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ABSTRACT

We develop a category management model to aid retailers in the space constrained decisions

of which products to stock (assortment) and how much shelf space to allocate to those

products. The model is formulated as a constrained optimization problem with two basic

decision variables: assortment and allocation of space to the items in the assortment. The

non-linearities in the objective function and the zero-one decision variables disallow a

closed form solution. We develop a heuristic solution procedure based on simulated anneal­

ing and test it on a problem with a known optimum. We also apply the technique to a larger

problem without a known optimum. Finally, the solution found by simulated annealing is

compared against a solution produced using a shelf allocation rule based on share of sales.

Subject Areas: Heuristics, Marlceting Management, Resource Allocation, and Simul4tion.

INTRODUCTION

Retail selling space is a fixed resource. Managing this space means making frequent

decisions about which products to stock (assortment) and how much shelf-space

to allocate those products. Although the average size of a store has continued to

increase, it has not kept pace with the overwhelming number of new product

introductions. In 1988,5,694 new products and 10,558 new varieties were offered

to supermarket retailers: many supermarket chains choose their assortment from a

product list of over 60,000 stock-keeping units (SKUs) [51].

Retailers currently use a wide range of methods to choose assortments and

allocate space. The widespread availability of scanner data and commercial shelf­

management models allow retailers to quickly detect and eliminate unprofitable

items. These commercial models typically use sales data and product and shelf

dimensions to produce recommended shelf allocations. An increasing number of

these models attempt to maximize retailer profits by allocating space according to

item profitability and shelf-space elasticity [53]. In some models, there are options

to allocate shelf space in order to minimize out-of-stocks.

We are not aware of any models which combine the effects of the assortment

and space decisions. The lack of such models may be attributed to (1) the belief



that assortment decisions can be adequately modeled with space variables, that is,

a decision not to include an item is modeled by allocating zero space, and (2) the

opinion that including both space and assortment will create a complex model

which cannot be optimized. While allocating zero space for an item is equivalent

to eliminating it from the assortment, we argue that the sales elasticities for assortment

decisions are apt to be much higher than for space decisions. This is especially true

when minimum "pack-outs" (minimum shelf-space allocations) are often equal to

two facings or more of a product.

An ideal shelf-management model provides assortment and shelf space recom­

mendations that:

1. correspond to actual product dimensions, minimum economic pack-outs,

and delivery cycles;

2. are based on differences in item profitabilities, including costs of selling,

stocking, storing, and transportation;

3. incorporate shelf-space elasticities and cross-elasticities among brands in

the same category;

4. consider the strength of consumer loyalty to an SKU in making assortment

decisions.

This paper presents a model capable of incorporating all of these features. The

model is formulated as a constrained optimization problem with two basic decision

variables: product assortment and allocation of fixed space to the items in the

assortment. The non-linearities in the objective function and the zero-one decision

variables disallow a closed form solution. We develop a heuristic solution procedure

based on simulated annealing and test it on a problem with a known optimum as

well as on a larger problem without a known optimum. Finally, the solution found

by simulated annealing is compared against a solution produced using shelf allo­

cation rules based on share of sales. We conclude the paper by discussing potential

applications of the model as well as some of its limitations.

REVIEW OF THE LITERATURE

The model which we propose is structured to correspond to an adaptation and

extension of a "Push-Pull" model developed by Farris, Olver, and De Kluyver [23].

A key characteristic of this model is the division of a product's market share into two

components: uncompromised demand and compromised demand. Uncompromised

demand stems from: (1) consumer preference for SKUs; (2) in-store merchandising

support such as shelf-space, display, and advertising; and (3) product availability

across retail stores. A brand may also capture compromised demand if some purchasers

are willing to compromise choice (i.e., select alternatives) when the specific brands

they desire are not available.

This paper models in-store support as a function of space-the space allocated

to an item and the space allocated to its competitors. Resistance to compromise is

used to account for both the long term and short term effects of missing items

respectively due to assortment decisions and temporary stockouts.

Shelf Mana&ement Models and Experiments

If consumers are completely brand loyal and the product is available, the space

allocated to an item has no effect on its sales [1]. An individual always purchases



the same product if it is present and either delays the purchase or proceeds to

another location if it is not available. However, past work [10] [20] [22] [42] [53]

shows that many consumers are willing to compromise their initial choice and

switch to other products, either because their brand was not available or the shelf

display changed their choice. In fact, many consumers brand choice decisions are

made at the point of purchase [39] [43]. For these consumers the final choice may

be influenced by one or more in-store merchandising factors, including space.

Shelf-Space Studies. Early studies in space management concentrated on estab­

lishing whether a relationship exists between the space allocated to an item and

that item's sales [8] [15] [16] [24] [34] [35] [44]. These studies have consistently

demonstrated a weak link between the two variables. Bultez and Naert [6] attribute

these weak results to (1) poor experimental design, (2) low variation in space

allocation, and (3) unreliable sales data.

Space Models. Typically, shelf-space models hypothesize that the ratio of

sales/space decreases as space increases [1] [5] [6] [7] [9] [13] [14] [17] [18] [26].

We review four key studies below.

In Anderson's [1] work, space allocation decisions were based on marginal

analysis of a logistic function modeling the relationship between a product's share

of space and its market share. Brand loyal or nonswitchers were identified as those

consumers whose purchases are not influenced by item shelf space. Cross-space

effects were accounted for by using share instead of absolute category space for

an SKU. Furthermore, although stockout costs were modeled as a function of item

demand, the lost sales due to stockouts were not incorporated into either the

demand function or the cost function.

Hansen and Heinsbroek's [26] solution to the assortment decision was to set

an item's space to zero when it was not available. Furthermore, because their sales

function neglects cross-space effects which measure demand interdependencies [6]

[7] [13] [14], this model did not measure the positive effect on sales of other items

or the category when a product is absent. The authors solve for a "near-optimal

solution" using a generalized Lagrange multiplier approach.

Corstjens and Doyle [13] used geometric programming to optimize category

space allocation with profit maximization being the objective. Their multiplicative

model incorporated direct and cross-space elasticities, and it allowed for different

product profit margins. Costs were modeled as a function of inventory investment

and handling. The model's constraints included a store size limitation that prevented

the sum of all category space from exceeding the store's size, upper and lower

limits on space for each category, and a production or availability constraint. In

1983, Corstjens and Doyle extended their model to include conditions of widely

varying product growth potentials [14].

Corstjens and Doyle's model was a major step towards a managerially useful

space allocation model. However, their approach had a few drawbacks and areas

of concern. First, the multiplicative model predicts zero sales for a given category,

if the space of any of the stores' other categories is set to zero. Therefore, the model

cannot be used for simultaneous assortment and space decisions. Second, the space

solutions for 7 out of the 10 product categories were outside the model's con­

straints. The authors did not provide an explanation. Third, their optimization

method cannot be used on non-linear functions different from the polynomial form.



Finally, metric space solutions are provided which may not match the product space

requirements if the model was used for allocating space to SKUs within a category.

Bultez's and Naert's SHARP model [6] and SHARP II model [7] (Shelf Allocation

for Retailers' Profit) optimized space allocation within a product class. The model

was similar to that of Corstjens and Doyle in that the SHARP model incorporated

both direct and cross-space effects and modeled costs as a function of sales per

unit space. However, rather than develop an explicit sales-space function they

performed marginal analysis on a general theoretical model and developed a search

heuristic that was based on the convergence of the SHARP rule for each brand on

the shelf. Space elasticities were estimated by using a symmetric attraction model

in SHARP I and an asymmetric model in SHARP II. Although the model does not

restrict itself to a specific formulation, the marginal analysis becomes impractical

with non-linear models. This limits the number of variables as well as the functional

form.

Current shelf management models focus on space responsiveness and neglect

issues of assortment and stockouts. The existing models attempt to allocate space

to shelves using only space elasticities which have been shown to be weak. As Lee

[37] observed, using space elasticities to make assortment decisions invites prob­

lems which are compounded with the multiplicative model formulation used by

many authors.

Assortment and Stockouts

Research on the effects of stockouts and limited assortments has been conducted

in connection with diverse topics: retail classification [27]; variety seeking [40];

consumer store/product choice [49]; relationship of retail assortment to profitability

[2] [31]; manufacturer assortment optimization projects [48]; and estimation of

retail stockout costs [11] [21] [42] [50] [53] [54]. Studies evaluating consumer

purchase effects of item stockouts are the most relevant for our approach.

In an in-store survey, Peckham [45] found that when a preferred item was missing

42 percent of the shoppers did not buy in the category. An intensive survey by

Nielsen Marketing Research [46] [47] revealed that in some categories over 60

percent ofthe respondents refused to switch brands under an out-of-stock (OOS) scenario.

Walter and Grabner [53] and Walter and La Londe [54] used a self-administered

questionnaire to produce a frequency distribution of "intended" behaviors under a

hypothesized stockout scenario. Liquor store patrons were asked their projected

response if their desired item was not found. Although 82 percent would buy

another item that day, 14 percent indicated that they would visit another store first.

This number rose to 40 percent if the item was not available on a return trip. More

recently, Emmelhainz, Stock, and Emmelhainz [22] measured the stockout behaviors

within a store environment. An out-of-stock was created for the leading stock-keeping

unit (SKU) in five categories. Twenty-seven percent would not switch to an alternate

item if their preferred product was not available.

The literature available on consumer response to item stockouts seems to

indicate that in many cases shoppers are resistant to compromise their original

preferences. This implies that the assortment variable is a critical part of the shelf

management decision. In addition, the simultaneity of retailer assortment and space



decisions, which is due to category space constraints, also demands that space and

assortment be modeled in an interactive relationship. The shelf management model

developed here accomplishes this goal and produces a model that is logically

consistent and can be effectively optimized.

MODEL FORMULATION

Figure 1 presents a conceptual framework of our model. Item sales within a store

are composed of four factors: unmodified demand, modified demand, acquired

demand, and stockout demand. As the figure illustrates, unmodified, modified, and

acquired demand are positive influences on an item's sales while stockout demand

represents a loss of sales for that item. Before these factors are discussed individu­

ally, we will define our terms and assumptions.

Definitions

1. Space is the number of facings allocated to an SKU. We measure in units

of a "standardized facing" and assume that a shelf has a standardized

depth. These assumptions simplify the process of calculating equivalent

facings and inventory when one item is dropped and another of unequal

size is added. Increases in space are added in increments of a physical

facing, but the addition is expressed in standardized facings.

2. Unmodified demand or preference, Pi' is the sales an SKU would receive

if all SKUs were stocked and received identical retail support.

3. Modified demand is the sales an SKU receives from its unmodified demand

and retail support such as promotions, space, pricing, and advertising.

a. In-store attractiveness, ~ i ' represents the incremental sales an SKU

receives from retail support.

b. Space elasticity, Y, represents the change in demand of SKU; per unit

change in the space allocation of SKUi'

4. Acquired demand is the sales each SKU receives from the items not

selected for the assortment.

a. Alpha, o,i' represents the proportion of consumers who, finding their

preferred item unavailable, are unwilling to switch to the available

SKUs. This is used to calculate the opportunity cost of a stockout or

of an item deleted from the assortment. (As pointed out by an anonymous

reviewer, the loyalty that consumers display toward a brand is also

a function of the particular retail stocking environment. Consumers

can only be loyal to those brands which have a certain degree of

availability so that they can eventually get the product to which they

are loyal.)

5. Stockout demand is the sales each SKU receives from the items which

have temporarily stocked out.

Assumptions

1. We assume that the retailer's objective is to maximize the category's

return on inventory.



FilUl'e 1: Shelf management model.
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2. We assume that the retailer's inventory investment represents the retailer's

purchase cost of a full shelf for all items in the assortment.

3. The model and objective function focuses on a given retailer's assortment

and space decision.

4. Consistent with prior research and the assumption of substitutability, an

SKU's direct space elasticity, Yjj' is assumed to lie between 0 and 1, while

its cross space elasticity, Yij' ranges from -1 to O.

S. We assume that if an SKU is selected for the assortment, the minimum

number of facings will hold one case of packages [30]. We assume that

this represents the threshold for the minimum presence required for the

consumer to realize the product is being carried.

6. We assume that, beyond the minimum number of facings, a retailer can

stock additional items on a single package basis. This is a compromise

between using a full direct product profitability model to maximize profits

while accounting for use of capital and also assumes adequate backroom

space to store partial cases.

Unmodified Demand

Unmodified demand represents the intrinsic preference for the SKU and is usually

estimated using laboratory experiments conducted to gather brand or SKU choice.

Consumers are asked to select from a group of SKUs that receive the same mer­

chandising treatment, that is, demand for SKUs is unmodified by in-store support.

Each SKU's unmodified demand is calculated using its share of choice. Unmodified

demand is similar to Farris' et al. [23] unmodified preference which represented a

brand's market strength exclusive of in-store support, Shugan's alpha [50] which

measured a brand's absolute market potential, and Corstjens and Doyle's alpha [13]

[14] which measured the effects of all marketing variables except space. Brand i's

unmodified demand (U) is presented in Equation 1.



(1)

where

P j .. unmodified preference,

Spacej .. Spacej for all j.

Modified Demand

The concept of modified demand reflects the differential in-store merchandising

support each SKU receives. The in-store support an SKU may receive includes

space, shelf location, special displays, shelf tags, backroom inventory, and window

displays. A brand may also receive special support if the retailer stocks a relatively

large number of its sizes or varieties. In our model we assume that differences in

in-store merchandising support are solely a function of space allocation and other

variables are held constant, therefore they are reflected in Pj' The "unmodified"

demand of each SKU is "modified" to reflect its differential space allocation.

Much of the reviewed literature supports decreasing marginal sales response to an

SKU's own space. In addition, space models typically incorporate the negative

effects of space allocated to other SKUs. If some SKUs are more directly competitive

than others, that is, have higher cross-elasticities, sales of an item can be affected

by reallocation of space among competitive brands. The most parsimonious model

that allows for competitive interactions, decreasing returns, and relative ease of

estimation is the multiplicative model. Multiplicative models, including pricing

[48], marketing mix decisions [52], and space models [6] [7] [13] [14] [26], are

well represented in the marketing literature.

Equation 2 presents the model for modified demand (M) which incorporates

both direct and cross-space elasticities. The total number of parameters in the

modified demand model is nxn+n where n is the number of SKUs in the category.

(2)

where

~ i .. in-store attractiveness,

• IIJzl sJij,
Zj - space allocation for SKUj (number of facings),

Sj • 1 if z/oO,

• z· if z·>O
'J 'J '

Sj • 0 if z;=O.

Acquired Demand

Acquired demand is the portion of the shelf management model that captures the

effects of assortment decisions. To formulate acquired demand, assume there exists

a market with n SKUs, nl of which are part of the category assortment, and

n-nl of which have been excluded from the retailer's shelf. Each of the nl SKUs

stocked captures a portion of the available sales that each of the n-n
1

SKUs would

have obtained, if they had been stocked. The available sales from each missing



SKU will be detennined by its potential modified demand and the consumers

willingness to switch to the nl available SKUs.

SKU/s acquired demand will consist of two parts in a multiplicative relationship.

1. SKU/s relative sales strength. Prior research [22] indicates that large

market share SKUs receive a greater portion of the sales from those SKUs

which are absent. To ensure that all of the n-n1 item's available sales are

distributed amongst the remaining n1 items, an attraction model is:

(3)

L ' Y ; j P ; ~ ;
;-1

The numerator represents the modified demand for SKU; while the de­

nominator sums the modified demand of all of the stocked SKUs. This

fraction will sum to one across all stocked SKUs. The degree of substi­

tutability with the missing SKUs will also affect the level of acquired

demand. The higher the cross-elasticity value, the stronger the effects of

change in the space allocation of SKUj will have on the sales of another

SKU. Combining the infonnation available in the cross-elasticities with

the relative SKU strength produces SKUj's share of the available sales

from the non-stocked SKUj .

2. The amount of sales available from j. The potential sales from j will

depend upon its modified demand. However, some of SKU/s sales will

be lost to the store because some fraction of buyers, represented by (Xj'

will be resistant to compromising their original purchase choice. There­

fore, l-(Xj represents the fraction of j's sales that will be distributed

amongst the nl stocked items. Equation 4 presents the demand from SKUj

(SKUj was dropped from the assortment) that is available to be distributed

to the stocked SKUs:

(4)

Incorporating these factors into the model produces SKUj's acquired demand

presented in Equation 5. To summarize, Part 1 of the equation represents SKUj's

proportion of the available demand from non-stocked SKUs. Part 2 presents the

demand from the non-stocked SKUs.

Part 1 Part 2

A .. Acquired demand,

(Xj = Resistance to compromise.

(5)



Stockout Demand

Finally, the complete model must include a correction for the possibility that the

predicted sales from unmodified, modified, and acquired sources exceeds the shelf

inventory for a given SKU. If the sum of the unmodified, modified, and acquired

demand for an item is larger than the item's inventory (a stockout), then this

difference is potentially available to the SKUs that are in stock. By applying the

loyalty factors (alpha), we can determine exactly how much of a stockout is available

for the other SKUs. This amount is then allocated to other items that are in stock

in the same proportion as used in (4) for acquired demand. The amount allocated

to an item is a stockout gain.

This procedure is iterative because when the allocation is made to other items,

it may cause the inventory to be exceeded for other items. If so, a new stockout

loss is calculated, and (I-alpha) of this amount is allocated to those remaining

SKUs that are not stocked out. This process continues until either all items have

stocked out or the sum of the unmodified, modified, and acquired demand and the

total stockout gain does not exceed the inventory.

We use the same loyalty factors for both temporary out-of-stock situations and

permanent adjustments to product assortment. In practice, one might argue that a

temporary out-of-stock would be associated with different loyalties than one which

the consumer recognizes as part of a store's assortment. We know of no published

empirical studies which address this issue.

The question of whether consumer reactions to temporary "out-of-stocks" is

the same as the reaction to permanent changes in assortment is also relevant to the

illegal practice of "bait-and-switch" (purposely stocking out of some items in order

to get consumers to buy other items which presumably have higher profit margins).

An anonymous reviewer points out that this model might be relevant to the analysis

of such practices if we knew more about these differences. Work·by Moinzadeh

and Ingene [41] is relevant to this issue.

Measurement of the Parameters

Although there are several published examples of studies reporting measures of

direct and cross-elasticities to shelf space [8] [15] [16] [24] [34] [35] [44], the

difficulties of obtaining good estimates should not be minimized. Lilien, Kotler,

and Moorthy [38] provide an overview of these measurement problems. In practice

three techniques have been used to arrive at estimates: experiments, time-series

data, and cross-sectional data. Other methods are emerging which use surveys and

new media technologies.

Presently, in-store experiments (manipulating shelf space and measure sales changes)

are probably the most reliable ways to estimate the direct and cross-elasticities to

shelf space. The major drawbacks to these studies are the time and labor needed

to collect the data, and the difficulty of obtaining store approval for often disruptive

shelf manipulations. Because of these problems Bultez and Naert [6] [7] used time

series data and an attraction model to estimate direct space elasticities. Cortjens

and Doyle [13] [14] assumed that space allocation rules collected cross-sectional

data from ice cream stores to estimate direct (range -.01 to .19) and cross space

elasticities (range -.11 to .10).



Although resistance to compromise has not fonnally been defined in the lit­

erature, consumer response to stockouts provides an approximate measure [22] [46]

[47] [53] [54]. IRI and Bishop Consulting [29] deleted items and asked shoppers

whether they "noticed a difference." Other studies have either questioned individuals

on their probable behavior if a desired item is missing, or have removed items from

the shelf, and used scanner data to measure the sales effects of these stockouts.

Depending on the category, the percentage of consumers who would purchase

elsewhere if their preferred brand was missing, ranged from 6 percent to 83 percent.

These numbers rose if the item was missing on a second occasion.

The potential gains from implementing the shelf management model cannot

be estimated without "guessing" initial values of the parameters. These guesses

can be infonned by previous studies as well as cross-sectional and time-series

analyses on variations in sales and shelf space. As with the IRI study [29] the most

promising shelf arrangements can then be selected for in-store tests, surveys, and

sales tracking studies for verification. Virtual reality technology may be creating

new opportunities: consumers walking through a store on a simulated trip select

items from the shelf, read labels, and place items in their shopping basket. In spite

of measurement problems, there are several alternative techniques and others are

emerging.

SOLVING THE SHELF MANAGEMENT PROBLEM

The shelf management model is expressed as a constrained optimization problem.

The decision variable, zi' represents the number of facings allocated to SKUi. The

objective function in (6) represents the category's return on the retailer's cost of

total shelf inventory. The space constraint in (7) states that the sum of the space

allocated to the SKUs must be equal to the stipulated category space level. Space

constraints in (8) place lower and upper limits on an individual SKU's space and

establish the desired relationship between the space variables and the zero-one

indicator variables.

Given the non-linearities and zero-one decision variables, it is not possible to

get a closed fonn solution. However, the nature of the problem seems suited for

simulated annealing (SA) because: (1) for the typical number of items in a category,

the number of possible combinations is too large for complete enumeration;

(2) functions are highly non-linear; and (3) simulated annealing provides a number

of alternative solutions that can be evaluated on criteria not included in the model.

Simulated Annealing

Simulated annealing is a combinatorial optimization algorithm, which finds near­

optimal solutions for different kinds of problems. It is based on the method of

cooling/annealing metals. At high temperatures, the molecules in a metal can rearrange

themselves fairly easily. But at low temperatures, only very limited motion is

possible. With a slow and gradual decline in the temperature, and thus the energy

of the system, the end product is nonnally a very unifonn block of metal at a

minimal energy state [19] [25].



Shelf Management Problem

Find Space;'>1 j in order to:

n

LGj(Price j(Mj + A j + Bj + Lj)

M
.. II j-1aXlmlze =--"---------­

n

L (1 - Gj)price ;Inventory j

j-1

subject to

n

LSpacej = Total Category Space.

j-1

Space j ~ Total Category Space,

Space j ~ Casepack j'

'"' if item i is stocked .

where

II - Category Return on Inventory.

n '"' Number of SKUs in category.

Gj z Gross Margin of SKUj •

M j = Modified Demand of SKUj•

A j = Acquired Demand of SKUj•

Bj = Stockout Benefit of SKUj•

L j = Stockout Loss of SKUjo

Inventoryj - Units of i on hand at beginning of period.

Our objective for the shelf management problem is to find an optimal allocation

of space and assortment of SKUs so as to maximize the return on inventory. When

applying simulated annealing to this optimization problem. we need to change (or

randomly mutate) the set of SKUs in the assortment and the space allocated to

each. and then accept those sets that improve the objective function value. However,

if we do not allow for the acceptance of a few poor solutions. which may lead us

to even better solutions, we may get stuck at a local maximum (like the top of a

small hill. rather than the peak in a mountain range). Simulated annealing allows

for this kind of a decision process.

Like the annealing of metals, earlier on in the search (cooling process) we can

allow for the acceptance of fairly poor solutions. We accept a poor solution with

a certain probability. This probability is fairly high earlier in the process (so as to

examine an entire surface of possible solution sets or metal forms). but is steadily

decreased as we iterate the process over and over again. An analogy to this would

be the search for the summit of a mountain range (the optimum). Because we are

fresher earlier in the day. we may be more likely to go downhill in the hope of



rmding a higher mountain. But as we lose energy towards the end of the day, we

would be less likely to go downhill, and climb another mountain, but rather we

would climb to the summit of the mountain we have found ourselves on. However,

if we kept a record of the highest mountain we had seen thus far, then we would

at least have a knowledge of where we had found the highest known mountain.

Similarly, we can save the best shelf arrangement during the simulated annealing

process.

Simulated annealing works best for problems that have many local peaks because

it avoids getting trapped at local maximums. Heuristics like SA are often applied

to optimization problems where the "running time for any algorithms currently

known to guarantee an optimal solution is an exponential function of the size of

the problem" [19, p. 271]. The shelf management problem is an example of a problem

where the number of shelf combinations (unique space allocation and assortment

solution) increases exponentially as the number of items increases. For example, a

category with only six products, each of which can take on the value of 0 to 12

facings, will have approximately 4.8 million (126) possible combinations. For a

small sized category of 12 items the number of combinations is well over a trillion.

SA versus Alternative Heuristics

Simulated annealing (SA) has been applied in a number of diverse applications,

from the travelling salesperson problem [36] to pollution control to graph partitioning

[32] [33] (see [12] for an annotated bibliography of the technique). A number of

others have suggested modifications of the approach including storing the best

solution so far, sampling the neighborhood without replacement, and alternative

acceptance probabilities. Others have attempted to improve the results by combining

SA with other methods, for example, using an alternative method to provide an

initial solution.

Because of the many modifications available to the basic SA algorithm, con­

clusions about the relative results of SA versus other heuristics are difficult to make.

In addition, the results are often dependent upon the type of problem solved and

the setup of the neighborhood structure selected. However, many authors have

tested the algorithm against other heuristics. Eglese [19] provides an excellent

review of this topic. Johnson, Aragon, McGeoch, and Schevon [32] [33] and van

Laarhoven [36] demonstrated that SA had significantly better results than repeating

a descent algorithm using different random starting positions. Johnson et al. [32]

[33] found that: (1) in the graph partitioning problem SA outperformed traditional

algorithms on random graphs but was beaten on graphs with built-in-geometric

structures; (2) in the graph coloring problem, when large amounts of computing

time are available, SA dominates traditional techniques and; (3) for number partition­

ing, SA is inferior to the differencing algorithm of N. Karmarkar and R.M. Karp.

Finally, Hertz and de Werra's [28] tabu search technique was superior to SA on the

graph coloring problem while Bland and Dawson's [3] use of SA proved better

than the tabu search for layout optimization problems.

Because the shelf management problem and its feasible solutions can be

clearly formulated, and a neighborhood structure explicitly defined, we felt that SA



could be used to find a good solution. The programming language, C++, was used

to develop the SA algorithm.

Before we detail the SA procedure for the shelf management problem we

define a few terms.

1. Objective function (Equation (6»-The total return on inventory generated

by a give space allocation.

2. Trial-The process of evaluating a specific shelf allocation against the

specified constraints, calculating the category return on inventory using

the shelf allocation and model, and calculating the value of the acceptance

function.

3. Delta (6)-The difference in the value of the objective function in two

successive trials. A poor shelf allocation will produce a negative delta.

4. Annealing schedule-A set of SA parameters that control the rate at

which the probability of accepting a poor shelf allocation declines and

the conditions for terminating the search.

a. Control parameter (T)-An annealing schedule parameter selected

by the researcher to control the probability of accepting a poor shelf

allocation.

5. Acceptance function-The specific function whose value represents the

probability of accepting a poor shelf allocation. Shelf allocations with

positive deltas are always accepted. The probability of accepting poor

shelf allocations is a function of the annealing schedule.

6. Run-The sequence of trials from an initial random shelf allocation to

the termination of the SA search heuristic.

Figure 2 details the simulated annealing process. The search procedure starts

with a randomly selected allocation (a feasible allocation of space to the SKUs).

The return on inventory for this shelf is calculated. A new shelf allocation is

randomly selected within the "neighborhood" of the original one. Consistent with

retailer practice, a neighborhood move is an exchange between items. This may

represent simply an exchange of one facing of one item for another, or if the items

are different sizes (package widths), multiple items may be involved in one neighbor­

hood exchange. As this process continues new items are continually added or

deleted from the assortment.

The category return on inventory of this new allocation is compared against

the return on inventory from the previously accepted shelf set, and if it is larger,

the new allocation is automatically accepted. However, if it is smaller, it may still

be accepted based on the following acceptance function: e(A;I6n where: (1) 6 is the

difference between the value of the current and prior objective function (the smaller

the value of 6 the higher the probability of accepting a poorer shelf allocation);

(2) T is a control parameter representing the number of trials (the higher the value

of T the lower the probability of accepting a poorer shelf allocation) and; (3) k is

a scaling factor. The process ends when the stopping criteria is reached.

The programming language, C++, was used to develop the SA algorithm.

A Small Category Test of the SA Heuristic

To evaluate the SA heuristic a six-SKU category example was generated, and the

category return on inventory calculated using both SA and complete enumeration



Figure 2: Modified demand.
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of all possible shelf allocations. The total category space was 24 facings with each

SKUs space constrained to lie between 0 and 12 facings. Since the focus here was

an evaluation of the heuristic, the package width, retail price, and gross margin of

each SKU was assumed to be identical. Using these constraints, there are 92,547

feasible shelf combinations from the 4.8 million total shelf combinations. The

effectiveness of the SA algorithm can be evaluated by comparing its results against

the global optimum achieved through complete enumeration.

Six-SKU Category Parameters. The reviewed literature provides an indication

of the range of parameter values for the shelf management model variables. Space

elasticities have been reported in [1] [7] [13] [17]. Though the term resistance to

compromise has not been formally defmed in the literature, outside of the push-pull

model [23], the concept is often represented by out-of-stock purchase behavior [22]

[46] [47] [49] [54]. The selected parameters are presented in Table 1. Amore complete

description of the distributions used to derive the parameters is presented later.

Six-SKU Results. Table 2 presents the shelf allocations which produced the 10

highest and 10 lowest category return on inventory levels. The mean and standard

deviation across all feasible combinations were 11.48 percent and .49 percent,

respectively. As revealed in Table 2, there were a number of shelf allocations that

produced category return on inventory levels near the global optimum. This ability

to approximate an optimal solution indicates that a search algorithm that approaches

the global maximum, but does not necessarily achieve it, is a useful alternative to

a complete enumeration. The bottom half of the table also reveals that making

arbitrary assortment and space decisions may lead to poor returns. The approximately

3 percent difference in return on inventory between the best and poorest shelf

arrangements translates into approximately 40 units of product. Given the assumption

that return on inventory was during one restocking period, and the large number

of categories within a typical store, the loss in profits over a year would be substantial.

In order to test the SA heuristic on the shelf management problem a range of

annealing schedules was selected, and 25 runs were made for each schedule. The

three parameters that constituted the annealing schedule were: (1) stopping criteria

(i.e., when the search is terminated); (2) number of trials until the control parame­

ter, T, is increased; and (3) the scaling factor, k. Each run began at a randomly

selected shelf allocation.

To illustrate the search process, the annealing schedule parameters 15, 5, and

2 were selected; 15 represents the stopping criteria (e.g., after 15 consecutive trials



Table 1: Parameters for the 6-item category.

Unmodified Demand and Resistance to Compromise

Item Pi Alpha

1 28.53 .45

2 23.62 .40

3 25.59 .35

4 22.40 .28

5 15.62 .19

6 10.50 .10

SKU Space Elasticities

Item 2 3 4 5 6

1 .1532 -.0630 -.0100 -.0089 -.0101 -.025

2 -.048 .2273 -.0159 -.0303 -.0101 -.001

3 -.0232 -.0463 .2089 -.0504 -.028 -.012

4 -.0242 -.0606 -.0628 .2143 -.030 -.024

5 -.0130 -.0571 -.0165 -.0296 .2955 -.058

6 -.0125 -.0543 -.0221 -.0239 -.074 .3104

which are not "accepted," the run terminates; 5 is the number of trials until Tis

increased; and 1 is the scaling factor). A randomly assigned initial shelf allocation

was selected for each SA run.

Figure 3 displays the search process for runs 3 and 5. These runs demonstrate that

the search algorithm explores a number of hills and valleys as it progresses. In

addition, despite the fact that the runs started at significantly different shelf allocations,

they are converging to the same category return on inventory level and leveled out

when the search was terminated. The global optimum (return on inventory-14.193

percent) was found in all 25 runs. The mean number of trials was 726 which

represents only .7 percent of the total number of shelf allocations (92,547).

This process was repeated for each of the 48 different annealing schedules

selected. Each annealing schedule was evaluated on (1) the average number of

trials until the search was terminated, (2) the average maximum return on inventory

reached, (3) the standard deviation of these maximums, and (4) the number of

global maxima found during the 25 runs. Based on these reSUlts, the annealing

schedule of stopping criteria 15, control parameter 15, and scaling factor 2 was

selected. (Details of the process of selecting the best cooling schedule can be found

in Borin [4].)

Conclusion for the Six-SKU Category. Our analysis suggests that SA can be

used to obtain "good" shelf allocations using our shelf management model. In

addition, the number of trials required to fmd a "good" shelf allocation is substantially

below the total number of possible shelf arrangements. However, a larger category

will have many more items to make alternative exchanges and may require much

longer search times than an annealing schedule of 15-15-2 would produce. A



Table 2: Results from a complete enumeration of the 6-item category.

Category
Space

ROI(%) Item 1 Item 2 Item 3 Item 4 Item 5 Item 6

10 Best Shelves

12.42 4 2 7 2 9 0

12.419 4 2 8 2 8 0

12.413 4 2 6 2 to 0

12.413 3 2 8 2 9 0

12.413 5 2 7 2 8 0

12.412 4 2 9 2 7 0

12.41 3 2 7 2 10 0

12.41 5 2 6 2 9 0

12.409 3 2 9 2 8 0

12.408 5 2 8 2 7 0

10 Poorest Shelves

9.033 0 1 0 0 11 12

9.053 0 1 0 0 12 11

9.081 0 0 0 1 11 12

9.096 0 0 1 0 11 12

9.1 0 0 0 1 12 11

9.115 0 0 1 0 12 11

9.233 0 2 0 0 10 12

9.249 1 0 0 0 11 12

9.254 0 2 0 0 11 11

9.268 1 0 0 0 12 11

9.272 0 2 0 0 12 10

conservative approach would involve increasing the number of trials until a stable

shelf arrangement has been reached for a repeated number of trials.

Simulated Annealing Results for a Ketchup Category

In order to further test the performance of SA on the shelf management problem,

data from a ketchup category were collected from a local supermarket. The ketchup

category was chosen because it has a relatively large number of items and has

clearly defmed boundaries.

To facilitate the exchange of different sized packages the space of each item

was standardized, with the smallest bottle occupying one shelf facing. For example,

each spot occupied by Heinz 64 oz. is equivalent to approximately three bottles of

Heinz 14 oz. Using this measure, the ketchup category occupied 241 standard

facings. Furthermore, if an item is selected as part of the category's assortment, it

must have a minimum number of facings to allow all the bottles in one case to fit

on the shelf. For example, Heinz 32 oz. has a case pack of 24 items and has 5

items per facing. Therefore, it must be allocated a minimum of 5 actual or 10

standard facings across. Although each item could conceivably receive all of the



Filure 3: Pseudocode for the simulated annealing algorithm.

Generate an initial Shelf I

Calculate ROI(I)

Repeat

Set T increment counter to 0

Repeat

Generate J a Neighbor of I (Exchange I facing of 2 Random Items)

Calculate ROI (1)

Delta - RDI(1) - ROI(I)

HDelta > 0

I-J

If ROI(J) > Max ROI

Max ROI - ROI J

Max Shelf- J

Stopping Criteria - 0;

Else

If random(O,I) > exp(kJDelta*T»

I-J

Stopping Criteria - 0;

Else

Stopping Criteria + 1;

T counter + 1;

until T counter = Increment Level

until stopping criteria is reached

category space, it was decided to limit the maximum number of standard facings

any item could receive to be 2S percent of the total category facings, that is, 60.

The parameters found in the literature again served as a guide to the selection

of the shelf management model parameters. The unmodified preferences were first

selected. It was assumed that the larger the current space allocation, the higher the

items unmodified preference. Therefore, Pi was estimated as each SKU's share of

the current total category space. This is demonstrated in Table 3.

The selected values for the alpha, resistance to compromise, ranged from S

percent to 4S percent and are presented in Table 3. Items with stronger preferences

and larger space allocations were assumed to have higher levels of brand loyalty

measured by resistance to compromise.

Consistent with the work of Bultez and Naert [6] each item's own space

elasticity, Yjj, varied inversely with its unmodified preference. Thus, those items

with higher consumer preferences would be less responsive to increases in space

allocation and therefore would have lower values of elasticity. A truncated normal

distribution (minimum-O, maximum-l.O) was selected to assign each item a space

elasticity. A single sample from the truncated normal distribution was drawn and

is presented in the final column in Table 3. These values will be used as a measure

of each item's direct space elasticity.

To select a range of values for the cross-space elasticities two assumptions

were made: (1) the sales that any specific SKU will gain from an increase in its



Table 3: Unmodified preference, resistance to compromise and space elasticity for

the ketchup category (each SKU's cross space elasticity, Yij' is available from the

authors).

Facings P j -

Product Size (oz.) Across Facings,l241 Alpha a j Yu

Private Brand 32 46 .194 .450 .109

Heinz 32 32 .109 .450 .118

Hunt 40 16 .048 .380 .156

Del Monte 44 21 .081 .420 .088

Heinz 14 7 .028 .420 .221

Heinz 40 16 .059 .440 .196

Cost Cutter 32 18 .060 .400 .178

Private Brand 40 12 .059 .250 .181

Del Monte 32 12 .041 .270 .263

Heinz 64 12 .063 .230 .134

Heinz Hot 14 4 .018 .050 .296

Hunt 44 12 .053 .260 .202

Private Brand 64 12 .045 .220 .211

Hunt 32 6 .015 .150 .264

Hunt No Salt 14 3 .008 .100 .342

Featherweight 14 2 .011 .050 .358

Heinz 28 8 .019 .180 .171

Heinz Lite 13 2 .008 .100 .304

own space cannot exceed the sales given up from the remaining SKUs, that is,

there is no category sales effect from space changes; and (2) the elasticities are

calculated when the sales of all items are identical. Although these two assumptions

are quite strong, it permits a basis for setting the cross-space elasticities. When

these two assumptions hold, the cross-space elasticities must sum to the direct

elasticity in any column of the space elasticity matrix. Using these relationships, a

space elasticity matrix was formed for the ketchup category. Each cross-space

elastic value, within a column, was calculated by sampling from a truncated normal

distribution (minimum--1, maximum"O) with a mean equal to lul17 (every column

had 17 cross-space elasticities). A small standard deviation (.003) was introduced

to provide some variability among the cross-space elasticities. (Cross-space elas­

ticities are available upon request from the authors.)

Ketchup Category Results. Twenty-five randomly selected shelf allocations

served as the starting point for the SA run. Using the annealing schedule of IS, IS,

and 2 the results were: (1) return on inventory ranged from 13.4 percent to 16.1

percent with a standard deviation of .7 percent; and (2) number of trials averaged

523. We attempted to reduce the range of return on inventory by increasing the

number of trials through a new annealing schedule. Based on these results an

annealing schedule of stopping criteria 25, 25 trials until Tis changed, and a scaling

factor of 1 was selected. Figure 4 presents the category return on inventory from

the explored shelf allocations of runs 15 and 18. The graphs indicate that the search

has leveled off.



Figure 4: Simulated annealing search for the six-item optimwn shelf arrangement

annealing schedule 15-15-2.



Table 4: Simulated annealing results for the ketchup category.

Maximum

Trials Until Category Standard Facings Items

Exit ROI (%) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

502 15.13385 44 46 4 51 0 0 26 6 0 21 0 18 24 0 0 1 0 0

1274 15.4749 58 22 4 60 0 0 10 0 0 15 0 57 15 0 0 0 0 0

1196 15.60505 42 20 0 60 0 6 32 0 0 15 0 54 12 0 0 0 0 0
725 15.65921 58 20 0 51 0 6 22 0 0 15 0 57 12 0 0 0 0 0

828 15.69959 48 22 0 51 0 0 36 0 0 15 0 57 12 0 0 0 0 0
887 15.75707 44 20 0 57 0 6 42 0 0 15 0 42 15 0 0 0 0 0
958 15.76892 38 20 0 60 0 6 48 0 0 15 0 42 12 0 0 0 0 0
825 15.78741 34 18 4 54 0 4 54 4 0 15 0 42 12 0 0 0 0 0

1264 15.78875 40 20 0 48 0 6 46 0 0 15 0 54 12 0 0 0 0 0
1441 15.7917 38 18 0 39 0 6 50 0 0 15 0 60 15 0 0 0 0 0
591 15.81682 36 18 0 54 0 6 54 4 0 15 0 42 12 0 0 0 0 0

1099 15.8415 42 20 0 51 0 0 50 0 0 15 0 48 15 0 0 0 0 0

809 15.87207 40 20 4 36 0 0 54 0 0 15 0 60 12 0 0 0 0 0
939 15.89147 52 18 0 57 0 6 48 0 0 15 0 30 15 0 0 0 0 0

1092 15.95811 40 20 0 45 0 6 58 0 0 15 0 45 12 0 0 0 0 0
1189 15.96582 52 18 4 30 0 6 50 0 0 15 0 54 12 0 0 0 0 0

967 16.02314 44 22 4 27 0 0 60 0 0 15 0 57 12 0 0 0 0 0
840 16.04101 46 26 0 15 0 6 60 4 0 15 0 57 12 0 0 0 0 0
750 16.05536 44 28 4 45 0 6 60 0 0 15 0 27 12 0 0 0 0 0

858 16.0989 52 22 4 21 0 6 60 4 0 12 0 48 12 0 0 0 0 0
541 16.10292 52 20 4 33 0 0 60 0 0 15 0 45 12 0 0 0 0 0
829 16.1031 50 20 0 33 0 0 60 0 0 15 0 48 15 0 0 0 0 0
599 16.12344 46 50 0 21 0 6 60 4 0 15 0 24 15 0 0 0 0 0
881 16.26441 60 28 0 33 0 6 60 0 0 15 0 27 12 0 0 0 0 0
841 16.34664 58 54 0 18 0 6 60 0 0 15 0 18 12 0 0 0 0 0

Mean Trials Mean ROI St. Dev.

(%)

909 158.7885 .2528



Table 5: Comparative perfonnance of the simulated annealing heuristic and the

rule of thumb-Share of shelf - Share of sales.

Heuristic

Simulated Annealing

Share of Shelf - Share of

Sales (Identical Assortment)

Share of Shelf - Share of

Sales (Total Assortment)

ROI(%)

16.47

12.70

11.21

Decrease in ROI from

Maximum (%)

NA

23

32

Table 4 lists the results for each of the 25 runs. The return on inventory range

is now only 1.2 percent, with 24 of the runs within 1 percent of each other,

demonstrating a convergence towards the same return on inventory level. The

maximum return on inventory for the category was found to be 16.46 percent return

on inventory with the shelf allocation indicated in Table 4. Eleven of the 18 items

were not chosen as part of the final assortment.

Figure 4 and Table 5 clearly demonstrate that a randomly selected shelf arrange­

ment can produce significantly poorer results than that achieved with the simulated

annealing algorithm. The simulated annealing search improved the ketchup category's

return on inventory by approximately 7.5 percent from the initial starting point.

However, alternative shelf management methods exist that also assist retailers with

space allocation. We now tum to one such method.

COMPARATIVE ANALYSIS WITH MANAGEMENT RULES
OF THUMB

The perfonnance of the SA heuristic is compared to the results achieved using a

proportional shelf allocation rule. One of the most frequently used methods a

retailer uses to detennine space for each SKU is to allocate space to an SKU in

approximate proportion to its historical share of category unit sales. Those SKUs

with more sales will earn more shelf space than those SKUs which do not sell well.

In addition, if there is a minimum stocking requirement (at least one case), the best

selling items will always have proportionately less space than slower selling items.

This method suffers from the following disadvantages.

1. The causal direction is assumed to flow from sales to space.

2. It is only a space allocation rule. A retailer must have a priori decided on

the assortment before using this rule.

3. The method assumes a linear relationship between space and sales.

The shelf management model was used to calculate the item and category sales

when used with a rule that specifies an SKU's space allocation equal to its share

of unit sales. The rule was used on both the total assortment of items within the

ketchup category and on the best assortment found with the SA algorithm. Standard

facings and minimum and maximum facing constraints were observed. Given a

shelf allocation for each stocked SKU, the sales for each SKU were calculated



Figure 5: Simulated annealing search for the eighteen item ketchup category anneal­

ing schedule 25-25-1.
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using the shelf management model. The resulting shelf allocation was calculated

using the rule of thumb, the shelf management model was rerun, and a new set of

SKU and category sales was calculated. This process was repeated until the same

shelf configuration appeared on successive occasions. Nine different starting shelf

allocations were used. Using this scheme a stable shelf allocation was found in

under 20 iterations, and the ftnal allocation reached was identical in eight out of

nine cases. The one shelf location that differed varied only in the space allocation

between two SKUs.

The return on inventory produced from the ftnal shelf arrangement using the

share of shelf decision rule is displayed in Table 5. Even when applied to an optimal

assortment, allocating space according to a proportionality rule led to a return on

inventory reduction of 23 percent. Aggregated across time periods and categories,

this would lead to a signiftcant drop in proftts for the retailer. One of the major

strengths of the SA algorithm is its ability to escape from a local optimum. Since

the rule of thumb is not a search routine, it cannot perform this function and will

unlikely lead to the best shelf allocation.

CONCLUSION

The results demonstrate a shelf management model that incorporates both space

and assortment effects. More importantly, the SA search heuristic finds a "good"

shelf allocation within a relatively small number of trials. The algorithm is flexible

enough to allow for alternative category and package sizes and different restocking

practices such as by item or by case. The comparative analysis between different

shelf stocking rules and algorithms reveal that retailers who ignore assortment/stockout

effects, or base their space allocation on proportionality rules, may be losing sub­

stantial amounts of sales.

Future research in shelf management might investigate how optimal shelf

arrangements change depending upon whether the objective function is sales, dollar

profit, gross margin return on inventory, or another measure which would include

costs of restocking, such as direct product profitability.

Extensions of the model could include multiple objectives, such as minimizing

stockouts or maximizing assortment within a category. The authors are presently

working on an analysis of the sensitivity of the model to errors in the parameter

estimates to help determine the circumstances under which its application is best

suited. This work will help address the concerns about the level of measurement

accuracy required to support a given model formulation. [Received: January 28,

1993. Accepted: May 16, 1994.]
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