
University of Wollongong University of Wollongong

Research Online Research Online

Department of Computing Science Working
Paper Series

Faculty of Engineering and Information
Sciences

1980

A model for communicating sequential process A model for communicating sequential process

C. A. R. Hoare
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation Recommended Citation

Hoare, C. A. R., A model for communicating sequential process, Department of Computing Science,

University of Wollongong, Working Paper 80-1, 1980, 43p.

https://ro.uow.edu.au/compsciwp/14

Research Online is the open access institutional repository for the University of Wollongong. For further information

contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

A Model for

COMMUNICATING SEQUFNTIAL PROCESSES

C.A.R. Hoare

Oxford University Computing Laboratory
Programming Research Group

45. Banbury Road
Oxford. OX2 6PE

Summary: A previous paper [5] has suggested that parellel
composition and communication should be accepted as primitive
concepts in programming. This paper supports the suggestion
by giving a simplified mathematical mQdel for processes, using
traces [6] of the possible Interactions between a process and
its environment.

2.

1. Introduction.

The primary objective of this paper Is to give a simple
mathematical model for communicating sequential processes. The
model is Illustrated in a wide range of familiar programming
exercises J including an operati~9 system and a simulation study.
As the exposition unfolds J the examples begin to look 1ike programs,
and the notations begin to look like a programming language.
Thus the design of a language seems to emerge naturally from its
formal definition J in an intel1ectual1y pleasing fashion.

The model is not intended to deal with certain problems
of nondeterminism. These have been avoided by observance of
certain restrictions detailed in the appendix. No attention
has been paid to problems of efficient implementation; for this J
even further restrictions should be imposed.

The long term objective of this study is to provide a basis
for the proof of correctness of programs expressed as communicating
sequential processes. However, in this paper the formalities have
been kept to a minimum and no proofs are given.

2. Basic Concepts and Notations.

The ultimate constituent of our model is a symbol, whict
may be intuitively understood as denoting a class of event in
which a process can participate.

(a) "5pll denotes insertion of a coin into the slot
of a vending machine VM

(b) Illargell denotes withdrawal from VM of a large
packet of biscuits._

(c) IIUpll denotes incrementation of a COUNT register.

The alphabet of a process is the set of all symbols
denoting events in which that process can participate.

(d) {Sp, 10pJ large, small, 5pchange} is the alphabet of
the vending machine VM.

(e) {up, down, iszero} is the alphabet of COUNT.

2.

A trace is a finite sequence of symbols recording the actual
or potential behaviour of a process from Its beginning up to some
moment in time.

(f) <lOp, small, 5pchange> is a trace of a successful initial
transaction of VM.

(g)< >(the empty sequence) is a trace of its behaviour before
its fir stu se . '., ,

(h) <up, down, iszero, down> is not a trace of a COUNT,
since a zero count cannot be decremented.

A process P Is defined by the set of all traces of its
possible behaviour. From the definition of a trace, it follows
that for any process P,

(1) < > i 5 in P (i . e . Pis non -emp t y)

(2) if st (the concatenation of s with t) Is In P then
so is 5 by Itself (I.e. P is prefix-closed)

These properties will help to simpl ify the definition of parallel
composition of processes.

The process ABORT is one that never does anything.

ABORT = {< >}

The process (C-lo-p) fi rst does " C'I and then behaves 1 ike the
process P.

(c-+P) ={< >} \& {< c >s lsi sin p}

where <c> is the sequence consisting solely of c.

The process pDQ behaves either like the process P or like
the process Q; the choice will be determined by the environment
in which it is placed.

p[)Q = PuQ

(see technical note (1))
(normal set union)

The alphabet of a process P will be denoted by P. Usually
we will assume that the alphabet of a process is given by the set
of all symbols occurring In its traces.

ABORT = {}

c-+P = {c}" p

pDQ = PuQ

(t he empty set)

We shall frequently use recursive definitions to specify the
behaviour of long-lasting processes. These recursions are to be
understood in the same sense as the recursive equations of (say)
a context-free grammar expressed in BNF.

3.

(i) VM = (Sp ~ (Sp + (large ~ VM 0 5p ~ ABORT)

osmall ~ VM

D10p ~(small ~ (5pchange ~ VM)

(l I a rge ~ VM

On its first step VM accepts either 5p or lOp.
In the first case, its following step is either the acceptance of a
second 5p (preparatory to withdrawal of a large packet of biscuits)
or the immediate withdrawal of a small packet. The second case
should be self-explanatory. In all cases, after a successful
transaction, the subsequent behaviour o.f VM 15 to offler a sill'lilar
service to an arbitrary long sequence of later customers. But if
any customer is so unwise to put three consecutive 5p coins into
the slot, the machine wi 11 break (ABORT), and never do anything
else again.

In conventional BNF grammar, the use of mutually recursive
definitions is famil iar. To avoid the limitations of context-
free languages, we shall sometimes give an infinite set of mutually
recursive' definitions.

(j) COUNT
n

describes the behaviour of a count register with current
value n. For n~,

COUNT
n

= (up ~COUNTn+l Udown~COUNTn_l)

whereas the behav i ou r of a zero count is

A zero count cannot be decremented, but it can respond to a test
"iszeroll

• The use of this test will be illustrated in section 5(g).

3. Parallel Combination of Processes.

The traces of a process define all its possible behaviours.
The actual behaviour of a process P operating in an environment
E wi 11 in general be constrained by this envi ronment. The envi ronment
E can also be regarded as a process, consisting of all sequences of
events in which it is capable of participating. Each event that
actually occurs must be possible at the time of occurrence for both
the process and for its environment. Consequently, the set o ~ 1
the traces of the process and Its environment operating in parallel
and interacting ~ i t h each other is simply the Intersection of the
two sets P"E.

4.

For example, a customer of a vending machine Is Initially
prepared to accept a large or even a small packet of biscuits,
if they are available. Alternatively he inserts a coin, without
noticing its value, and then attempts to withdraw a large packet of
biscuits.

CUSTOMER ={<>,<large>, <small> ,<lOp>, <5p>,

<10p,large:::.. , <~p,large>}

When VM interacts with this customer, the set of possible traces of
their interaction is

VM IlcUSTOMER = {< >,< 1Op>,< 10p,large>,<5p>}

Note how VM does not permit the customer to withdraw the biscuits
before paying. But even more unfortunate is the fate that befalls
the customer when he has inserted 5p. The the VM is prepared to
yield only a small packet of biscuits, whereas the fool Ish customer
is trying vainly to extract a large packet. No further events
are possible; machine and customer are locked forever In deadly
embrace [1].

The description given above assumes that the alphabets of
the process and its environment are the same, so that every event
requires simultaneous participation of both of them. In general,
some of the symbols could be in the alphabet of only one of the
two processes, and so the corresponding events can occur w,ithout
the participation of the other process. For example, a customer
may fumble in his pocket, or curse when he Is thwarted; a vending
machine may clink on accepting a coin and clunk on withdrawal of
biscuits.

CUSTOMERB = {<fumble,5p,large>, ...
<fumble,5p,curse,small >, ••• }

VMB = {<5p, clink, small, clunk>... }

Events which are particular to only one of the interacting
processes can occur concurrently with events particular to the other
one. It is convenient to model such G,oncurrency by arbitrary
interleaving of symbo'ls. Thus the traces of the combined behaviour
of VMB and CUSTOMERB wil I include

{<fumble,5p,cl ink,curse,small,clunk>,
<fumble,5p,curse,cl ink,small,clunk>, ... }

even though the cl ink and the curse can overlap in real time.
The reason why interleaving is an acceptable model of concurrency
is that we are interested only in the logical properties of processes
and not in their timing.

The process (plIQ) is the process resulting from the operation
of P and Q in parallel. The curious mixture of synchronisation of
symbols In both their alphabets with Interleaving of the other symbols
has a surprisingly simple definition.

5.

(pIIQ) = {slsc(p\lQ)''<& stp is in P & S\Q is in Q}

where sl"X (s restricted to X) is obtained from
s by simply omitting all symbols outside X.

and Is the set of...flnlte sequences of symbols from X

Thus each process ignores events of the other process which do
not require its participation. In the case that the alphabets of
the two processes are the same, (pIIQ) is just the i n t e r s e c ! i ~ of the
sets (p"Q). In the case where the al phabets are disJoint (Pf\Q -{}) ,
(pIIQ) is the set of all interleavings of a trace from P with a
trace from Q.

A wellknown example on which to test this definition is the
story of the five dining philosophers. The system as a whole
consists of two groups of processes:

DINING ROOM = PHtL05GPHERSI jFORKS

where PHILOSOPHERS = PHILol I··· I \PHll4

and FORKS = FORKol I... IIFORK4

and PHIL. = (i sitsdown+i picksup fork i+
I

pi cksup fork i (t) 1+ I putsdown fork 1+

putsdown fork i ~ 1 -+ i getsup-+PH I L.)
I

Ui e 1 pi cksup fork i + i e 1 putsdown fork

and FORK = (i plcksup fork
i

+ I putsdown fork i +FORK.
I

+FORK.)
I

where i G 1, I e 1 are taken modulo 5.

The alphabets of the philosophers are pairwise disjoint.
This means that (characteristically) they do not interact directly
with each other: their joint behaviour is an arbitrary merging of
their individual behaviours. The same is true of the forks. However,
each event of picking up a fork and putting it down requires simultaneous
participation of exactly two processes, one philosopher and one fork.

It is well known that the simple system described above is
I iable to a deadly embrace after:

<0 sitsdown, ... , 4 sitsdown,

o picksup fork 0, ... , 4 picksup fork 4>.

An ingenious solution to this problem is to introduce a
BUTLER process into the dining room; his task is to assist each
philosopher to and from his seat, ensuring as he does so that not
more than four philosophers are seated at a time.

6.

NEWDININGROOM = DININGROOMllBUTLERo

where BUTLER (for n between 0 and 4) describes the behaviour of the
butler when ~here are n philosophers seated. For example

BUTLER
4

= (0 getsup -+BUTLER
3

[} ... 04 getsup -+BUTLER
2

)

The remaining cases will be defined in section 9(b).

4. Sequential Combination of Processes.

The process ABORT has been defined as one that never does
anything, because it is already broken. We now wish to introduce
another process SKIP, which also does nothing, but for a completely
different reason: it has already succeeded, and there is nothing
more for it to do. Successful termination can be regarded as an
event denoted by a special symbol I (success), and the process that
just succeeds is:

SKIP = {<>,<I>}.

(see technical note (2»

The use of SKIP can be illustrated by adapting some previous
examples.

(a) A vending machine which participates in just one transaction
(successful or unsuccessful):

VMl = (Sp-+(Sp-+(large+SKIP 0Sp-+ABORT)

Usma II-+SKI P
)

U1Op-+(sma I I-+{Spchange-+SKI p)

nIar ge-+S KIP»

(b) A customer, who terminates successfully after a single successful
transaction:

CUSTOMERC = (Sp-+large-+SKIP

n1Op-+ la rge+SKI P

(c) Their joint behaviour is:

VMl I ICUSTOMERC =(Sp-+ABORT

U10p-+large-+SKIP)

(2)

7.

Note that when I is in the alphabet of both P and Q. successful

tennination of (pIIQ) requi.res that both of them terminate successfully.

(see technical note (3»

The introduction of the concept of successful tennlnation permits
the definition of sequential composition (PiQ) of processes P and Q.
This behaves first like P. If P fails. then so does (p;Q). But if

P has terminated successfully. j ~ ; Q) continues by behaving like 0..
More formally,

P;Q::: {sis is In P and s does not contain I}

u {s t Is< I> i sin P and tis in Q}

Two simple repetitive statements can be defined

fo r i: I •• h+P i::: SKI P

::: P I ;P I+1;· .. ;Ph

P until Q ::: QU(P;(P until Q»

If h< 1

i f l~h

(d) A vending machine which serves at most three customers:

VM3 ::: VM1;VM1;VMl

(e) And now twenty customers:

VM20::: for i :1 .. 20+VMl

(f) An automaton which accepts any number of IJa" s followed by a
single Ilbll and then the same number of IIC" S:

n n . n n
A BC ::: (b+SKIPO a-+A BC ; (c+SKIP»

(9) A process which accepts any interleaving of more " Up II S than
"down ll s; but terminates successfully on first receiving one more

"down" than II Up":

pas = (down-+S KIP 0 up+POS; POS)

Note: to counteract an initial JIUpJI it is necessary to accept tWO

more IIdown ll s than I Up" S ; this is done by first accepting one mrn.

and then by accepting one more again.

(h) An alternative formulation of (g):

POS ::: (up-+POS) unti I (down+SKIP)

(i) A process that behaves exactly like COUNT:
o

ZERO ::: (iszero+ZERO Oup+POS;ZERO)

(j) An automaton that accepts equal numbers of " a" s • II CIl S , and lIell s :

8.

where CnDE n will be ~efined in 5(b).

The first process ensures that the II CII S match the "ails, and ignores
the lIell s . The other process ignores the lIa ll s , but ensures that the
1Ic"S are matched by the lI e ll s .

In future we shall often abbreviate

II (d-+$ KIP) II to jus t II dll

5. Alphabet Transformation.

Let f be a total function which maps the symbols of one alphabet
Y onto symbols of another alphabet Z, so that:

f (x) i sin Z fo r a 11 x in y

Given a process P with alphabet Y, we can define a process f(P)
with alphabet Z, which behaves I ike P, except that it does f(x)

whenever P would have done x.

f(P) ={f(s) Is is in p} (see technical note (4))

where f(s) is obtained from s by applying f to each of its symbols.

(a) to represent the sad effect of monetary inflation on a vending
machine:

NEWVM =f (VM)

where f(5p)= lOp, f(small)= verysmal I, etc.

(b) a process used in example 4(j)

Cn DEn = f(AnSC n)

where f(a)= c, f (b) ~ d, and f(c)= e

The most frequent use of alphabet change will be to give
different names to otherwise similar processes. $0 we introduce
a set M of special symbols to serve as process names. If x denotes
an event, and m is a name in M, then the compound symbol "m.xl i denotes
participation in event x by a process named m. We stipulate that
events prefixed by distinct process names are distinct:

m ~ n implies m.x ~ n.x.

The prefixing ofa name is accomplished by a function

prefix (x) = m.X
m

for a II x.

9.

We can now define m:P as a process with name m, which does m . ~ whenever
P would do ~:

m: P = pre f ix(p)
m

(c) Two distinct vending machines, operating independently in
parallel (by interleaving of traces):

(red:VMllgreen:VM)

In general, the alphabet of a process will contain (in
addition to events that require participation of its external
environment) certain other events which represent its internal
workings. These internal events are intended to occur automatically,
without participation or even knowledge of the environment. To
model the concealment of such events, we wish to remove the corresponding
symbols from the alphabet of the process, and from every trace of
its behaviour. Let X be the set of symbols to be concealed; the
resuit of the concealment is defined:

P\X =ist-(p-x)I s is in p} (see technical note (5))

whe re P\X = p-X (set subtraction)

(d) A soundproofed version of VMB (section 3)

VMB\{clink, clunk}

When a process has been defined by parallel composition of
two or more processes, the mutual interactions of the component
processes are often of no concern to their common environment.
These interactions are just the events named by symbols occurring
in the alphabets of more than one of the components. We represent
the concealment of these events by enclosure in square brackets:

[pIIQ] = (pIIQ)\ (Pnil)

This definition generalises to more than two components:

(e) A USER process uses a COUNT register named m, interacting
with it by events

{m. iszero, m.up, m.down}

These interactions are to be concealed, thereby ensuring that the
register serves as a local variable for the benefit of only the
sing 1e use r:

[m: COUNTrlll USER]

10.

(f) Similar to (e), but with two registers:

(g) Inside the USER process, the fol lowing subprocess will add the
current value of n to m, leaving the value of n unchanged:

ADDNTOM = (n. iszero 4 SKIP

On. down 4 m. up;

ADDNTOM;

n.up

Another use for concealment is to remove/from the alphabet
of a process that is not intended to terminate. For example,
if P is a normally terminating process, *p is a process which
repeats P for as long as is required by the environment within
which it runs:

(h) A familiar example:

VM = 1:VMl

6. Input and Output.

The model developed in the previous sections is sufficiently
general to apply to any kind of event. In the following sections
we shall be concerned primari ly with communication events, Involving
output of information by one process and input of information by
another. For these events we introduce particular notations. if t
is a value of type T, then

!t denotes output of a message with value t
1t denotes input of a message with value t.

(a) A process which behaves as a Boolean variable. At any time, it
is ready to input Its next value or to output the value which it
has most recently input (if any).

11.

BOOl::: (1true -+ TRUEBOOl tl1false -+ FALSEBOOl)

TRUEBOOl::: (1t rue -+ TRUEBOOL U?fa Ise -+ FALSEBOOL

U ~ true -+ TRUEBOOL)

and FAlSEBOOl is simil iar.

When a process performs input of some value x ~ its subsequent
behaviour will usually depend on the value which it has Just
input. Although the type T of x may be known, the identity of
the value which is actually going to be input Is usually not known;
the process must be prepared to do 1t (input of t) for any t In T;
the selection will be made by its environment. To achieve this we
Introduce a form of Input command:

(1x :T-+Px)C {<>} U {<1t>slfor t In T and s in pt }

(b) A process which Just copies what it inputs:

COPY
T

• ~(1x:T -+ ~x)

This process serves as a one-place buffer.

(c) Similar to (b), except that consecutive pairs of "*11 are replaced
by "t":

SQUASH::: .: (7x: CHAR-+

if X ;tll~',,, then !x

else (7y: CHAR 4- li Y = "*" then Ilt"

(d) A process which behaves as a variable of type T:

VARr = (1x: T 4- VAR)
x

where VAR = (~x -+ VAR 0 (1y:T 4- VAR))
x x y

VAR is the behaviour of a variable with value x.
x

Clearly, BOOl ::: VAR
{false, true}

(e) A process which inputs cards, and outputs their contents one
character at a time, Interposing an extra space after each card:
UNPACK = *(1c:CARD-+

(fo r- i: 1 •• 80 4- ! c.); ~ II ,,)

-- I

where CARD ::: array 1 •• 80 of "HAR.

12.

(f) A process which inputs characters one at a time and assembles
them into lines of 125 characters, which are then output·

PACK = PACK <>

where PACK = II'PACKI ., <> if length (1) = 125

= (7c: CHAR -+ PACK,:::c» otherwise

(g) A queue QUEUE
T

at any time is prepared to input a new element of
type T, or to output the element which was input the earliest (if
any):

QU EUET = BUFF<>

where BUFF<> = (7x:T -+ BUFF<x»

and for s ~ <>,

BUFFs = (7x:T -+ BUFFs<x>

n~ first(s) -+ BUFF)
rest{s)

(h) A stack is similar to queue, except that it outputs the element
which was input the latest; it also can give an indication when it
is empty:

STACKT = ~(! isempty -+ SKIP

D7x:T-+ STK)
x

where STK = (1y:T -+ STK until!x -+ SKIP)
x

7. Communication.

Suppose that we wish two processes P and Q to operate in
parallel in such a way that every message output by P is input
directly by.Q. The resulting compound pr6cess is denoted (P»Q).
The synchronisation involved in direct communication requires that
each output !t in P be regarded as the same event as an input 7t
in Q. Such events are to be concealed from their common environment.

The required effect is achieved by transforming of the alphabets
of P and Q, prior to their composition. Thus we define

P»Q = [strip!(P)llstrip7(Q)]

where strip!(!t) = t,

and strip7(!t) = !t,

s t r i p ~ (1t) = 1t

strip7(7t) = t

13.

Note that all output from the outside environment is input by P, and
al I output by Q is input by the environment.

(a) Text is to be input from 80-column cards and output in 1 ines
of 125 characters each.

LISTING = UNPACK»PACK

(b) Simi lar to the above, except that consecutive II,':" S are to be
rep 1aced by Ilt"

CONWAYS EXAMPLE = UNPACK»SQUASH»PACK

(c) Similar to (a) except that communication is desynchronised
by interposing an unbounded buffer

UNPACK»QUEUECHAR»PACK

This example shows that no generality is lost by taking
synchronised communication as primitive.

(d) Similar to (c) except with only double buffering

UNPACK»COPYCHAR»COPYCHAR»PACK

(e) An alternative definition of QUEUE
T

(6(g)).

QUEUE
T

= (1 x :T -+ (QUEUET»(!X;COPY
T

))

8. Named source and destination.

The » combinator allows construction of chains of anonymous
communicating processes, each taking input from its predecessor and
sending output to its successor in the- chain. For other more
elaborate patterns of ccxnmunication we shall use named processes,
and allow each input or output to quote the name of its source or
destination:

m ~ t denotes output of message t to process named m
m1t denotes input of message t from process named m.

(a) to update and test a boolean variable named b:

USERB = (... b!true ... (b1true -+ ••• Ob1false -+ ...) ...)

We also need to input arbitrary values from a named source:

(m7x: T -+ P) = {<>} U {<m7t>s It is t 11 T and sis in P }
x t

14.

(b) to update an integer variable named m

USERM = (... m!7 ... (m7x:'INT -+ m~(x+3» ...)

This has the effect: ... m:=7 ... m :=m+3 ...

Henceforth we shall use these conventional notations for updating

variables.

(c) a subroutine which repeatedly inputs a floating point argument
and outputs its tangent as result:

TAN = :(7x:FP -+ sin!x; cos!x;

(sin7y:FP -+ (cos7z:FP -+ !(y/z»»

In order to establ ish synchronised communication between a
named process m:P and an unnamed process Q. we need to ensure that
each m!t in Q denotes the same event as 7t in P, and each
m7t in Q denotes the same event as !t in Q. This is conveniently
achieved by adapting the definition of prefix when appl ied to input

m
and output events, thus:

prefix (7t) = m~t
m

ar.d prefix (!t) = m7t.
m

In future we shall assume that this adapted definition of prefix is
m

used in process naming.

(d) to declare a local boolean variable for USERB:

[b:BOOLlluSERB]

(e) similarly for U'SERM:

[m:VAR1NTlluSERM]

(f) a subroutine which calls two local subroutines to assist in
its calculations:

TANGENT = [sin:SINI Icos:cosl ITAN]

(g) A subroutine which computes a factorial by recursion. As before,
the argument and result are communicated by input and output.

FAC = (?x:NN -+- if x = a then ~ 1

else [f:FACII
f ~ (x-I); (f7y: NN -+- ~ (xxy))])

15.

Each activation, if necessary, creates another activation to compute
the recursive call.

(h) A simi lar technique can be used to define a recursive data
structure, for example, a set which inputs its members, and answers
II!yes" if the value input was al.r..~ady a member and "!no" otherwise.
Each activation stores one number x, and uses a recursive activation
to store the rest of the set.

SET
T

(?x:T ~ !no;

[rest:SETTII

(?y:T -+ ii y = x then !yes

else rest!y; (rest?yes -+ !yes

Ures t?no -+ ! no

)])

The previous examples show communication between a single named
(slave) process and a single unnamed (master) process. In more general
communication networks, it is necessary to al low one named process to
communicate with another named process. As before, this is accompl ishe
by equating the event m!t in a process named n with the event nIt in a
process named m. Again, the definition of prefix

m
is adapted for this

purpose:

prefix (n?t) = prefix (m!t) = n.m!t.
m n

(i) A network for multiplication of a matrix by a vector. Processes
CaLl. COLZ, COL3 output the columns of_a matrix IN.

Values v
1

, v
Z

' v
3

form a vector by which the matrix is to be multipliec

The resulting column is to be output to a DISPLAY process.

Since it is desirable to input three numbers at a time, and
multiply three numbers at a time, a network of processes is required.
They are pictured in figure 1, where each communication channel is
annotated by the typical value that passes along it.

The algorithm is defined

where M
o

and for 0< i 53

(a source of zeroes)

M. "'(m. l?sum:FP-+
I - 1-

col.?x:FP -+ m. 1!(xxv.+sum))
I I' I

1,01. } ". ~M~._··_··

16.

17.

9. Sharing.

Let X be a finite or infinite set, and let P be a process for each
x

x in X.

[llx:x]P
x

:: ABORT

:: pullp) I

(see technical note (6»

[Ux:X]P
x

:: ABORT

p (I p n
u v

if X +5 empty

jf X is{u,v, .. }

if X is empty

if X is {u,v, ... }.

We define ANY as the set of al I process names,
and any (r):: {rd i is an i;t;gcr}.

PHILOSOPHERS :: [] Ii :0 .. 4) PHIL.
I

(a)

(b) BUTLER =
n

[0 i : 1.. 5] (i 5 its down -+
ni getsup-+

BUTLER
BUTLER n+ 1

n-I)

(c) An exclusion semaphore:

MUTEX:: .:J[U x:ANY]x7acquire -+ x?release)

It must be released by the same process which acquired it

(d) An array of three exclusion semaphores, protecting three identical
resou rces:

[I \i:l .. 3]r.:MUTEX
I

A user can acqui re and release anyone of the avai lable resources by

([[) m i n e : a n y (r)] m i n e ~ a c q u i r e -+ ••• use the resource ... ; mine~release)

(e) A hardware line printer with name h is to be shared for the
output of complete f11es

LP
h

:: .:([U x:ANY]x?acqu i re - ~

(x?1:L1NE -+ h!l until x?release -+ SKIP»

Each iteration of the major loop first I'acquires" an arbitrary user x,
and then copies 1 ines from x to . unti 1 receiving a "release" signal.

"''',V
I,~I. J)c.~

._"

M.

, tt 0

'01,-
'X,J. r

M~-,

,
~ ~

@1t.S :. M')

,
~

~,

,-
""~

'- 4---J

16.

17.

9. Sharing.

Let X be a finite or infinite set, and let P be a process for each
x

x in X.

[I Ix:X]Px ::; ABORT

:::: pullP)1

(see technical note (6))

[Ux:X]P ::; ABORT
x

ptlP\}
u v

if X 'h empty

if X is{u,v, ..)

if X is empty

if X is {u,v, ... L

We define ANY as the set of all process names,
and any (r)::; {ril i is an integer}.

PHILOSOPHERS(a)

(b) BUTLER
n

=

::; [j Ii: O•• 4] PH I L.
I

[0 i: 1.• 5] (i sits down -+
Ui getsup-+

BUTLER
BUTLER n+1

n-l)

(c) An exclusion semaphore:

MUTEX = ,:::,([0 x:ANY]x7acquire -+ x?release)

It must be released by the same process which acquired it

(d) An array of three exclusion semaphores, protecting three identical
resou rces:

[II i : 1•. 3] r. : MUTEX
I

A user can acqui re and release anyone of the avai lable resources by

([Gmine:any(r))mine!acqui re -r ... use the resource ... ; mine~release)

(e) A hardware line printer with name h is to be shared for the
output of complete files

LP
h

::; ':([\lJ~:ANY]x7acquire-~

(x?I:L1NE -+ h!1 until x?release -+ SKIP))

Each iteration of the major loop first "acquires 'l an arbitrary userx,
and then copies 1 ines from::c to . unti 1 receiving a "release" signal.

18.

(f) This improved definition of LP h ensures that each user's file is
separated from the next by a II ~ throw l to the next even page boundary,
and two rows of II!asterisks".

LP
h

= (h!throw; h!asterisks

.:.([tlx:ANY]x1acquire -+ h!a,sterisks;

(x71 :L1NE -+ .!.!. I~aster'isks then h! I else SKIP

until x?release); h!throw; h!asterisks)

(g) A shared variable of type T.

SHAR,- =

where

([\1x:ANY]x7y:T 4- SH)
Y

SH'" ([Ux:ANY]x!y-+SH
y y

UlD x : ANYJx 7z : T -+ 5H)
z

This example shows that a communication-based theory of parallel ism
is not in principle different from one based on shared variables.

In the previous examples, when many processes attempt simultaneously
to acquire a shared resource, all but one will have to wait; and when
the resource is released, it is not determined in what sequence they
will eventually acquire the resource. If it is important to control
the sequence of acquisition, we need a more campI icated scheduler which
wil I separate the request and the granting of the resource as distinct
events.

(h) A IIfi rstcome fi rst served ll scheduler, sharing a group of N
resources. A QUEUE is needed to store the names of waiting users.

free: = N;

.:2J[Ux:ANY]x7request -+ free .- free-l;

if free <l) then I ~ ! x else x!granted

U[O x:ANY]x1release -+ free := f ree+l ;

ii free :50 thenq7y :ANY"'" y~ granted)

)]

Conventional notations have b ~ e n used for updating variables.

19.

10. A multlprogrammed batch processing system.

A multiprogrammed batch processing system inputs jobs from any
of C card readers, executes them on any of P processors, and outputs
the results on any of L line printers. An account is kept of the cost
of each job, and this is printed out at the end. If the cost exceeds
a certain I imit, the job is t r u ~ ~ ~ t e d .

The overal I structure of the system is

MBPS = [CARDREADERSIILlNEPRINTERSllpROCESSORS]

where

and

and

CARDREADERS = [II i: 1 •• C]cr. :CR .
I CI

L1NEPRINTERS = [lli:l .. L]lp.:LP
h

.
I I

PROCESSORS = [lli:l .. P]pr.:PROC.
I

Each processor executes a stream of jobs submitted by users:

PROC = *SINGLEJOB

The process SINGlEJOB executes a single user's job; taking input from
any free reader and channel ing output to any free printers:

SINGLEJOB

[cost:VARNNllc:VI\RCARDII

([0 i n : a n y (c r)] i n ~ a c q u i r e

[[] out:any(lp)]out~acqui re

cost: = OjRUNj

in~release;

out~account(cost)j out~release

)]

The process RUN needs an auxiliary process USER (not shown here)
which actually executes the user's job. This USER is assumed to be
initialised to some standard compiler or control language interpreter.
It interposes a regular I ' ~ t i m e s l i c e ' l signal after every million instructions
executedj and sends a lI~finishedll signal when the user program is finished
(i f eve r) .

20.

RUN • (pr:USERIILOOP]

where LOOP = cost: = cost + 1.

if cost>costllmlt then SKIP

else (pr11:L1NE ~ut!I;LOOP

Upr! c..... (In1x: CARD c!x) .LOOP

'Upr1tlmesl Ice LOOP

Upr1finished SKIP

In practice, the interface between USER and LOOP will be Implemented
by hardware protection mechanisms and by supervisor calls and exits.

In order to prevent interference between successive jobs submitted
in a batch, the cards of each job are separated from the next job by an
" endcard ll

, which is used for no other purpose. The task of CR is to
ensure that the cards for each job are consumed right up to the endcard
but not beyond it.

2':.([l\ x:ANY]x7acqul re (h1c:CARD FILE)}
c

where FILE =
c.

(x! c if c =

DX1release

endcard then FILE
c

else(h1c:CARD FILE)
-- c

SCAN }
c

where SCAN = if c = endcard then SKIP
c

els~(h1c:CARD _SCAN
c

}

If the user attempts to read beyond the endcard t he just gets further
copies of the endcard.

We now specify an array of processes which perform pseudo-offline
output of fi les. Each process uses a fi Ie (acqul red from a fi 1ing
system) to hold the user's output t and acquires a real I ine printer only
when the user's output is complete.

21.

SPOOLDLPS = [lli:NN]slp. : SLP
I

where SLP [0 x: ANY]x1 acqu i re -+

[U f:any(file)]f!acquire -+

(x11:L1NE -+ f!l until xlrelease);

f! rewi nd i

([0 out:any(lp)]out!acquire -+

(f1I:L1NE -+ out!l until f1eof);

out!release)

SlP acts like a IIprocessll in a language like MODUlAi a new lIinstancell

comes into existence as a result of each Ileal III of the form:

([Uout:any(slp)]out!acquire -+ ••• out!release)

11. Discrete event simulation.

In designing a program to simulate a fragment of the real world,
it is necessary also to simulate the passage of real time. Any process
of the program may need to enquire the current value of simulated time,
by inputting it from a lit imer ll process:

(timerlt:TIME -+ ••• t Is time now...).

Furthermore, a process may need to delay itself unti I simulated time
reaches some predetermined value, say 80clock. This is done by
outputting the requirel'alarm settingt'to the timer process:

time r ~ 80c lock.

This is an event which is guaranteed to occur only at 8 oclock (in
simulated time). Thus, to delay itself for dunits of simulated time,
a process can perform the actions:

HOlD(d) = (timer1t:TIME -+ timer! (t+d»

The timer process is always prepared to output the current value
of simulated time. It is also prepared to input a value, provided that
this Is equal to the current value of simulated time. Finally, If all
activity of the user processes has terminated, the simulated time Clock
is stepped on to its next value. TIM

t
describes the behaviour of the

timer at simulated time t.

22.

TIM
t

= ([0 x:ANY]x!t -+ TIM
t

Urux:ANY]x7t -+ TIM
t

n otherwise -+ TIMnext(t)

where " o therwise ll is an event which is intended to occur only when
nothing else can occur.

It remains to give a rigorous definition of the definition of
such an event. If P is a process, we define rescue (p) as:

e

rescue (p) = Q-. {e}
e

where Q = {sIs is in P and

and if t<e> is an initial substring of s

and if t ~ > is in P, then x= e}

Now if the USERS are a group of processes to be executed in simulated
time

simulate (USERS) =

rescuetimer.otherwise (timer:T1MoIIUSERS).

(a) Let P A I H ~ be a set ot names ot unidirectional paths in a network.
For each path p in PATHS:

length (p) is the time taken to traverse the path.

succ(p) is the set of paths leading from the destination of p.

SPARK
P

is a process representing a single traversal of path p; it is
triggered by a I s tClrt" signal from one of its predecessors, and
after traversing the path, it proragates a start signal to all
its successors.

SPARK = ([Us:PATHS]s7start -+
p

HOLD (1eng t h (t)) ;

([Ild:succ(p)]dlstart -+ ABORT)

) .

23.

(b) A special path "dest ll is singled out as the intended destination
of a journey. It triggers the start point of the journey, and then
waits for the first spark to propagate back to itself. It then outputs
the time and terminates successfully:

DEST = source~start;

([Us: PATHS]s7start +

(timer?t:TIME + !t)

(c) To output the length of the shortest route in the network between
the source and the destination:

simulate ([lIp: (PATHS - {dest})] p:

II dest:DEST)

SPARK
p

(d) A machine shop possesses ten groups of machines. Each group contains
seven machines, which are scheduled by a foreman using a "first-come ­
first-served" discipl ioe. ihe shop has to process'a set of.otder$
identified by names in X. Each ord.er in t,urn uses a reade·r·' to input
its par ame t e r s :

startt ime:

numberofsteps:

and for each step:

machinegroup:

se rv i ce time:

at which it enters the shop.

required to fulfil the order.

of machine needed for this step.

fo r th iss tep.

An exclusion semaphore is required for proper sharing of the reader.
Output of results has been ignored.

MACHINESHOP =

simulate ([rdr:MUTEX

II [II i: 1.. 10] fo reman i : FCFS
7

I I[IIx : X] x : ORDER

])

Each order must read in its parameters before starting
to progress in the simulation proper. All orders initially
compete to use the reader for thi s purpose. I t does not
matter in what sequence they actually acquire it.

ORDER = [starttime: VARNNI ~n.umberofsteps:VARNNII

rdr!aequire; (reader7n:NN + starttime := n);

(reader7n:NN + number of steps := n);

[[II i : 1 •• numbe ro f 5 teps] mach i neg roup i: VARNN

II [II i: 1•• numberofsteps] servi eet ime i : VARNN

I I (for I: 1.. numberofsteps +

(reader7n:NN + machinegroup,:= n);

24.

(reader7n:NN +

rdr!release; PROGRESS

]

servicetime.:= n));
I

The first action of each order is to wait until its
starttime is due. It then progresses through each step,
acquiring its machine from a foreman, and holding it for
the required service time.

PROGRESS =

(starttime7m:NN + timer!n);

(for i: 1•• numberofsteps +

(machinegroup.7mg:NN +
I

foreman ~ r e q u e s t ; f o r e m a n 7granted;
mg mg

(servicetime.7n:NN + HOLD (n))
I

foreman !release
mg

25.

Technical Notes.

To avoid the introduction of non-determinism, we have observed the
following restrictions:

(1) define po as the set of symbols denoting events in which P can
participate on its first step:

We use PU Q only when pOf\Qo =0, so that the decision between P and
Q can be made on the first step.

(2) The event of I occurs only at the end of a trace; and when it does
occur, It Is the ~ event that can occur:

for all traces S,

If sl is in P, and st is in P then t =<1>

This ensures that successful termination of a process is always
deterministic.

(3) If I is in the alphabet P but not Q the pIIQ is allowed only if
the alphabet of Q is wholly c o n t a i n ~ i n the alphabet of P. This
ensures that successful termination of P automatically cuts short any
further activity of Q.

(4) An alphabet transformation is always a one-one function.

(5) For s in P, p(s) desc.ribes the future behaviour of P when s is
the trace of Its past behaviour:

p(s) = {tlst is in p}

We define s\X as st(P-X). We insist that after concealment of X, the
future behaviour of a process is stil I uniquely determined by the sti II
visible symbols of its past behaviour.

For all sand tin P:

ifs\X::: t\X then p(s)\X::: p(t}\X

(6) An infinite array of parallel processes must not communicate with
each other (their alphabets must be disjoint). This ensures that the
infinite para! !e! ism can be defined as the \ imit of the parallel
combination of all finite subsets.

26.

Acknowl edgemen ts.

Acknowledgements are due to many colleagues. The inspiration
for the design of communicating processes is due to E.W. Dijkstra.
R. Milner showed how a mathematical model for them could be constructed.
R. Campbell and P. Lauer are r e ~ p o n s i b l e for the parallel combinator.
N. Francez and W.P.de Roever helped substantially in the development.
J. Kennaway gave necessary mathematical support. M. McKeag designed
the operating system and J. Kaubisch designed the simulation program.
Improvements over early drafts were due to perspicacious comments of
E.W. Dijkstra and A. Yasuhara.

The simulation example is due to O-J. Dahl, and so is the
formulation of Dijkstra's shortest path algorithm.

27.

References.

Dijkstra, E.W. Cooperating sequential processes. in Programming
Languages ed. F. Genuys. --
Academic ~.r.ess, New York, 1968 pp 43-112.

2. DiJkstra, E.W. Guarded commands, nondeterminacy, and a calculus
for the derivation of programs.
Comm ACM 18.8 (Aug. 1975) pp 453-457.

3. Francez, N. et al

4. Kaubisch, W.H. et al. Quasi parallel Programming.
Software Practice and Experience. 6 (1976)
pp 341 - 356.

5. Hoare, C.A.R. Communicating Sequential Processes.
Comm ACM 21.8 (Aug. 1978) pp 666 - 677.

6. Hoare, C.A.R. Some Properties of Predicate Transformers.
JACM 25.3 (July 1978) pp 461 - 480.

7. Mi Iner, A.J.R.G. and Milne G.
syntax.

Concurrent processes and their

Jk+v.:b..t:J C-..rJ-'"1'
H~ 1'1'00. C. A, R.. H.....--.

TL wut4 4ri--J:
• A~.lJ r ~---~~ s,J:J P",-"

T ~ 1'11"-

A ~b; ~C1tu Q.~ ..

A 'C~ ~ ().. FVt\ ~ t i . 4 V - U \ ~ of
i> ~r'" bJ., ~~

ti€.. FO~W be..lo...vl.o~ o~ 0- rroc..(L$6.

'- > '"
th~ ~r~ $'1 ~,,,, C-' .

J

~~ ~ Sj pi bot~e. C4"k..~
~~

<.x.> "'" ~ \oU!.-nc.."--

<x)~,:4 '> L6 fov-W\~ ~("O\N\ :>C-, l:iAM J) ~~ -:z- .

J~ S o..(\J t ()..ft. ~ , lA t.v\c.c.>I tif,~ ~b ~ ~OYMJI, b1 o.JJ~

$ t \;0 ti-e... ~~ of ~.

e-j .(X> < ~) z . ~ == <x) J' z. > .:: <x, ~ > <'Z.>;

ItDf"t,.n1. S <."> :: < > S, =.$, .s (CtA.) ::: (st) u...)

5 " c. > :- t "" J >~ .s ::' t &c.::cL, 5 < (. '> f tt > ,

st ::::&.s ~ t:::: ~ >., oS t = t ~ s = .c > ,

5 r ::: <. > ~ 5 =t ::: ~ > , S -+ 4.. > ,*.3 X, t. S:=. L:.;x.:~ t

(i) .c: >

().. SQ-t o~ ~ s"J,~ ~j vnr
(; p

6 P ~ S E-P ~et'" ~.
$) t

proeuS4} ~

yP,,) 0~.

FA-I L = t,,;>J ".-It do 1~ o.t- Jl.

j ~ p :.. .. r~o.s3 -J c. .:.. 00- .. ~ bL

c. -+ P "'~ t,,;>JU {<:<>5 IH P]

j ~ 5 e- P, P Go FI:ir.$ '" [t-I st e- P] . fu tk.

p_JJ.. ~...!........ o~ PI .;} 5 ~ 0. k' of:h r ~ t .

po "1 i ~ I"c.;> (,. PJ ~ tk ~ o ~ sj",bol. rO&SJ,~

Fa1" p C1n ~, FVGt step.

1~ po ~ qo ~ tkjo.;..l; (L.e. fn QO=1J)1 U-

p o q ~ P u Q .

neoYfM". Ret·~ o.-boV't- J.a.~~~ Je-fv\u, f'~~'

FfflLo < {1, (c. ~p)(j: [GJ j (PfJq)o= po u Q~,

p ~ -< > ::: p 1 P,S~ ~\:;) ::: (p iftu- .5) ~r~ 1:;)

(c ~ p)o..ttw < <.> =' p

(pDQ) a.Fl.tr<c.>;: P cSt.... <c.;> '1 c.. Go- po

(pO Q) =(Q UP), PO (Q UR) ~ (PDq) II R, PDFI41L:= P

p '" Ypo (<: ~ (P~<~)

E~t.k PONe.- ~L ~ ~ ~~

J f- A

st A (" ruktJ. t. rt) ;:. for.....! b1 e ... ~ f.- s

cJl .sj'"' b..t ot;J.e. i:!.t;. s.:b- 11.

<> I' 1+ '" <:>, (st)t A ,,(sNI) (UA) ,
<c.> ~ fi :: J c 6 A thu\ .< C. > et.e..- ,,>-- -
~~A)tB = sl'(AnI3), .stU:: '<>

It tI ;. .set of. l;.-.,..cu .f ~ ~ ~ V\ I wJi $j... L.~ f",... A,

AO " [<-> J A
n
+:!." U (c...., A;") [r "l~ >1-

, ~A '
A* =Jf U An Ls JJ. ~.;,,;,h: ~eu ot- 6'(""bot r It.

n:NN I U

'Ai> '" U(<: -? A*) ,. U A" siA =5 =. oS "A~
c.: Ii ,,·.lVf\I '

t;(P . ~ tL ~ J . J ; o ~ ~ ") J1 S:1'V\/'O!.. ,k.J~

e.y~ b o~ w~~ch p ~ CG\f~bt, ..

~ (F A-I L.) • {J, 0((c.. ~ p) & L"1 U 4)(p.

« (PUQ) = ~p U IY.Q

PflJ/BQ ~ [s Is b (A u By ! (s~f)) ~ p g ~tB) ~Q]

0< (P \I q) ".u A u B '.
ft e d

WI.- 0((P) " A. 0< (Q) '" B) u... ~.J.""rt of 11 WN- • ",JfJ..

PI/R=df Po< p lIo<Q Q.

~. P 1/ Q ~. '" prouso, S P -.l Q ___
1\-8 ,

PllFAIL -: pUr =p,
P/I Q '" QII P J PJl(QII ~ :0 (p IIQ)'I R .

(U ~) II q = U (p 1I Q) .
(., A f> l, "'A-8 'I

LJ- 0.- ~ Af\B b 6 Bf\A eel ,-"An.B.
) ,)

-

(c ~ p) /I «:-7Q) = c ~ (P II ()).
AB' 1f.B 'r

(c ~ P) lI(d~Q) -= FAIL ~ f c. i J
A 6

(a ~ry~Jl6(' ~ct) '" ~~ (PJ~(c.~Q»)

(Q ~ p) 1I (b 4 n) =-(Q.. ~ P I \ (b ~ Q)
A- B . \' ft8

Db ~(Q~0JI~

5e1~U Cw-ros~, ~

L.k ,j b ~ 0- Sj"J,.,t J-.,t'1\<<.M<iJ. +w-.;.,..l:;,,;. of- <A fmuM.

5 KIP =1 {~>, ~/> J J...... M-It.'0 b.J; h.--.....;.J... S<A<","sU

'W'- JJ~ ... ~,yv",,- if UMUo4., ,J;....;." 0 ~ J; r.,":
5; t ~~ fa'~ h-UW'\ ~ 61 N-P~d ~ ~~f- j ~ .s

b'1 iL. ",k.t .r h, ~ t.l..- " " " , l t ~ L -s-t- o~~.

s:, t -:.s ~ f . .s Jexs Y\.ot (.LM-b .;
(s <. v> 1'); f:; = .st <)\ " u-

No,tL~ < >;b ;: <. > • (.(I> 5) ;b= t .. (.<c> s); t = ~'->&;t) ..f- c,;.1

. 5;(t;lA-) = (s;c); u..

(P;q) ~ [s;tl S& p ~ t 6 QJ
lhed~~. (p) Q) '-$ 0.: P " " o ~ s ~ f P ~ Q rvr~.

(FAIL j p) =FfHL 1 (SKIP j p)-::. p. S/(IP /lS/(IP =SKlf

(?;(q; P-)) =((p,Q); Ri.
((~p),q= <: ~~,q) f r..j./

(~ PJ i R = Y (Pi- i R.)

(p; qt =- pO J j;; pO

~ (pO -fYJ) lJ QO J V 6- po

- p ~ JIB 51< 1P , .5 K , P '. ~ f J 6ft ~ A ~ B.

N()t;. we- MSLU'e. u,,,,tj ()WA....-s 0 ~b -t!u. .e.J ?~ 0- ~ :

(t ~ p) c, dj~.) ov.t, w~ c. -f .;

P II Q ... (LJ~J ~ e-Jkw.
itB j - - 13

(, (4 . ~ C1V I&. A"B dV A-c .'
p aQ t-<" (~p V~,\L ...> "r ,"'_ ~ i I "2:' ro 0 ., r."'l°

"~' v nY.'\l \,.v \'\.~ V "" I .., 'Y

LJ; ~ be. 0- fwJ-...;.. f.-o...- s'1~oee. h- 6J"'bo~

s~ H.J; He-) .. II' J- ~ -t, 1 <.=./

~~ 5 <S 0.. hCU4-) f-(s) 'is fo...Y\J f.-o- ~ b,

o.pP1"1 f h ~ O~ 'ih SjW'b~',

~ (0) :: <>. H<<'»- <: ~(c.». t{st) = f{S) F-(!;).

j,~ C Ls 0.. stb of SjWlbo~) F(C):J~ [fC(.)! C 6-cJ,
1f- p ~ /). p",~, t- (p) {.s f-crnwJ , o.f~::'

r u ~ sb-'j "'" P. I,e." .

~ (p) ~i tHs) }SE; pJ. 0((PCp) : ~ (o<p)

The.ot"f.W\. ~ (p) , 'f P .'
~ 0.. Pf'"Oc.,U;S \ ~ ..

F(c -"p) '= F(c.)~Hp). ~(PlJQ) = ~(p) JfGQ).

(~ (p)r -:;: f (P0) • F(P /).flM- s) c HP) ...flio- ~(,)

1~ j:. l.s <>.. one.- ~ < l L f l M ' \ e > ~ I we. J- h - . ~

~ (p Jiv -5) = ~ (p) .Jti.. ~(s).

~(PDQ):: ~(p) il Hey)·

~lIq) 0= ~ (P) l l q q) l ' f(P;Q):: t=(~; r(Q).

Let x be. (>. set; ~ c"..k ~ I

Wt. w<$h t;.. 'j~ ttt. ,,-k ;- x 1M Y h p)

tI" J...f ~ PIX ~ t1.. ~ ~{;; -bk...1 ~t ,;, DC. ~ hJl.

. P\X =If fsr(o<.p-X) \.s 6 PJ.

Ol(P\x) ~ ~ p - X.

l""M.W\ . P\X .s (>. proc.a.ss ;,f P ~.

(c ~p)\X .. P\X J c. 6-X

:=. C ~(p\X) ;} c. 6 X.

(l) PJ\X ,. U(Et \x) .
~ ~

(pAlleq)\X = (P\X) II (QV<)J (1"BI\X,. {1
..•. "i Ft- B
,. . y
,...:.-.. - .• ~

(p; q)\X '" (p\x);(Q\x)

P\{J =0 p. (p\x)\y = P\~ lJ~

F(P\x) = f (p) \ ~Q<) . s ~ ~ C1W\L--.t..

~ \ x) " p J (o(~" X ={ 1
P\X -= ~(p)\Hx) L~ ({c):c f ~ J 1 c e : X .

(p ~J~ 5) \X s (p\>y ~}~ (s\.X)

~ MoM-I-a..Le- J I=(P)!:: F(<¥) ~tK ? g Q.

nu~" Aft p~ J~t~ $0 ~ o x ~ . M O Y \ 4 ~ .

Ld; p;~ F (p) be.. (M\ , . , . ~ ~ (.... ~ ,,,_ u ~

cMlMd tL r.-o ees~ p L,. re.e..... NL0'" ·

TIu..-t.w\A ~ ~J~ k~ fA U .J.J.;,...

PrOd~ F u. 0. .'MIlOtrv.:C.'· ~ l < N \ c . ~ _ -£t.. C4W\pMt; tJfu..

o~ rroe.t.Ss.u. T<lJQk i., .r.r-ov-ul u..J; i ~ "- CIvyo.~
~iL ,,¥ so.w~, ~ ~ 0. ~ t ow-.

TL. bkw.- --Us -h '" <.o~ w,fw,;h. 4-

of. ~ \t....l-~ \ p~ = Fi. (p) fllV oJ. l. "" T

1~ po f\ QO ;. [3 ~ J

p wwtl Q 16 ~ J ~

r 0: (P; f) IT ~

o CI

/ 6 ~ uQ~ .}b~

~ tL. ~t ~J.J~ 6f

9.

p~ ~FAILo ')

.....

LeJ F k 0.. ~ ~ J ~ }..o.... rroc.e.-.:.u. i:$. fW'O<U.St.r..

F ... ~-J..sbt- S F (p)tn :: F(Ptn)~VI fOf" JL",P.

Tko.- ~ ..., P} (P n~) I . (P II r.if (!> ~ """Jub-",J,w- ..;.. p-J ~
A: B'iJ) 1\ .

j ~F A.vJ G- ~ "O~t~~ ~o ~ FoG-.
J .

F i6 ~L~ J- F(P)~ ...i= F (P f " V I } t W \ + 1 f . ~ J t " ,) P '

lh--.. c: -!> P ~ e.-W.1o't. f P \4 ...,.J•.t't....Jw.e..

~~ F ~ UrnSt,,,,,,t.~J G- ~s M'I\~+'-~
\'

t-hl!K\ F 0 Gr G-o F CoKe. UmsW\V'e,...,

nC!o~ j~ F u C'OVl$t.....l~ L U-.- i~

r ~ F(r)

"0.$ 0)\1 0.: s;""d~ sUu>~.

CauNTo =JI.(<. uro,. COON'!; nl4r -7 cau I\l~)

COUN':.+l %Jf(Jow" -'1 C o U ~ n"of ~ COUN"T;+J

pas =Jf (..l...... "" ~ SKI P n.....r - Pas j Po.s)

:z ER.O ""Jf (,l,%fU'o,.:z.~R.o [j "-r,. pas j 7. t RO)

rh~. ZE~O = COUN~.

E o<-r~~ : ~os • ~~..tu" -4::-~U4J~ "'" ~t ~~f.":'1.'
cnu. ~ H . . olowY\ tkQl.N\, c....~. To t..~~ "M ~ J ~

1\" I'"
II .1 . L • L ,.1. .U .

'-4.r vr "s ~~!., ~ ~e.u.r~ ~~ ~~ ~ ""fl.

PYVtl~' :De.~c~ C,,::: {.. z.&¥e - C. a"'f - (i.)
C'(\+-1 ;::: pos) en

Cnt-1 '" (down ..,.SKIP; C" O!4f ~(POSjP'd~C~)

:: (Jow.. ~Cfl D"'r ~ PO'sj (POSjC"J)

:: (Jow.l ~ ~ nl.f .~ POS; c..d)
:: (Jown ~ C D~r. '~C \. n n~

C~ oS .J4f...... tl.... .sO-Me.' ..,......J....; <4 cotJt¥f

the , lA. "-i.:...s o.-ri- coYlS+\'11-.1. ~ . Cc -= CO UNli.

c, % (;..,.~ ~ CI) n"', ~ POSj Co .

sJ-"SLU tt.... &lMMI- i J..;., as 2 fJlO

~ 2ER..O;;; Co -= COO~

J,J.. Ct\~1.

fiW" Jl.~

f« Jt ~

I"r.J;J O.Jr.J:;

J~ " .. ~ v...L.. .,t "- ~ ..f ~r- r

?v w li.. ~t # f ~.~ -«..J- .,..L.-

!v .:. H.....-.k 0 r oJr~ U"J-..

IT :: Uv Iv " TJ I ?T" [?v) v 6- Tl

&+'~r? (?v) =v st':r? (1'1) :: !" ~l"'·r ?(,,) '" I

~t"r ! (! v) :: \I st.:r ! (?v),. ?" 5+.~r! (0') " ../

Nob,,: ?T, !T, T, -J [v] b...k... to I... f..Ntw.i.c-. J.wj".Mt.

1j:. C .:. ... s.t. S 5~",,~04, ~(c.) ti... sJ ot v~ w.r.J:

1.1 So..... ~{. M C, -.l o...tsCc) ;.. tl.. s..t.~ v,.J...u 0..1,...1;:

~((.)"J~{v I?v (; CJ 1 Ou.f6 (() ~ ~ { vpv ~ e.J

LJ, p b... ... f-....,J..,:". t-.-...... T '-!-. r-0~ . An w.,..J:

C«.vA~~ ~pJ:s ~ :>(. (~ T) ~ · ~ k ~ kL P (~) :

(?x,-, ~ P(oo») ==~ U c ~ (p ~t'f?('-)))
. c:?T.

«(?t]CT -7 P(x.) ~ ?T V U"P(:x.) .
x:T

L.1 to L... ""- ~rs~""" s +1r- T fl... .JpJ- """,...,.,j

...Jf ...4 .Jk yJ- dJ ~,J k.-~'± 4<A.Lc.US ~J1 :
!e. "i (!V ~ 5K IP) wk..- V ~ -Jl "...L. i 4-

et(!t..) ~ IT.

12.

C ~ 5 .

jf- p ~ Go rrOGC-:)J ~ " " c 1 'tU o ~ (~ p) :=T
l

~ Q ~ 0.. rrou.-5~ +tA.~ flJ-. ~S(~P) ': T \

~ol .; 6- ~ P 1 ~ /~ -J- J fr 0(. QJ

~ (P » Q) l.s .tke... pf.0 u..ss ~ w k ~ Q . . V L ~

vo.£1.<.l o..arJ:;- b~ p ~ s..;..~e, lMfJ- b1 Q

aMJ Vl'~- vuso.., Tf..4 ~ ,..et<",,~:aU hi t--J..,.....~

tk~ ii -tke.. ",Q..~L ~{;.

p »q =: (str,p ~ (P) IIst...:p? (~))' T

"' ~ »q) - ?tM, (oe p) u ! oJ6 (c (~ . lJ)(~ Jj ao(P ~ I (Q) .

n..-.-. P» <\> ~s t>. ff'Oc.«$ S P -J Q --,

P »(Q »R) = (p»~» R..,

(~v;p»>(?x~T~.q(~)~ P»Q(v). f o ~ V f - t :

	A model for communicating sequential process
	Recommended Citation

	tmp.1283391222.pdf.cneHb

