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ABSTRACT

A matnematical model is proposed for closing or
imatnematically completing the system of equations
whicn descripes the time-average flcw field througn
the plage passages of multistage turbomachinery,

Tnese equations referred to as tne average-passage
equation system govern a conceptual model which has
proven useful in turbomachinery aeirodynamic design

and analysis. Tne closure model is aeveloped so as to
insure a consistency between tnese equetions and the
anisymmetric tnrough-flow equations. The closure
model was incorporated into a computer ccoe for use in
simulating tne flow field about a hign-spee? counter-
rotating propeliler and a high-speec fan stage.

Results from tnese simulations are presented.

INTRODUCTION

Engineers have .ong recognized tne difficulty
associatea with adopting a "First Principle" approach
pased on directly solving the Navier-Stokes equations
for the purpose of designing (or analyzing) vehicles
wnich operate in high Reynoids number turbulent flows.
However, numerous examples exist, sucn as turbomachin-
ery plading, aircraft wings and bodies, inlets and
nozzles, wnich ciearly show that models which describe
an "averaged" flow state can be used to design aero-
dynamic venicles and provide answers to many aero-
gynamic problems. In poth external and internal
aerodynamics, the “"averaged” state mest often modeled
i5 one in wnich tne flow appears steady. in general,
tne numoer of equations associated with thic
“av:, agea" flow representation does not equal the
number of unknowns. Tne problem of mathematically
compieting this system of equations so that they may
ve soived is referred to as tnhe closure proolem. The
flow moaels associated witn the completed system of
equations must pe considered semi-empirical for they
rely neavily on empirical correlations to introduce
tne etrects of turpulent motion ang, in the case of
turbomachinery, the adaitional effects of unsteadiness
and spatial nonuniforaities into tnese “averaged" flow
representations. For nonturbomachinery application,
the equation governing such a flow is the familiar

Reynolds-averaged Navier-Stokes equation. In general,
tne: lengtn scales associated with this equation are
suficiently restricted so as to make tnem amenable to
nunerical simulation. Inaeed there is considerable
accivity tnese days in the external aerodynamic com-
munity ¢o aevelop numerical simulators based on these )
equations for flows over an entire aircraft. ;
For turpomacninery involving more than one blade :
row, the Reynolds-averaged form of the Navier-Stokes
equations do not describe a flow which is steady in
time. On tne contrary, they describe a tlow whicn is
nignly unsteady in whicn plage rows are moving rela-
tive to one anotner, generating disturbances whose
time scales range from a fraction of wneel-speed to
many times that of plade passing frequency and wnose
length scales range from tnhe circumference of tne
machine to the thickness of the laminar sublayer
region of the turpbulent boundary layers. Simulation
pased on tne Reynolds-averaged Navier-Stokes equations
are well beyond the capabilities of today's computers
for all put tne simplest of multistage geometries.
Tney also do not govern the conceptual flow model tra-
aitionally used to d=sign multistage turbomachinery.
As noted above, mult. .tage designs are based on flow
mogels in wnich the fi.wv appears steady within each
plade row. In addition, with respect to a given blade
row, these models assume the flow to be spatially
periodic from one blade passage to anotner. In
Ref. 1, a mathematical derivation of the equations
governing this flow was presented. Tnese equations
were referred to as the average-passage equation
system, This aerivation was carriea out for arbitrary
configurations and clearly showed the relationship
petween tne Navier-Stokes equations, their Reynolas-
averagea form, and tneir average-passage form. The
closure probiem associated with the average-passage
form of tne Navier-Stokes equations was also identi-
fied. Tnis work put the average-passage model on a
sound matnematical base equivalent to that of the
Reynolds-averaged Navier-Stokes model. A brief sum-
mary of tnat work is presented in the next section.
Tne purpose of the present work is to elaborate
furtner on the issue of closure for the average-
passage equation system and to propose a closure model
for the inviscid form of this equation system, This
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closure model was used to obtain the resuits presented
in Ref. 2. Tnose results and the ones to be presented
in this work show that the present model appears
applicable to configurations in which the average-
passage flow field is nearly irrotational between
blade rows.

MODEL EQUATION HIERARCHY

In Fig. 1, a hierarchy of equations are shown
whicn can be used to analyze turbomachinery flows.

Tne Navier-Stokes equations appear at the upper left-
nand corner of this figure. These equations are
assumed to provide a complete description of the flow
field, including a complete description of turbulent
motions, To use these equations as a basis for simu-
lating turbomachinery flows requires sufficient com-
puter capacity to resolve all of the time and length
scales associated with nigh Reynolds number flows. In
addition, since turbomachinery flows are statistically
nonstationary, a sufficient number of computations
would nave to be performed over a range of randomly
chosen initial condition: to insure a stastistical
steady-state description of the flow. Such simula-
tions are clearly beyond the capacity of today's most
advanced computers. The next box (i.e., Fig. 1) con-
tains tnhe Reynolds-averaged form of the Navier-Stckes
equations. Tney are derived by ensemble averaging the
Navier-Stokes equations and hence govern a determin-
1stic description of the flow field. An illustration
of this description for a two-stage configuration in
whicn tne first and second rotors have five and four
plades respectively while the first and second stage
stators nave four and five blades is presented in

Fig. 2. Tne rotors rotate relative to the stators,
and, therefore, the flow will be unsteady in either
tne rotor or stator frame of reference. As notead
previously, the time scales associated with this
unsteady flow are quite diverse, which makes simula-
tion for all put tne most simple of geometries beyond
the capabilities of today's computers. The closure
problem associated with these equations requires the
modeling of tne familiar Reynolds stress and erergy
correlations. It is by means of these correlations
that the “"average* effects of random fluctuations in
momentum and energy of a fluid particle are introduced
into the equations governing the deterministic flow
field.

Tne third box from the left in Fig. 1 represents
the time-averaged form of the Reynolds-averaged
Navier-Stokes equations. These equations govern the
time-averaged flow field as viewed by an observer
whose frame of reference is fixed to a given blade
row. An i1llustration of this description for the
two-stage configuration used to illustrate the
Keyuolds-averaged flow moael is also presented in
Fig. ¢. A1l rotating blade rows have a unique time-
averagea flow field associated with them. 1In a
similar fashion, all nonrotating blade rows have their
own time-averaged flow field representation. These
two flow fields are not the same. For both flow
fielas, the blade rows which rotate relative to the
olade rows which are stationary (i.e., with rospect
to one anotner) appear smeared. Their physical
appearance 1s very similar to what one observes wnen
viewing a nign-speed propeller. Within the context of
the time-averaged flow description, these smeared
plade rows are replaced by actuator ducts (i.e.,
actuator ducts of finite thickness). These ducts are
represented Dy a pody-force distribution which can add
or extract energy from the flow. In addition, the
time-average flow equations contain correlations

(3]

between time-varying flow variables. These correla-
tions arise because the Reynolds-averaged Navier-
Stokes equation is nonlinear. These correlations
represent the time-average of tne fluctuating density
field and products of the fluctuatin? velocity field
as well as the time-average of the fluctuating
density, fluctuating velocity, and fluctuating total
enthalpy field. It is through these correlations
that the “averaged* effect of tne relevant unsteady
physical phenomena is introduced into the time-
averaged representation. The modeling of the body
forces and energy sources associated with the smeared
biade rows and the temporal correlations, plus the
modeling of the time-averaged Reynolds stresses, forms
tne closure proolem associated with the time-averaged
equations, Finally, it should pe noted that, for a
single-stage configuration, the time-averaged flow
field associated with either nlade row will be spa-
tially periodic over the pitch of that blade row.
Thus, if the closure issue associated with the time-
averaged representation can be addressed without over-
due complexity, it should be feasible to conduct a
simulation based on this flow model for a single
stage,

For a multistage configuration in which the
number of rotor blades differ from rotor to rotor, or
for wnich the number ~ stator blades differs from
stator to stator, tne mne-average flow field will
not, in general, be spatially periodic over the pitch
of any given blade row. An averaging-procedure may
pe introduced which transforms this spatially aperi-
odic flow field into one that is periodic over the
pitch of a given blade row. The resulting flow field
is referred to as the average-passage flow and appears
in the fourth box from the left in Fig. 1. Each blade
row in a multistage machine nas associated with it an
average-passage flow field. An illustration of this
description is shown in Fig. 2. For the two-stage
machine under consideration there exists four average-
passage flow descriptions due to the number of blades
assigned to each wheel, The geometry of neighboring
blade rows (rotating ang stationary) for which the
blade count is not an integral multiple of the blade
row of interest, and are stationary relative to this
plade row, appear smeared in this flow description.
Their appearance is similar to that of the rotating
blade rows in the time-averaged flow description. [t
should pe noted that all of the biade rows which
rotate relative to the blade row of interest appear
sineared, since the average-passage description is also
a4 time-averaged description. The four average-passage
flows illustrated in Fig. 2 are coupled to one another
through a system of body forces, energy sources, and
temporal and spatial correlations. Tne closure prob-
lem associated with this flow description consists of
developing matnematical expressions for the spatial
and temporal correlations in addition to the body
forces and energy sources. Tnese correlations intro-
auce the transport on the “average" of momentum and
energy petween the time-averaged representation anda
the average-passage representation.

Many analyses currently used to analyze multi-
blade row turbomachinery involve iterating between a
meriaional flow analysis and a blade-to-blade anal-
ysis. MWithin the context of the present discussion,
these analyses may be viewed in one of two ways. They
may be thought of as attempting to describe the
average-passage flow field. If one gives these anal-
yses this interpretation, then one immediately notes
that their derivation lacks matnematical rigor. As a
result, the closure problem associated with the
average-passage representation is never addressed,
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for it 12 completely overlooked. On the other hand,
one may interpret these as axisymmetric analyses in
wnich tne blade-to-blade solution, along with some
empirical correlations, is used to close the merid-
ional flow equations. In this case, these analyses
are rigorous because the closure problem that being
tne closure of the axisymmetric representation is
generally clearly defined. However one wishes to
interpret these analyses, one must be impressed with
the degree of accuracy with which they predict the
axisymmetric flow field in the neighborhood of design
conditions. As one moves away from the neighborhood
of the design point, however, the validity of these
analyses appears to degenerate quickly. This dis-
agreement is thought to be due to the inability of the
blade-to-blade model to properly account for large
spanwise migration of fiow which occurs at these off-
design conditions. To analyze such situations, a true
three-dimensional analysis is needed. The average-
passage model provides a framework for developing such
an analysis, as illustrated by the work presented in
Ref. 2. Tne accuracy of such simulation will, of
course, depend upon the validity of the closure model
used in the simylation.

Tne next box in Fig. 1 represents the axisym-
metric flow model, which is tne mainstay of many turbo-
macninery design systems. Tne field equations for
this model can pe derived by tangentially averaging
the average-passage equation system. An illustra-
tion of the geometry associated with this representa-
tion is also provided in Fig. 2. Each average-passage
flow model can be related to an axisymmetric model.
Tne equations governing these four axisymmetric models
must be equal to one another, for there can only be
one axisymmetric or througn-flow representation of the
flow field within a multiblade row configuration.

Tne average-passage equations thus define the three-
dimensional passage flows naving a common axisymmetric
flow description. All of the blade rows within the
axisymmetric description appear smeared and are mathe-
matically replaced by actuator ducts. These ducts
exert a force on the fluid which may add or extract
energy from the flow. There may also be energy
sources or sinks within tne ducts which are associated
witn blade heat transfer. Over the years, numerous
publications have appeared which dealt with modeling
these forces and the energy sources. Quite often they
are estimated from cascade or blade-to-blade analyses
tempered by empirical correlations. In addition, the
axisymmetric or through-flow equations contain corre-
lations between temporal varying flow variables as
well as correlations between spatial varying flow
variables. Tnese correlations introduce on the
“average" the effect of radial transport of momentum
and energy from the average-passage representation,
Unly very recently nave models for these correlations
appeared in the open literature. Sehra (3) was one of
the first to attempt to incorporate these correlations
into a througn-flow code. His correlation model was
pased on data obtained from a high-speed isolated
rotor test. Jennions (4) modeled these correlations
using results from an inviscid blade-to-blade anal-
ysis. He was able to develop an iterative procedure
for incorporating these correlations into a tnrough-
flow analysis. Finally, the Adkins and Smith (5)

. model for accounting for the effects of the spanwise
mixing in muitistage machinery, may be thougnt of as
an attempt at modeling the correlations which appear
in the axisymmetric model. Tne last box in Fig. 1
represents a quasi-one-dimensional equation system.
Tnese equations result from averaging the axisymmetric
equation over the span of the flow annulus. This
equation system is often used in engine stability

studies and in preliminary design to estaolish the
flow properties along the pitch-line of a machine.
Closure of this system of equations can be quite
involved. It requires models for the blade forces,
energy sources, spatial and temporal correlations
associated with the olade-to-blade flow field, as
well as a model for the force exerted by the casing
on the flow.

The flow mudels identifiea in Fig, (1) are by no
means complete, nor were they ever intended to be
complete. The purpose of this figure was to illus-
trate symboiically the connection between a hierarchy
of equations associated with turbomachinery aero-
d;namics. It is hoped that the rational derivatiun
of tne average-passage equation system will ultimately
lead to the development of three-dimensional viscous
computer codes for multistage configurations. Such
codes will enhance our apility to analyze turbo-
machinery flows, especially at off-design conditions.
For it is our inability to accurately predict off-
aesign performance of multistage machinery which is
often the major contributor to their high development
costs and not proolems associated with poor design
performance. In the next section, the closure model
associated with the invisciad form of the average-
passage equation system will be developed.

THE CLOSURE PROBLEM

For simplicity we shall only address the closure
problem associated with solving the inviscid form of
tne average-passage equation system as it pertains to
a single stage. A solution to the corresponding
muitistage problem can be obtained by a direct exten-
sion of the analysis which follows., For a single-
stage configuration, each blade row has associated
with it an average-passage equation system. As noted
in the previous section, the dependence of the flow
througn the first blade row upon that through the ,
second is introduced by means of a body force, energy P
source, and time-average correlations between fluctu-
ating flow variables, Likewise, a corresponding
dependency exists between the flow through the second
olade row and that tnrough the first, In Ref. 1, the
body force and energy source which appear in the
inviscid form of the average-passage equation system
were snown to depend upon the ensemble-averaged pres- H
sure. This "averaged" pressure was estimated from
samples of the pressure field taken over a period of v
one revolution of tne wneel recorded at the instant a
blade passes an observer whose frame of reference is
fixed to that ot tne blade row of interest. If one
assumes the average-passage flows of the two blade
rows to be nearly irrotational outside of the blade
passage region, then tnis ensemole-averaged pressure
is nearly equal to the average-passage pressure dis-
tripution on the surface of the neignboring blade row.
Hence, from tne solution for the first blade row, one
can estimate the body force and energy source which
appear in the equations for the second blzde row. I[n
a similar fashion, one may estimate the body force and
energy source which appear in the equations for the
first blade row from a solution to the corresponding
equations for the second blade row.
The remaining terms which must be estimated are
tne temporal correlations associated with the time-
varying flow field. The origin and nature of these
correlations were discussed in the previous section.
To deveiop a model for these correlations, we
decompose the absolute valocity field, ¥, according
to the equation

a\



Lt W AR Ve e R ARG W WO SR D

T (rﬁelz’t) 'T(M)(rvz)
+ [V(l) (ri0-a,t,2) - v (AR (r.l)]

+[7u)(rm4%nz)-7u‘)rdﬂ

+ 7(3)(r,e.z,t) (1)

where TH{AX) Sepresents the axisymmetric velocity
component, TNI , the time-averaged absolute velocity
fiela as observedila a frame of reference fixed to the
first plade row, v ). the corresponding velocity
field observed in a fram?,gf reference fixed to the
second blade row, and Vi3, the component of
velocity which is unsteady in either frame of refer-
ence. Tne remaining variables which appear in Eq. (1)
are the cylindrical coordinates r,v,z, time t, and
tne rotational speed of the first and second blade
rows Q}, a2. In a similar fashion, the total
entnalpy, H, measured in the absolute frame of refer-
ence can be decomposed according to the equa.ion

H (r,e,z,t) = H(A“(r.z)

+ [H(l) (r,e-nlt,z) - H(Ax) (r,z)]
+ [H(z) (r.e-nzt,z) - H(AX) (r,z)]

+ §3) (r,0,z,t) (2)

Fixed in the frame oI r§ference of the first blade row,
tne velocity field vl yill aq$f§$ steady in time,
wnhile the components Vv and will appear to be
unsteady. If we define the velocity component
v'(r,e,z,t) as

I (r,e,2,t) = +(2) (ryo-a,t,z) - p(AX) (r,z) (3)

the correlations which appear in the average-passage
momentum equations associated with the first blade row
are obtained by forming the time-averagg 3§ Ene

e, ().

product of the fluid density and (¥ + ¥
The result is

PNTPEN ) IR ¢ ) BRI ¢ N )
RiJ = oV, VJ + oV, vJ + Vi Vj + oV v.j

(4)

where the supscripts 1i,j take on the values of 1, 2,
and 3. On the right-hard of Eq. (4), these subscripts
are used to denote the axial, tangential, and radial
velocity components respectively. The variable p s
the fluid density, and the over-bar represents the
time-average of the variables which appear beneath it.
Thus for i =1 and j = 2, Ry denotes the temporal
correlation between the density p, and th2 product of
the axial and tangential components of the fluctuating
velocity field. For low Mach number flows in which
tnhe density may be assumed constant, the correlation
2 v3 will be independent of tangential position

8, since v? is spatially periodic over the pitch of

tne second blade row. This correlation is thus asso-

ciated with tne transport on the “average" of momentum
across the axisymmetric stream surfaces. Tne remain-

ing correlations which appear in Eq. (4), however,
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will be functions of o if v(3) is spatially
aperiodic over the pitch of the second blade row. In
general this will be the case.

Based on the arguments used to derive £q. (4) and
the analysis presented in Ref. (1), the correlations
which appear in the energy equation are obtained by
forming the time-avera?s of the product of o,

H* + H(3) and v" +v ). Tne result is

Q) = ot vge + o 3T+ T e T

(5)

where

H* (r,8,2,t) = H(Z) (r,e-nzt,z) - H(Ax) (r,z)
(o)

The first correlation in Eq. (5) is independent
.f e if the fluid density is constant. This is
the result of H" and vi“ Dpeing spatially peri-
odic over the pitch of the second plade row. In
general. the remaining correlations will not exnibit
this pehavior. As a result, the total enthalpy assc-
Ciated with the average-passage flow field for a
multiolade row configuration wi’l pe nonuniform in
the tangential direction. Kervebrock and Mikolajciak
(6) were the first to attempt to analyze the fluid
mecnanics associated with this phenomena. They attri-
buted it to the transport of excess total temperature
of a fluid particle in a rotor wake across the stator
passage. Their analysis of this process was based on
kinematics. Although the present work makes no
attempt at developing an alternative model of this ;
phenomena, it does suggest that it is associated with |
the dynamics of stator-blade rotor-wake interaction.
For an inviscid nearly irrotation?§‘flow, the }
magnitude of the unsteady component Vi°/ will be
comparavie or less than the magnitude of V", except
for regions near plade leaaing eages. In particular,
in regions where the boay force and the energy source
are finite, the correlation associated with V*
(i.e., Egs. {(4) and (5)) will QY significantly larger
tnan those associated witn V(). For this reason
we assume tnat the correlations in Egs. (4) and (52
associated with the unsteady velocity component V 3) .
can be neglected. As a result, the correlation RiJ .
ana the correlation Qj can be directly evaluated
from the average-passayge solutions. For a stage, thi<
implies that the flow field througn both olade rows
must be evaluated simultaneously.
To incorporate the suggested closure model into
a numerical simulation, one may envision a two-tier
iteration procedure as depicted in Fig. 3. In the
inner loop, the body forces, energy sources and cor-
relations are frozen. An average-passage flow field
is evaluated based on tne value of these quantities
and the imposed boundary conditions. In the outer
loop, the body forces, energy sources, and correla-
tions are updated based on the converged inner loop
solutions. We must update these terms, as previously
noted, in a manner which yields a unique axisymmetric
representation of tne flow field through the machine.
Tnis will insure that the average-passage representa-
tion of the flow is consistent with the axisymmetric
representation,
Tne equations to be solved in the outer loop may
be derived starting from the equations of motion
expressed in the vector form (2).

v i S
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The operator L{Up) in tnis equation represents
tne net flux of mass {i.e., continuity of flow through
a control volume), axial and radial momentum, angular
momentum, and energy through a differential volume of
fluid, while K(U,) represents the added contribution
of the pressure field and centrifugal acceleration to
the palance of radial momentum., The components of the
vector U, are density, axial and radial momentum,
angular momentum, and total inertial energy. Tne
symbol Sn_] represents the sum of the contribution
of tne body force, energy source, and temporal cor-
relations to the momentum and energy equations, while
tne subscript n denotes the iteration index of the
outer loop. The remaining symbol, dv, denotes the
volume of a differential volume of fluid. Based on
tne aiscussion presentea earlier, the temporal corre-
lations which are embeaded in $,_1 are simply a
function of average-passage flow f*eld associated with
tne neighboring blage row. Thus, for a single-stage
configuration, the field equation for the firsi blade
row can be written as

while the corresponding equation for the second blade
row is

L(u'?)) +fx(u,(]2)) dv +f5(un£{)) =0 (9)

Tne superscript (1) and (2) respectively denote
tne variables associated with the first and second
plage row passage flow fields. Next we muitiply poth
£qs. (8) and (9) py an operator A, which forms the
axisymmetric average of its argument. This is equiv-
alent to averaging tne three-dimensional equations of
motion (i.e., Eqs. (8) and (9)) over the tangential
direction. For tne first plade row, the axisymmetric
average of the operator L is

ac(uit)y - LA (gl + fswr(\“) Adv  (10)
while for the second row
aL(ulé)) - LR (aule)y fswr(f)) Adv (1)

In both of these expressions, the operator L(AX)
denotes the axisymmetric counterpart of L. The
axisymmetric average of the combined integrals which
appear in Eq. (8) is

AU((U}‘I)) dv + fsw}f{) dv] .
/A[K(U,(]l)) dv]+[5(ur(f{) v (12)

Similarly, the axisymmetric average of the combined
integrals in Eq. (9) 15

AU;(U,(IZ’) dv + fswéff) dv] .
fA[K(Ur(‘Z)) dv]+ fS(uf‘f{) A (13)

These last results follow because S is independent
of tangential position., Based on the above equations,
the axisymmetric average of Eqs. (8) and (9) may be
expressed as

L (AX) (AU'(‘”) ’ /;\[K(urgl)) dv]

+f[5(u,§”) . S(Ur(fl))]Adv -0 (18)

L (AX) (AUr(lz)) . fA [K(ur(‘“) dv]

. f[swr(‘z)) . S(Ur(:%)] Adv =0 (15)

Upon convergence of tn2 outer loop, Egs. (14) and
(15) yield identical solutions for the axisymmetric
flow field. In addition, these equatjons provide a
means nf updating the variables f(u;) and f(U%)
witnout evaluating the body forces, energy sources,
and correlations directly. This becoTes apparsnt as
soon as one notes tnat the vectors Up and UR are
known naving been evaluated in the inner iteration loop,

wnile tne gquantities f(urﬁ{) and f(U'(E{) are known

from the previous outer iteration loop.

This simple strategy for incorporating the
closure model into a numerical simulation has been
implemented into the computor code outlined in Ref. 2.
That code has been used successfully to simulate the
flow apbout nigh-speed counter-rotating propellers as
illustrated by the results presented in Ref. 2. We
shall present additional results from that simulation
as well as that for a high-speed fan stage.

RESULTS

Tne model proposed for closing the inviscid form
of the average-passage equation system was based on
tne assumption tnat, within the confined region of a
plade row, the correlations associated with the blade
row interaction velocity field are small relative to
those associated witn the steady aerodynamic blade
loaaing. Tne justification for this assumption can
pe based on the argument that the unsteady airload,
wnich is an indication of the magnitude of the veloc-
ity cemponent associated with blade row interaction,
is generally smaller than its time-averaged counter-
part whicn serves as a measure of tne magnituge of
the nonaxisymnetric component of the average-passage
velocity field. Data presented in a recent publica-
tion by Dring et al, (7), shows this to be the case
in tne midspan region of a turbine stage. OQutsiae of
the confines of a blade row, the magnitude of both of
these velocity fields should be comparable; however,
their magnitude is small compared to the magnitude of
the axisymmetric velocity field. As an illustration
that hardware does exist in which one may find regions
in which such flows exist, we present the circulation
as a function of radius at a number of axial locations
generated by a high-speed counter-rotating propeller.
These results are for a flight Macnh numpber of 0.72 and
an advance ratio for pboth propellers of 2.8. The cir-
culation is defined as the integral over a blade pitch
of tne product of nondimensional radius and nondimen-
sional tangential velocity. The tangential velocity
is nondimensionalized by the far-field speed of sound,
while tne radius is rendered nondimensional by the tip
aiameter of tne first propeller. The results pre-
sented in Figs. 4(a) to (d), are for an axial location
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slightly forward of the first propeller, aft of the
trailing edge of the first propeller, slightly forward
of the second propeller, and aft of the trailing edge
of the second propeller respectively. For each axial
location, two plots are drawn. Tne first (solid line)
represents the axisymmetric flow field obtained from
tne average-passage simulation of the first propeller.
The second (dashed line) corresponds to the axisym-
metric flow field obtained from the average-passage
simulation of the second propeller. It is quite
apparent that both results agree with each other to
witnin plotting accuracy and hence are more than
adequate for assessing blaae row performance,

Upstream of the first propeller the circulation must
be zero since there is no swirl present in the
incoming fiow. At the trailing edge of the first
propeiler, the circulation is nearly constant over

the inboard portion, decreasing in a smooth monotonic
fashion towards zero as the tip is approached (i.e.,

r = 0.5). Thus the aerodynamic loading of the inboard
region is nearly independent of radius, which implies
a near-free vortex design. The flow between the two
propellers would therefore be nearly irrotational.

Tne reduction in circulation with radius in the out-
board region produces a weak tip vortex which convects
downstream. In the axisymmetric flow representation,
this tip vortex is smeared into a ring vortex. At the
leading edge of the second propeller, the circulation
gistripution is seen to be nearly identical to the
distribution at the trailing edge of the first pro-
peller. This result further substantiates that the
flow field between the two propellers is nearly
wrrotational, for in an irrotational unsteady flow

the time-averaged circulation (or angular momentum) is
conserved along the axisymmetric stream lines. The
slight redistribution of circulation that one observes
in the outboard region is attributed to spanwise mix-
ing of angular momentum due to tne tip vortex.

Figure 4(d) snhows tne distribution of circulation at
the trailing edge of the second propeller. The second
propelier appears to taxe out almost all of tne swirl
produced by the first propeller. The change in the
swirl distribution across the second propelier implies
that the spanwise aerodynamic loading is nearly uni-
form over the inboard region of the second propeller.
The inboard region is behaving as a free-vortex
design. The results shown in Fig. 4 strongly suggest
tnat the closure model developed 1n this work should
pe applicable to this and similar high-speed counter-
rotating propellers. This is confirmed by the com-
parison between the measured and predicted nacelle
pressure distribution presented in Ref., 2. Further
comparisons are planned as shown as experimental data
becomes available.

An attempt was also made to predict the average-
passage flow fields generated by a hign-speed fan
stage. Tne stage chosen was the first of a two-stage
machine designed and tested at NASA Lewis (8). The
computation was performed for an operating point near
maximum efficiency of tne first stage. This point was
cnosen to minimize the effect of viscosity on the
measured flow variables. The rotor's rotational speed
was 80 percent of design and the stage pressure ratio
and adiabatic efficiency were 1.352 and 0,891 respec-
tively. The inferred velocity field between the blade
rows resembled that induced by a free-vortex design
in the midspan region. Tnhe inlet boundary conditions
in the computation were chosen to produce an inlet
apsolute Mach number and flow angle distribution which
approximated the measure:d distributions, At the down-
stream boundary the nondimensional pressure at the
hub at the exit of the stator was set equal to the
measured value. 1he absolute Mach number distribution

at the inlet to the rotor is shown in Fig. 5, while
tne relative Mach number distribution across the rotor
is snow1 in Fig. b. The measured results at tne inlet
to tne -otor agree very well with the predicted
results, as they snoula, due to the choice of inlet
conditions. Tne predicted exit relative Mach number
aistribution appears to be in good agreement with the
measured results, especially in the midspan region,

It should also be noted that the predicted relative
Mach numper is less than measured over most of the
rotor span, This result is to be expected since the
blade boundary layers restrict the flow area, thus
reducing the diffusion capabilities of the rotor. The
measured distribution also shows the existence of an
end-wall casing boundary layer which obviously cannot
be predicted by the present inviscid analysis.

The relative flow angle distribution at the lead-
ing and trailing edge of the rotor was also computed
anag is shown in Fig. 7 along with the measured dis-
tribution. This angle is defined as the angle between
the relative circumferential velocity component and
the meriodional component. At both stations the pre-
dicted results appear to be in reasonable agreement
witn the measurements inpboard of the tip region. The
aiscrepancy in the tip end-wall region is caused by
tne inadbility of tne present inviscid analysis to
properly simulate the three-dimensional end-wall flow.
Cer tne region inboard of the tip, the neglect of the
influence of viscosity on the simulated axisynmetric
flow field produces more turning of the fiow than
experimentally measured. By introducing the effect of
viscosity into the current average-passage model
(wnicn includes the outlined closure model), the
agreement petween prediction and experiment should
improve in the midspan region.

Tne next series of resuits are for the stator.
Tne absoiute Mach number entering and leaving the
stator is plotted as a function of blade span in
Fig. 8. The corresponding plots for the abosolute
flow angle is shown in Fig. 9. This angle is defined
as the angle petween the absolute tangential velocity
component and the meridional Component. The agreement
between the predicted results and measurements appears
to have deteriorated from that for the rotor. This
illustrates the gifficulty in predicting multiblade
row flows. A small error in predicting the perform-
ance of the first blade row can escalate very quickly
into a large error in predictea performance of later
blade rows. This problem becomes particulariy acute
whenever there are appreciable regions of rlow separa-
tion in the end-wall region, as appears to be the case
in tne stator hub region., The poor agreement in the
stator tip region i5 attributed to the end-wall wall
f low induced by tne rotor. To analyze these flow
regions requires a model whicn incorporates the proper
ena-wall flow physics. A step in this direction might
oe mage by including tne effects of viscosity into the
current average-passage flow solver. An additional
issue is the development of a closure wmodel for the
average-passage model applicapble to highly rotational
flows. Kesearch in botn of these areas 1s currently
underway.

CONCLUSION

A model was formulated to close the inviscid form
of the system of equations governing the average-
passage flow fields for a stage. This model was
developed so as to insure consistency between the
average-passage equation system and the axisymmetric
flow equations. This closure model was used success-
fully to simulate the average-passage flow fields



associated with a hign-speed counter-rotating pro-
peller. The model was also used in a simulation of a
nign-speea fan stage operating near measured peak
efficiency. This simulation showeg the rotor results
to be in reasonable agreement with measurements out-
side of the end-wall region. For the stator the simu-
lation yielded results which were only quaiitatively
correct. Tne lack of quantitative agreement was
attributed to neglect of viscosity and the question-
avle applicapbility of the present closure model to
the end-wall regions where the flow is known to be
nhignly rotational. Research directed at overcoming
these shortcomings is currently underway.
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Figure 2. - Two staqe flow models.
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