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SUMMARY

Electricity consumption data profiles that include details on the consumption can be generated with a
bottom-up load models. In these models the load is constructed from elementary load components that can
be households or even their individual appliances. In this work a simplified bottom-up model is presented.
The model can be used to generate realistic domestic electricity consumption data on an hourly basis from
a few up to thousands of households. The model uses input data that is available in public reports and
statistics. Two measured data sets from block houses are also applied for statistical analysis, model
training, and verification. Our analysis shows that the generated load profiles correlate well with real data.
Furthermore, three case studies with generated load data demonstrate some opportunities for appliance
level demand side management (DSM). With a mild DSM scheme using cold loads, the daily peak loads
can be reduced 7.2% in average. With more severe DSM schemes the peak load at the yearly peak day can
be completely levelled with 42% peak reduction and sudden 3 h loss of load can be compensated with 61%
mean load reduction. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Load data is crucial for planning electricity distribution networks and optimal production
capacity. Accurate knowledge of the household consumer loads is important when small scale
distributed energy technologies are optimally sized into the local network or local demand side
management (DSM) measures are planned. This knowledge is also useful for planning medium
and low voltage networks in residential areas.

The data that electric utilities typically have on domestic electricity consumption do not
contain much information about its nature. The data is normally aggregated consumption of
multiple households without knowledge about the events in individual households. The
fluctuation of electricity consumption concerning an individual household remains unrevealed
as well as the division of consumption between different types of household appliances.
Nevertheless, detailed knowledge can be produced with simulation models.
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The electricity demand models are often applied to forecast the demand at the utility level.
Rigorous studies on the topic were conducted already in the 1970s and 1980s, resulting in a large
number of forecasting methods as reported by Gross and Galina (1987). A more recent review
and classification of the forecasting methods has been given by Alfares and Nazeeruddin (2002),
where novel methods including fuzzy logic, genetic algorithms and neural networks (Hippert
et al., 2001) have been included in addition to the conventional econometric models (Pindyck
and Rubinfeld, 1997). These kinds of forecasting methods are commonly employed when there
is little or no knowledge about the appliance stocks and other grass-root level consumer details
(Zarnikau, 2003).

End-use models, an alternative to the conventional demand forecasting, represent a bottom-
up demand modelling approach. The accuracy of these models depends very much on the
availability of grass-root level consumption details. An ideal case would be when the stock of
appliances and their usage patterns in households are known and details about the composition
of the load are valued, as in ‘Capasso model’ published by Capasso et al., (1994). On the other
hand, a utility level bottom-up method presented by Willis (2002) provides much less details on
the individual consumer level, although it shows more details than the typical electric demand
forecasting scheme.

A typical limitation for detailed bottom-up methods is an extensive need of data about the
consumers or their appliances and the households in general. Usually, some part of the data is
not easily available. In the Capasso model (Capasso et al., 1994), detailed data is needed about
consumer behaviour. In addition to the consumer behaviour, the Norwegian ERÅD model
(Larsen and Nesbakken, 2004) also requires very detailed information about the design of the
house in which the household is located. On the other hand, Sanchez et al. (1998) applied in
their bottom-up model to large databases with partly incomplete or missing data, therefore
compromising the accuracy of their results. In our work the need for detailed data is bypassed
by using a representative data sample and statistical averages. The random nature of
consumption is generated by using stochastic processes and probability distribution functions as
the consumption is generated. But then, appliance ownership and daily usage pattern is
determined in a similar manner to the Capasso model. As a result, our work demonstrates that
quite detailed and realistic electricity consumption data can be generated using generally
available appliance information and consumer statistics. The resulting loss in accuracy is
compensated by considerable reduction in the data requirements.

The purpose of this work is to demonstrate an easy-to-use consumer load data model that can
be used to generate representative electricity consumption data. The method allows
combination of individual household data sets into realistic large scale data including thousands
of households. The model is finally verified with real electricity consumption data.

2. OBSERVATIONS AND HYPOTHESIS ON THE BEHAVIOUR OF HOUSEHOLD
ELECTRICITY CONSUMPTION DATA

A comprehensive set of domestic consumption data was analysed in order to understand the
fundamental characteristics of household load curves. The data was found to behave
periodically on a seasonal, daily and hourly scale as discovered in previous Finnish load
research projects (Seppälä, 1996; SLY, 1995) and in European end-use measurement campaigns
(Sidler, 1996, 2002). Convergence of the mean data with increasing number of households was
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also observed as suggested by Willis (2002). In addition, the distribution of the daily mean
energy use was revealed after having removed the seasonal cyclic behaviour from the data.

The domestic consumption data used for prevailing observations composed of two Finnish
sets of data. The first set (data set 1) consisted of hourly data from a total of 702 households
during the 365 days in the year 2002. The second set (data set 2) consists of hourly data from
totally 1082 households during 143 days from September 2002 to January 2003, including also
the households in the first data set during that period. The data set 2 is applied only in the
analysis of the coincidental nature of the data, providing the increased number of households
for better statistics. The data sets are composed of electricity measurements of complete blocks
of flats excluding the electricity consumption not directly used inside the apartments. The blocks
have between 27 and 74 apartments whose data consisted mainly of appliances and lighting.
Heavy electric heating loads such as space heating or cooling, water boilers or individual saunas
were absent.

The daily electricity consumption on a yearly level is often dependent on external variables
such as the mean outside temperature and daily daylight hours that typically follow similar
patterns over successive years. Due to the northern location this shape becomes often sinusoidal
for Finnish conditions (Haapakoski and Ruska, 1998; SLY, 1988). This is explained by the lack
of summer time cooling loads, strong seasonal variation in the daylight hours and increased use
of domestic appliances in the cold season (Haapakoski and Ruska, 1998). The daily electricity
consumption in the first data set is shown in Figure 1(a) with a sinusoidal mean curve that
models the seasonal variation.

The hourly fluctuation of domestic loads results from the combined effect of consumer
availability and activity level (Capasso et al., 1994). Thus the mean daytime consumption during
workdays is typically lower than that in the weekends, and in the evening the consumption is
somewhat higher compared to the weekend evenings. This is also observed in our data as
presented in Figure 1(b). The left side of the load curve presents the mean hourly consumption
levels for an average weekday and the right side for the average weekend day. In the data sets,
the mean daily consumption during weekdays is significantly lower than the weekend which is
characteristic to Finnish load curves for blocks of flats (Adato, 1992).

At individual household level the electricity load curves vary much. The aggregated
fluctuation smoothens out and approaches the mean consumption curve when the number of
households included in the total load curve is increasing. The coincidental nature of the
household loads and their smoothing has been discussed in detail by Willis (2002). In order
to measure the smoothing effect for increasing amounts of household loads, an error sumP
j ’Ei � %’Ei j was calculated over the hourly power demand data. In the sum ’Ei is hourly power

demand per household and %’Ei is mean hourly power demand per household for all the
households in the sample while i is index for the hours. Figure 1(c) shows, when using the log-
log scale, how the error sum decreases almost linearly against the number of households using
the data set 2 covering 143 days of data. The mean power demand was computed including all
1082 households in the data set.

Regardless of the number of similar household loads summed up, some variation remains in
the mean daily energy consumption. The variation remains even when seasonal differences and
differences between weekdays and weekend days have been compensated. This is partly due to a
strong correlation between some loads and daily outside temperature fluctuations, such as
heating or air conditioning (de Dear and Hart, 2002) that are not present in our load. It is also
partly due to correlated social behaviour caused by such phenomena as local weather and local,
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national or international events. For example, television programs and commercial breaks in
them can make variations observed in the national network (Bunn and Seigal, 1983). Such a
level of details is not considered in our model, although the daily level of variation is included.

As the mean seasonal variations are excluded from the daily mean data, only daily
fluctuations from correlated social behaviour and uncorrelated random fluctuations remain. In
our data sets long-term changes in mean temperature has been included into the seasonal
variations. As a result, temporal effects from short-term weather fluctuation effecting lighting
and washing needs as well as entertainment use remain accompanied by the fluctuations caused
by the social behaviour. Furthermore, a significant part of these effects influences all local
households simultaneously. We assume this to be the most significant cause of variations in the
mean daily electricity consumption. These effects will typically appear regardless of the number
of locally distributed households.

The distribution of the compensated mean daily electricity consumption of our data set 1 with
702 households is shown in Figure 1(d). There we have removed seasonal effects as well as the

Figure 1. (a) Daily electricity consumption of measured data set 1. The mean curve is presented by the line;
(b) mean hourly consumption curve of a household for weekdays and weekend days for the data set 1; (c)
effect of the number of households in the load data. The deviation is measured as absolute deviation from
the normalized mean load; and (d) distribution of the measured mean daily electricity consumption for the

first data set after seasonal and weekday compensation.
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mean differences between weekdays and weekend days. The bell curve shown is a normally
distributed density function. It can be concluded that the distribution of the compensated mean
daily electricity consumption is approximately normal.

3. MATHEMATICAL MODEL FOR HOUSEHOLD ELECTRICITY CONSUMPTION

Based on the observations above, we propose a two component bottom-up model for household
electricity consumption. The structure of the model is given in Figure 2. The first part of the
model (I) defines the general fluctuation of diurnal consumption levels and separate appliance
stocks for each household. The second part (II) composes of the main procedures and simulates
separately the use of each appliance in the each household. In general, any reference to ‘one
appliance’ in the model can refer to an individual appliance or, a group of appliances in the
household.

In the first part of the model the fluctuation of diurnal consumption levels is defined. This is
achieved by determining the daily values of social random factor Psocial. The best fitting
probability density function and standard deviation for Psocial are preferably defined from a data
sample. An example of the distribution of daily energy consumption can be seen in Figure 1(d),
which corresponds to the distribution of social random factor Psocial. The daily values of social
random factor are same to all of the modelled households.

The procedures in the first part of the model are repeated for all household appliances in each
of the households. The sets of appliances used are defined statistically. Table I shows an example
of the mean saturation levels for selected appliances in all Finnish households (SF, 2003). The
kind of statistical saturation levels are available for many countries, e.g. in the public statistics

(II)

(II)

(II)

(I)

(I)

Sum up the appliance load 
curves into hh load curve 

Setup input data 

Define daily fluctuations in 
social random factor 

Household load curve 
generation loop
[for each household] 

Define a set of appliances
in the household 

Appliance load curve 
generation loop 
[for each appliance] 

Define hourly power
over the total time 

Data output and verification 

Figure 2. Diagram for load generation procedure. The repeating structure is shown on the right. The point
of entry to the procedure is marked with a large dot while the exit point is marked with a large arrow. The
parts including computational loops have two exit arrows, one with solid line and one with dashed line.
The solid line points into the repeating loop itself and the dashed line points into the following step as the
loop exits. The variable applied in the loop is explained in square brackets. Symbols (I) and (II) are

showing the elements from the first and second part of the model, correspondingly.
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of references (Mansouri et al., 1996; SF, 2003; SS, 2002; FSO, 2004). When these saturation
levels are applied as availability probabilities each household is defined with a unique set of
appliances. This also makes the availability statistics to become coherent with the original one
when a large number of households are considered.

The second part of the model (II) simulates the temporal electricity consumption profile of
each individual appliance of each household separately. The electricity consumption of an
appliance is based on its consumption cycle. On the other hand, the cycle is initiated based on its
starting probability that is defined by the starting probability function Pstart.

PstartðA;W ;Dtcomp; sflat; h; dÞ

¼ PseasonðA;WÞPhourðA; h; dÞ f ðA; dÞPstepðDtcompÞPsocialðsflatÞ ð1Þ

where Pseason is the seasonal probability factor, models the seasonal changes, Phour the hourly
probability factor, models the activity levels during the day, Pstep the step size scaling factor,
scales the probabilities according to Dtcomp, Psocial the social random factor, models the weather
and social factors influencing the communal behaviour, f the mean daily starting frequency,
models the mean frequency of use for an appliance (1 day�1), A the appliance or group of
appliances, h the hour of the day, d the day of the week, W the week of the year, Dtcomp the
computational time step (s or min), sflat the standard deviation for Psocial.

Pstart is defined for each time step Dtcomp and it receives a value between 0 and 1. When the
appliance is off, the turning on is checked using the probability Pstart. Starting occurs when Pstart

is larger than a random number between 0 and 1. Then the consumption cycle of the appliance
will be added to its total load curve of the household. When the time of the on-cycle is reached
(t ¼ tstart þ tcycle) the appliance is turned off again and the checking for starting the appliance
again will continue. For cumulative appliances, the starting checks will be done during the time
the appliance is already on and simultaneously multiple similar appliances can be on (as for
lighting). If an appliance has standby electricity use, it will be added to the whole load curve.
Some additional computational characteristics for parameters of starting probability function
Pstart are shown in Appendix A.

The input for the second part (II) of the model includes two kinds of parameters. Firstly, the
weekly seasonal probability factors Pseason together with the hourly probability factors Phour for
weekdays and weekend days constitute the probability factors in the model. Secondly, standby

Table I. Mean saturation levels for chosen appliances in
all Finnish households (SF, 2003a).

Consumer durables %

Colour TV 96
Satellite aerials 15
Videotape recorder 71
CD player 69
Personal computer 47
Freezer 87
Microwave oven 84
Washing machine 87
Dishwasher 50
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consumption and consumption cycle data with mean starting frequencies for each appliance
form the constant parameters in the model. The weekly seasonal probability factor Pseason is
easiest to define from a measured data sample. The hourly probability factor Phour is defined for
each hour of a working day and a weekend day. This kind of data is quite readily available, but
sometimes without separating between weekdays and weekend days (Ruska and Haapakoski,
1998; Sidler, 1996, 2002).

The active and standby consumption parameters of an appliance are connected through their
yearly energy consumption as below.

Eyearly ¼ 3600� 24
s

day
’Estandby þ f

Xncycle
n¼1

’Ecycle;n tcycle;n

 !
365

3:6� 106
day kWh

W s
ð2Þ

where Eyearly is the mean energy consumption per year (kWh), ’Estandby the standby consumption
level (W), ’Ecycle;n the power level on step n of the mean consumption cycle (W), tcycle,n the length
of step n on the mean consumption cycle (s), ncycle the number of steps on the mean
consumption cycle.

If standby consumption level or the parameters for active consumption are known for an
appliance, the mean energy consumption for the remaining part can be estimated by subtracting
from the yearly energy ’Eyearly: Additionally, the mean daily starting frequency f or total energy
of the mean consumption cycle can be determined if one of them is defined.

Combining data from multiple sources may be needed to get reasonable estimates for both
starting frequencies and consumption cycle parameters. These sources can include total yearly
consumption with mean daily consumption profiles (Ruska and Haapakoski, 1998; Sidler, 1996,
2002) or just the yearly electricity consumption (Mansouri et al., 1996; Nutek, 1994; SLY, 1995).
Also typical power levels of household appliances are available, partly as they are crucial for
some of the popular non-intrusive load monitoring methods (Cole and Albicki, 1998; Hart,
1992; Pihala, 1998; Rissanen, 1998; Sultanem, 1991; Wood and Newborough, 2003). The
standby consumption levels are available at multiple sources (Meier et al., 2004; Rosen and
Meier, 2000; Ross and Meier, 2002; Sidler, 1996, 2002).

Some calibration on the input values may be needed for good performance, which is typical
with bottom-up models (Larsen and Nesbakken, 2004). In our case this is mostly due to the
difference between the kind of households/appliances behind the input data and the kind of data
the model is supposed to generate.

4. A GENERATED ELECTRIC LOAD PROFILE WITH VERIFICATION

Using the model described above, a large domestic electricity consumption data set has been
generated applying the procedure in Figure 2. The data set composes of 10 000 households with
consumption data for one full year for each individual household. The households are in blocks
of flats with no heavy electric heating loads like space heating. The fractional household
electricity consumption of different groups of appliances is based on an example in reference
(Adato, 2004) and it is presented in Table II.

The appliance saturation data was mostly obtained from Statistics Finland (SF 2001a,b,
2003) while the coffee maker saturation was compiled from different sources (Männistö et al.,
2003) (Private comm. 20th November 2004 with Päivi Suomalainen, Market Research Manager,
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Oy Gustav Paulig Ab, Finland). Slight modifications of the data were necessary, as the
saturation data was not intended for the targeted household group only but for whole Finland.
The original and modified saturation levels are presented in Table III. The main reasons for
reducing the ownership densities is the lower than average income level of the people living in

Table II. An example about the division of electric
consumption in a three person household living in a
block apartment. Three rooms with 75m2 total surface

area have been assumed (Adato, 2004).

Share of consumption %

Cold appliances 24.6
Clothes-washer 7.0
Dishwasher 8.8
Cooking 15.8
Entertainment 17.5
Lighting and misc. 26.3

Total 100.0

Table III. Applied saturation levels for appliances and groups.
Column ‘Orig.’ has the original values available in the listed
references, while column ‘Applied’ presents the corresponding

availability probabilities applied in the load model.

Appliance saturation (%)

Appliances and groups Applied Source Orig.

Stove and oven 99 A 96
Microwave oven 84 B 84
Coffee maker 95 E 95
Refrigerator 99 D 97
Freezer 87 B,D 87
Second freezer 10 D 20
Dishwasher 50 B,D 50
Washing machine 43.5 B,D 87
Tumble dryer 6 A 3-13
Television 96 B,C 96
Second television 24 D 48
Video recorder 67 B,D/C 71/77
Radio/player 96 B,D/C 69/75n

Personal computer 47 B,D/C 47/51
Printer 41 C 41
Lighting 100 } }
Other occasional loads 100 } }

Sources: A= SLY, 1995; B=SF, 2003; C=SF, 2001b; D=SF, 2001a;

E=Männistö et al., 2003.
nThe reference value for CD-players only.
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apartments in Finland (SF, 1998) together with the lower appliance densities in households with
low income (SF, 2001c, 2002).

The yearly curve fitted to data set 1 is applied to define the weekly seasonal probability factors
Pseason. The hourly probability factors were fundamentally based on results in (Sidler, 1996,
2003). Reference (Ruska and Haapakoski, 1998) was applied to evaluate the difference in social
behaviour as well as climate conditions. The distributions used for hourly probability factors
can be found in Table BI in Appendix B. On the other hand, the values for Psocial for the first
part of the model were defined applying the normal distribution function and standard
deviation of data set 2.

The mean daily starting frequencies, the mean consumption cycle data and standby
consumption for each appliance were defined simultaneously, as the values are interconnected.
The values used here can be found at Table BII in Appendix B. The consumption cycles have
been based on the report by Rissanen (1998), including the original appliance measurements
prepared for the report (Private communication Oct. 2001 with Hannu Pihala, VTT, Finland).
The standby rates have been compiled based on four references (Hirvonen and Tuhkanen, 2001;
Pihala, 2001; Ross and Meier, 2002; Sidler, 1996). The daily starting frequencies have been

Figure 3. (a) Daily electricity consumption for generated data set. The mean curve from Figure 1 is
presented with thick grey line; (b) mean hourly consumption curve of a household for weekdays and
weekend days for the generated data set; (c) coincidental behaviour for generated data set. The
corresponding data from Figure 1(c) is shown with symbol �; and (d) distribution of the compensated
mean daily electricity consumption days for generated data set. The corresponding normally distributed

curve is presented with thick dark line.
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defined based on the other parameters and the yearly consumption values estimated using
references (Nutek, 1994; Sidler, 1996; SLY, 1995), the mean consumption in the targeted data
and the fractions shown in Table II.

In the following, the simulated load is presented using the results from the measured data in
Section 2 as goal values. The simulated daily energy consumption values are presented in Figure
3(a) together with the seasonal fit from the original measured data. The mean energy per day per
household for the generated data is 5.16 kWhday�1, slightly higher than the 5.12 kWhday�1 for
the original data. When the seasonal effects and the differences in the weekends and weekdays
are eliminated the statistical distribution of the data can be evaluated. Figure 3(d) shows the
corresponding normal distribution. The standard deviation at the generated data after
compensation is 0.203 kWhday�1 and 0.196 kWhday�1 for the original data, respectively.

The mean daily profiles resulting for the generated data are shown in Figure 3(b). The
similarity of the generated and original data is demonstrated in when the Figures 1(b) and 3(b)
are compared. Their hourly differences are below 3%, with an exception of 5% during some
night hours.

The coincidental nature of the simulated data is demonstrated in Figure 3(c). The absolute
deviation of the data when increasing the number of unit loads in the total load from n ¼ 1 to
n ¼ 1000 behaves as in Figure 1(c) for the measured data. For the simulated data, the magnitude
of the errors is systematically higher. This is due to such nature of occupant behaviour that is
not captured by the model.

5. APPLICATION OF THE LOAD MODEL TO DSM

To demonstrate the usefulness of the bottom-up model, we present three DSM cases applying
the 10 000 household load data generated by the model in the previous sections. The household
loads can be managed separately thus enabling DSM measures on an individual appliance level
simultaneously in several households. Table II summarizes how the household load is divided
between its major uses.

Two kinds of DSM strategies are considered: shifting of the use to a later time, or, turning off
the appliance. To keep the household operational some priorities need to be set up for the use of
the appliances. The DSM strategies for the case studies are made following an assumed
customer priority. Table IV summarizes the strategies for all the cases. Only 50% of lighting
load in a household is allowed to be managed and the cold appliances can switch off for a
maximum time of 1 h a time with 1 h recovery period in between. For simplicity, the
management of appliances is done in groups as shown in Table IV.

In case 1 we consider a mild DSM to measure reduction of the peak load during weekdays
throughout the year. By postponing the cold loads (priority 0 loads in Table II) during the peak
consumption, reduction in actual peak loads and the mean peak load can be achieved. The
second case applies a more complex overall DSM strategy to shave the highest consumption
peak of the year. In this case the loads are regulated according to their priority order, and some
compromises in the customer comfort are made. The last case demonstrates the full use of DSM
to minimize the customer load in response to a sudden 3 h black-out in early afternoon.

In case 1 the shift of the load of cold appliances by 1 h results in a 7.2% reduction in the
annual mean peak load. This result is achieved during weekdays without any noticeable
inconvenience to the consumers. The resulting load curve during an average weekday is
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demonstrated in Figure 4, where also the original mean load curve can be seen. The peak
reduction remains significantly smaller than the total cold-appliance capacity. This is due to the
large number of peak load hours, causing only part of the cold appliances to be available for

Table IV. The applied DSM strategies for appliances and groups
in case studies 1–3.

DSM strategies

Appliances and groups Priority Control Limits

Stove and oven 1 cut }
Microwave oven 1 cut }
Coffee maker 1 cut }
Refrigerator 0 post. 1 h 1 h
Freezer 0 post. 1 h 1 h
Second freezer 0 post. 1 h 1 h
Dishwasher 3 post. 6 h }
Washing machine 2 post. 6 h }
Tumble dryer 2 post. 6 h }
Television 4 cut }
Second television 4 cut }
Video recorder 4 cut }
Radio/player 4 cut }
Personal computer 4 cut }
Printer 4 cut }
Lighting 5 cut 50%
Other occasional loads 5 cut 50%

Figure 4. The mean demand curve for an average weekday after the DSM using the cold load for the
management. Mean demand curves without DSM are presented with thick grey lines.
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management simultaneously, as the cold loads are postponed only 1 h at a time. The result
shown in Figure 4 is achieved as 3.1, 27.6, 52.9, 47.1, and 25.5% of the total cold load capacity is
managed during the corresponding hours between 18 and 23. This way the postponed cold loads
from the earlier hours can as well be smoothly managed.

Figure 5. Peak demand day of the year and the following day after the DSM measures in case 2. The peak
shaving has been only done during the peak conditions. Mean demand curves without DSM are presented

with thick grey lines.

Figure 6. The resulting demand curve for the case 3 after the maximal DSM. The demand curve without
DSM is presented with thick grey line. The second hour peak is due to postponed cold-appliance load

during the first managed hour.
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In case 2, loads with priorities from 0 to 4 are controlled. Figure 5 shows the resulting total
demand profile during the peak consumption day and during the following day. As a result, the
peak value is reduced by 42%. This case violates the consumer comfort by postponing the
washing loads between 14 and 23, by cutting the entertainment loads between 17 and 23 as well
as by reducing the lighting use by 50% for 1 h during the evening in 75% of the households. The
postponed loads cause an increase of load between 23 and 5 h in the off-peak period.

Figure 6 shows the resulting load profile in case 3, where measures in Table IV are fully
utilized during the black-out. In this case, during the first hour a maximal load reduction is
applied. The shifted cold-appliance load hits back on the second hour, while the third hour has
again a full load reduction. As a result, the achieved mean load reduction is 61%. If the length
of the black-out is known in the beginning of the load management, a smooth load response
through stepped cold load monitoring can be achieved, as in case 1.

6. CONCLUSIONS

A realistic method for generating domestic electricity load profiles at individual household level
has been presented. The model is based on a bottom-up approach in which the household load
composes individual appliances or appliance groups. The input data of the model was mainly
collected from public reports and statistics, although also the detailed appliance consumption
data used in the work of Rissanen (1998) was applied. Additionally, two partly overlapping
hourly domestic consumption data sets were applied for statistical analysis, model training, and
verification.

Consumption data with 10 000 individual households has been generated with the suggested
model. The verification applied to the data showed a good agreement between statistical
qualities of the measured and the generated consumption data. The generated data has all
individual consumption groups from Table II separately available for every individual
household hourly throughout the year.

Three demand side management (DSM) case studies were done applying the separation of the
generated consumption data into consumption groups at individual household level. First of the
case studies demonstrates, that significant reduction of the daily peak consumption can be
achieved by using DSM on the load of cold appliances. The load of cold appliances can partially
be shifted off the peak hours without causing any customer inconvenience. The peak reduction
could be improved further, if the freezers are available for extra cooling few hours before the
peak period, using their thermal capacity this way as an extra storage. This would allow moving
of the peak load also before the peak.

The second and third case studies were for an individual control need only. In the second case
the highest consumption peak in the generated data was levelled using severe DSM causing
inconvenience for the consumers. The third case was similarly a full DSM response to a sudden
3 h loss of power. Significant consumption still remained in the third case due to the cold loads,
requiring quite much reserve capacity to take care of it.

The household consumption data generating model could be employed also for different
applications. But in industrial use, for example, the gathering of input data might require more
effort, as the consumption of industrial equipment is less standard. In our future work, the
model will be employed for studies of distributed energy generation systems.
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NOMENCLATURE

A = appliance or group of appliances
d = day of the week
’Ei = hourly power demand per household while i is index for the hours
%’Ei = mean hourly power demand per household for all the households in a sample

while i is index for the hours
Eyearly = mean energy consumption per year (kWh)
’Estandby = standby consumption level (W)
’Ecycle;n = power level on step n of the mean consumption cycle (W)
f = mean daily starting frequency, models the mean frequency of use for an

appliance (1 day�1)
h = hour of the day
ncycle = number of steps on the mean consumption cycle
Pseason = seasonal probability factor, models the seasonal changes
Phour = hourly probability factor, models the activity levels during the day
Pstep = step size scaling factor, scales the probabilities according to Dtcomp

Psocial = social random factor, models the weather and social factors influencing the
communal behaviour

tcycle,n = length of step n on the mean consumption cycle (s)
tstart = appliance starting time
W = week of the year

Greek letters

Dtcomp = computational time step (s or min)
sflat = standard deviation for Psocial

APPENDIX A

The probability factors in Equation (1) have the following additional characteristics:

NstepsPstep ¼ 1:0 when Nsteps ¼
Dtcomp

60 min

X24
h¼1

PhourðA ¼ An; h; d ¼ dmÞ ¼ 1:0;

P52
W¼1 PseasonðA;WÞ

52
¼ 1:0

Nsteps is the number of computational steps per hour while An and dm represent any chosen
appliance during any chosen day, correspondingly. As shown below, the mean yearly starting
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rate can be calculated as the sum over the daily starting frequencies.

Nyear;meanðAÞ ¼
X52
W¼1

X7
d¼1

X24
h¼1

X
steps

hPapplðA; h; d;W ;Dtcomp;sflatÞi

¼
X52
W¼1

PseasonðA;WÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼52

X7
d¼1

f ðA; dÞ
X24
h¼1

PhourðA; h; dÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

X
steps

PstepðDtcompÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼1

hPsocialðsflatÞi|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼1

, Nyear;meanðAÞ ¼ 52ð5f ðA;weekdayÞ þ 2f ðA;weekend dayÞÞ

APPENDIX B

Details of model input are presented in Tables BI and BII.

Table BI. Daily starting frequencies, standby loads and consumption cycle information applied in the load
model for appliances and groups.

Power (W) and time (min) cycles
Stand-by

Daily frequency

Appliances and groups P1 T1 P2 T2 P3 T3 P4 T4 (W) Weekday Weekend Other

Stove and oven 1050 12 525 18 220 12 0 0.56 0.61 C,G
1100 12 550 6 0.70 0.76 C,G
2100 24 700 6 1400 6 0 6 0.20 0.21

Microwave oven 800 6 3 0.98 1.06
Coffee maker 640 6 105 18 0.98 1.06
Refrigerator 110 12 0 24 40.5 41.3
Freezer 155 12 0 12 40.5 41.3
Second freezer 190 12 0 12 40.5 41.3
Dishwasher 1800 18 220 18 1800 6 220 12 1.16 1.26
Clothes-washer 2150 12 210 24 450 6 0.31 0.33

2150 18 210 24 450 6 0.11 0.12
Tumble dryer 2500 72 0.28 0.30
Television 105 60 8 1.95 2.12
Second television 75 60 4 0.28 0.30
Video recorder } } 9 } }
Radio/player 30 60 5 4.18 4.54
Personal computer 125 60 3 0.70 0.76
Printer 30 60 4 0.14 0.15
Lighting 120 30 18.0 19.5 C,G
Other occasional loads 1000 30 3 0.14 0.15 G

P#=power in Watts for cycle #; T#=time in minutes for cycle #; C=cumulative use allowed; G=represents a group of

appliances.
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