From: AAAI Technical Report SS-00-04. Compilation copyright © 2000, AAAI (www.aaai.org). All rights reserved.

A Model for Constraint-Based Camera Planning

William H. Bares  Somying Thainimit Scott McDermott
Center for Advanced Computer Studies
University of Louisiana at Lafayette
PO Box 44330
Lafayette, LA 70504-4330
whbares@cacs.usl.edu

Abstract

Automatically planning camera shots in virtua 3D
environments requires solving problems similar to those
faced by human cinematographers. In the most essentia
terms, each shot must communicate some specified visua
message or goal. Consequently, the camera must be carefully
staged to clearly view the relevant subject(s), properly
emphasize the important elements in the shot, and compose
an engaging image that holds the viewer's attention. The
constraint-based approach to camera planning in virtual 3D
environments is built upon the assumption that camera shots
are composed to communicate a specified visual message
expressed in the form of constraints on how subjects appear
in the frame. A human user or intelligent software system
issues a request to visualize subjects of interest and specifies
how each should be viewed, then a constraint solver attempts
to find a solution camera shot. A camera shot can be
determined by a set of constraints on objects in the scene or
on the camera itself. The constraint solver then attempts to
find values for each camera parameter so that the given
congtraints are satisfied. This paper presents a work in
progress snapshot of the virtual camera constraint model that
we are currently developing.

I ntroduction

Automatically planning camera shots in virtua 3D
environments requires solving problems similar to those
faced by human cinematographers. In traditional
cinematography parlance, a shot refers to a continuous
stream of frames (individual images) recorded by a given
camera. In the most essential terms, each shot must
communicate some specified visual message or goal.
Consequently, the camera must be carefully staged to
clearly view the relevant subject(s), properly emphasize the
important elements in the shot, and compose an engaging
image that holds the viewer’s attention (Alton 1947, Katz
1991, Mascelli 1965, Millerson 1994). Given a director’'s
shot request in a storyboard (sketch of the frame) or in
writing (e.g. medium profile shot), the camera operator
must position the camera to satisfy the given “constraints’
in the context of real-world physical settings, frequently
beyond the camera operator’s control (Hines 1997). The
constraint-based approach to camera planning in virtual 3D
environments is built upon the assumption that camera
shots are composed to communicate a specified visua
message. As observed by Drucker, it would often be more

efficient to specify what should appear in the camera shot
and have an “intelligent camera module” compute the shot
rather than having to manipulate camera controls to obtain
the desired shot (Drucker 1994). The desired visua
message of a camera shot is expressed in the form of
constraints on how subjects appear in the frame. A human
user or intelligent software system issues a request to
visualize particular subjects of interest and specifies how
each should be viewed, then a constraint solver attempts to
find a solution camera shot. A camera shot can be
determined by a set of constraints on objects in the scene
or on the cameraitself. The constraint solver then attempts
to find values for each camera parameter so that all given
congtraints are satisfied.

A general-purpose camera constraint system should
support the following design guidelines if it is to be
effective in a wide-range of applications and virtual 3D
environments. In some cases, specific applications may
permit simplifications of these guidelines.

* Arbitrary Viewing Goals. At any time, viewers or
software modules may request views of any set of
subjects, and they may do so by tipulating constraints
on how each subject should appear in the shot. These
viewing goals may be specified with respect to user
preferences or user task performance needs.

*  Environmental Complexity: Objects are arranged in
non-trivial configurations, and they may feature high
geometric complexity, holes, or transparent surfaces.
Furthermore, the virtual camera planner should be able
to analyze this environment to find a solution.

*  World Non-Interference: The virtual world should not
be modified to simplify the visualization problem. In
some cases, out of position objects may be moved (Li-
wei He et al. 1996) or occluding objects may be
“cutaway” (Feiner and Seligmann 1992).

e Failure Handling: Systematic methods are needed to
produce “next-best” camera shot(s) when a
satisfactory one is not possible so that the viewer can
be given an acceptable view even under unforeseen
difficulties



Current State of the Art

Most of the 3D virtual environment applications deployed
today rely on either manual camera control or very
rudimentary methods of automated control. Typical virtual
camera control methods include first-person point-of-view
shots, switching the camera between several predefined
shots, moving the camera in lock-step to track a moving
object, flying the camera along motion paths, or rotating
the camera to look around obstructions.

Prior research works in automated virtual
cinematography are relatively recent and represent a brief
series of notable contributions. One family of systems
employs camera positions pre-specified relative to the
subject(s) being viewed (Feiner 1985, Seligmann and
Feiner 1991, André et al. 1993, Bares and Lester 1997,
Karp and Feiner 1993). This approach fails when the
camera must view arbitrary combinations of subjects with
specific goals or constraints, or when unanticipated motion
or obstructions occlude the subjects of interest. 1BIS can
overcome viewing faillures by wusing multi-view
illustrations and cutaways of occluding obstructions, and
CATHI has a facility for transparency (Butz 1997, Feiner
and Seligmann 1992).

Idiom-based systems encode knowledge of
cinematography to sequence shots of commonly occurring
actions such as conversations between small groups of
players. Idioms may be encoded using Finite State
Machines to designate shot transitions (Christianson et al.
1996, Li-wei He et al. 1996). Or, idioms may be encoded
in the form of film grammars, which direct a top-down
planner in generating a sequence of shots (Butz 1997, Karp
and Feiner 1990, Karp and Feiner 1993). Existing idiom-
based systems use variants of the pre-specified relative
camera method in lieu of more complex camera placement
solvers. The Virtua Cinematographer employs Blinn's
method to stage the camera to project an object to a given
point in the frame (Blinn 1988). Consequently, such
idiom-based systems can often fail to find acceptable shots
when multiple subjects occupy unanticipated relative
gpatial configurations, or structures in the world occlude
the subjects of interest, or users wish to view specific types
of shots not encoded by the idioms.

In contrast, the constraint satisfaction approach to
automated camera planning casts viewing goas as
constraint satisfaction problems, which are then solved by
a constraint solver to compute camera placements. We
have adopted this approach due to it's versatility and
natural  correspondence to the way  human
cinematographers specify what they want to see in each
shot using storyboards or notes and leave the job of
actualy placing the camera to an operating
cinematographer (Hines 1997). CAMDROID, the first
major work in this area, supports a broad and powerful set
of camera constraints, but employs a numerical constraint
solver that is subject to local minima failures (Drucker

1994, Drucker and Zeltzer 1994, Drucker and Zeltzer
1995). The CAMPLAN system utilizes genetic algorithms
to intelligently generate-and-test candidate camera shots by
“mating” those sets of camera parameters which best
satisfy the constraints of the desired shot. This system
supports thirteen constraint types including shot distance,
view angle, occlusion, and projection location and relations
between aobjects (Patrick Olivier et al. 1998). A constraint-
solver developed by the author provides a systematic
solution for handling constraint failures that occur in non-
trivial  virtual environments. However, this initia
constraint-based camera planner supported only four types
of constraints including viewing angle, distance, occlusion-
avoidance, and camera inside an enclosed space (Bares et
al. 1998, Bares and Lester 1999). This initial effort has
served as the starting point for the ongoing work described
in this paper.

Automatic camera control assistants vary camera
position to avoid occlusions of a goal object or satisfy
screen-space constraints on how subjects appear on-screen
(Gleicher and Witkin 1992, Phillips et al. 1992, Jardillier
and Languénou 1998). Automated camera navigation
assistants adjust camera motion speed based on distance to
the target or guide the camera along specified optimal
vantages as a user navigates over a terrain (Hanson and
Wernert 1997, Mackinlay et al. 1990, Ware and Osborn
1990, Ware and Fleet 1997). Neither automated viewing
nor navigation assistants can address the problem of goal-
driven camera control because they focus on specific
subsets of this much larger problem or on controlling
relatively low-level parameters and frequently require
considerable user inputs.

Virtual 3D Camera Parameters

A camera placement in a virtua 3D environment is
defined by the following parameters, most of which are
illustrated in Figure 1. A computed constraint solution
assigns values to the virtual camera parameters.

»  Camera position P(x, y, z): Thisisthe point at which
the virtual cameraislocated.

* Aim direction vector A(dx, dy, dz), or aim point
P(x, Y, 2).

* Field of view angles: The horizontal and vertical field
of view angles model the effects of the so-called wide
angle and telephoto lenses. In computer graphics, the
“lens angle” is determined by two parameters, the
horizontal field of view angle (64) and vertical field of
view angle (6y).



e Up orientation vector Up(dx, dy, dz): This vector
controls the degree of tilt or rotation (roll) of the
camera about its aim direction vector.

(a) perspective view

B,

(b) Top view

Figure 1: Virtual camera parameters.

Camera Constraints

The camera constraint system being developed supports
fifteen different types of constraints on either the camera's
attributes or how objects in the scene appear in the camera
shot. One or more constraints may be specified to define a
camera constraint problem. If constraints C1, C2, ...CN
are given, then C1 and C2 and C3 ... and CN must be
satisfied to produce a camera placement that satisfies the
complete set of constraints. Each constraint also includes a
specified relative priority with respect to the other given
congtraints.

Constraints may be applied to one or two objects or to
the camera itself. Constraint types beginning with “OBJ’
apply to an object in a 3D scene and must specify one
“primary” object to which the constraint applies. Some

“OBJ’ congtraints also require that a "secondary” object be
specified.  For example, the OBJ DEPTH_ORDER
congtraint can be used to require that the primary object is
closer to the camera than the secondary object. Constraint
types beginning with “CAM” apply only to the camera and
no objects are gpecified. For example, the
CAM_POS IN_REGION congtraint requires that the
camera position lie within the given region of 3D space.
Constraint types not beginning with either “OBJ’ or
“CAM” may apply to either an object or the camera.

Some object constraints, notably those dealing with
how an object’'s projection appears in the frame, can
specify that the constraint operate upon a designated point
or region of space (bounded by a sphere) displaced from an
object’s midpoint. This optional construct is designated a
locus modifier. For example, the LOOK_AT_POINT
congtraint may aim the camera at a locus modifier point
displaced dightly ahead of a moving object. Or,
OBJ PROJECTION_SIZE constraint can include a locus
modifier in the form of a sphere that can be positioned and
sized to coincide with the head of a humanoid figure to
constrain the projection of the head to fill a given fraction
of the frame.

Constraint Types

The general format of each constraint specifies a range of
allowable values, an optional optimal value, and a value
indicating the relative importance of that constraint. Some
types of constraints apply to a specific object or pair of
objects, designated by the specified primary and secondary
objects. Several constraint types permit the specification
of additional parameters specific to that type of constraint.
The following is a brief summary of several of the
currently implemented constraint types.

1. LOOK_AT_POINT

The LOOK_AT_POINT constraint causes the camera to
aim at a particular point. The aim point may be displaced
relative to a designated object or to any given point in
global space.

2.OBJ_IN_FIELD_OF_VIEW

The OBJ IN_FIELD_OF VIEW constraint requires that
the specified primary object be entirely within the camera's
field of view formed by its left, right, bottom, top, near,
and far clipping planes.

3.0OBJ_OCCLUSION_MINIMIZE

The OBJ OCCLUSION_MINIMIZE constraint requires
that no more than the specified maximum allowable
fraction of the given primary object is occluded by other
opaque object(s). The given fraction maxOccl ranges
between 0.0 and 1.0, inclusive. Occlusion fractions are
measured using the ratio of occluded pixels to total number



of pixels used to draw an object. For example, if an
object’s projection covers 1000 pixels of the frame and 250
of those pixels are occluded by an opaque object, then the
occlusion fraction is 0.25.

4. OBJ_VIEW_ANGLE

The OBJ VIEW_ANGLE constraint requires the camera
to be positioned at a specified orientation relative to the
untransformed primary object. The relative orientation of
the camera to the object is expressed in spherical
coordinates (only the theta and phi angular components are
used). The spherical coordinates orientation angles (theta,
phi) represent the horizontal and elevation angles
respectively. Horizontal angle values range between -180
and 180 degrees. Elevation angle values range between
-90 and 90 degrees. Figure 2 provides an example of how
the horizontal and elevation angles are specified.

o

140

(a) Horizontal range

o

60
N,

o

0

(b) Vertical range
Figure 2. Viewing angle example.

The orientation angles are measured from the object’s
midpoint (if no locus modifier is given) or from the locus
modifier point if alocus modifier is specified.

5. OBJ_DISTANCE

The OBJ DISTANCE constraint requires that the distance
from either the object’s midpoint or the specified optional
locus point to the camera lie within the given allowable
minimum-maximum distance range. An optiona optimal

distance may be specified. The distance from the camera
position is measured from the object’s midpoint (if no
locus modifier is given) or from the locus modifier point if
alocus modifier is specified.

6. OBJ_PROJECTION_SIZE

The camera’s distance to the subject and the field of view
angle determine the size at which the subject appearsin the
frame. Nearer camera positions and narrower lens angles
result in larger subject sizes, for example as in the close-up
shot. Farther camera positions and wider lens angles result
in smaller subject sizes and can include vast expanses of
territory as in the extreme long shot above. In cinematic
terms, shot “distances’ are specified by the on-screen size
of the subject(s) relative to the size of the frame. Common
shot sizes include close up, medium, and long, arranged in
increasing order of distance and decreasing order of subject
size (Mascelli 1965). The OBJ PROJECTION_SIZE
congtraint requires that the projection of the primary
object’s source cover a specified fraction of the frame.
The object’'s projection source may be either its
BoundingBox or the optional LocusSphere. The primary
object’s source is projected onto the frame to form a
bounding rectangle (in normalized frame coordinates),
whose areais then divided by the total area of the frame.

7. OBJ_PROJECTION_ABSOLUTE

Project a given portion of an object to a given region of the
2D frame. This projection region is expressed in
normalized frame coordinates. The 3D source of
projection may be a point, sphere, or bounding box. The
projection source parameter value may be Center,
LocusPoint, LocusSphere, or BoundingBox. If the source
is “Center,” then the object’s midpoint is projected. The
3D source point, sphere, or bounding box, is to be
projected so that it lies inside the given rectangular region
in normalized frame coordinates.

8. OBJ_PROJECTION_RELATIVE

The projection of the primary object has the specified
relationship to the projection of the secondary object in the
frame. The projection relationship is expressed in terms of
the relative positions of the primary and secondary objects
in the frame. The 3D source of projection for both objects
can be a point, sphere, or bounding box. The projection
relationship between the primary and secondary objects
may be one of the following:

Left: The projection of the primary object’s source lies
entirely to the left of the projection of the secondary
object’s source.

Right: The projection of the primary object’s source lies
entirely to the right of the projection of the secondary
object’s source.



Above: The projection of the primary object’s source lies
entirely above that of t1he secondary object.

Below: The projection of the primary object’s source lies
entirely below that of the secondary object.

Inside: The projection of the primary object’s source lies
entirely inside of the projection of the secondary object’s
source. The projection source must be either LocusSphere
or BoundingBox.

Outside: The projection of the primary object’s source lies
entirely outside of the projection of the secondary object’s
source. The projection source must be either LocusSphere
or BoundingBox. Informally, this constraint means that
the projections of the two objects not overlap.

DirectionVector: The vector from the center of the
primary object’s projection source to the center of the
secondary object’s projection source must have the
specified direction in normalized frame coordinates. An
amount of tolerance is specified by the Max Angle
parameter. The constraint is satisfied if the angle between
these two vectors is less than or equal to the given
threshold.

9. OBJ_DEPTH_ORDER

The OBJ DEPTH_ORDER constraint requires that the
given primary and secondary objects have the specified
depth (or distance) relationship with the camera
Relationships include NearerThan, FartherThan, and
SameDistance. For example, the NearerThan constraint is
satisfied if the midpoint of the primary object is nearer to
the camera than the midpoint of the secondary object.

10. CAM_POS_IN_REGION

This constraint requires that the camera position lie within
the gpecified region of Three Dimensional space.
Currently, this region is specified by the minimum and
maximum endpoints of an axis-aligned bounding box.

11. CAM_FIELD_OF_VIEW

This constraint sets the allowable ranges on the camera's
horizontal and vertical field of view angles in addition to
the aspect ratio of the frame. It's necessary to also specify
limits on the aspect ratio since alowable values of
horizontal and vertical field of view angles can combine to
undesired aspect ratios. Wide field of view angles are used
to include as much of a subject’s surroundings as possible
or to reduce the subject’s size in the frame. Narrow field
of view angles are useful for eliminating clutter around a
subject or filling the frame with the subject.

Measuring Constraint Satisfaction

When constraints are evaluated or solved, it's essential to
determine how well a given camera placement satisfies
each congtraint. The degree of satisfaction for each
congtraint is computed as a value in the range 0.0 to 1.0.
Fractional values are useful in distinguishing which
satisfactory camera placement values are nearest to the
specified optimal values. A cumulative constraint
satisfaction rating is computed from a weighted sum of the
satisfaction measures of all individual constraints as shown
in the below equation, where P; is the specified relative
priority of the i constraint and § is the satisfaction rating
of the i constraint.

N

satisfaction = Z (PixS)

Constraint Solutions

The initial prototype of the constraint solver employs an
exhaustive generate-and-test process to determine the
camera placement having the highest cumulative constraint
satisfaction rating. Candidate camera placements are
generated via iteration in discrete steps over al possible
values of camera position, aim direction, and field of view
angle. The prototype exhaustive search solver serves as a
testbed for designing the constraint types and constraint-
satisfaction evaluators. We are currently investigating
other more efficient constraint solution algorithms.

Example

The constraints can be used to compose camera shots
similar to those found in motion pictures. One of the most
common types of shots involves filming two persons in
conversation. For example, we might want a shot of
playerl’s face as he speaks, in which playerl is viewed
from a camera position behind and over-the-shoulder of
player2. Consider the sample 3D scene populated by four
players standing around a table in a room ringed by stone
columns (Figure 3). The virtual camera will need to be
carefully staged in order to capture the desired over-the-
shoulder shot of playerl and player2.

In order to compose the desired over-the-shoulder shot of
playerl and player2, we could specify the following set of
camera directions or constraints. The constraint type used
to implement each directive is given in parentheses.



*  View the face of playerl who is speaking (Object view
angle).

* Playerl should be farther from the camera than
player2 (Object depth order).

e Playerl should appear sightly to the right and above
player2 (Object projection relation expressed by a
given direction vector).

»  Playerl should appear in the middle of the frame so as
to be the center of focus (Object projection location).

e Playerl and player2 should be framed at a medium
shot size (Object projection size).

* Playerl and player2 should not be occluded (Object
minimize occlusion).

Figure 4 illustrates a shot that partialy satisfies the shot
constraints. However, a column occludes player2.

Figure 5 presents a satisfactory shot computed by the
constraint solver prototype searching camera positions over
a 20x20x20 grid, aim directions at 15° intervals, and field
of view angle over a range of 10 values. A total of
13,891,500 shots were evaluated in approximately 30
minutes on a Pentium 11 400 MHz computer to determine
this solution shot, which had a cumulative constraint
success rating of 89%.

Figure 3: Room interior scene featuring four players.

Figure 4: Unsatisfactory over-the-shoulder shot.

Figure 5: Successful over-the-shoulder shot.

A portion of the constraint input script used to create the
shot in Figure 5 appears in the code listing in Figure 6 on
the following page.



Constraint CAM_FIELD_OF_VIEW

{

Parameters {

minVert 9.75 optVert 30.0 maxVert 78.6
minHoriz 9.75 optHoriz 30.0 maxHoriz 78.6
minAspect 1.0 optAspect 1.0 maxAspect 1.0}
Priority 1.0

}
Constraint OBJ_IN_FIELD_OF VIEW
{ PrimaryObj 1 Priority 1.0}

Constraint OBJ_PROJECTION_SIZE

PrimaryObj 1

Parameters {

Source BoundingBox

MinSize 0.017456 OptSize 0.0400 MaxSize 0.117181}
Priority 1.0
}

Constraint OBJ_PROJECTION_ABSOLUTE
{

PrimaryObj 1

Parameters{

Source BoundingBox

BottomLeft 0.500115 0.327080

TopRight 0.972977 0.988225 }

Priority 1.0
}

Constraint OBJ_VIEW_ANGLE
{

PrimaryObj 1

Parameters {

optHoriz 15.591192

OptElev 19.223467

AllowedHorizRange -20.408808 51.591194
AllowedElevRange 1.223467 37.223469 }
Priority 1.0
}

Figure 3: Constraint input script fragment.

FutureWork

We are in the process of developing more efficient solution
search algorithms that can compute solutions of
comparable quality to the impractical exhaustive search by
examining a carefully selected subset of the space of all
possible camera parameters. The current constraint system
requires the user to edit the constraints in a text script,
which is loaded into the constraint solver prototype.
Intuitive What You See Is What You Get graphical
interfaces for constructing constraint sets could help

congtraint-based intelligent camera systems to find
productive use by visual artists, cinematographers, or
interactive 3D software developers. Consequently, we are
also developing a visual interface to automatically generate
congtraint scripts for a desired camera shot.
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