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Abstract

The formation of a thin film by (i) the slow penetration of a gas bubble into
a liquid filled tube, (ii) the withdrawal of a planar substrate from a liquid filled
gap, is investigated theoretically for the cases of both Newtonian and shear
thinning liquids; the latter conforming to either a power law or Ellis model.
Formulated as a boundary value problem underpinned by lubrication theory,
the analysis gives rise to a system of ordinary differential equations which are
solved numerically subject to appropriate boundary conditions. For Newtonian
liquids comparison of the predicted residual film thickness for a wide range of
capillary number, Ca ∈

(

10−4, 10
)

, is made with others obtained using existing
expressions, including the classical one of Bretherton, in the region of parameter
space over which they apply. In the case of (i), prediction of the behaviour of
the residual fluid fraction and gap-to-film thickness ratio, for a Newtonian liquid
and one that is shear-thinning and modelled via a power-law, is found to be in
particularly good agreement with experimental data for Ca < 0.2. For (ii), both
shear thinning models are utilized and contour plots of residual film thickness
generated as a function of Ca and the defining parameters characteristic of each
model.

1 Introduction

The formation of a continuous thin liquid film, of residual thickness H∞, directly
onto a regular or irregular rigid substrate, following the displacement of one fluid
phase (usually a liquid) by a second (normally a gas), occurs both naturally and
as part of numerous engineering applications. Examples include: oil extraction in
porous media [1]; gas assisted injection molding [2]; a vast array of coated prod-
ucts [3]; the lubrication of machine parts [4]; respiration and the functioning of the
lung [5, 6]. In essence, it is a ubiquitous process which depends on one, or a com-
bination, of the following [7, 8]: viscous, surface tension and, at high speed, inertial
forces. Not surprisingly, it has attracted a great deal of attention from researchers
in an effort to understand and model the problem.

A flow geometry commonly employed for investigating the above involves the forma-
tion of a thin film on the inner wall of a smooth circular, liquid filled, tube of radius
R by the slow penetration (speed Ub) of a long gas bubble. This has many similar-
ities to the situation encountered in slot and knife coating flows, in which a planar
substrate is withdrawn (speed Us) from a liquid filled gap of width C; the difference
being the change of reference from that of a stationary wall and moving gas-liquid
interface to one of a stationary interface and moving substrate, see Figure 1.

[Figure 1 here.]

Fairbrother and Stubbs [9] are arguably the first to have investigated the problem
experimentally for the case of Newtonian fluids (density ρ, viscosity µ, interfacial
surface tension σ), arriving at the following empirical relationship for the residual
volume fraction, m, of liquid remaining on the wall of a tube, following displacement
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by an air bubble, in terms of capillary number, Ca = µUc/σ (ratio of viscous to
surface tension forces), where Uc is the appropriate characterisitc velocity, either Ub

or Us:

m =
√

Ca, for Ca ∈
(

0, 1.5 × 10−2
)

, (1)

Subsequently, Taylor [10] and Cox [11] undertook similar studies, the upper limit
for Ca being 2 and 10, respectively. In addition, Taylor extended the upper range of
validity of the Fairbrother & Stubbs’ relationship to Ca = 0.09. The work of these
two authors confirmed Ca to be the dominant factor in determining the residual
volume fraction; the latter asymptoting to the value 0.56 (Taylor) and 0.6 (Cox),
with increasing Ca. In their experiments, Marchessault and Mason [12] used the
electrical resistance of a liquid within a capillary tube to measure the residual volume
fraction deposited on the wall of the tube which, for Ca ∈ (7× 10−6, 2× 10−4), they
determined to be proportional to

√
Ca, in agreement with equation (1).

Bretherton [13] investigated the same problem analytically for Ca ∈
(

0, 5 × 10−3
)

.
Beginning from the lubrication approximation and using the method of matched
asymptotic expansions he derived the following relationship for the ratio of the
residual film thickness to meniscus radius of curvature, RC (which, for thin films
can be taken as R the tube radius, with H∞/R << 1):

H∞

R
= 0.643 (3Ca)

2

3 = 1.337 (Ca)
2

3 , for Ca ∈
(

0, 5 × 10−3
)

; (2)

the constant, 0.643, having been obtained numerically.

Schwartz et al. [14] have shown the close relationship between equation (2), and
those of Landau-Levich [15] and Frankel [16] for the case of a planar substrate and
a soap film, respectively, withdrawn from a bath of liquid, noting the ability of all
three to predict reasonably well the asymptotic film thickness for small Ca. See also
the more rigorous derivation of the Bretherton expression (including higher order
terms) by Park & Homsy [17].

Ruschak [18], on the other hand, investigated the flow in the nip region formed by
two rigid, partially submerged, long, horizontally-aligned cylinders, counter-rotating
at the same peripheral speed. Using the method of matched asymptotic expansions,
it is shown that the first order terms of the inner expansion, close to the point
of formation of the meniscus, give rise to the momentum and continuity equations
describing the two-dimensional flow there, plus attendant constraints. This free
boundary problem was solved numerically using the finite element method and a
plot of H∞/C against Ca ∈ (10−2, 10) presented, showing good agreement with the
classical analysis of Coyne & Elrod [19]. The latter derived a set of ordinary differen-
tial equations as a model for the problem of a coated film formed by the withdrawal
of a planar substrate from a flooded gap, which they solved numerically, subject
to appropriate boundary conditions, for the free surface profile and local meniscus
curvature. Their model has since been used extensively to predict the performance
of lubrication like geometries with free surfaces present - its capillary number range
of applicability, Ca ∈ (0, 0.1), being greater than that of the Bretherton expression
- see for example [20, 21, 22, 23].

From his finite element results, Ruschak suggests an approximate alternative (his
equation (5.2)) to equation (2), which he describes as somewhat more useful:
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H∞

C
= 0.54

√
Ca for Ca ∈

(

10−2, 10−1
)

. (3)

Expressions such as (2) and (3) have been employed when developing simple predic-
tive mathematical models, based on lubrication theory, of forward [24, 25, 26] and
reverse [27] roll coating problems, which are seen to compare well with finite element
solutions of the corresponding full, two-dimensional free-surface Stokes’ problem.
The major limitation on their use, however, is that in practice a non-constant menis-
cus curvature is to be expected for Ca > 10−3. An example of this is the reservoir
fed rigid roll coating problem investigated by Thompson et al [27]; equation (3) was
employed in their lubrication formulation. While comparison with details detailed
flow visualisations and corresponding finite element solutions shows that although
the film thickness to gap ratio is consistent the shape of the film-forming meniscus
is parabolic, rather than circular, thus having a non-constant radius of curvature.

Film forming models in the case of non-Newtonian liquids are less well developed
and fewer in number. For shear thinning liquids obeying a power law [28], Weinstein
& Ruschak [29], provide the following relationship for predicting the residual film
thickness, H∞, associated with the withdrawal of a substrate from a fluid filled gap:

H∞ = [K (n)RC ]
3

2n+1

[

λUs

σ

]
2

2n+1

, K (n) = 2.553e−0.65n, (4)

This equation has the same form as that derived by Gutfinger & Tallmadge [30] who,
using the method of matched asymptotic expansions, modelled the withdrawal of a
shear thinning lubricating film from a bath of liquid. Equation (4) is recovered from
that of Gutfinger & Tallmadge by replacing their gravity dependent term with the
empirical variable K (n); λ, is the power law consistency factor; n, the power index;
when n = 1, that is the fluid is Newtonian, K = 1.34 and equation (4) reduces to
the classical Bretherton expression, equation (2).

Returning to the problem of residual films formed on the inside wall of a tube,
Kamisli & Ryan [31] examined the process for a shear thinning liquid displaced
by a finite air bubble forced slowly along its length at a constant speed. As well
as conducting detailed experiments, they used the method of matched asymptotic
expansions, in much the same way as Bretherton [13], to develop inner and outer
solutions, incorporating a power law model. The conclusion they drew was that
their approach was inadequate for predicting the film thickness, attributing this to
a lack of accuracy when determining the curvature of the bubble. In a subsequent
paper [32], they investigated the same problem but this time for the case of a shear
thinning liquid displaced by a semi-infinite bubble. The model they developed pre-
dicts, qualitatively, that the residual film thickness decreases as the level of shear
thinning increases. The main focus of their second paper, however, was the blowout
time for open ended tubes (no constriction at the tube exit) and led to an interesting
analysis of the velocity of the bubble front along the length of the tube as a function
of shear thinning behaviour.

A number of computational studies have been undertaken of free surface flows of
visco-elastic fluids (the current analysis is restricted to generalised Newtonian Fluids
only - i.e. when the Weissenburg number goes to zero). The visco-elastic nature
of the fluid together with the requirement to establish the free surface location as
part of the solution make such problems complex. In addition to the conservative
equations, the general conformation tensor based constitutive equation must be
solved, from which the polymeric contribution to the stress tensor is obtained [33,
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34]. Lee et al [35] modelled the planar two dimensional Hele-Shaw free surface
problem and were able to capture the decrease in residual film thickness for low fluid
elasticities (Weissenberg number) followed by an increase in residual film thickness
as the Weissenberg number increases further. The stress boundary layer at the free
surface was also resolved and shown to be responsible for thickening of the coating
due to the strong positive normal stress gradient in the flow direction leading to a
weakening of the recirculating flow upstream of the free surface stagnation point.

Further analysis of visco-elastic fluid flow includes the work of Romero et al. [36] and
Bajaj et al. [37] who studied the slot coating of visco-elastic fluids onto a moving
substrate as well as the work of Quintella et al. [38] who examined both computa-
tionally and experimentally the displacement of a visco-elastic fluid filled capillary
tube by a semi-infinite slug of air. This work complements the experimental study
of Huzyak and Koelling [39] who undertook an experimental investigation of the
penetration of a bubble through a viscoelastic fluid and found that as the fluid be-
comes more viscoelastic the fractional coverage of fluid left on the tube increases.
However this result was found to be highly dependent on the diameter of the tube.
The complexity of the computational models for visco-elastic fluids illustrates the
need for a simplified model capable of capturing the physics of the fluid film depo-
sition process, one such model was developed by de Ryck and Quéré [40] who used
a very elegant lubrication based asymptotic analysis - assuming a Poiseuille veloc-
ity profile - to obtain an equation describing the residual fluid film deposited on a
wire withdrawn from a fluid filled gap. With only a single adjustable parameter,
obtained from experimental data, the analysis provides a useful tool to enable the
influence of the different parameters effecting the process to be examined. A sim-
ilar analysis was undertaken by Ashmore et al. [41] who developed a more general
analysis for a range of different geometries in the limits of when the fluid rheology
is either dominated by shear thinning effects or elastic effects. In common with the
analysis of [40] a quadratic velocity profile is assumed as the constitutive equations
lacked an analytical solution. Their model showed excellent qualitative agreement
with the experiments they undertook, with quantitative agreement observed for the
shear-thinning dominated flows.

This paper revisits the film-forming problem, using lubrication theory to analyse
the withdrawal of a planar substrate from a gap filled with a shear thinning liquid,
Figure 1(a), whose viscosity follows either a power law or Ellis relationship [42, 43],
resulting in a well defined boundary value problem. The associated mathematical
model is developed in section 2 in terms of the shear thinning model of choice; de-
scribed also is the method of solution - section 3. Results follow in section 4, with
comparisons made of predictions of residual film thickness for both Newtonian and
shear thinning liquids against the experimental data of Kamisli & Ryan [31]; in
addition contour plots of residual film thickness generated, using both shear thin-
ning models, as a function of Ca and their characteristic defining parameters, are
discussed. Conclusions are drawn in section 5.

2 Mathematical Model

[Figure 2 here.]

Figure 2 defines the flow geometry and coordinate system employed; a local system
aligned with the free surface, which is pinned at the tip of the stationary side of
the flooded gap, is specified in which the flow is assumed to be perpendicular to it
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rather than the rigid planar substrate sweeping liquid from the gap. The steady,
inertialess, isothermal flow of an incompressible liquid is governed by the Stokes and
continuity equations, namely:

0 = −∇P + ∇ (η∇U)

0 = ∇ · U,
(5)

where η and P are the liquid viscosity and pressure, while U = (U, V ) and X =
(X, Y ) are the velocity and spatial components of the flow, respectively.

Since the solution domain of interest has a length much greater than the surface
separation, H ′ ∈ [0, C], by invoking the usual lubrication assumptions the above
reduce to the following single equation:

dP

dX
=

dτ

dY
, (6)

where τ = η dU
dY

is the shear stress as a function of the shear rate, dU
dY

.

As the viscosity of the gas phase can be assumed much less than the liquid phase
then, at the free-surface, Y = 0, τ = 0, and on integrating equation (6) subject
to this condition the following equation, describing the shear stress of a generalised
Newtonian fluid, is obtained:

τ =
dP

dX
Y. (7)

In addition, balancing the pressure discontinuity across the interface and the surface
tension forces as given by the Young-Laplace [3] equation gives:

P = −σ
dθ

dX
. (8)

Two candidate shear thinning models are considered: (i) the power law [28] due
to its simplicity; (ii) the Ellis model [43] which, unlike the former that predicts an
infinite viscosity for zero shear stress, includes a finite zero shear viscosity making
it generally better suited for the analysis of the free surface problem of interest.

2.1 Power Law Formulation

For a shear thinning liquid which obeys the power law, the shear stress is defined [44]
as:

τ = λ

∣

∣

∣

∣

dU

dY

∣

∣

∣

∣

n−1 dU

dY
. (9)

Equating the right hand sides of equations (7) and (9) gives, in non-dimensional
form:

∣

∣

∣

∣

du

dy

∣

∣

∣

∣

n−1 du

dy
=

dp

dx
y, (10)

the following scalings having been employed:
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u =
U

Us
;

(

x, y, h, h′, h∞

)

=
(X, Y, H, H ′, H∞)

C
;

τ =
τCn

λUn
s

; η =
ηCn−1

λUn−1
s

; p =
PCn

λUn
s

.

(11)

From continuity of mass considerations the sign of the pressure gradient is positive,
that is when h ≥ 1 then dp

dx
≥ 0. As y ≤ h the equation describing the velocity

gradient, equation (10), becomes:

du

dy
=

(

dp

dx
y

)
1

n

, (12)

which can be integrated with respect to y to obtain the velocity profile perpendicular
to the free surface, noting that at y = h (the planar moving substrate) the velocity
u(y = h) = cos θ, giving:

u = cos θ +

(

dp
dx

y
)

1

n

ny −
(

dp
dx

h
)

1

n

nh

n + 1
. (13)

The dimensionless flux, q, is obtained by integrating equation (13) from y = 0 to h,
leading to the following expression for the pressure gradient:

dp

dx
=

(

(2n + 1) (h cos θ − q)

nh
2n+1

n

)n

. (14)

Conservation of mass dictates that:

dq

dx
= 0, (15)

while the following geometric relationships hold:

dh′

dx
= sin θ, (16)

dx′

dx
= cos θ. (17)

Non-dimensionalising equation (8) according to (11) gives:

p = − 1

CaP

dθ

dx
; with CaP =

λUn
s

σCn−1
. (18)

Substituting for the pressure gradient given by equation (14) into the velocity equa-
tion, equation (13), gives the location of the free surface stagnation point, u = 0 at
y = 0, as:

h =
2n + 1

n cos θ
q, (19)

the corresponding film thickness, h′ = hcosθ, at which the stagnation point is lo-
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cated, being:

h′ =
2n + 1

n
q. (20)

This result is in clear agreement with the film thickness at the stagnation point as
predicted by the Coyne & Elrod model for Newtonian liquids; indeed plotting h′/q
as a function of n reveals a smooth monotonic transition to the value of 3 at n = 1.

2.2 Ellis Fluid Formulation

Unlike the power law, which relates shear rate and viscosity, the Ellis model relates
shear stress and viscosity as follows:

η =
1

1 +

∣

∣

∣

∣

τ
τ 1
2

∣

∣

∣

∣

α−1 , (21)

based on the following non-dimensional scalings for P , τ and η, together with those
for U, X, Y, H, H ′, H∞ as per (11):

p =
PC

η0Us
; τ =

Cτ

η0Us
; η =

η

η0

; (22)

where η0 is the viscosity at zero shear stress, τ 1

2

is the characteristic shear stress

and α is analogous to the reciprocal of the power index n in the power law model.
Multiplying both sides of equation (21) by the shear rate and rearranging, gives
shear rate as a function of shear stress:

τ + τ

∣

∣

∣

∣

∣

τ

τ 1

2

∣

∣

∣

∣

∣

α−1

=
du

dy
. (23)

Non-dimensionalising Equation (7) using the scalings given by (22), and substituting
for τ in equation (23) gives:

du

dy
=

dp

dx
y +

1

τα−1
1

2

(

dp

dx
y

) ∣

∣

∣

∣

dp

dx
y

∣

∣

∣

∣

α−1

. (24)

Integrating equation (24) with respect to y, and applying the boundary condition
u = cos θ at y = h, leads to:

u =

(

(

dp
dx

y
)α+1

−
(

dp
dx

h
)α+1

)

τ 1

2

1−α

dp
dx

(α + 1)
+

(

cos θ +
1

2

(

y2 − h2
) dp

dx

)

. (25)

Integrating the above again, from y = 0 to y = h, results in the following relationship
between the flux and the pressure gradient:

q =
−3τ 1

2

(1−α)h(α+2) dp
dx

α − h
(

dp
dx

h2 − 3 cos θ
)

(α + 2)

3α + 6
(26)
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Non-dimensionalising equation (8) gives:

p = − 1

CaE

dθ

dx
; with CaE =

Usη0

σ
. (27)

2.3 Boundary Conditions

Five boundary conditions are required to close the problem. These are:

px→∞ =0, (28)

hx=0 =1, (29)

x′

x=0 =0, (30)

θx=0 = − π

2
, (31)

hx→∞ =q. (32)

Condition (31) can be replaced with qx=1 = q, where q is the volume flow rate, if
the contact angle, made with the stationary wall forming the gap - see Figure 2. - is
unspecified but the final film thickness is known. This boundary condition would be
applied in situations where the meniscus is pinned, as is often encountered in blade
coating.

3 Method of Solution

The five first-order ordinary differential equations (15) to (17) and either (i) (14) and
(18) for power law or (ii) (26) and (32) for Ellis fluids together with the constraint
h′ = hcosθ were solved, subject to the boundary conditions (28) to (32) - using the
BVP4c solver which forms part of the MATLAB suite of software tools.

Using continuation (progressively decreasing the error) leads to a stable calculation
procedure with, for power-law liquids, individual data points being calculated in less
than three minutes. The latter time is greatly reduced when generating successive
data values using the previous solution as an initial guess. The only significant
difference in generating solutions for an Ellis liquid is that the pressure field has to
be solved iteratively. The iterative approach adopted makes use of Newton’s method
by writing:

dp

dx

∣

∣

∣

∣

i+1

=
dp

dx

∣

∣

∣

∣

i

−
g

(

dp
dx

∣

∣

∣

i

)

g′
(

dp
dx

∣

∣

∣

i

) , (33)

where i + 1 and i denote the value of the pressure gradient between successive
iteration steps and, from equation (26):

g

(

dp

dx

)

=
−3τ 1

2

(1−α)h(α+2) dp
dx

α − h
(

dp
dx

h2 − 3 cos θ
)

(α + 2)

3α + 6
− q, (34)

with g′
(

dp
dx

)

being the derivative of g
(

dp
dx

)

with respect to dp
dx

. By applying Newton’s

method the pressure gradient equation to be solved is:
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dp

dx

∣

∣

∣

∣

i+1

=
3hα+2

(

dp
dx

∣

∣

∣

α

i
α − dp

dx

∣

∣

∣

i

α)

τ 1

2

1−α + 3 (α + 2) (h cos θ − q)

3τ 1

2

1−αhα+2 dp
dx

∣

∣

∣

i

α−1
α + h3 (α + 2)

(35)

An initial guess for the pressure gradient is obtained by putting α = 1 into equation
(26), which describes the Newtonian case, and rearranging, namely:

dp

dx
=

3 (h cos θ − q)

2h3
. (36)

Accordingly each continuation step uses the pressure field from the previous solution
as the starting point for the next, the first such iterative solution being generated
from the pressure field given by equation (36). Convergence was ensured by iterating
until the difference between successive solutions was less than 10−10.

Note that the pressure gradient when α = 1 given by equation (36) is half that
obtained via equation (14) for a power law liquid when n = 1. This is due to the
dimensionless viscosity as obtained by the Ellis model being η = 0.5 as opposed to
η = 1 for the power law model.

4 Results

Before considering the shear thinning results, those obtained for Newtonian fluids
are compared. Figure 3 is a plot of h∞ against Ca ∈

(

10−4, 10
)

comparing results
from the boundary value problem (BVP) derived here with those for the models
of: Bretherton, Ca ∈ (0, 0.01); Ruschak, Ca ∈ (0.01, 0.1); Coyne & Elrod (CE),
Ca ∈

(

10−4, 10
)

. In all cases agreement is found to be extremely good; that between
the BVP and CE results being particularly so over the entire Ca range considered.

Figure 4 compares the radius of curvature (non-dimensionalised with respect to
C −H∞ rather than C) at the point at which θ = 90◦, showing that as Ca increases
both the BVP and CE solutions predict a decrease in radius of curvature, the extent
of which differs, with the latter predicting a much larger decrease. The CE results
predict that for large Ca the local radius of curvature appears to tend to zero,
whereas the BVP ones suggest that although there is a decrease in local radius of
curvature, as is to be expected due to the increased viscous forces, this is much
more gradual. Both the Bretherton and the Ruschak models result in a radius of
curvature that is unity for all Ca, since they assume a constant radius of curvature,
which is a reasonable assumption at low Ca(< 10−3) only.

[Figure 3 here.]

[Figure 4 here.]

4.1 Power Law Liquids

Figure 5 shows a typical film forming solution obtained with the BVP formulation
for a shear thinning liquid, in this case with n = 0.75 and Cap = 0.005. The
location of the free surface stagnation point is clearly identifiable. The plot also
shows how the pressure recovers monotonically from being subambient at x = 0 to
a downstream reference value of zero beyond x = 1.5. Similarly, the free surface
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velocity is negative between x = 0 and the free surface stagnation point, beyond
which it increases monotonically to the value 1.0 for x > 1.5.

[Figure 5 here.]

Predictions for the formation of a thin fluid film in the case if both a Newtonian
and a shear-thinning liquid, are compared with complementary experimental data
obtained by Kamisli & Ryan [31] (KR) for the case of liquid displaced by the motion
of a semi-infinite bubble through a liquid filled tube. As such, figures 6 and 7 show
plots of residual fluid fraction and gap to film thickness ratios, respectively, against
CaP ∈ (0, 1).

Note that, from the geometry, the film thickness formed, h∞, according to the
solution of the BVP is is related to the residual fluid fraction, m, deposited on the
tube wall by the following equation:

m =
π − π (1 − h∞)2

π
= 2h∞ (1 − h∞) . (37)

[Figure 6 here.]

[Figure 7 here.]

It can be seen that, for CaP < 0.5, the effect of decreasing power index (increasing
shear thinning) leads to a reduction in the final film thickness (or fluid deposited)
and a corresponding increase in gap to film thickness ratio. Agreement is particularly
good in both cases for CaP < 0.2. While it would be expected that as the capillary
number increases the agreement with the experimental results breaks down for both
Newtonian and shear thinning fluids it is interesting to see that this break down
occurs at lower capillary numbers for shear thinning fluids than it does for the
Newtonian case. It is proposed that the reason for this is that in the low shear
rate region (such as the region of recirculating flow) the power law model predicts
unrealistically high viscosities; as the capillary number increases these regions play a
greater role in determining the free surface profile. It is interesting to note that shear
thinning leads to an apparently greater asymptotic limit of residual fluid fraction,
this is consistent with the experimental work of Gauri & Koelling [45] who studied
the motion of bubbles through viscoelastic fluids, which exhibited shear thinning, in
capillary tubes.

Figure 8 is a contour plot for the residual film thickness in terms of the power index
n, plotted vertically, against CaP . It is shown that for all values of CaP the residual
film thickness decreases as the liquid becomes more shear thinning (i.e. decreasing
n). However, care should be exercised with this interpretation in its strictest sense
since the nature of the power law is such that Cap is a function of both C and n; the
two parameters plotted in this figure are, therefore, not truly independent of each
other.

[Figure 8 here.]

4.2 Ellis Liquids

The BVP predictions obtained for an Ellis liquid are shown as two sets of contour
plots for the residual film thickness: firstly, for τ 1

2

against CaE for three values
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of α (note that for the case α = 1 the fluid is Newtonian and the film thickness
is therefore independent of τ 1

2

); secondly, for τ 1

2

against α for three values of CaE .

Figure 9 reveals that an increase in CaE , with τ 1

2

fixed, leads to a rise in residual film

thickness; this is as expected and is in agreement with the Newtonian based theory of
Bretherton. It can also be observed that for α > 1, as τ 1

2

increases with CaE fixed,

the residual film thickness increases, the effect becoming more significant as the
level of shear thinning, α, increases. The reason for this is that as τ 1

2

decreases the

fluid viscosity decreases (for a given CaE and α, see equation (21)), leading to lower
viscous forces and a smaller film thickness. From Figure 10 the effect of changing τ 1

2

,

at a fixed value of α, can clearly be seen to increase the residual film thickness; the
level of increase becoming more pronounced with an increase in shear thinning. For
a capillary number of CaE = 1, a decrease in residual film thickness with increasing
α is observed for τ 1

2

' 0.5. Caution must be applied when considering this result

as the capillary number examined is large and is likely to be around the limit of
applicability of the model.

[Figure 9 here.]

[Figure 10 here.]

Note that although in a fluid bulk the Ellis model reduces to the power law model
when τ >> τ 1

2

, along a free surface the shear stress is zero and the condition τ >> τ 1

2

can not be met there. For this reason the results of the power law model do not
converge to those of the Ellis model for decreasing τ 1

2

.

5 Conclusion

A model for film forming has been derived as a BVP for the case of shear thinning
liquids and which holds in the Newtonian limit. Comparison with earlier work, both
theoretical and experimental, is made and shown to be in good agreement over a
wide range of capillary numbers.

For shear thinning liquids, modelled by a power-law, the agreement between predic-
tion and the experimental data of Kamisli & Ryan [31] is particularly encouraging
and provides confidence in relation to applying the new model for the solution of
a variety of problems involving shear thinning liquids, including many lubrication
and coating flows. However, based on the scant experimental data available for
comparison purposes the rather conservative limit of CaP ∈ (0, 0.2) is suggested
for which the new model is assumed valid; additional good quality complementary
experimental data is needed to assess its true range of applicability.

The work similarly highlights the requirement for new experimental data that can
be used to validate the modelling approach in the case of shear-thinning liquids
conforming to an Ellis description, the form of which includes a zero shear rate
viscosity thus making it more realistic for inclusion in free surface flow analyses.

6 Acknowledgement

The authors wish to thank the reviewers for their insightful comments.

11



References

[1] J. Stark and M. Manga. The motion of long bubbles in a network of tubes.
Transport in Porous Media, 40(2):201–218, 2000.

[2] A. Polynkin, J. F. T. Pittman, and J. Sienz. Gas displacing liquids from tubes:
high capillary number flow of a power law liquid including inertia effects. Chem-

ical Engineering Science, 59(14):2969–2982, 2004.

[3] S. F. Kistler and P. M. Schweizer. Liquid Film Coating - Scientific Principles

And Their Technological Implications. Chapman and Hall, London, 1997.

[4] A. Cameron. Basic Lubrication Theory. Longman, 1979.

[5] J. Rosenzweig and O. E. Jensen. Capillary-elastic instabilities of liquid-lined
lung airways. Journal of Biomechanical Engineering – Transactions of the

ASME, 124(6):650–655, 2002.

[6] J. B. Grotberg and O. E. Jensen. Biofluid mechanics in flexible tubes. Annual

Review of Fluid Mechanics, 36:121–147, 2004.
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Figure 1: Illustration of the similarity between film forming in the case of: (a) the
withdrawal of a planar surface from a liquid filled gap; (b) liquid in a circular tube
displaced by a long penetrating gas bubble.
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Figure 3: Newtonian residual film thickness results as predicted by a range of models,
compared against that predicted by the solution of the BVP.
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Figure 4: Newtonian radius of curvature results, the radius of curvature having been
made non-dimensional by C−H∞ rather than simply C, allowing easier comparison
with Ruschak’s equation to be made (for which a constant radius of curvature of
unity would be observed).
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0.652) liquids.
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Figure 9: Ellis liquids: film thickness contours obtained for log10 τ 1

2

∈ (−2, 0) plotted

against log10 CaE ∈ (−3, 0) and at three different values of α; α (and hence shear
thinning effect) increasing from top to bottom.
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Figure 10: Ellis liquids: film thickness contours obtained for log10 τ 1

2
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plotted against log10 α ∈ (0, 0.4) and at three different values of CaE ; CaE increasing
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