University of Wollongong

Research Online

Department of Computing Science Working Faculty of Engineering and Information
Paper Series Sciences
1980

A model for communicating sequential process

C. A.R. Hoare
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/compsciwp

Recommended Citation

Hoare, C. A. R., A model for communicating sequential process, Department of Computing Science,
University of Wollongong, Working Paper 80-1, 1980, 43p.

https://ro.uow.edu.au/compsciwp/14

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/compsciwp
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/compsciwp?utm_source=ro.uow.edu.au%2Fcompsciwp%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages

A Model for

COMMUNICATING SEQUENTIAL PROCESSES

C.A.R. Hoare

Oxford University Computing Laboratory
Programming Research Group
L5, Banbury Road
Oxford. 0X2 6PE

Summary: A previous paper [5] has suggested that parellel
composition and communication should be accepted as primitive
concepts in programming. This paper supports the suggestion
by giving a simplified mathematical model for processes, using
traces [6] of the possible interactions between a process and
its environment.

1. Introduction.

The primary objective of this paper Is to give a simple
mathematical model for communicating sequential processes. The
model is Illustrated in a wide range of familiar programming
exercises, including an operating system and a simulation study.

As the exposition unfolds, the examples begin to look like programs,
and the notations begin to look like a programming language.

Thus the design of a language seems to emerge naturally from its
formal definition, in an intellectually pleasing fashion.

The model is not intended to deal with certain problems
of nondeterminism. These have been avoided by observance of
certain restrictions detailed in the appendix. No attention
has been paid to problems of efficient implementation; for this,
even further restrictions should be imposed.

The long term objective of this study is to provide a basis
for the proof of correctness of programs expressed as communicating

sequential processes. However, in this paper the formalities have
been kept to a minimum and no proofs are given.

2. Basic Concepts and Notations.

The ultimate constituent of our model is a symbol, whickt
may be intuitively understood as denoting a class of event in
which a process can participate.

(a) ''Sp'" denotes insertion of a coin into the slot
of a vending machine VM

(b) '"large' denotes withdrawal from VM of a large
packet of biscuits._

(c) "up'" denotes incrementation of a COUNT register.
The alphabet of a process is the set of all symbols
denoting events in which that process can participate.

(d) {5p, 10p, large, small, Spchange} is the alphabet of
the vending machine VM, :

(e) {up, down, iszero} is the alphabet of COUNT.

A trace is a finlte sequence of symbols recording the actual
or potential behaviour of a process from its beginning up to some
moment in time.

(f) <10p, small, Spchange> is a trace of a successful initial
transaction of VM,

(g)< >(the empty sequence) is a trace of its behaviour before
its first use. .

(h) <up, down, iszero, down> is not a trace of a COUNT,

since a zero count cannot be decremented.

A process P Is defined by the set of all traces of its
possible behaviour. From the definition of a trace, it follows
that for any process P,

(1) <> is in P (i.e. P is non-empty)

(2) if st (the concatenation of s with t) is in P then

so is s by itself (i.e. P is prefix-closed)
These properties will help to simplify the definition of parallel
composition of processes.

The process ABORT is one that never does anything.

ABORT = {< >}

The process (c*P) first does ''c!' and then behaves like the
process P,

(c>P) ={<>}wd{<c>s]s is in P}
where <c > is the sequence consisting solely of c.

The process P 0 Q behaves either like the process P or like
the process Q; the choice will be determined by the environment

in which it is placed.

POQ =PuQ (normal set union)
(see technical note (1))

The alphabet of a process P will be denoted by P. Usually
we will assume that the alphabet of a process is given by the set
of all symbols occurring in its traces.

ABORT = {} (the empty set)
P = {c}uP
POQ = PuQ

We shall frequently use recursive definitions to specify the
behaviour of long-lasting processes. These recursions are to be
understood in the same sense as the recursive equations of (say)

a context-free grammar expressed in BNF.

(i) W = (5p » (5p » (large = VM [J 5p +~ ABORT)
fl small - VM
)
B10p »(small = (5pchange + VM)
Hlarge >~ VM
))

On its first step VM accepts either 5p or 10p.

In the first case, its following step is either the acceptance of a
second 5p (preparatory to withdrawal of a large packet of biscuits)
or the immediate withdrawal of a small packet. The second case
should be self-explanatory. In all cases, after a successful 1
transaction, the subsequent behaviour of VM is to offer a similar
service to an arbitrary long sequence of later customers. But if
any customer is so unwise to put three consecutive 5p coins into
the slot, the machine will break (ABORT), and never do anything
else again.

In conventional BNF grammar, the use of mutually recursive
definitions is familiar. To avoid the limitations of context-
free languages, we shall sometimes give an infinite set of mutually
recursive definitions.

(j) COUNT_ describes the behaviour of a count register with current
value n. For n>0,

)

COUNT = (up ~COUNT ., Udown+COUNTn_]

whereas the behaviour of a zero count is

COUNT, = (up~COUNT, Uiszero+C0UNT0).
A zero count cannot be decremented, but it can respond to a test
"iszero''. The use of this test will he illustrated in section 5(g).

3. Parallel Combination of Processes.

The traces of a process define all its possible behaviours.
The actual behaviour of a process P operating in an environment
E will in general be constrained by this environment. The environment
E can also be regarded as a process, consisting of all sequences of
events in which it is capable of participating. Each event that
actually occurs must be possible at the time of occurrence for both
the process and for its environment. Consequently, the set of all
the traces of the process and its environment operating in parallel
and interacting with each other is simply the intersection of the
two sets PpE.

For example, a customer of a vending machine is initially
prepared to accept a large or even a small packet of biscults,
if they are available. Alternatively he inserts a coin, without
noticing its value, and then attempts to withdraw a large packet of
biscuits.

CUSTOMER ={<>,<large>, <small> -,<10p>, <5p>,
<10p,large>, <b5p,large>}

When VM interacts with this customer, the set of possible traces of
their interaction is

VM| [CUSTOMER = {<>,<10p>,<10p, large>,<5p>}

Note how VM does not permit the customer to withdraw the biscuits
before paying. But even more unfortunate is the fate that befalls
the customer when he has inserted 5p. The the VM is prepared to
yield only a small packet of biscuits, whereas the foolish customer
is trying vainly to extract a large packet. No further events

are possible; machine and customer are locked forever In deadly
embrace [1].

The description given above assumes that the alphabets of
the process and its environment are the same, so that every event
requires simultaneous participation of both of them. 1In general,
some of the symbols could be in the alphabet of only one of the
two processes, and so the corresponding events can occur without
the participation of the other process. For example, a customer
may fumble in his pocket, or curse when he is thwarted; a vending
machine may clink on accepting a coin and clunk on withdrawal of
biscuits.

CUSTOMERB = {< fumble,5p, large>,
<fumble,5p,curse,small>, ...}

vMB = {<5p, clink, small, clunk> ..}

"Events which are particular to only one of the interacting
processes can occur concurrently with events particular to the other

one. It is convenient to model such concurrency by arbitrary
interleaving of symbols. Thus the traces of the combined behaviour
of VMB and CUSTOMERB will include

{<fumble,5p,clink,curse,small,clunk>,
< fumble,Sp,curse,clink,small,clunk>,...}
even though the clink and the curse can overlap in real time.
The reason why interleaving is an acceptable model of concurrency
is that we are interested only in the logical properties of processes
and not in their timing.

The process (P||Q) is the process resulting from the operation
of P and Q in parallel. The curious mixture of synchronisation of
symbols in both their alphabets with interleaving of the other symbols
has a surprisingly simple definition.

(P1]Q) = {s]se(Pud) *& stP is inP & sNQ is in Q)

where sYX (s restricted to X) is obtained from
s by simply omitting all symbols outside X.

and X% is the set of. finite sequences of symbols from X

Thus each process ignores events of the other process which do

not require its participation. In the case that the alphabets of

the two processes are the same, (P][Q) is just the intersection of the
sets (PaQ). In the case where the alphabets are disjoint (PaQ ={}),
(P||Q) is the set of all interleavings of a trace from P with a

trace from Q.

A wellknown example on which to test this definition is the
story of the five dining philosophers. The system as a whole
consists of two groups of processes:

DINING ROOM = PH4LOSOFHERS | | FORKS

where PHILOSOPHERS = PHIL0||...||PHILA
and FORKS = FORKO||...||FORKu
and PHIL, = (i sitsdown+i picksup fork i+

| picksup fork i @® 1+1 putsdown fork I+
i putsdown fork i@ 1 i getsup-*PHlLi)

and FORK = (i picksup fork i = i putsdown fork i +FORKi
i

Ui ©1 picksup fork i » i ® 1 putsdown fork i +FORKi)
where i @1, i ©®1 are taken modulo 5.

The alphabets of the philosophers are pairwise disjoint.

This means that (characteristically) they do not interact directly

with each other: their joint behaviour is an arbitrary merging of

their individual behaviours. The same is true of the forks. However,
each event of picking up a fork and putting it down requires simultaneous
participation of exactly two processes, one philosopher and one fork.

It is well known that the simple system described above is
liable to a deadly embrace after:

<0 sitsdown,..., 4 sitsdown,

0 picksup fork 0,..., 4 picksup fork U>.

An ingenious solution to this problem is to introduce a
BUTLER process into the dining room; his task Is to assist each

philosopher to and from his seat, ensuring as he does so that not
more than four philosophers are seated at a time.

NEWDININGROOM = DININGROOM| |BUTLER

where BUTLER (for n between 0 and 4) describes the behaviour of the
butler when there are n philosophers seated. For example

BUTLER, = (0 getsup +BUTLER3D... 04 getsup +BUTLER,)

The remaining cases will be defined in section 9(b).
L, Sequential Combination of Processes.

The process ABORT has been defined as one that never does
anything, because it is already broken. We now wish to introduce
another process SKIP, which also does nothing, but for a completely
different reason: it has already succeeded, and there is nothing
more for it to do. Successful termination can be regarded as an
event denoted by a special symbol v (success), and the process that
just succeeds is:

SKIP = {<>,</> }.

(see technical note (2))

The use of SKIP can be illustrated by adapting some previous
examples.

(a) A vending machine which participates in just one transaction
(successful or unsuccessful):

VM1 = (5p>(5p+(large>SKIP [] 5p~ABORT)
Usmall+sKiP
ﬂlOpl(small+(5pchange+SKlP)
{lvarge>skiP))

(b) A customer, who terminates successfully after a single successful
transaction:

CUSTOMERC = (5p>large+SKIP
f10p>1argesskip
)
(c) Their joint behaviour is:
VM1| | CUSTOMERC =(5p>ABORT

N10p+1arge+skip)

Note that when v is in the alphabet of both P and Q, successful
termination of (P||Q) requires that both of them terminate successfully.
(see technical note (3))

The introduction of the concept of successful termination permits
the definition of sequential composition (P;Q) of processes P and Q.
This behaves first like P. |f P fails, then so does (P;Q). But if
P has terminated successfully, (P;Q) continues by behaving like Q.
More formally,

P;Q = {s|s is in P and s does not contain v} (2)

u{st]s<v/> is in P and t is in Q}

Two simple repetitive statements can be defined
for i:l..h+Pi= SKIP if hl
P

= p ;P if ish

AR PO EARRE AN
Puntil @ = QU(P; (P until Q))

(d) A vending machine which serves at most three customers:
VM3 = UM1T;VMI; VM1

(e) And now twenty customers:

VM20 = for i:1..20-VM]

(f) An automaton which accepts any number of 'a''s followed by a
single '"b'" and then the same number of ''c''s:

A"BC" = (brSKIP 0 a*A"BC"; (cSKIP))

(g) A process which accepts any interleaving of more ''up''s than
""down''s; but terminates successfully on first receiving one more
""'down'' than ''up'':

POS = (down>SKIP 0 up+P0S;P0S)

Note: to counteract an initial '"'up'' it is necessary to accepr two
more ''down''s than ''up''s; this is done by first accepting one more,
and then by accepting one more again.

(h) An alternative formulation of (g):

POS = (up*P0S) until {down>SKIP)

(i) A process that behaves exactly like COUNTO:

ZERO = (iszero>ZERO Qup>P0S;ZERD)

(j) An automaton that accepts equal numbers of ''a''s, ''c''s, and '‘e''s:

A"sc"pe” = (A"BC™; (d»skiP)) | ic DED

where C"DE™ will be defined in 5(b).
The first process ensures that the ''c''s match the "a''s, and ignores

the "e''s. The other process ignores the ''a''s, but ensures that the
Hc''s are matched by the 'e''s.

In future we shall often abbreviate

""(d+SKIP)'" to just ''d"

5. Alphabet Transformation.

Let f be a total function which maps the symbols of one alphabet
Y onto symbols of another alphabet Z, so that:

f(x) is in Z for all x iny

Given a process P with alphabet Y, we can define a process f(P)
with alphabet Z, which behaves like P, except that it does f(x)
whenever P would have done x.

f(P) ={f(s)|s is in P} (see technical note (4))
where f(s) is obtained from s by applying f to each of its symbols.

(a) to represent the sad effect of monetary inflation on a vending
machine:

NEWVM =f (VM)
where f(5p)= 10p, f(small)= verysmall, etc.

(b) a process used in example 4(j)

¢" pe" = f(A"BC™)

where f(a)= c, f(b)2 d, and f(c)= e

The most frequent use of alphabet change will be to give
different names to otherwise similar processes. So we introduce
a set M of special symbols to serve as process names. |f x denotes
an event, and m is a name in M, then the compound symbol 'm.x'' denotes
participation in event x by a process named m. We stipulate that
events prefixed by distinct process names are distinct:

m=#n implies m.x # n.x.
The prefixing of @ name is accomplished by a function

prefix (x) = m.x for all .

We can now define m:P as a process with name m, which does m.x whenever
P would do x:

m:P = preflxm(P)

(c) Two distinct vending machines, operating independently in
parallel (by interleaving of traces):

(red:VM| |green:VM)

In general, the alphabet of a process will contain (in
addition to events that require participation of its external
environment) certain other events which represent its internal
workings. These internal events are intended to occur automatically,
without participation or even knowledge of the environment. To
model the concealment of such events, we wish to remove the corresponding
symbols from the alphabet of the process, and from every trace of
its behaviour. Let X be the set of symbols to be concealed; the
result of the concealment is defined:

AX ={sMP-X)| s is in P} (see technical note (5))
where AR X = P-X (set subtraction)
(d) A soundproofed version of VMB (section 3)

VMB\ {clink, clunk}

When a process has been defined by parallel composition of
two or more processes, the mutual interactions of the component
processes are often of no concern to their common environment.
These interactions are just the events named by symbols occurring
in the alphabets of more than one of the components. We represent
the concealment of these events by enclosure in square brackets:

[Pl1a] = (P{|QN (FaQ)
This definition generalises to more than two components:
[P1||P2||...[|Pn] = (PPl P X
= VU ap
where X i¢j(Pi“ Pj)
(e) A USER process uses a COUNT register named m, interacting
with it by events
{m.iszero, m.up, m.down}
These interactions are to be concealed, thereby ensuring that the

register serves as a local variable for the benefit of only the
single user:

[m:COUNT | |USER]

‘0.

(f) Similar to (e), but with two registers:

[n: COUNT3| |m: COUNT | |USER]

(g) 1inside the USER process, the following subprocess will add the
current value of n to m, leaving the value of n unchanged:

ADDNTOM = (n.iszero =+ SKIP
On.down + m.up;
ADDNTOM;

n.up

Another use for concealment is to remove v from the alphabet
of a process that is not intended to terminate. For example,
if P is a normally terminating process, *P is a process which
repeats P for as long as is required by the environment within
which it runs:

= (P ()N V)

(h) A familiar example:

VM = *VM]

6. Input and Output.

The model developed in the previous sections is sufficiently
general to apply to any kind of event. |In the following sections
we shall be concerned primarily with communication events, involving
output of information by one process and input of information by
another. For these events we introduce particular notations. |If t
is a value of type T, then

.t denotes output of a message with value t
7t denotes input of a message with value t.

(a) A process which behaves as a Boolean variable. At any time, it
is ready to input its next value or to output the value which it
has most recently input (if any).

11.

BOOL = (?true - TRUEBOOL [} 7false + FALSEBOOL)
TRUEBOOL = (7true - TRUEBOOL W 7false + FALSEBOOL
Ut true + TRUEBOOL)

and FALSEBOOL is similiar.

When a process performs input of some value x, its subsequent
behaviour will usually depend on the value which it has just
input. Although the type T of x may be known, the identity of
the value which is actually going to be input Is usually not known;
the process must be prepared to do 7t (input of t) for Eﬂifi'in T;
the selection will be made by its environment. To achieve this we
Introduce a form of input command:

(?x:TW+Px)= {<>} v {<?t>s|for t In T and s In Q}

(b) A process which just copies what it inputs:
COPYT = *(7x:T » lz)

This process serves as a one-place buffer.

(c) Similar to (b), except that consecutive pairs of "' are replaced
bY ||+Il:

SQUASH = *(2x: CHAR -

if x =" then !z
else (?y:CHAR °>_i_1iy = %1 then ! M'4!
elge ! 'ty)

(d) A process which behaves as a variable of type T:

VART

where VAR
x

(2x: T -+ VAR)
X

(lz » VARzﬂ (:7 > VARy))
VARx is the behaviour of a variable with value x.

Clearly, BooL = VAR{false,true}

(e) A process which inputs cards, and outputs their contents one
character at a time, Interposing an extra space after each card:
UNPACK = *(7c:CARD -

(for i: 1..80 > !ci); AL

where CARD = array 1..80 of "HAR.

12.

(f) A process which inputs characters one at a time and assembles
them into lines of 125 characters, which are then output-

PACK = PACK <
where PACK, = !1;PACK_ if length (1) = 125

= (7c: CHAR - PACK1ZC>) otherwise

(g) A queue QUEUE. at any time is prepared to input a new elem?nt of
type T, or to output the element which was input the earliest (if
any):

QUEUET = BUFF<>

where BUFF = (%:T + BUFF_)
and for s = <>,
BUFF = (T:T > BUFF__

U first(s) + BUFF)

rest(s)

(h) A stack is similar to queue, except that it outputs the ele@ent
which was input the latest; it also can give an indication when it
is empty:

STACK, = *(! isempty - SKIP

U22:7 > sTK)
x

where STK = (?y:T » STK until 'z + SKIP)

7. Communication.

Suppose that we wish two processes P and Q to operate in
parailel in such a way that every message output by P is input
directly by Q. The resulting compound process is denoted (P>>Q).

The synchronisation involved in direct communication requires that
each output !t in P be regarded as the same event as an input 7t
in Q. Such events are to be concealed from their common environment.

The required effect is achieved by transforming of the alphabets
of P and Q, prior to their composition. Thus we define

P>>Q = [strip!(P)]|strip?2(Q)]

where strip!(!t) = ¢, stript(7t) = 7t

and strip?('t) 't, strip?(?t) = t

13.

Note that all output from the outside environment is input by P, and
all output by Q is input by the environment.

(a) Text is to be input from 80-column cards and output in lines
of 125 characters each.

LISTING = UNPACK>>PACK

(b) Similar to the above, except that consecutive '*'"'s are to be
replaced by "'

CONWAYS EXAMPLE = UNPACK>>SQUASH>>PACK

(c) Similar to (a) except that communication is desynchronised
by interposing an unbounded buffer

UNPACK>>QUEUECHAR>>PACK

This example shows that no generality is lost by taking
synchronised communication as primitive.

(d) Similar to (c) except with only double buffering

UNPACK>>COPYCHAR>>C0PYCHAR>>PACK

(e) An alternative definition of QUEUVE.. (6(qg)).

QUEUE, = (rx:T > (QUEUET>>(:m;c0PYT))

8. Named source and destination.

The >> combinator allows construction of chains of anonymous
communicating processes, each taking input from its predecessor and
sending output to its successor in the chain. For other more
elaborate patterns of communication we shall use named processes,
and allow each input or output to quote the name of its source or
destination:

m.t denotes output of message t to process named m
m7t denotes input of message t from process named m.

(a) to update and test a boolean variable named b:
USERB = (...b'true ...(b?true ~ ... [Jb?false = ...)...)
We also need to input arbitrary values from a named source:

(mlx:T ~ Px) = {<>} U {<m?t>s|{t is In T and s is in Pt}

14,

(b) to update an integer variable named m

USERM = (... m'7 ... (m2x:INT » m' (x+3))...)

This has the effect: ... m:=7 ... m :=m+3 ...

Henceforth we shall use these conventional notations for updating

variables.

(c) a subroutine which repeatedly inputs a floating point argument
and outputs its tangent as result:

TAN = -i(?x:FP + sinlxz; cos'z;
(sin?y:FP + (cos?z:FP » !(y/z2))))
In order to establish synchronised communication between a

named process m:P and an unnamed process (, we need to ensure that

each m!t in Q denotes the same event as 7t in P, and each

. ———————r . . N B
m?t in Q denotes the same event as 't in Q. This is conveniently

achieved by adapting the definition of pref:x when applied to input
and output events, thus:
prefixm(?t) = m't and prefixm(!t) = m7t.

In future we shall assume that this adapted definition of prefixm is
used in process naming.

(d) to declare a local boolean variable for USERB:
[b:BOOL| |USERB]

(e) similarly for USERM:
[m:VARlNT||USERM]

(f) a subroutine which calls two local subroutines to assist in
its calculations:

TANGENT = [sin:SIN||cos:C0OS||TAN]

(g) A subroutine which computes a factorial by recursion. As before,
the argument and result are communicated by input and output.

FAC = (%:NN » if x
else [f FA ||
filz-1);

= 0 then !'1

(FRy:NN > ! (zxy))])

15.

Fach activation, if necessary, creates another activation to compute
the recursive call.

(h) A similar technique can be used to define a recursive data
structure, for example, a set which inputs its members, and answers
"'yves'' if the value input was already a member and '"Ino' otherwise.
Each activation stores one number x, and uses a recursive activation
to store the rest of the set.

SETT = (2z:T > !‘no;

[rest:SETTll

(y:T > ify ==z then !yes

else restly;(rest?yes » lyes

“rest?no + 'no

)
)1)

The previous examples show communication between a single named
(slave) process and a single unnamed (master) process. In more general
communication networks, it is necessary to allow one named process to
communicate with another named process. As before, this is accomplishe
by equating the event m!'t in a process named n with the event n?t in a

process named m. Again, the definition of prefixm is adapted for this
purpose:

. _ . Doy o .
preftxm(n?t) preflxn(m.t) n.m't,

(i) A network for multiplication of a matrix by a vector. Processes
CoL1, COL2, COL3 output the columns of_a matrix iN,
form a vector by which the matrix is to be multipliec

Values v v

17 Ve Y3
The resulting column is to be output to a DISPLAY process.

Since it is desirable to input three numbers at a time, and
multiply three numbers at a time, a network of processes is required.
They are pictured in figure 1, where each communication channel is
annotated by the typical value that passes along it.

The algorithm is defined

[m

0:MO‘|m]:M1|]mzzle|m3:M3Hmh:DISPLAY]

where M_ = *(m 10) (a source of zeroes)
and for O<i<3

Mi = i(mi_]?sum:FP >

coli?x:FP > m !(xxvi+sum))

i

16.

v, XX

| +"z""z + vsl

17.

9. Sharing.

Let X be a finite or infinite set, and let Px be a process for each
x in X.

[e:X]P_

[}

ABORT if X ts empty

H

PIIP) ovn 0f X isfu,v, ..}
u A

(see technical note (6))

[x:X]P, = ABORT if X is empty

PUG PO ... ifXs {u,v, ...}.

We define ANY as the set of all process names,

—

and any (r) = {ri|i is an integer}.

(a) PHILOSOPHERS = []Ii:o..h] PHlLi
(b) BUTLERn = [0i:1..5}(i sitsdown - BUTLERn+]
i getsup ~ BUTLERn_')
(c) An exclusion semaphore:
MUTEX = *([0 z:ANY]x?acquire » z?release)

It must be released by the same process which acquired it

(d) An array of three exclusion semaphores, protecting three identical
resources:

[[]i:1..3]r, :MUTEX

A user can acquire and release any one of the available resources by
([Gmine:any(r)]minelacquire ~ ...use the resource...; minelrelease)
(e) A hardware line printer with name h is to be shared for the
output of complete files

LP, = *([Ux:ANY]x?acquire -

{@?1:LINE > h!1 until z?release + SKIP))

Each iteration of the major loop first '‘acquires' an arbitrary user x,
and then copies lines from & to . until receiving a ''release' signal.

16.

v, X X, +V, X%, + vsx;

Fljk"‘-]-

17.

9. Sharing.

Let X be a finite or infinite set, and let Px be a process for each
x in X.

(] X1,

i

ABORT if X ts empty

B

P IR |} oo TF X is{u,v, ..}

ul v

(see technical note (6))

[Ux:X]Px = ABORT if X is empty

Pu“ Pvﬂ co. if X is {u,v, ...1.

We define ANY as the set of all process names,
and any (r) = {rili is an integer}.

(a) PHILOSOPHERS = [[]i:0..4] PHIL,
(b) BUTLER = [[i:1..5](i sitsdown > BUTLER
i getsup ~ BUTLER
n-1)
(c) An exclusion semaphore:
MUTEX = *([0 x:ANY]x?acquire + zx?release)

It must be released by the same process which acquired it

(d) An array of three exclusion semaphores, protecting three identical
resources:

[]]i:l..S]ri:MUTEX

A user can acquire and release any one of the available resources by

({Omine:any(r))minelacquire ~ ...use the resource...; mine'release)

(e) A hardware line printer with name h is to be shared for the
output of complete files

Lp, = *([Uax:ANY]x?acquire »

(@?1:LINE + h!'l until z2release + SKIP))

Each iteration of the major loop first "acquires' an arbitrary user z,
and then copies lines from x to . until receiving a '"release'’ signal.

18.

(f) This improved definition of LP,_ ensures that each user's file is
separated from the next by a ''!throw' to the next even page boundary,
and two rows of ''!asterisks''.

LPh = (h'throw ; hlasterisks ;
([Bx:ANY]zlacquire ~ hlasterisks;

(x?V:LINE ~ if izasterisks then h!l else SKIP

until xlrelease); h!throw; hlasterisks)

(g) A shared variable of type T.
SHAR. = z:ANY]x?y:T > SH)
Ry = ([0 Jx?y y
where SHY = ([Da:ANY]z'ly - SHy

Uinz:ANY]2?2:T » SHZ)

This example shows that a communication-based theory of parallelism
is not in principle different from one based on shared variables.

In the previous examples, when many processes attempt simu)taneously
to acquire a shared resource, all but one will have to wait; and when
the resource is released, it is not determined in what sequence they
will eventually acquire the resource. |f it is important to control
the sequence of acquisition, we need a more complicated scheduler which
will separate the request and the granting of the resource as distinct
events.

(h) A "firstcome first served" scheduler, sharing a group of N
resources. A QUEUE is needed to store the names of waiting users,

FCFS, = [q:QUEUE,, || free:VAR .||
free: = N;
*([Qx:ANY]x?request ~ free = free-1;

if free <0 then i!x else xlgranted

Wil x:ANY]x?release » free = free+l;
if free <0 then q?%:ANY - y' granted)
)]

Conventional notations have bden used for updating variables.

19.

10. A multiprogrammed batch processing system.

A multiprogrammed batch processing system inputs jobs from any
of C cardreaders, executes them on any of P processors, and outputs
the results on any of L line printers. An account is kept of the cost
of each job, and this is printed out at the end. |If the cost exceeds
a certain limit, the job is truncated.

The overall structure of the system is
MBPS = [CARDREADERS||LINEPRINTERS]|PROCESSORS]
where CARDREADERS = [||i:1..c]cri:CRCi
and LINEPRINTERS = [||i=1..L]lpi:LPhi
and PROCESSORS = [||i:1..P]pr,:PROC.

Each processor executes a stream of jobs submitted by users:

PROC = *SINGLEJOB

The process SINGLEJOB executes a single user's job; taking input from
any free reader and channeling output to any free printers:

SINGLEJOB =

[cost:VARNN||c:VARCARD[]

([Qin:any(cr)]intacquire +
[0 out:any(lp)lout!acquire »
cost: = (;RUN;

intrelease;

out'!account(cost); out'release

The process RUN needs an auxiliary process USER (not shown here)
which actually executes the user's job. This USER is assumed to be
initialised to some standard compiler or control language interpreter.
[t interposes a regular '"'timeslice'' signal after every million instructions
executed; and sends a "!finished' signal when the user program is finished
(if ever).

20.

RUN = {pr:USER||LOOP]
where LOOP = cost: = cost + 1;
if cost>costlimit then SKiP
else (pr?7l:LINE + out!l;LOOP
Upric + (in2x:CARD + c'x);LOOP
Upritimeslice + LOOP
Wpr?finished + SKiP
)

In practice, the interface between USER and LOOP will be impliemented
by hardware protection mechanisms and by supervisor calls and exits.

In order to prevent interference between successive jobs submitted
in a batch, the cards of each job are separated from the next job by an
"endcard'', which is used for no other purpose. The task of CR is to
ensure that the cards for each job are consumed right up to the endcard
but not beyond it.

CR, = *([Qx:ANY]x?acquire + (h?c:CARD + FlLEC))
where FILE = (xlc > if ¢ = endcard then FILE_
ElEE(h?C:CARD -+ FILEC)
flx?release » SCANt)
where SCANC = if ¢ = endcard then SKIP

else(h?c:CARD *_SCANC)

If the user attempts to read beyond the endcard, he just gets further
copies of the endcard.

We now specify an array of processes which perform pseudo-offline
output of files. Each process uses a file (acquired from a filing
system) to hold the user's output, and acquires a real line printer only
when the user's output is complete.

21,

SPOOLDLPS = [[[i:NN]slp, : SLP

where SLP [0 z:ANY]x?acquire »
[Q f:any(file)]flacquire -
(x?V:LINE > F!) until xlrelease);
f!lrewind;
([Qout:any(lp)lout!iacquire ~
(F21:LINE + out!] until fleof);
out'!release)
SLP acts like a '"process'' in a language like MODULA; a new '"instance'

comes into existance as a result of each ''call'" of the form:

([Bout:any(slp)]out!iacquire + ... out!release)

11. Discrete event simulation.

in designing a program to simulate a fragment of the real world,
it is necessary also to simulate the passage of real time. Any process
of the program may need to enquire the current value of simulated time,
by inputting it from a '"timer" process:

(timér?t:TIME - ...t is time now...).

Furthermore, a process may need to delay itself until simulated time
reaches some predetermined value, say 8 oclock. This is done by
outputting the required alarm setting"to the timer process:

timer!8oclock.

This is an event which is guaranteed to occur only at 8 oclock (in
simulated time). Thus, to delay itself for d-units of simulated time,
a process can perform the actions:

HOLD(d) = (timer?t:TIME + timer’® (t+d))

The timer process is always prepared to output the current value
of simulated time. 1t is also prepared to input a value, provided that
this Is equal to the current value of simulated time. Finally, If all
activity of the user processes has terminated, the simulated time clock
is stepped on to its next value. TIMt describes the behaviour of the
timer at simulated time t.

22.

TIM, = ([Q z:ANY]xit + TIM,
0 [Qx:ANY]x?t > TIM
0 otherwise > TIM

)

next{t)

where ''otherwise'' is an event which is intended to occur only when
nothing else can occur.

It remains to give a rigorous definition of the definition of
such an event. |If P is a process, we define rescuee(P) as:

rescuee(P) = QA {e}
where Q = {sls is in P and
and if t<e> is an initlal substring of s

and if t<x> is in P, then x= e}

Now if the USERS are a group of processes to be executed in simulated
time

simulate (USERS) =

rescue (timer:TiM_||USERS).

timer.otherwise

(a) Let PAIHS be a set of names ot unidirectional paths in a network.
For each path p in PATHS:

length (p) is the time taken to traverse the path.
succ(p) is the set of paths leading from the destination of p.
SPARK is a process representing a single traversal of path p; it is
triggered by a "'start' signal from one of its predecessors, and

after traversing the path, it proragates a start signal to all
its successors.

SPARKp ([Ws:PATHS]s?start -
HOLD (1ength(t));

([|]d:succ(p)]distart +~ ABORT)

23.

(b) A special path ''dest'' is singled out as the intended destination
of a journey. It triggers the start point of the journey, and then
waits for the first spark to propagate back to itself. It then outputs
the time and terminates successfully:

DEST = source!start;

([Ws: PATHS]s?start

(timer?t:TIME > 't)

(c) To output the length of the shortest route in the network between
the source and the destination:

simulate ([||p: (PATHS - {dest})] p: SPARKp
|| dest:DEST)

(d) A machine shop possesses ten groups of machines. Each group contains
seven machines, which are scheduled by a. foreman using a ''first-come -
first-served"' discipline. The shop has to process a set of orders
identified by names in X. Each order in turn uses a reader to input
its parameters: :

starttime: at which it enters the shop.

numberofsteps: required to fulfil the order.
and for each step:

machinegroup: of machine needed for this step.

servicetime: for this step.
An exclusion semaphore is required for proper sharing of the reader.
Qutput of results has been ignored.
MACHINESHOP =

simulate ([rdr:MUTEX
lI[)Ii:]..10]foremani:FCFS7

[1T] | :X]c: ORDER

1))

Each order must read in its parameters before starting
to progress in the simulation proper. All orders initially
compete to use the reader for this purpose. It does not
matter in what sequence they actually acquire it.

ORDER = [starttime: VARNNIlnumberofsteps:VARNNll
rdr'acquire; (reader?n:NN - starttime := n);
(reader?n:NN + number of steps := n);
[[l|i:1..numberofsteps]machinegroupi*i VAR,

MR 1..numberofsteps]servicetiméi: VAR
ll(jgg i: t..numberofsteps -+
(reader?n:NN - machinegroup, ;= n);
(reader?n:NN - servicetimei:= n));

rdr!release; PROGRESS
]

The first action of each order is to wait until its
starttime is due. |t then progresses through each step,
acquiring its machine from a foreman, and holding it for
the required service time.

PROGRESS =
(starttime?m:NN + timer'n);
(for i: 1..numberofsteps

(machinegroupiYmg:NN -+

foreman ‘!request;foreman_ 7granted;
mg mg

(servicetimei?n:NN + HOLD (n))
foreman !release
mg

)

24,

25.

Technical Notes.

To avoid the introduction of non-determinism, we have cobserved the
following restrictions:

(1) define P° as the set of symbdls denoting events in which P can
participate on its first step:

P® = {x]| <x> € P}

We use PIIQ only when PQ\QO ={}, so that the decision between P and
Q can be made on the first step.

(2) The event of ¥ occurs only at the end of a trace; and when it does
occur, it is the only event that can occur:

for all traces s,
if s is in P, and st is in P then t =</>

This ensures that successful termination of a process is always
deterministic.

(3) If ¥ is in the alphabet P but not Q the PI]Q is allowed only if
the alphabet of Q is wholly contained in the alphabet of P. This
ensures that successful termination of P automatically cuts short any
further activity of Q.

(4) An alphabet transformation is always a one-one function.
(5) For s in P, P(s) describes the future behaviour of P when s is
the trace of its past behaviour:

P(s) = {t|st is in P}
We define s\ X as sT(?-X). We insist that after concealment of X, the
future behaviour of a process is still uniquely determined by the still
visible symbols of its past behaviour.

For all s and t in P:

if \X = t&\X then P(s)I\X = P(t)\X

(6) An infinite array of parallel processes must not communicate with
each other (their alphabets must be disjoint). This ensures that the
infinite parallelism can be defined as the limit of the parallel
combination of all finite subsets.

26.

Acknowledgements.

Acknowledgements are due to many colleagues. The inspiration
for the design of communicating processes is due to E.W. Dijkstra.
R. Milner showed how a mathematical model for them could be constructed.
R. Campbell and P. Lauer are responsible for the parallel combinator.
N. Francez and W.P. de Roever helped substantially in the development.
J. Kennaway gave necessary mathematical support. M. McKeag designed
the operating system and J. Kaubisch designed the simulation program.
Improvements over early drafts were due to perspicacious comments of
E.W. Dijkstra and A. Yasuhara.

The simulation example is due to 0-J. Dahl, and so is the
formulation of Dijkstra's shortest path algorithm.

27.

References.

—

Dijkstra, E.W. Cooperating sequential processes. in Programming
Languages ed. F. Genuys.
Academic Press, New York, 1968 pp 43-112.

2. Dijkstra, E.W. Guarded commands, nondeterminacy, and a calculus
for the derivation of programs.
Comm ACM 18.8 (Aug. 1975) pp 453-457.

3. Francez, N. et al

4, Kaubisch, W.H. et al. Quasi parallel Programming.
Software Practice and Experience. 6 (1976)
pp 341 - 356.

5. Hoare, C.A.R. Communicating Sequential Processes.

Comm ACM 21.8 (Aug. 1978) pp 666 - 677.

6. Hoare, C.A.R. Some Properties of Predicate Transformers.
JACM 25.3 (July 1978) pp 461 - L80.

7. Milner, A.J.R.G. and Milne G. Concurrent processes and their
syntax.

,])evatu:m a‘: « proc,e.ss .

H 5 ag: LO‘Q Ul-em 6&6 om aw‘d;.

H M uL o Fmb& bﬂ‘mw oF sijLo‘L’ Y‘t,wravvj
H\e, Fobmtapa Le,LowLowf' of” o ryroc,u\s.

{) w HVW— qu eﬂu.znu. %‘J’ L a N
x> ¥ tLe_ seciu&nce con"'am \,wa 07\041 Sj m
<;'63 r 2 g us ormu:l F’ram oc tt\m 3) H\m 2.

)

”’ 5 ano‘ b oL su‘umu,s u\m sb uvh F‘omeJ Lu‘ ouiuwj
$ t ko H\b “CMJ O{l s.

e,.j P 4 <j)z> = <x)j’z_> = <ac)5><z>3

laream 54> 2 <>5 =5 y 3(@;,) < (st)u,)
8<c> :,_E4A> > ,s::-t g(c_:at, y S<c> %4) ’
st =5 > t= <> st =t=>s=<>,

1

5t=<>$5=t = <>, 57‘47$39¢,t’, 5:4’-\¢—>t‘

e

H rOCRSS P 's O~ Scft oF‘ tmcu .Sa..t;gp'jvnjz
iy <> ¢ P
@) st eP > 5 P fr ol s, &

5{:Owlpb ore Process%) H\ux So ase
P:LUP).; Pin_-Pz; VP‘, y ﬂP

P P YT 4 f‘.:m;h'/m - de\o»ﬂbt /&/ﬂi(ﬁ,

bowu, Au';nfl" °r“°'t°;"°

qu’“._ ={<>} caM‘t clo owu’“‘mj Gfb oﬂ—
jF P “w o rv-or.‘n—ss" od ¢ L e 43“*"""!"
¢ P) f>] v {<oos| s ep]
s eP, P oafhes - {Elster] . Thie w the
Pos.sd)h Fubwne of p) F s % o b of & Put
P° ::JX {c‘u.:)&p} % H,\L 3& oF sijo& Possd)pl..
o P oon &5 fusk sho

0P ed Q7 are Asjomt (e PaG=T]), then

PBQ =,1£ Pu .
Theorem. B He ohove definbims defone processes,

FRIL® < {35 (e =P ={<}; POQ)S= P Q"
Pafler <> - P , Pafler (sb) =(P§_F_t_{_s)g£_tf__t)
(c = P)atter <o = P
(POQ) afler <> = Pabler o y ceP®
(POQ) = (qOP), PD(QUR)=(PUQ)HR, PIFAIL =P
P = U (e > (Puflcs)

C:P

Eacm«u Prove one 'H\avm o eo.aL AOAM—‘

Parolled Compesitiin,

'F H us o~ sd} oF Sjm)w& MJ S o '};mm,

Srﬂ (5 mstug to ﬂ) Ls F‘ormeal bj omb&wj Feom s
QM .SJmLcL ou-t;al.e, Hﬂ. svk A

| <>PH’ = <> 3 (sb)l‘ﬂ = Srﬁ)(trﬂ)
<¢>rﬂ “_fCeHa\m <e> &A)

CIAIB = sMAnB), sM} =«>
™ G sk o brases o Lot m, with SJW.LOL fom A
, {‘,}) AL Hq(""m)? (1 - {o.
A* & ywﬁ" o ol Bk cequeaas of symbols from A.

4

:u,q(ceﬂ"? U Q TR =5 = s oA

n: Vi

) H\L g%gl\a,[wt of p) Loe. OM .SJMLoL- Jmo+MJ
evmt's oF’ WLLJ\ P s co.Pa-LlL

«(FAiL) = {1, «(c—>P)={c}u«P
«(POG) = «P v «Q

VB ue Ml cee PQ_(‘&P,)*

Paralll Compasitiom.

IF P anJ Q one fNM,MﬁQ MPQQMMQQB!

Pl Q y {s|se(ruB) k(sPA) e P & (stp) ¢ Q]
«(PRHBQ) :‘ﬂ AuvB

Theremn. PILQ & o praces F P ad Q an
PIIFRIL = plip —p |
PlIlQ = qllp, PI@IR) = PIQIIR .
LRICECNT)
Lv{' Qa & /:}n-B‘) ‘o & Bnﬁ7 c.)-cL GHHB‘

(c; -)P)R“B(C ~—>Q) = ¢ - (pn)L Q) |
(Cﬁ@nla(de@ = FRIL f <+ d
(a ‘_)99,6((; —aQ) = o> (Pn!\&(c—-)Q))
(a — p)filg(b —»Q) =(<k —> pFl‘B(b ->Q)

[“7 ——a@—»P)RHgQ

-Seclumtap/ Ca‘rv-ros'bt—:'n @
Lwt v be o SJML"’Q 6’-""\0«/\/\6 wcudcfvl +Wma—tws o“’mpw.
SKIP :Jg_ fer, <] dows M%w'u bt bormnale sucusshl)
WO, dtL‘:w\.L N Farvwxaf mwtul\ovtbm op s{:l‘w\‘jS:
S,t Ls Farmul (‘V’O’W\ S l)l1 MPLM”«WQ ‘HM- FW'S" \/\M $
Lol \H\L wL\oL oc {3, ouvlel ﬂ«.w\ amvulwd \Ru- N—St OF' S.
s;t = s F s does net contawn V
(S<.\/>1‘>;t = st k " " w
Noke: xib = > | (cho)st = b (kerdsb = <co(sst) F 4V
| Ss(t)u-) = Cs',t)aua. ‘
(P.,Q) :Jf {55{3}56 P&te Qz
T—Ledrm, (p) Q) L3 .o, Prou.ss !:-F P MA Q oL,
(pr“-; P)-‘— FRIL | (SKIP} P)'—‘- P. SKIP [|sKiP =sKif

P3Q35R)) =((P;@);).

(C‘%P)5Q_= c—><P7Q>) L(f c.:f\/
(‘E,JP;,)',R = U (pL}R)

v

(PsQ) = p° 4V EPe

- (Po) v @° FV eP°
‘ Pallgskip < skip if VEAL AcB
Vol we ensure thab Vg, uns only ok Hhe ond o o braces

(r.ﬁp) s Jegmul " W\Q&] when ¢ + 4
A8 \/(_7 A ’) ov /eﬁn@ oV A“‘C"B
PG o defoned ody b, Y

™
-3
C
<3
0

S5 yem bol. ()Irw_vjow

Lek ?— Le, o~ FWY\C}W Frow\ $1w«L006 ﬁ stLon
bk Hab H) =V Fand g] =V

ﬁ{' S s o tmm,) F’(S) T Forw\J Frow\ S l)bl
pilyng F bk B spelele
F(<>) = <>, f’(<c.>)/- <F(c)>) {-(st) = H5) F@;).

jf— C & a sk OF. sjw\Lo?g, F(C) =) {F(c)lc e—C}.

P s o« proas, F() & fomd by a”y(g'

F b ok g o P J
FP) - {f(s))sepg . «(F) = F(«P)

Theorem. F<P) % O~ Proceés F p ,_,, .

Fle=P) = FO=>HP). F(Pyq)= (P v F(Q).

(F(PY°* = F(PY). F(Pabtacs) < F(P) ofte W
jL . s o one - one Fumotov\ we aapso L\-ow&.

FPatlecs) = £)o.pm f) .
Hp0q) = HAOTFQ)
FPIIQ) = FP)IIF(Q), F(PyQ) = FO); F(Q.

L ocolsation. ©
Lt X be o sk wik conbinumig /.
We weh B regond the o of X as Lol & P, o
w defie PIX as M B agh Bhob ordi wow o hidd

CPNX s {sMaPx) |5 <]
w(P\X) = «P =X,
harern . PAX is process f P .
(c SPAX = p\X FoceX
= P ¥ e X,
(UPNX = URW).
(P I,)\x = (P\X) H (Q\X) F AaBaX = {}

e Q)\X = ();(Q\x)

P\{} = P (P\X\Y = P\

F(P\x) - F(P)\ F(X) P L o
PW=p F («Hax ={7

PAX = F(P\F(X) £ B)=c falceX.

(Pafbe \X = (P\Y) aftee (A\X)

Recu,r.sfm .

Aq}; F l)e & Pum&tav\ Fraw\ fr‘ocesses {'3 Proce«ssé—s_.

F ' Mov\otrm.o ‘:F F(P) < F(Q) whenover P S Q
ﬂm;m, F?fﬁ vaw'hyu Ja‘T\wJ so paur o mono"imw

Ld; p =JPF(P) be am ﬁuwt;n (MW\U o funehd

Ole{\ww\j ﬂu., Pmc&;s P L\,, ‘murswv\.

Thesremn T-LCs eqm'}w has @ -&aisdu@ |

pﬂwr’ F e a mm\atmopumoim o ﬁucmfzt Mfw
oﬁ processes. Tansk -pmvul Hat & has o wfuz
ldbi of sobdins, and thondore o insl ove-

TLL ‘JLLWM mhwvts ‘}5 o @wbﬂ«] W\?\M‘){Z A-zi"

of equabis v P2 FE () £ Wl LT

BP0 et] emd Ve P b
pﬁww\“—“ Q 4 AJW\UL as ﬁu_ ,fmt aJM}W "F
p= PplQ

UM-TU- FL‘-«J romtb
Dcfukc. prn = Pn O (&P)': e L, of. LM,)‘H\ £ n,

PR = FAIL, (PR = PP
P=U P

n n

(o)

L&{: F La. o M:)"wy\ jrow\ Processcs t) {Pmu.’ssc.s.
Fow nm-iubﬁfw ‘ F(P)rn = F(Pi‘n)fn Far wu«"sp;

Thorem (¢ P} (P[), (PHQ) wondsbonchve oo Pond @
jL F anmd G’ mmuah‘]lvud“m 40w Focr

F'ois combruckie F F(P)Pug= F(PR)Nayy For ol P
Thimewm. ¢ P & constrachue ‘f P . rondestradiee.
F omsbenctve and G s ondastracive
beo FoG GoF are cncbudie

Theorem. §F F conshuctwc hon o ulukm

p= F(p)
has cma] o Swgge. SMLOY\.

Emrﬁa.z o COULNT ,3,_,,[;:.. ()

COUNT, =y(wszer0 > COUNT, [lup — COUNT,)

COUNT,,, =4¢{dewn —> counTy, lp — COUNT,..,)
Pos =4 (o‘owV\ —> SK‘p ﬂb\.r: -> POS) PO&)

ZERO = (isze > ZERO [up - Pas.zmo)

Thewewn. ZERO = COUNT,.
E erw\q POS b/rmo.té Ju-of—us F“‘M‘]

mMore Amn) tt\ow\ couwanl
v

“f' J' s M“’”"’M", {;0 aou.r;' +‘wo Wovne alawns ‘R«AM u;fr.s.

Pronf Debine C, = (zere =G, [up = Co)
Cm—i = POS) C'\

G Db (53
(Aown -9C Dur -> P05 (PC)S C {;:‘;c,s' v

= (dowm > Gy [l wp > POS; C..fi)' dof: Cppy
oy e

m CL Sa)hAF'La {ZLL sSoame ') e.Tu.af' um.s ol COUM:' Far aﬂu
Svncﬂ. ‘Hw_ eﬂaa.t;ms oxe wvvs"'md’:\w, C._ = COUNT“_ For Oﬂ u
LNJ’ & Co = (‘.‘7-"'0 > Co n u') > POS) Col (Lg Co')-ci
Tl‘% C(, Soj-téFLQS He some a,a'mn}un as ZERO
awd ZERO =C, =COUNT,

Ty eT), 7. v]v o T

s+v{P? (7v) =y stnr? (.‘v) = 1y, sle f’ I) 4

sn‘r! (!): v sbep! (7v) 2y snr ,/)

Nots. ?T IT T\ amd {\/} ave Eaken to be fw"“ A“J°Mt
“' C “ Sdt oF sjmkort«s, ‘ ()(A sd’ o{: vweuu W‘f”*k
Lol some w‘l" " C, awml ou*s(C) s ‘Hu. Sb'*' oc v/wpﬂ-‘-s O‘J?“b |

W\S(C) :H_{V J?V € C} , ‘ow“l& (()m{vl‘v & C}

th{'; p Lt. o f‘wv\y{'uv\ F'VM T ""” r“"°“”m- A“ 'MP“*:

B TP o U)o (Pl

a(?xT—,P(,_)) - ?T' o U“P(“) |
LUL— L"' O wrmsswv\ op +.1r,,T— AV\ OW{]O“)!' U‘MW‘“"J
bpes e b o d i e lly

le =J£(fv—>smp) R e

12.

Chaims.

j{— P WU a rv'oc.e.ss su-ol'\ ‘M o\JE (o(P) -.-.—r‘
and Q B o process swch M Gas(xp) =T‘
wal V ¢ «P .j wA ‘ML] ‘}' vV e “Q’

tl\bv\ (P >> Q) s 'H«p Pcoc.e.ss w wlea a,ve,‘n1
vaﬂu odPW'b 5-1 P Ls Somw%umaé&‘ W\f"d— L“l Q)
wM' Vl.oL~VM$ou. _”w “ ucamP-Pfaluo\ ‘01 w"'“\ﬁ
Hw\m t ‘Hu_ Same. Wt

P2Q = (sl (7) Nl stp? (Q)NT

o((P>>Q) = ?W‘S (O(P) U l,oud; («Q)_u,({J}m.dp'n‘-e(Q).

Theovem. P»>@Q & o process £ P oad Q o,
P s> (Q >> R) = (p>> Q)» R,
(v 3P) >>(?x :T-—a'q)(i))= P> Q(") for v €T,

	A model for communicating sequential process
	Recommended Citation

	tmp.1283391222.pdf.cneHb

