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Abstract: In the fault diagnosis of the flywheel system, the input information of the system is
uncertain. This uncertainty is mainly caused by the interference of environmental factors and the
limited cognitive ability of experts. The BRB (belief rule base) shows a good ability for dealing with
problems of information uncertainty and small sample data. However, the initialization of the BRB
relies on expert knowledge, and it is difficult to obtain the accurate knowledge of flywheel faults
when constructing BRB models. Therefore, this paper proposes a new BRB model, called the FFBRB
(fuzzy fault tree analysis and belief rule base), which can effectively solve the problems existing in
the BRB. The FFBRB uses the Bayesian network as a bridge, uses an FFTA (fuzzy fault tree analysis)
mechanism to build the BRB’s expert knowledge, uses ER (evidential reasoning) as its reasoning
tool, and uses P-CMA-ES (projection covariance matrix adaptation evolutionary strategies) as its
optimization model algorithm. The feasibility and superiority of the proposed method are verified by
an example of a flywheel friction torque fault tree.

Keywords: flywheel fault diagnosis; belief rule base; fuzzy fault tree analysis; Bayesian network;
evidential reasoning

1. Introduction

The flywheel [1] system is a key actuator for spacecraft attitude control, which is
widely used in the aerospace field. The normal operation of a flywheel system is very
important for spacecraft. However, the spacecraft environment where the flywheel system
is located has a harsh operating environment and complex structure. Once a failure occurs,
it will pose a great threat to space safety. Therefore, to ensure the reliability and orderly
operation of the flywheel system, it is of great significance to diagnose the faults of the
flywheel system quickly and accurately.

Many scholars have carried out a lot of research on the fault diagnosis of flywheel
systems. Changrui Chen et al. [2] proposed a 3D associated dimension diagnosis method,
it is improved by K-Medoids clustering technology for different typical states of satellite
flywheel bearings and verified the feasibility of the method through experiments. Xinchang
Zhang et al. [3] developed a set of methods for inputting correct premises, and based on
consistency test results, presented a fault diagnosis model based on finite state machines,
which could locate and diagnose some faults. Junweir Lin et al. [4] proposed a new fault
diagnosis scheme for linear analog circuits. The author constructs a diagnostic evaluator,
which can diagnose faults through digital signals and diagnose media after analyzing and
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modeling the components. Bo Chen et al. [5] studied the distributed fault diagnosis tech-
nology and combined it with software technology, computer network, artificial intelligence
and fault diagnosis to improve the self-fault diagnosis function of an expert system. Zijian
Qiao et al. [6] proposed a second-order stochastic resonance method based on fractional
derivative enhancement, which uses strong background noise to enhance the weak fault
characteristics. It is used for mechanical fault diagnosis. Wenjun Sun et al. [7] studied a
deep neural network based on a sparse self-code device for induction motor fault diagnosis.
This method is used in the sparse automatic process to add noise encoding using the sparse
automatic learning feature, which is the unsupervised feature learning that is required to
measure the data without marking. Yao Cheng et al. [8] studied a set of combined fault
diagnoses based on observer redundancy in the background of a satellite attitude control
system. The modified scheme can solve actuator and sensor faults that are difficult to solve
by traditional methods.

It can be seen from the above, most of the existing flywheel fault diagnosis schemes
are designed on the basis of the data-driven method [9]. However, the current flywheel
fault diagnosis still lacks an effective diagnosis scheme for the following two problems:
First, the model accuracy cannot be guaranteed under small sample data. It is difficult to
obtain accurate diagnosis results by using small sample data in actual fault diagnosis. This
is because in the system life cycle, it is difficult to obtain a large number of flywheel fault
samples, and more difficult to obtain fault samples under different fault modes; second,
the black box model has the disadvantage of unexplainable diagnostic processes.

BRB (belief rule base) is a general rule-based reasoning method proposed by Yang
Jianbo et al. [10] on the basis of evidentiary reasoning, which has important applications in
mechanism analysis [11], health status assessment [12,13] and fault diagnosis [14]. BRB is
suitable for flywheel systems, mainly reflected in three aspects: First, BRB can effectively
describe the uncertainty of flywheel systems; second, the BRB modeling method is suitable
for flywheel systems. It uses expert knowledge for modeling and data for model training;
third, BRB has shown to be a good treatment effect for small sample problems. However,
applying BRB to the actual fault diagnosis of the flywheel system cannot solve problems
such as the difficulty in constructing an expert knowledge base, the unclear logical rela-
tionship between the flywheel fault events and the unclear fault index. FFTA (fuzzy fault
tree analysis) [15,16] enables the logical relationship between different events to be clearly
expressed. This is because FFTA can present the cause of failure and events caused by this
cause in the form of a fault tree from the perspective of the fault mechanism. At the same
time, FFTA makes the occurrence probability of each event in the fault tree better describe
the uncertainty, because it introduces the theory of fuzzy mathematics. The combination
of FFTA and BRB not only enables the fault index to be clearly established and the event
fuzziness to be better described, but also enables the advantages of BRB to be applied in the
fault diagnosis of the flywheel system, which makes comprehensive use of the advantages
of the two. Therefore, this paper establishes the FFBRB (fuzzy fault tree analysis and belief
rule base) model, which makes full use of the FFTA and BRB’s advantages.

The main contributions of the FFBRB model proposed in this paper are as follows: (1)
The way FFTA is used to build the initial BRB model. In this paper, the FFTA mechanism
is used to expand the BRB knowledge base and solve the problem of constructing an
expert knowledge base of complex flywheel system; (2) A new flywheel fault diagnosis
model based on BRB is proposed. This model can obtain relatively accurate data even
with a small number of samples and has higher applicability. It uses expert knowledge to
construct the initial parameters of the model and uses training samples to optimize the
model parameters.

The main structure of this paper is as follows: In the first part, the fault diagnosis
model of the original flywheel system is analyzed and discussed. On the basis of revealing
the shortcomings of the original model, the fault diagnosis model of the FFBRB flywheel
system is proposed; In the second part, it describes the problems that need to be solved in
the process of flywheel system modeling and gives the general solution diagram; In the
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third part, it defines and describes the fault diagnosis model of FFBRB flywheel system,
and describes its transformation mechanism and inference optimization process in detail;
In the fourth part, this paper uses a concrete example to verify the method in this paper
and gives the experimental conclusion; In the fifth part, it gives the summary of this thesis.

2. Problem Description

This section describes the problems and solutions encountered in the fault diagnosis
of the flywheel system, and puts forward and introduces the FFBRB model.

2.1. Clarifying Questions

Constructing the FFBRB flywheel system fault diagnosis model needed a solution to
the following problems:

Problem 1. How to use the FFTA mechanism and integrate it into the BRB knowledge base was the
first problem to be solved. In the BRB, the relationship between the input and output is described
by a series of belief rules, and belief rules are built based on expert knowledge. However, when the
BRB is applied to the practical flywheel system, expert knowledge is difficult to embed into the fault
diagnosis model of the flywheel system (see Section 3.2.).

To realize the FFTA to BRB conversion, it is necessary to describe the correspon-
dence between FFTA logic gates and BRB belief rules, and the correspondence between
FFTA events and BRB input and output. The function to solve this problem is denoted
as CovBridge(∗) and $ is the set of parameters in this process, then the process can be
described by the following expression:

BRB(BeliefRule, input/output) = CovBridge (FFTA(LogicGate, event), $) (1)

This is a nonlinear mapping. It is not executed in a specific software language. With
CovBridge(∗), logic gates in the FFTA were converted into belief rules in the BRB, and
events in the FFTA were converted into inputs and outputs in the BRB. The inputs of the
CovBridge(∗) function were logic gates, events, and parameter sets in the FFTA, and the
outputs were belief rules and their inputs and outputs in the BRB.

Problem 2. How to build a reasonable and complete FFBRB model was the second problem to
be solved. In order to solve the problem of how to diagnose various faults in the actual flywheel
system, it is necessary to design the reasoning process and optimization process of the FFBRB model
reasonably and establish a reasonable and accurate model (See Section 3.3).

The function to solve this problem is denoted as FFBRB(∗). ζ is the set of parameters
in this process, y then the process can be described by the following expression:

y = FFBRB (x, ζ) (2)

This is a nonlinear mapping. x is the failure probability of the bottom event in the FFTA,
and y is the output utility value of the BRB, corresponding to the occurrence probability of
the top event. ζ is the set of parameters in this process.

Remark 1. In order to solve the problem of small sample size, it could usually take two solutions.
First, sample data with similar characteristics to the research question should be sought to expand
the sample data volume, such as transfer learning [17,18]. Second, through the analysis of the model
mechanism to expand the amount of information input. The BRB belongs to the second type of
method, which can expand the model information input through expert knowledge, so as to realize
model training under small samples.
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2.2. Overview of FFBRB Fault Diagnosis Model Principle

To solve the above problems, the FFBRB flywheel fault diagnosis model is proposed
in this paper. In this model, the existing FFTA is used to construct the initial belief rules of
BRB, and the transformation rules from FFTA to BRB are given. The model used the ER
(evidential reasoning) algorithm to give the reasoning process of the model. In this model,
the P-CMA-ES (projection covariance matrix adaptation evolutionary strategies) algorithm
was used to optimize the parameters of the model, which improved the accuracy of the
model. Figure 1 shows the overall transformation process of the model.
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Remark 2. The similar learning ability of the BRB and neural networks was noted in the litera-
ture [19]. Therefore, the fault diagnosis of complex systems could be achieved through constructing
deep BRB or hierarchical BRB models [20].

3. Construction and Inference of the FFBRB Model

This section mainly introduces three parts:

• The basic structure of the FFTA flywheel system. In this part, fuzzy fault tree analysis
is carried out for the flywheel system (see Section 3.1);

• The process of constructing the BRB model is based on FFTA. This part mainly de-
scribes the conversion process from FFTA to BRB (see Section 3.2);

• Reasoning and optimization process of the FFBRB model. This part is actually the
reasoning and optimization process of BRB (see Section 3.3).

3.1. Basic Structure of the FFTA Flywheel System

In a practical flywheel system, FFTA analysis mainly depends on how the probability
of each event in a fuzzy fault tree is calculated and expressed, and how to apply them to
BRB. The overall fuzzy fault tree analysis structure is shown in Figure 2.
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The fuzzy fault tree graph of the flywheel system is mainly composed of logic gates
and related events, and its faults include sensor faults and system faults. The complete
flywheel system fault tree [21] is shown in Figure 3 below:
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3.2. The Process of Constructing the BRB Model Based on the FFTA
3.2.1. Analysis of Conversion Mechanism between FFTA and BRB

FFTA and BRB have differences in inputs and outputs. The input and output in BRB
are mainly described by a series of belief rules, whereas the input and output in the FFTA
are mainly described by logic gates and events. Therefore, it needed a bridge to enable the
transition and transformation between the FFTA and BRB. The fault tree established in FFTA
can sort out the relationship between fault events and clarify the context of different events.
Bayesian networks describe the state of a part of the modeled thing and are associated with
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probability, also known as reliability networks. There is a certain mapping relationship
between fuzzy fault tree and Bayesian network, which is expressed as follows [22]:

• Nodes in Bayesian networks correspond to events in FFTA. Specifically, all the top
events of FFTA correspond to all the leaf nodes in the Bayesian network, and all the
basic events of FFTA correspond to all the root nodes in the Bayesian network.

• Conditional probability distribution of nodes in Bayesian networks is represented by
logic gates in FFTA.

• The direction of node arrows in the Bayesian network also represents the logical
relationship of events in the FFTA, that is, the relationship between input and output
of logic gates.

In order to describe the correspondence between FFTA and Bayesian networks, an
example is listed in Figure 4 for reference.
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BRB consists of three important parts: knowledge base, inference machine and op-
timization method. BRB’s knowledge base is composed of a series of belief rules, which
represent the relationship between input and output. ER, as the reasoning machine of BRB,
is an evidential reasoning method [23]. The literature proves that the Bayesian inference
can be extended to ER, where ER has weighted reliable inaccurate information, and the
relationship between Bayes rules and ER rules can be revealed. The literature comes to the
following conclusion: when each event is independent of the other, conditional probability
is equivalent to belief degree. Therefore, it can be concluded that the Bayesian inference can
be transformed into ER inference. ER [24], as the inference machine of BRB, is a part of BRB.
Therefore, Bayesian inference can be transformed into BRB inference. The corresponding
relationship between BRB and Bayesian network [25–27] is as follows:

• The input of the BRB corresponds to the parent node in the Bayesian network;
• The belief of the BRB can be transformed from conditional probability in the Bayesian

network;
• Bayesian inference can be transformed from the ER to BRB inference.

Thus, as can be seen from the above analysis, it can conclude the complete FFTA to
BRB conversion process, and the schematic conversion diagram from the FFTA to BRB is
shown in Figure 5:

• The three numbers in the triangular fuzzy number of FFTA’s base event failure proba-
bility are divided into three groups corresponding to the root node of the Bayesian
network, respectively, which are used as the input of BRB;
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• The three numbers in the triangle fuzzy number of FFTA intermediate event occurrence
probability are divided into three groups corresponding to the root leaf nodes of the
Bayesian network, respectively, which serve as the input and output of BRB;

• The three numbers in the triangular fuzzy number of FFTA top event occurrence
probability are divided into three groups of night nodes corresponding to the Bayesian
network, respectively, which are used as the output of BRB.
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3.2.2. Conversion Rules from FFTA to BRB

It can be seen from the above that the logic gate in FFTA corresponds to the conditional
probability distribution of the corresponding node in the Bayesian network. Different
logic gate pairs should have different transformation rules, and this section defines the
transformation process.

Probability Representation of Transformation Space Condition Corresponding to Different
Logic Gates

xi is used to represent the i-th base event in FFTA, then the conditional probability
rule in the Bayesian network corresponding to the logic gate of type “and” in FFTA can
be described as expression 3, and the conditional probability rule in the Bayesian network
corresponding to the logic gate of type “or” can be described as expression 4.

p(Top|x1, x2, . . . , xn) =
n

∏
i=1

xi (3)

p(Top|x1, x2, . . . , xn) =
n

∑
i=1

xi (4)

The Belief Rule and Rule Activation Weight Representation of the BRB Corresponded to
the Logic Gate

Attribute importance withdrawal in BRB is the weight of attribute, and the importance
of rules is the weight of rules. In this section, this paper defined different transformation
rules for different logic gates, which also correspond to different rule activation weights.

The set of input reference values in FFTA below, that is, the set of reference values of
the base event is represented by Ai. Top1, Top2, . . . , Topn represents n results; under the k
belief rule, the corresponding belief degree of each result is determined by βi(i = 1 · · · N),
N indicates the number of results; this paper used δi(i = 1 . . . M) which represents the
attribute weight of each premise attribute, M represents the number of attributes, and θk
represents the rule weight of the belief rule in the article k, K is the number of belief rules.
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• Under the condition of “and” logic gates, the BRB’s belief rules [28] can be described
as follows:

BeliefRulek :
If x1 is A1 ∧ x2 is A2 ∧ . . . ∧ xn is An

Then result is {(Top1, β1), (Top2, β2), . . . , (Topn, βN)}

with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2, . . . , δM

(5)

where ak
i represents the rule matching degree under rule k (the adaptability of input

sample and belief rule), l indicates two adjacent activation rules, two rules are activated
when the input falls between them, and the rule activation weight calculation under
the “and” gate condition is as follows:

ωk =

θk
M
∏
i=1

(ak
i )

δi

K
∑

i=1
θl

M
∏
i=1

(al
i)

δi

(6)

ak
i =


Al+1

i −xi

Al+1
i −Al

i
k = l, Al

i ≤ xi ≤ Al+1
i

1− ak
i k = l + 1

0 k = 1 · · ·K, k 6= l, l + 1

(7)

• Under the condition of “or” logic gates, the BRB’s belief rules could be described as
follows:

If x1 is A1 ∨ x2 is A2 ∨ . . . ∨ xn is An

Then result is {(Top1, β1), (Top2, β2), . . . , (Topn, βN)}

with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2, . . . , δM

(8)

where ak
i represents the rule matching degree (the adaptability of input sample and

belief rule), the rule activation weight calculation under the “and” gate condition is as
follows:

ωk =

θk
M
∑

i=1
(ak

i )
δi

K
∑

l=1
θl

M
∑

i=1
(ak

i )
δi

(9)

The calculation of the rule matching degree is the same as the above “and” logic gate
condition.

3.3. Establishment of the FFBRB Model and Inference Optimization

The FFBRB flywheel system fault diagnosis model established in this paper is shown
in Figure 6.



Machines 2022, 10, 73 9 of 24

Machines 2022, 9, x FOR PEER REVIEW 9 of 24 
 

3.3. Establishment of the FFBRB Model and Inference Optimization 
The FFBRB flywheel system fault diagnosis model established in this paper is shown 

in Figure 6. 

 
Figure 6. FFBRB flywheel system fault diagnosis model diagram. 

3.3.1. Analysis of Reasoning Process from FFTA to BRB 
The reasoning process of the FFBRB model, which is actually the reasoning process 

of the BRB, is shown in Figure 7. 

 
Figure 7. Diagram of FFBRB model inference process. 

In particular, this model uses the triangle fuzzy number FFTA in the probability of 
events, from the upper and lower bounds of the triangular fuzzy number representation 
and event probability values are divided into three groups, respectively, after dealing 
with the BRB, can go through BRB to optimize the processing of the top event probability 
triangle fuzzy number, see FFTA analysis of the fitting effect of the result of the probability 
of the top event. 

FFBRB model makes the FFTA knowledge mechanism embedded in the BRB expert 
knowledge base, which solves the problem that it is difficult to embed BRB expert 
knowledge. The FFBRB model uses BRB to train a series of sample data, which further 
improves the accuracy of the data and solves a considerable part of the uncertainty prob-
lems of the flywheel model. This section mainly introduces the reasoning process of 
FFBRB model fault diagnosis, that is, the reasoning process of BRB. 

The specific fault diagnosis process of the FFBRB model is as follows: 

Figure 6. FFBRB flywheel system fault diagnosis model diagram.

3.3.1. Analysis of Reasoning Process from FFTA to BRB

The reasoning process of the FFBRB model, which is actually the reasoning process of
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In particular, this model uses the triangle fuzzy number FFTA in the probability of
events, from the upper and lower bounds of the triangular fuzzy number representation
and event probability values are divided into three groups, respectively, after dealing with
the BRB, can go through BRB to optimize the processing of the top event probability triangle
fuzzy number, see FFTA analysis of the fitting effect of the result of the probability of the
top event.

FFBRB model makes the FFTA knowledge mechanism embedded in the BRB expert
knowledge base, which solves the problem that it is difficult to embed BRB expert knowl-
edge. The FFBRB model uses BRB to train a series of sample data, which further improves
the accuracy of the data and solves a considerable part of the uncertainty problems of the
flywheel model. This section mainly introduces the reasoning process of FFBRB model
fault diagnosis, that is, the reasoning process of BRB.
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The specific fault diagnosis process of the FFBRB model is as follows:
Step 1: Data preprocessing. This paper first normalized the data samples and limited

the data within the range of 0–1 to characterize the probability, so as to better describe the
problem.

Step 2: Fuzzy fault tree analysis. Firstly, the logical relationship between events is
sorted out and the fault tree graph of the fault diagnosis model is drawn. Then, this paper
used a triangle fuzzy number to represent the failure probability of the FFTA basic event,
introduce a fuzzy interval operator, calculate the triangle fuzzy number of occurrence
probability of the middle event and top event and divide the data into three groups. For
example, a triangle fuzzy number is used to represent the failure probability of a base event
x1(a1, m1, b1) and base event x2(a2, m2, b2), and interval fuzzy operator formula is used to
obtain the occurrence probability of an intermediate event or top event (a, m, b). In order to
facilitate subsequent data processing, this paper divided these data into three groups (a1,
a2, a), (m1, m2, m), (b1, b2, b).

Step 3: Taking the Bayesian network as a bridge, FFTA is mapped to BRB. The equiv-
alence of FFTA logic gate input and output and BRB input and output was explained
through the bridge of the Bayesian network. According to the mapping rules mentioned
above, fault tree graphs are mapped to the Bayesian network graphs and then BRB analysis
is carried out, respectively, according to the graphs.

Step 4: Input the sample data integrating FFTA fault mechanism knowledge into BRB
and use BRB for fault diagnosis. There are four steps to achieve concrete reasoning:

• Rule matching is calculated, that is, the degree of adaptation between input sample
and belief rule. The calculation formula is shown in Formula (7).

• According to the activation weight formulas of different rules corresponding to differ-
ent logic gates above (Formulas (6) and (9)), the activation weight of activation rules is
calculated.

• ER analytic algorithm is used to synthesize rules and obtain the belief degree output of
BRB. L indicates the number of activation rules. The calculation process is as follows:

βn =

µ×
[

L
∏
i=1

(
ωl βn,l + 1−ωl

N
∑

i=1
βi,l

)
−

L
∏
l=1

(
1−ωl

N
∑

i=1
βi,l

)]
1− µ×

[
L
∏
l=1

(1−ωl)

] (10)

µ =
1

N
∑

n=1

L
∏
l=1

(
ωl βn,l + 1−ωl

N
∑

i=1
βi,l

)
− (N − 1)

L
∏
l=1

(
1−ωl

N
∑

i=1
βi,l

) (11)

• Utility calculation, the final output.

y =
N

∑
n=1

u(Topn)βn (12)

Step 5: BRB optimization. In this step, the optimization algorithm is used to process
the parameters to make the BRB output more accurate.

3.3.2. Optimization of the FFBRB Fault Diagnosis Model

This section describes the optimization process of the FFBRB model, as shown in
Figure 8 below:
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In this model, the data generated by fuzzy fault tree analysis are still uncertain after
BRB processing. In order to reduce the error between the parameters processed by the
initial BRB and the real data and complete the optimization of parameters, an optimization
mechanism is introduced in this model. P-CMA-ES [29] algorithm is used. The optimization
function can be described as follows:

min MSE(ς)

s.t.
N
∑

n=1
βn,k = 1, k = 1 · · · K

0 ≤ βn,k ≤ 1

0 ≤ θk ≤ 1

(13)

In the upper form, the actual output of the square error is used by the MSE(ς), ς is the
parameter that appears in the process and this paper used the lower formula to represent
the average error of the output of the prediction:

MSE(ς) =
1
K

K

∑
k=1

(y∗ − y)2 (14)

In the above expression, y represents the actual output, y∗ represents the predicted
output, and the number of training samples is expressed by K. The realization process of
the P-CMA-ES algorithm is described in detail below:

• Set initial parameters. The number of solutions is defined as Num in the population,
Pn in the optimal subgroup, the dimension of the problem is defined as D, the optimal
subgroup is defined as µ, the weight of the optimal subgroup is defined as ωi;

µ

∑
i=1

ωi =1, ω1 ≥ ω2 ≥ · · · ≥ ωµ ≥ 0 (15)

• Sampling. The mean value of the optimal subgroup solution is the desired output
value, and the population is normally distributed. The calculation process is as follows:

ςh+1
i = averageh + ηh H(0, Toh) (16)

In the population of generation h + 1, the i(0 < i < Num) solution is represented to
ςh+1

i ; averageh is the average of optimal subgroup solutions in the population; ηh is h the
generation of evolutionary steps; H(∗) is the normal distribution function representation
of data; population h generation covariance matrix is represented by Toh;
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• Projection. The process of performing a projection operation for each equality con-
straint can be described as follows:

ςh+1
i (1 + m× (τ − 1) : m× τ)

= ςh+1
i (1 + m× (τ − 1) : m× τ)−QT × (Q×QT)

−1

×ςh+1
i (1 + m× (τ − 1) : m× τ)×Q

(17)

The m = (1 . . . M), expression of the number of variables can be expressed as m in
the equality constraint, m = (1 . . . M), M represents the solutions in each equality
constraint, and τ = (1 . . . M + 1), when the constraints are equal, its quantity can be
expressed by τ. In addition, Q = [1, 1, . . . , 1]1×N is the way to represent parameter
vectors;

• Select and reorganize. Select the optimal subgroup and calculate the solution set of
the mean. In the optimal subgroup, the weight of the i − th(i=1 . . . Pn) solution can be
expressed as hi, which is calculated as follows:

averageh+1 =
Pn

∑
i=1

hiς
h+i
i ,

Pn

∑
i=1

hi = 1 (18)

• Update the covariance matrix. The specific calculation process is as follows:

Toh+1 = (1− e1 − ePn)Th + e1sh+1
c (sh+1

c )
T
+ ePn

Pn

∑
i=1

hi(
ςh+1

i − averageh

ηg )× (
ςh+1

i − averageh

ηg )

T

(19)

sh+1
c = (1− ec)sh

c +

√√√√ec(2− ec)(
Pn

∑
i=1

h2
i )
−1

× averagehaverageh+1

ηg (20)

ηh+1 = ηh exp(
eη

oη
(

∣∣∣∣∣∣sh+1
ξ

∣∣∣∣∣∣
||H(0, J)|| − 1)) (21)

sh+1
η = (1− eη)sh

η +

√√√√ec(2− ec)(
Pn

∑
i=1

h2
i )
−1

× Toh− 1
2 × averageh+1 − averageh

ηh (22)

In the above calculation expression, the learning rate is expressed as e1,ePn,ec,eη ; The
hth evolutionary step is expressed as sh

η , sh
η = 0; The evolution path of the hth covariance

matrix is expressed as sh
c , sh

c = 0. In addition, J is used to represent the identity matrix, and
the damping coefficient is denoted by oη , Normal distribution of mathematical expectation
H(o, Toh) use F ‖ N(o, I) ‖.

The above steps describe the specific calculation process of the P-CMA-ES algorithm.
This algorithm was an improvement of the CMA-ES (projection covariance matrix adapta-
tion evolutionary strategies) algorithm, which successfully solved the equality constraint
problem in the BRB and was suitable for the fault diagnosis model proposed in this paper.

4. Case Study

The sub-tree of friction torque fault was the research object selected in this paper.
The drop of voltage and current would slow down the speed of the flywheel, which
would lead to a friction torque fault. The friction torque fault is also directly related
to the shaft temperature (source used in this article from NASA). There were voltage,
current, speed, shaft and friction moment data in this. One group of them could be chosen
for the experiment. After selecting the data, they needed to be preprocessed. After the
normalization of the data, fuzzy operator formula and ER fusion were used to obtain the
data as the real value.
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The fault diagnosis principle of the FFBRB flywheel system proposed in this paper
included four parts: First, this paper normalized the collected data to make the data more
accurate in practical application. Second, the normalized data were input into the fuzzy
fault tree of the flywheel system, and the fuzzy probability of the intermediate event and the
top event is calculated according to the corresponding formula. Third, this paper mapped
the fuzzy fault tree to the BRB through the transformation space of the Bayesian network,
so that the analysis process of the fuzzy fault tree corresponded to the inference process of
BRB, and the input and output of the fuzzy fault tree correspond to the input and output of
BRB, respectively. Finally, the data were handed over to the BRB for processing to realize
the one-to-one correspondence between the BRB optimized value and the real value.

4.1. Construction of the FFBRB Fault Diagnosis Model
4.1.1. The Fault Tree of the Friction Torque Fault of the Flywheel System Is Constructed

In the following description, the fault tree of the flywheel friction torque fault is
preliminarily constructed to sort out the logical relationship between each fault event and
determine the cause of the fault. The friction torque fault tree is shown in Figure 9:
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In the fuzzy fault tree graph of the case, the triangle fuzzy number is marked to limit
the probability of each event within a range. This paper marked the meanings of each
symbol in the fault tree below in advance to better describe the problem. The meanings of
specific symbols are shown in Table 1.

Table 1. FFTA indicates the letters in the fault tree.

Id Letters Meaning

1 X1 Shaft temperature rise high

2 X2 Stepping down of voltage

3 X3 Electric current reduce

4 y Speed slow

5 Top Increase in friction moment
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4.1.2. FFTA Is Mapped to the BRB Using the Bayesian Network as a Bridge

After the establishment of the fault tree, this paper used the bridge of the Bayesian
network to map the fault tree of FFTA to several different BRBS, so that the transformation
from FFTA to BRB is perfectly realized, and the FFBRB model can be initially established.
The relationship between the transformed Bayesian network graph and BRB is shown in
Figure 10.
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4.1.3. Determining the Fuzzy Number of Occurrence Probability of Bottom Event and
Top Event

This step first needed to determine the trigonometric fuzzy number of the occurrence
probability of the bottom event, and then calculate the trigonometric fuzzy number of the
occurrence probability of the top event by using the formulas of fuzzy operators under
different logic gates. The failure probability of the bottom event corresponds to the input of
the BRB, and the occurrence probability of the top event corresponds to the output of the
BRB, which is ready for the subsequent processing of the BRB program.

According to the previous introduction, corresponding data are divided into three
groups (a1, a2, a), (m1, m2, m) and (b1, b2, b) according to the rules before. The data of the
three groups are carried into the subsequent BRB, respectively, for fault diagnosis.

Triangulation fuzzy numbers of event probability in the BRB2 experiment are listed in
Table 2 for reference.

Remark 3. Each event in the above table only captures the data listed in article 10, from the data
in the floating range there is a probability value of 10% of the incident left and if the interval data
value is less than zero, the table is down to zero, if the data interval right value is greater than 1, the
table down to 1, so the data that are limited to 0 to 1 can better describe probability.

4.1.4. Built Initial Belief Rules

If x1 is A1 ∧ x2 is A2

Then result is {(Top1, β1), (Top2, β2), (Top3, β3), (Top4, β4)}

with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2

(23)

The initialization of BRB requires belief rule construction. In this case, the belief rule
construction of BRB is as above.



Machines 2022, 10, 73 15 of 24

Table 2. Trigonometric fuzzy number of event probability in FFTA.

Event Ai Mi Bi

Base Event 1

0.3000 0.3333 0.3667
0.0000 0.0000 0.0000
0.9000 1.0000 1.0000
0.0000 0.0000 0.0000
0.0600 0.0667 0.0733
0.7200 0.8000 0.8800
0.4800 0.5333 0.5867
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

Base Event 2

0.9000 1.0000 1.0000
0.0600 0.0667 0.0733
0.1200 0.1333 0.1467
0.0600 0.0667 0.0733
0.6000 0.6667 0.7333
0.4200 0.4667 0.5133
0.3000 0.3333 0.3667
0.6600 0.7333 0.8067
0.8400 0.9333 1.0000
0.2400 0.2667 0.2933

Top Event

0.9300 1.0000 1.0000
0.0600 0.0667 0.0733
0.9120 1.0000 1.0000
0.0600 0.0667 0.0733
0.6240 0.6889 0.7529
0.8376 0.8933 0.9416
0.6360 0.6889 0.7382
0.6600 0.7333 0.8067
0.8400 0.9333 1.0000
0.2400 0.2667 0.2933

4.1.5. Set Reference Points and Values

In the BRB, it needed to set the reasonable reference values for the program to work
properly. In this case, this paper set four reference points and reference values for each
attribute, noting that the first reference value is an upper bound and the last reference value
is a lower bound. The setting of reference values in BRB is shown in Table 3 above. The
four numbers from left to right indicate the Very High(G), High(H), Middle(M), and Low(L)
possibility of an event. The reference setting of BRB is shown in Table 3.

Table 3. Reference value of data in BRB.

BRB_id Base Event 1 Base Event 2 Top Event

BRB 1 [1.0, 0.6, 0.3, lim
x11→0

(x11)]
[1.0, 0.8, 0.4, lim

x12→0
(x12),

lim
x12→0

(x12)]
[1.0, 0.3, 0.2, 0.0]

BRB 2 [1.0, 0.8, 0.4, lim
x21→0

(x21)]
[1.0, 0.5, 0.3, lim

x22→0
(x22),

lim
x22→0

(x22)]
[1.0, 0.8, 0.6, 0.0]

Remark 4. When the median value of triangle fuzzy number interval of event occurrence probability
is 0, the reference value of the lower bound of the interval is set as a number approaching 0, because
the probability of an event cannot be negative.
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4.2. Training and Optimization of the FFBRB Model
4.2.1. Optimized Parameters and Results

Data show the optimized data of BRB2 (b1, b2, b), and the optimized parameters in
BRB are shown in Table 4.

In Tables 4–6, the optimized rule weights are expressed as RuleWF and the optimized
output belief degree is expressed as BeliefF. The results of the optimization of the upper
and lower bounds of the interval and the median of the interval are listed.

Table 4. Optimized parameters table in BRB2r.

BRB2r_id Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.1771 (0.0733, 0.4983, 0.2373, 0.1910)
2 L M 0.0709 (0.2110, 0.5779, 0.0343, 0.1768)
3 L H 0.0062 (0.2813, 0.3703, 0.1696, 0.1788)
4 L G 0.8472 (0.9886, 0.0137, 0.0000, 0.0000)
5 M L 0.0396 (0.0315, 0.7699, 0.1906, 0.0080)
6 M M 0.5838 (0.8332, 0.0979, 0.0702, 0.0000)
7 M H 0.9296 (0.2924, 0.4950, 0.1712, 0.0414)
8 M G 0.5178 (0.0923, 0.2010, 0.2374, 0.4694)
9 H L 0.8063 (0.9973, 0.0000, 0.0000, 0.0075)
10 H M 0.8488 (0.4543, 0.0084, 0.2880, 0.2493)
11 H H 0.4081 (0.1555, 0.1741, 0.4458, 0.2246)
12 H G 0.2917 (0.0619, 0.3106, 0.0903, 0.5372)
13 G L 0.0002 (0.5614, 0.4062, 0.0150, 0.0174)
14 G M 0.1367 (0.0560, 0.0149, 0.1501, 0.7790)
15 G H 0.2903 (0.0047, 0.0063, 0.3829, 0.6062)
16 G G 0.5334 (0.0000, 0.0102, 0.0000, 0.9960)

Table 4 is the optimal value of the upper bound of the interval, Table 5 is the optimal
value of the ideal value of the interval, and Table 6 is the ideal value of the lower bound of
the interval.

Table 5. Optimized parameters table in BRB2m.

BRB2m_id. Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.6018 (0.2020, 0.2635, 0.3770, 0.1575)
2 L M 0.3155 (0.2320, 0.0685, 0.3231, 0.3764)
3 L H 0.6173 (0.1893, 0.2777, 0.2197, 0.3133)
4 L G 0.5771 (0.3145, 0.0551, 0.2492, 0.3811)
5 M L 0.2627 (0.3164, 0.4002, 0.2218, 0.0616)
6 M M 0.9665 (0.2234, 0.0333, 0.5372, 0.2061)
7 M H 0.1127 (0.0023, 0.3528, 0.5186, 0.1263)
8 M G 0.3443 (0.5425, 0.0730, 0.0759, 0.3085)
9 H L 0.5466 (0.5419, 0.0308, 0.1200, 0.3073)
10 H M 0.6745 (0.1283, 0.2672, 0.1916, 0.4129)
11 H H 0.8846 (0.0487, 0.0797, 0.5155, 0.3561)
12 H G 0.5213 (0.0568, 0.0764, 0.3596, 0.5072)
13 G L 0.3741 (0.1902, 0.0219, 0.4706, 0.3173)
14 G M 0.7260 (0.1378, 0.1024, 0.1934, 0.5663)
15 G H 0.3316 (0.1201, 0.1004, 0.0978, 0.6817)
16 G G 0.8969 (0.0382, 0.1119, 0.0657, 0.7842)

To avoid data redundancy, only four bits of data are reserved in Tables 4–6. As the
same, the optimized rule weights are expressed as RuleWF and the optimized output belief
degree is expressed as BeliefF.
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Table 6. Optimized parameters table in BRB2l.

BRB2l_id Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.5453 (0.2353, 0.1349, 0.5162, 0.1137)
2 L M 0.5036 (0.1352, 0.3365, 0.4205, 0.1078)
3 L H 0.1688 (0.1922, 0.0713, 0.4822, 0.2543)
4 L G 0.9502 (0.1944, 0.2135, 0.0504, 0.5417)
5 M L 0.7318 (0.2970, 0.3715, 0.1161, 0.2154)
6 M M 0.6618 (0.3590, 0.0935, 0.3166, 0.2310)
7 M H 0.3964 (0.1935, 0.2580, 0.2173, 0.3313)
8 M G 0.6569 (0.3582, 0.1651, 0.2443, 0.2324)
9 H L 0.3200 (0.1115, 0.3012, 0.5681, 0.0192)
10 H M 0.6779 (0.2005, 0.1247, 0.2703, 0.4044)
11 H H 0.9339 (0.1083, 0.2752, 0.1753, 0.4412)
12 H G 0.3865 (0.2076, 0.0799, 0.1489, 0.5635)
13 G L 0.3149 (0.2779, 0.1064, 0.1853, 0.4304)
14 G M 0.8496 (0.0266, 0.2361, 0.2723, 0.4650)
15 G H 0.3898 (0.0570, 0.0798, 0.0547, 0.8085)

4.2.2. Experimental Fitting Images

The fitting images of experimental results and real results of interval lower bound (a1,
a2, a), interval median (m1, m2, m) and interval upper bound (b1, b2, b) are listed below.
In this paper, the fitting images of the three groups are drawn, respectively, as shown
in Figure 11. The results of the three groups were processed by BRB, respectively, and
compared with the real value to obtain the error, and finally unified analysis and summary.
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It can be seen that the results of the three groups of experiments fit well with real
data. It could obtain the accuracy of each group through experiments, and then obtain
the fluctuation range of experimental accuracy of the case. Then, this paper performed
10 experiments to find out the accuracy and, in this experiment, the accuracy of the three
groups was 97.98%, 98.99% and 100.00%, the average accuracy of this experiment is 98.99%.
It can be concluded that the accuracy of this experiment fluctuates in the range of 97.98% to
100%. In general, the FFBRB model established in this paper has a good processing effect.
The experimental diagnosis results are shown in Figure 11.
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4.2.3. Other Comparative Experiments

In this paper, ELM and BP neural networks, as the other two comparison methods of
this experiment, are also used in flywheel fault diagnosis. This paper also drew the fitting
images of the two control experiments, and it can be seen that the ELM and BP neural
network methods are feasible, but still not as accurate as the FFBRB scheme. Among them,
the difference between ELM and FFBRB schemes is relatively large, and the difference
between BP neural network and FFBRB is not very large.

Two other groups of comparison experiments were conducted in this paper to compare
with the FFBRB model method used in this paper, and the experimental results are shown
in Figure 12 below.
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Figure 13. Fitting diagram of experimental results by ELM method.

In this experiment, the accuracy of 10 groups of data is taken, and the average of
their probability is taken as the final result. The floating line chart of the accuracy of these
10 groups is shown in Figure 14.

In the three groups of the BP method, the average accuracy of the experimental fault
diagnosis value compared with the real value is 85.90%, 91.30% and 85.50%, respectively.
In the three groups of the ELM method, the average accuracy of the experimental fault
diagnosis value obtained by us compared with the real value is 54.40%, 63.20% and 65.50%,
respectively.
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In the three groups of the FFBRB method, the average accuracy of the experimental
fault diagnosis value obtained by us compared with the real value is 99.7%, 98.18% and
99.39%, respectively. This paper took the total average accuracy of the three groups of the
three methods, and after calculation, the average accuracy of the BP method is 87.57%, the
ELM method is 61.03%, the FFBRB method is 99.09%.

To facilitate intuitive observation, this paper sorted these data into a table, as shown
in Table 7 below:

Table 7. Comparison of results of different methods.

BP ELM FFBRB

Ave_Group_left 85.90% 54.40% 99.70%
Ave_Group_middle 91.30% 63.20% 98.18%

Ave_Group_right 85.50% 65.50% 99.39%
Average_times_group 87.57% 61.03% 99.09%

4.3. Experimental Conclusion

The experiment verifies the feasibility of the FFBRB model proposed in this paper, and
it can be seen from the experimental results that the FFBRB model experiment is superior
to the other two methods.

In particular, the BP neural network method is used to obtain the experimental diag-
nosis value and the real value of the image fitting, high accuracy, but there is still a little
gap compared with the FFBRB method, and the BP method cannot explain its process.
The experimental results obtained by the ELM method are much different from the real
values, the image fitting effect of the experimental results is relatively poor, the accuracy is
relatively low, and there is a big gap compared with the FFBRB scheme. The FFBRB fault
diagnosis scheme in this paper is relatively optimal among the three, and its experimental
results have a good image fitting effect and high accuracy, showing advantages compared
with the other two schemes.
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5. Conclusions

Based on BRB, a new fault diagnosis model (FFBRB) based on fuzzy fault tree analysis
theory is proposed. The FFBRB model expands the expert knowledge base of BRB based
on the FFTA mechanism, uses the improved BRB as a fault diagnosis tool, and incorporates
an optimization algorithm to further reduce the influence of uncertain factors in the model.
The model has the following characteristics:

The FFBRB model has a stronger ability to acquire expert knowledge. The FFBRB
model integrates an FFTA mechanism analysis into the BRB expert knowledge base, which
makes the model more capable of describing problems.

The FFBRB model has stronger analytical and reasoning ability. By training and
optimizing the sample data, the model further improves the accuracy of the data, and thus
makes the model more accurate.

The FFBRB model has high accuracy. Compared with traditional data-driven methods
the FFBRB processing results have higher accuracy.

The feasibility of the FFBRB model is verified by experiments, and its advantages
are compared with the other two methods. Based on the FFBRB model proposed in this
paper, the following two aspects can be further studied in the future: (a) the theoretical
transformation of the FFTA and interval BRB; (b) other methods could be used to expand
the expert knowledge base in the flywheel fault diagnosis; (c) the BRB is an interpretable
modeling method, which provided an effective support for the construction of interpretable
deep learning models. How to effectively construct a fault diagnosis model based on a
deep BRB will be the main work in the next step.
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