fetched from
databases.

4.The number of users is much larger than the number
of roles (such as, hundred of thousands or millions of
users versus less than a hundred roles).

 3.2. The Language

Using context-free grammar, we define the language
given in Figure 3, which is largely self-explanatory.

Figure 3: RB-RBAC Language

Attributes
Expressions

Users

Roles

Permissions

Constraints

Attributes
values

Conditions

3.3.1. The terminal symbols: {AND, OR, XOR, NOT, <, =, >, ≤, ≠, ≥,
IN, “SUBJECTED TO”, “REVOKED IF NOT”, 0, 1, 2, 3, 4, 5, 6,

7, 8, 9}
3.3.2. The non-terminal symbols: {Attribute_Expression,
Attribute_Pair, Relation_Operator, Operator, Attribute, Roles,
 Constraints, Num, Digit, Conditions,Set,Range,Role,Attribute_Value}

The values of the non-terminal symbols Set,
 Attribute, Attribute_Value, Role and Constraint are specified
by the organization.

3.3.3. The Start symbol: Rule
3.3.4. The production rules (in BNF notation):

Rule ::= Attribute_Expression SUBJECTED TO [Constraints]
REVOKED IF NOT [Conditions]Æ Roles.

Attribute_Expression ::= Expression
Conditions ::= Expression
Expression ::= Attribute_Pair

| Expression Operator Expression
| (Expression Operator Expression)

Attribute_Pair ::= Attribute Relation_Operator Attribute_Value
| Attribute [NOT] IN Set
| Attribute [NOT] IN Range

Roles ::= [NOT] Roles
| Roles Operator Roles
| (Roles Operator Roles)
| Role

Constraints ::= Constraint
| Constraint Operator Constraint
| (Constraint Operator Constraint)

Operator ::= AND | OR | XOR
Relation_Operator ::= < | = | > | ≤ | ≠ | ≥
Attribute ::= {specified by organization}
Attribute_Value ::= {specified by organization}
Set ::= {specified by organization}
Range ::= (Num..Num)
Num ::= Num Digit
Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Role ::= {specified by organization}
Constraint ::= {specified by organization}

We kept the language simple but extendable to show
the usability of the model. We are working on many
possible extensions, some of which are discussed later
in this paper.

3.3. The Seniority Levels

The attributes provided by a user may not literally
meet the Attribute_Expression requirement of a
specific rule. In some cases, they might provide more
than what is called for by the rule. In real life, such a
user is entitled to assume the role specified by that
rule. The language as defined above does not provide a
mechanism to compare the attributes provided by the
users to those required by a rule. Also, it might be
desirable to compare two rules. To do this, we
introduce seniority levels:
� Attributes’ values specified by the organization

are given seniority levels showing what value
dominates what. In case of numeric values,
seniority automatically follows the normal order
of values when we have the following syntax:

Attribute ≥ numeric value or
Attribute > numeric value

However, seniority levels go in reverse order
with numeric values when the syntax is in the
following form:
Attribute < numeric value or
Attribute ≤ numeric value
In case of equality, inequality, sets, and ranges,

seniority levels must be manually specified.
� Two (Attribute_Expression)s are said to be

comparable only if
1. They have identical structures (syntax)

according to our notation, and
2.They are subjected to the same constraints
� Only comparable (Attribute_Expression)s are

tested for seniority.
� We use the symbol ≥ to denote dominance.
� We say Attribute_Expressioni dominates (≥)

Attribute_Expressionj:
If ∀ x,y: x is the ith attribute value ∈

Attribute_Expressioni and y is the ith
attribute value ∈ Attribute_Expressionj,

then
 Seniority Level of (x) ≥ Seniority Level of

(y)
� A user with Attribute_Expressioni is entitled to

roles specified by rules whose
(Attribute_Expression)s are dominated by
Attribute_Expressioni.
� Rulei (with Attribute_Expressioni) is said to be

senior to Rulej (with Attribute_Expressionj) only
if Attribute_Expressioni ≥ Attribute_Expressionj.

� A senior rule inherits all the roles produced by
any of its junior rules. This approach, though
intuitive, introduces two issues, which we
describe here informally:

Figure 4 Examples for Redundancy Among
Rules

1. Redundancy: This occurs when a senior rule yields a
role or group of roles, which are yielded by a junior
rule. Figure 4 shows examples of redundant rules.
In the figure, the vertical arrows indicate the direction
of seniority. In case 1, for example, Rule 1, which is
senior to Rule 2, produces Role 2. However, Rule 2
produces Role 1, which is senior to Role 2. In other
words, a user whose attributes satisfy Rule 1 can
obtain Role 1 either directly via Rule 2 or indirectly
by invoking Rule 1, which inherits it from Rule 2.
Deleting a senior rule eliminates redundancy without
diminishing the roles, and hence the privileges a
client is supposed to obtain. The same solution
applies to cases 2 and 3.

2. Inconsistency: Several scenarios could render a set of
rules inconsistent, as illustrated in Figure 5. One
reason for inconsistency is the mutually exclusive
roles. We distinguish between 2 types of these roles:
a. Mutual exclusion that must be observed

throughout all the assignment rules or among
rules that have no seniority relationship among
them. Enforcing mutual exclusion of roles in this
case requires using constraints. Assume that the
security policy of the enterprise considers Role 1
and Role 2 mutually exclusive roles. A user may
try to activate them simultaneously by providing
attributes that satisfy Rule 1 and, immediately
after that, providing attributes that satisfy Rule 2.
To prevent this, the rules in case 1, shown in the
figure, could be expressed as follows:
� Attribute Expression for Rule 1 SUBJECT TO

user not currently enrolled in Role 2 Æ Role 1
� Attribute Expression for Rule 2 SUBJECT TO

user not currently enrolled in Role 1 Æ Role 2

Rule 1

Rule 2

Role 1

Role 2

Role 1 is senior to Role 2

Case 1

Rule 1

Rule 2

Role 1

Case 2

Rule 1

Rule 2

Role 1

Role 1 & Role 2

Case 3

In case 2, Rule 2 explicitly violates the security
policy so to remove the inconsistency we delete
the senior rule and rewrite the junior rule as
follows:

Rule 2 Æ Role 1 XOR Role 2.
b. Mutual exclusion that must be observed

throughout assignment rules that are related via
seniority. The inconsistency in case 3 was
introduced via an explicit violation of the
security policy and can be eliminated in a way
similar to the one used in case 2. In case 4, a user
who successfully triggers Rule 1 will be directly
forbidden from assuming Role 1, but he can
assume that role indirectly via inheriting Rule 2,
which is junior to Rule 1. There are 2 approaches
to deal with this inconsistency:

• Eliminating the junior rule, which
results in fewer permissions available to
users.

• Eliminating the senior rule and thus
retaining the current sum of
permissions.

Figure 5 Examples for Inconsistency

4. Case I: Online Entertainment Store

An online entertainment store provides movies, games,
documentary films, etc. The content of the material
provided is rated according to a hypothetical rating
system as shown in Table 1. Using RBAC
terminology, levels correspond to roles, which, in turn,
correspond to permissions. Roles are totally ordered in
this example. When users logon, the attributes they

provide determine the highest level they can obtain.
For the sake of the discussion, we will consider 2
attributes: the age of the users and the country from
which they initiate the service request.

Table 1 New Visual Material Rating System

4.1. Attributes’ Representation

4.1.1. Age

Table 2 shows how users who belong to different age
groups are assigned to roles described in Table 1.Using
the language, the Web site administration can specify
the following non-terminal items:

i) Attribute ::= age
ii) Attribute_Value ::= 3, 11, 16, 18
iii) Role ::= Child | Juvenile| Adolescent| Adult

Since no constraints or conditions were specified, the
following rules are produced:

• Rule 1:: (Age ≥ 3) Æ Child
• Rule 2:: (Age ≥ 11) Æ Juvenile
• Rule 3:: (Age ≥ 16) Æ Adolescent
• Rule 4:: (Age ≥ 18) Æ Adult

4.1.2. Country

Different countries have various laws regarding the
access they permit their citizens to visual material.

Rating
Level

Content of Material
Displayed:

“Permissions”

Corresponding
Role

L1:
Strict

• No violation of ethics
• No foul language
• No sexual language

/ scenes
• No scary scenes

Child

L2: Less
Strict

• Normal social
behavioral patterns

• No foul language
• No sexual language

/scenes
• No scary scenes

Juvenile

L3:
Liberal

• Normal social
behavioral patterns

• Moderate foul
language

• Moderate sexual
language/scenes

• Moderate scary
scenes

Adolescent

L4:
Graphic

• Extreme social
behavioral patterns

• Foul language
• Explicit sexual

language/scenes
• Scary scenes

Adult
Rule 1

Rule 2

Role 1

Role 2

Case 1

Rule 1

Rule 2

Role 1 XOR Role 2

Case 2

Role 1 AND Role 2

In cases 1 and 2, Role 1 and 2 are globally mutually
exclusive

Rule 1

Rule 2

Role 1 XOR Role 2

Case 3

Role 1 AND Role 2

Role 1 and 2 are mutually exclusive within rules
that are related via seniority relationship

Rule 1

Rule 2

NOT Role 1

Role 1

Case 4

Countries including China, India, Saudi Arabia, Egypt
and Singapore do not allow materials that have explicit
sexual content. Also, some countries outlaw materials
containing symbols that represent certain ideologies,
religious values, etc. Failing to abide by these laws
may subject the enterprise to litigation. In November
2000, a French court ordered Yahoo! to devise a way
to block Nazi paraphernalia from being auctioned
through its site in France. The court also said Yahoo!
would be charged a fine equivalent to $13,905 each
day for supporting the Nazi items on its auction site
[9].

Table 2 Attribute-Role Table for Attribute “Age”

Based on our rating system defined above, we
construct Table 3, which shows a hypothetical situation
linking countries to roles. Set {A..Z} contains all
countries of the world.

Table 3 Attribute-Role Table for Attribute
“Country”

Note that if a country is in {A..Z}, then by RBAC
definition, users in that country can assume the role
Child since it is junior to Juvenile. Using the language,
the Web site administration can specify the following
non-terminal items:

i) Attribute ::= country
ii) Set ::= {A..Z}

| {{A..Z} – {Saudi, Sudan}}
| {{A..Z} – {China, India, Saudi, Sudan,
Egypt, Indonesia, Malaysia,
Singapore}}

iii) Role ::= Juvenile | Adolescent | Adult
Based on the above, the following rules are produced:

• Rule 1:: (Country IN {A..Z}) Æ Juvenile
• Rule 2:: (Country IN {{A..Z} – {Saudi,

Sudan}}) Æ Adolescent
• Rule 3:: (Country IN {{A..Z} – {China, India,

Saudi, Sudan, Egypt, Indonesia, Malaysia,
Singapore}}) Æ Adult

Assuming that the security policy of the online store
calls for considering age and geographical location
simultaneously, then we can use the language provided
by the model to specify the following rules:

• Rule 1:: (Age ≥ 3) AND (country IN {A..Z})
Æ Child

• Rule 2:: (Age ≥ 11) AND (country IN {A..Z})
Æ Juvenile

• Rule 3:: (Age ≥ 16) AND (country IN {{A..Z}
– {Saudi, Sudan}})
Æ Adolescent

• Rule 4:: (Age ≥ 18) AND (Country IN {{A..Z}
– {China, India, Saudi, Sudan, Egypt,
Indonesia, Malaysia, Singapore }})
Æ Adult

4.2. Implementing Seniority Levels

Assume that the security officer in the entertainment
store assigned seniority levels to attribute values as in
Table 4. Based on the above, if a client owns attribute
expression (Age ≥ 16) AND (country IN {A..Z}), then
Rule 2 is triggered and the client gets role Juvenile
because:
� Age value (16) dominates Age value (11)
� The client’s attribute “country” has a value that

is identical to the one required by Rule 2

Table 4 Attributes and Seniority Levels

4.3. Implementing MAC Using the Language

The language we introduced above can be used to
implement MAC. In the visual entertainment store
case, we can assume having a security lattice similar to
the one in Figure 6. In our example, (Simple Security
Property) is enforced so that a client (“subject” in
MAC terminology) can view (read) materials (objects)
that have security labels that are not superior to his
clearance. The client can also make comments or post
queries about materials provided by the store. A client
at Adult level, for example, can write comments about
materials at his level. If he wants to write about

Age Role
≥ 3 Child
≥11 Juvenile
≥16 Adolescent
≥18 Adult

Country Role
Country in {A..Z} Juvenile
Country in {{A..Z} – {Saudi, Sudan}} Adolescent
Country in {{A..Z} – {China, India, Saudi,
Sudan, Egypt, Indonesia, Malaysia, Singapore}}

Adult

Attribute Value Seniority Level
Attribute = Age Follows the regular

order of numeric
values: a value of 16

is senior to 3.
Attribute = Country

Country in {A..Z} 1
Country in {{A..Z} – {Saudi,
Sudan}}

2

Country in {{A..Z} – {China, India,
Saudi, Sudan, Egypt, Indonesia,
Malaysia, Singapore}}

3

materials at Child level, he has to login as a subject at
Child level. A client at Child level can not write a
comment that at Adult level and hence, (Strict *-
Property) is enforced.

Figure 6 Security Lattice

Osborn et al showed in [10] that the lattice in Figure 6
can be converted to two role hierarchies as shown in
Figure 7. In this case, we have the following
construction:
� Roles = {Adult Read, Adolescent Read, Juvenile

Read, Child Read, Adult Write, Adolescent Write,
Juvenile Write, Child Write}.

Figure 7 Role Hierarchies for the Lattice in

Figure 6

� Role hierarchy consists of two disjointed parts.

The first is a role hierarchy for the “read” roles:
{Adult Read, Adolescent Read, Juvenile Read,
Child Read}. This hierarchy has the same partial
order as dominance relation (≥ as in MAC). The
second part is composed of incomparable “write”
roles: {Adult Write, Adolescent Write, Juvenile
Write, Child Write}.

� Constraint on User assignment: Each user is
assigned to exactly two roles: xR and xW where x
is the label assigned to the user.

Using the language we defined, we can specify:
Role ::= Adult Read | Adolescent Read | Juvenile

Read | Child Read | Adult Write
| Adolescent Write | Juvenile Write
| Child Write

Each read role has a companion write role and a
user must be assigned to both roles
simultaneously in order for the user to function

properly. Table 5 shows the correspondence
among read and write roles. Using the language
and the correspondence shown in Table 5, we
write the following:
Rule 1:: (Age ≥ 3) AND (country IN {A..Z})

Æ CR AND CW
Rule 2:: (Age ≥ 11) AND (country IN {A..Z})

Æ JR AND JW
Rule 3:: (Age ≥ 16) AND (country IN {{A..Z}

– {Saudi, Sudan}})
Æ DR AND DW

Rule 4:: (Age ≥ 18) AND (Country IN {{A..Z}
–{China, India, Saudi, Sudan, Egypt,
Indonesia, Malaysia, Singapore}})
Æ AR AND AW

Table 5 Companion Read and Write Roles

5. Case II: Military Equipment Spare Parts

A corps maintains supplies of military equipment spare
parts that are usually stored at different geographical
locations. Maintenance of military equipment consists
of multiple echelons, with varying degrees of depth
from organizational (OM), to intermediate (IM), to
depot-level maintenance (DM) [11]. Maintenance
personnel at different levels need access to logistical
databases to order spare parts they need, locate the
nearest warehouse of a needed spare part, or follow up
the status of spare parts and repair orders. For security
reasons, the information displayed to maintenance
personnel and the privileges they exercise depend on a
group of factors which includes:

a) Unit’s geographical location
b) Type of equipment
c) Unit’s alert status
d) Maintenance Level: usually, OM, IM, and DM

are performed by different maintenance entities.
For simplicity, we will ignore the IM level.

Figure 8 Roles’ Maintenance Levels and Alert

Status

Read Roles Write Roles
Adult Read (AR) Adult Write (AW)
Adolescent Read (DR) Adolescent Write (DW)
Juvenile Read (JR) Juvenile Write (JW)
Child Read (CR) Child Write (CW)

Adult

Adolescent

Juvenile

Child

Adult Read

Adolescent Read

Juvenile Read

Child Read

Adult Write Adolescent Write Juvenile Write Child Write

(r1) HP OM

(r2) HP DM
(r1.1) HP OM WT

(r2.1) HP DM WT

In our discussion, we will consider the case of
maintaining the High Powered Tracking Radar (HP) at
two maintenance levels during two alert statuses:
peacetime and wartime (WT). Variations in alert status
or maintenance level result in hierarchical role
structure shown Figure 8. The roles and permissions
for this case are illustrated in Table 6.

Table 6 Roles and Permissions for HP

5.1. Attributes’ Representation

We will represent Maintenance Level and Alert Status.
The organization can specify the following non-
terminal items:

i) Attribute ::= Maintenance Level | Alert Status
ii) Attribute_Value ::= OM | DM | Peacetime

| Wartime
iii) Role::= r1 | r2 | r1.1 | r2.1

Based on the above, we can use the language to define
the following rules:

Rule 1:: (Maintenance Level = OM AND Alert
Status = Peacetime) Æ r1

Rule 2:: (Maintenance Level = DM AND Alert
Status = Peacetime) Æ r2

Rule 3:: (Maintenance Level = OM AND Alert
Status = Wartime) Æ r1.1

Rule 4:: (Maintenance Level = DM AND Alert
Status = Wartime) Æ r2.1

5.2. Implementing MAC Using the Language

MAC is widely used in military organizations so it is
reasonable to investigate the possibility of
implementing it using the language defined above. We
modify our example by introducing a second
equipment type: Missile. Alert status is ignored to keep
this example simple. This yields the hierarchical
classes and compartments shown in Figure 9, which

produces the lattice structure shown in the same figure.

Figure 9 Hierarchical Classes and Compartments
Using the method expounded upon in [10], we can
transform the lattice into RBAC role hierarchies as
shown in Figure 10. Roles (DM, {A,B}-R),
(DM,{A,B}-W), (OM-R) and (OM-W) were
introduced by the lattice but they have no equivalence
in our example.

Figure 10 RBAC Role Hierarchies

We can express the security lattice in terms of an
RBAC model using the following construct:
� Roles are shown in Figure 10.
� We have two disjointed Role hierarchies:

1. A “read” role hierarchy that has the same partial
order as dominance relation (≥MAC). Role
DM,{A}-R allows a user to read HP Radar part
information found in any database nationwide,
while OM,{A}-R allows reading that data from the
local database.

2. A “write” role hierarchy that has a partial order
that is the inverse of dominances (≥MAC). Role OM-
W dominates all other write roles, which enables
users to write data to levels in the security lattice
that are higher than their own.

Role Permissions
r1: HP OM • request parts from local

warehouse
• follow up orders previously

made
• inquire in local database

r2: HP DM • request parts from all
warehouses

• follow up orders previously
made

• inquire in national databases
r1.1: HP OM WT • r1 +

• give priority to orders
r2.1: HP DM WT • r2 +

• give priority to orders

HP Radar
(compartment A) Missile

(compartment B)
The Compartments

DM

OM

The Hierarchical
Classes

{}

{B}{A}

{A,B}

OM,{}

OM,{A} OM,{B}
OM,{A,B}

DM,{A,B}

DM,{B}
DM,{}

DM,{A}

The Security Lattice

OM,{A}-R OM,{B}-R

DM,{A,B}-R

DM,{B}-RDM,{A}-R

Read Roles Hierarchy

OM-R

OM-W

DM,{A}-W DM,{B}-W

OM,{B}-WOM,{A}-W

Write Roles
Hierarchy

DM,{A,B}-W

� Constraint on User assignment: Each user is
assigned to exactly two roles: xR and OM-W,
where x is the label assigned to the user. OM-W is
the write role corresponding to the lowermost
security level according to (≥LBAC).

Each user is assigned a read role yR and its companion
write role yW. Table 7 shows the roles with
hypothetical permissions.

Table 7 RBAC Roles and Permissions

Read and write roles are assigned according to (Liberal
*-Property) as shown in Table 8. Each line in the last
column of the table shows the roles that are assigned to
the user at any one time.
The organization can specify the following non-
terminal items:

i) Attribute ::= Maintenance Level
| Equipment Type

ii) Attribute_Value ::= OM | DM | HP | Missile
iii) Roles: {read and write roles in Table 8}

We can use the language to specify the following rules:

Rule 1:: (Maintenance Level = OM AND
Equipment Type = HP)

Æ (OM,{A}-R AND OM,{A}-W)
Rule 2:: (Maintenance Level = DM AND

Equipment Type = HP)
Æ ((DM,{A}-R AND DM,{A}-W))

XOR
((OM,{A}-R AND OM,{A}-W))

Rule 3:: (Maintenance Level = OM AND
Equipment Type = Missile)

Æ (OM,{B}-R AND OM,{B}-W)
Rule 4:: (Maintenance Level = DM AND

Equipment Type = Missile)
Æ ((DM,{B}-R AND DM,{B}-W))

XOR
((OM,{B}-R AND OM,{B}-W))

The language allows us to capture mutually exclusive
roles as shown in the rules above.

Table 8 Lattice Labels and Corresponding RBAC
Roles

6. Discussion

The language we present is simple and can be used to
express situations beyond the study cases provided in
this paper. For example, a user’s membership in a role
is an attribute of paramount importance in many
applications. Assume that the security policy of an
enterprise allows a client to be assigned a “team
leader” role only if he is already a member in a
“programmer” role. This can be represented as follows:

Attribute_Pair ::= Attribute IN Set
where

Attribute ::= required-role {attribute’s name is
specified by the enterprise}
Set ::= {programmer}

Similarly, suppose that the security policy allows the
client to retain the role that is currently assigned to him
during regular working hours only. This condition can
be captured as:

Attribute_Pair ::= Attribute IN Range
where

Attribute ::= time {defined by the organization}
Range ::= 900..1700 {from 9 am to 5 pm}

When time is not within this range, the role is
automatically revoked from the client.
However, the language needs to be extended to allow
more expressive power. One area that we are working
on is devising a way for expressing constraints. Also,
the interaction between seniority among rules and
seniority among roles is yet to be explored. For
example, in many scenarios, by examining seniority
among rules, one can derive a hierarchy among roles.
By going back to the rules derived from Table 2, one
can deduce that role Child is junior to Juvenile.
Our model uses seniority levels to compare a client’s
attributes to existing assignment rules, or to compare
two assignment rules. We will work to make seniority
level comparisons less restricted to allow insight about
relationships among rules. We will also explore the
usability of our model in role-to-permission
assignment. More importantly, we will extend our

RBAC
Roles

Permissions

OM,{A}-R • inquire in local database about HP parts
DM,{A}-R • inquire in all databases about HP parts
OM,{A}-W • write report to HP OM and DM levels
DM,{A}-W • write report to HP DM level only

OM,{B}-R • inquire in local database about missile
parts

DM,{B}-R • inquire in all databases about missile
parts

OM,{B}-W • write report to missile OM and DM
levels

DM,{B}-W • write report to missile DM level only

Label RBAC Roles Roles Assigned to a User
 Read

Roles
Write
Roles

OM,{A} OM,{A}-R OM,W (OM,{A}-R AND OM,{A}-W)
DM,{A} DM,{A}-R OM,W (DM,{A}-R AND DM,{A}-W)

XOR
(OM,{A}-R AND OM,{A}-W)

OM,{B} OM,{B}-R OM,W (OM,{B}-R AND OM,{B}-W)
DM,{B} DM,{B}-R OM,W (DM,{B}-R AND DM,{B}-W)

XOR
(OM,{B}-R AND OM,{B}-W)

model to allow cross-domain dynamic user-to-role
assignment to reduce administrative work for security
administrators.

7. Conclusion

We have described a model to dynamically assign
users to roles based on a finite set of rules defined by
authorized people in an enterprise. We believe that our
model will be useful in automatically—rather than
manually—managing users to role(s) assignment and
revocation in enterprises with large client bases.

8. References

[1] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The
ARBAC97 Model for Role-based Administration of Roles”.
ACM Transactions on Information and System Security.
Vol.2, No.1, Feb. 1999, pages 105-135.
[2] R. Sandhu, E. Coyne, H. Feinstein and C. Youman,
“Role-based access control model”, IEEE Computer, 29(2),
Feb. 1996.
[3] J. Park, R. Sandhu and G. Ahn, “Role-based Access
Control on the Web”, ACM Transactions on Information
and System Security, Vol. 4, No 1, 2001.
[4] A. Herzberg, Y. Mass, and J. Mihaeli, “Access Control
Meets Public Key Infrastructure, Or: Assigning Roles to
Strangers”, Proc of the 2000 IEEE Symposium on Security
and Privacy, 2000.
[5] Y. Zhong, B. Bhargava, and M. Mahoui,
“Trustworthiness Based Authorization on WWW”, In IEEE
workshop on “Security in Distributed Data Warehousing”,
New Orleans, Oct. 2001.
[6] Lightweight Directory Access Protocol (v3), RFC2251,
December 1997.
[7] Dynamic Groups for LDAPV3 draft-haripriya-
dynamicgroup-00.txt, October 2001.
[8] W. Yao, K. Moody, J. Bacon, “A Model of OASIS Role-
Based Access Control and its Support for Active Security”,
SACMAT’01, Chantilly, Virginia, USA, May 3-4, 2001.
[9]http://www.guardian.co.uk/international/story/0,3604,400
649,00.html
[10] S. Osborn, R. Sandhu, and Q. Munawer, Configuring
Role-Based Access Control to Enforce Mandatory and
Discretionary Access Control Policies, ACM Transactions on
Information and System Security, vol. 3, No. 2, May 2000,
pages 85-106.
[11] http://www.defenselink.mil/ra/rfpb/chapter_5.html

