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Abstract. We present a framework for modeling a dry geophysical mass of
granular material – a debris or volcanic avalanche or landslide – flowing over an
erodible surface. We also describe a computing environment that incorporates
topographical data into a parallel, adaptive mesh computational algorithm
that solves the model equations.

1. Introduction. Slow moving geophysical mass flows – debris flows, block and
ash flows, volcanic avalanches, or landslides – may be initiated by volcanic activity.
In these flows, constituent particles are typically centimeter to meter sized, and the
flows, sometimes as fast as tens of meters per second, propagate distances of tens of
kilometers. As these flows slow, the particle mass sediments out, yielding deposits
that can be a hundred meters deep and many kilometers in length [9]. These
flows can contain O(106 − 1010)m3 or more of material, and many also include a
significant amount of water.

The range of scales and the complexity of the rheology for geological materials,
coupled with the mathematical problem of describing and computing a free surface
flow, is a significant challenge. We lack a full understanding of how these mass
flows are initiated, but there is a growing understanding of processes governing flow,
once that motion has been initiated. This paper describes one effort in modeling
and simulating geophysical mass flows. Our efforts try to strike a balance between
fidelity to physics on the one hand and mathematical and computational tractability
on the other.

The starting point for the modeling effort here is the pioneering work of Savage
and Hutter [21]. Our contribution is to incorporate into the modeling the effect of
erosion on the dynamics of dry, flowing granular materials. In a first approximation
we assume that changes in elevation of the basal surface due to erosion are small,
and we solve the equations of motion with the bed surface frozen. For the large-
scale flows that are our primary interest, this assumption seems justified, but the
assumption may not be accurate when comparing model results against small table-
top experiments.

The governing equations consist of a system of hyperbolic balance laws. Using a
parallel, adaptive mesh computational framework, simulations were performed and
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results tested against data from small scale experiments of granular avalanches on
inclined plane [15], and against data from a debris flow event at the Little Tahoma
Peak on Mt. Rainier, Washington [24]. The next section contains a derivation
of our model equations. We then describe the TITAN computing environment
used to simulate flows. We close with computational results and comparisons with
experimental data.

2. Modeling Issues. In this section we summarize one approach to modeling
geophysical mass flows. Although interstitial fluid is an important ingredient in
many real flows, we concentrate here on dry granular flows without fluid. The
approach we adopt was originally introduced by Savage and Hutter [21]. Start-
ing from equations of mass and momentum balance on an inclined plane, using
a Coulomb constitutive relation and making scaling arguments, they developed a
one-dimensional model system similar to the shallow water equations. They also
performed a series of table-top experiments, to test model predictions. Savage and
Hutter later extended their work to two dimensions, found a similarity solution to
the governing equations, and examined flows over more general basal surfaces [6].

Iverson [7, 8, 4] extended the modeling to include the effects of pore fluid, and
employed modern shock-capturing numerical techniques to solve the model system.
Gray [5] re-derived the governing equations for general basal surfaces. Pitman
[18] wrote a Godunov solver for one-dimensional flows that incorporates general
topographical features into a simulation.

A heuristic derivation of the model equations proceeds in a manner similar to
the derivation of the shallow water equations. A thin layer of granular material at
constant density is assumed to flow over a smooth basal surface; motion normal
to the bed is neglected. By depth-averaging the momentum balance laws and the
equation of incompressibility, one derives a system of PDEs for the flow depth h
and the flow velocities in the down-slope and cross-slope directions. There are three
significant differences distinguishing geophysical mass flow models from shallow
water. First, the assumption of Mohr-Coulomb plasticity is far too complex to use
in a depth-averaged model. A simplifying assumption is made, namely that all
shear and longitudinal stresses are proportional to the normal (lithostatic) stress;
similar assumptions appear in soil mechanics and have their roots in the classic
work of Terzaghi [25] and Rankine [19]. Second, basal friction and basal surface
curvature lead to drag terms that are more complicated than the frictional drag
in shallow water models. Finally, the equations introduced below include a model
of bed erosion. It is estimated that as much as 50% of a typical flow deposit
is comprised of eroded material; this paper offers one approach to capturing this
important physical effect.

A complementary modeling effort can be found in [11], which uses the hydrodynamic-
like constitutive theory for rapid granular flows, also in the context of a thin layer
assumption.

As an aside, it is interesting to note that a time-dependent model of an in-
compressible granular material with a Mohr-Coulomb constitutive relation – the
starting point for the modeling – has been shown to be unconditionally ill-posed,
similar to a mixed forward-backward heat equation qt = qxx − qyy [22].

The governing equations consist of a system of hyperbolic balance laws. To solve
these equations we have developed a numerical simulation framework that imports
digital elevation data, solves the governing equations, and assists in visualization. A
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brief description of the code will be presented below; the interested reader can find
a more detailed description of this parallel, adaptive mesh, finite volume Godunov
solver elsewhere [15, 16].

The model equations and computational environment is used to study the effect
of erosion on the dynamics of flowing granular masses. By assuming that changes
in the basal surface due to erosion are small, we ignore changes to the surface
slopes and curvature that erosion might induce, and we do not alter the digital
elevation map that defines the terrain. Thus the net effect of erosion consists only
in changing the net mass and momentum of the flow. Because of the accuracy
of widely available elevation data, this assumption seems justified. The erosion
model has been tested against experimental and field data [2], which the reader can
consult for details.

3. Governing Equations. In this section we summarize the system of equations
governing our erosion model. For a detailed derivation of these equations the reader
is referred to [2].

The fundamental balance laws for mass and momentum for an incompressible
continuum may be written

∇ · v = 0
ρ(∂tv + v · ∇v) +∇ ·T = ρg (1)

Here v is the velocity, ρ is the (constant) density of the granular material, and T
is the stress tensor.

The granular material is assumed to be an incompressible continuum satisfying
a Mohr-Coulomb constitutive relation. The Mohr-Coulomb assumption states that
slip planes appear inside the bulk when the internal state of stress equals the yield
criteria, σt/σn = tan ϕint, where σn, σt are the normal and shear stresses acting on
a plane element inside the granular material and ϕint is the internal friction angle
of the medium.

We assume that the interface between flowing granular material and the basal
surface z = b(x, t) can move as a result of an exchange of sediment particles. The
normal speed of the interface ∂tb + vx∂xb + vy∂yb − vz is given by an erosion rate
es. We postulate an empirical formula for this rate, assuming there is a threshold
shear stress below which there is no erosion, and that the amount of eroded material
increases monotonically with the bed shear stress above this threshold. Changes
to the surface are assumed small, and are ignored when determining surface slope
and curvature.

A friction law is assumed at the interface between the flowing mass and the basal
surface: Tbnb−nb(nb ·Tbnb) = vr

|vr| (n
b ·Tbnb) tan ϕbed. Here vr is the slip velocity

(r denoting the velocity component), at the upper side of an infinitesimally thin
boundary layer that forms at the basal contact surface, Tb is the stress at this basal
surface, nb the surface normal, and ϕbed the bed friction angle. Although it might
be argued that, if the surface is eroding, frictional stresses would be dramatically
reduced, we assume that the sliding friction relationship is not changed during the
erosion process.

The upper free surface z = h(x, t), is assumed to be stress-free, and a kinematic
boundary condition ∂th + vx∂xh + vy∂yh− vz = 0 is imposed on the motion of the
surface.



4 E. B. PITMAN, C. C. NICHITA A. K. PATRA, A. C. BAUER M. BURSIK AND A. WEBER

The three dimensional system as described gives a detailed description of the
flow, but the computational complexity of such a model, especially in the treatment
of the free surfaces, precludes its use in our applications.

Before delving into the details of the model derivation, we mention that the
Equations (1) could be scaled in both dependent and independent variables, giving
insight into the relative magnitude of terms is the governing system. Such a scaling
lies at the heart of the original derivation of Savage and Hutter [21, 6]. In particular,
the thin layer model equations we solve are predicated on a long wave assumption.
That is, changes in the downslope direction are assumed to occur on a lengthscale
L, while changes in the direction normal to the basal surface on a scale H, and
we assume H/L = ε ¿ 1. Our derivation below does not explicitly rely on this
scaling, but the long wave assumption does influence the choices made during the
modeling. The interested reader should also see [8].

Depth-averaging is applied to an arbitrary element in a local coordinate system
that has the Oz axis directed normal to the bed surface, and Ox in the direction of
maximum local slope. In this coordinate system the equations for the basal surface
and for the free surface are z = 0, and z = h(x, y, t), respectively. We now briefly
illustrate the depth-averaging procedure.

Integrate the incompressibility equation through the layer to find
∫ h(x,y,t)

0

(∂xvx + ∂yvy + ∂zvz) dz = 0 .

The Leibnitz formula allows the interchange of differentiation and integration. Then
apply the kinematic conditions on the upper and lower surfaces to find

∂th + ∂x (hvx) + ∂y (hvy) = es . (2)

The depth-averaged velocities are defined by hvx =
∫ h

0
vx dz, and hvy =

∫ h

0
vy dz.

The erosion rate es is an empirical factor, es = α

√
(hvx)2 + (hvx)2/h if (T σ ≥ T 0),

or es = 0 if (T σ < T 0). In these formulae, T σ is the total shear stress at the given
point and T 0 is a threshold stress, and α is a proportionality constant to be fitted
to experimental results.

Turning now to the momentum equations, the x momentum equation first, inte-
grate in the normal direction again using the Leibnitz formula to find,

ρ
[
∂t(hvx) + ∂x

(
hv2

x

)
+ ∂y (hvxvy)

] − ρ [vx(∂tz + vx∂xz + vy∂yz − vz)]
h
0 =

−∂x(hT xx)− ∂y(hT yx) + [Txx∂xz + Tyx∂yz − Tzx]h0 + ρgxh (3)

The overbar on T denotes a depth-averaged stress component, and a term like gx

is the component of gravity in the x-direction. The kinematic and stress condition
at the upper surfaces reads

T · n ∣∣
z=h(x,y,t) = Txx

∣∣
z=h(x,y,t) ∂xh + Tyx

∣∣
z=h(x,y,t) ∂yh− Tzx

∣∣
z=h(x,y,t) = 0

Combining this with the basal stress condition in the depth-averaged momentum
equation yields:

ρ
[
∂t(hvx) + ∂x

(
hv2

x

)
+ ∂y (hvxvy)

]
=

esvr − ∂x(hT xx)− ∂y(hT yx) + Tzx |z=0 + ρgxh (4)

Experimental observations suggests that the downslope velocity profile is blunt,
and all shear is confined to a very thin layer near the basal surface. Based on these
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notions, we assume the sliding velocity vr can be approximated by the average
velocity vx.

Because of the shallowness assumption, we assume a lithostatic relation for
the normal stresses in the z direction. The Mohr-Coulomb then theory provides
a highly nonlinear relation among the stresses, a theory is too complex for use
here. Instead we employ a relation from soil mechanics that has its roots in
the work of Terzaghi [25] and Rankine [19] – assume the longitudinal and shear
stresses are proportional to the normal stress, with constant proportionality: Txy =
Tyx = −sgn(∂vx

∂y )kap
ρhgz

2 sinϕint; similar relations hold for the xz- yz-, xx- and yy-
stresses. In this formula, the stress coefficient kap differs in the active and passive
stress states. The active or passive state of stress is developed if an element of
material is elongated or compressed, and the formula for the corresponding states
can be derived from the Mohr diagram [23]

kap = 2
1± [

1− cos2 ϕint(1 + tan2 ϕbed)
]1/2

cos2 ϕint
− 1 (5)

in which the negative square root corresponds to an active state (∂vx/∂x+∂vy/∂y >
0), and the positive root to the passive state (∂vx/∂x + ∂vy/∂y < 0).

Combining all these equations, the depth averaged x-momentum equation can
be written

∂t(hvx) + ∂x

(
hv2

x +
1
2
kapgzh

2

)
+ ∂y (hvxvy) = esvx + gxh

−hkapsgn(∂vx/∂y)∂y(gzh) sin ϕint − sgn(vx)
[
gzh

(
1 +

vx

rxgz

)]
tan ϕbed (6)

Here rx is the radius of curvature in the x-direction of the basal surface. The relation
for the y-momentum equation is similar, and can be obtained by interchanging x
and y in the equation above.

Writing the relations for mass and momentum balance, the governing equations
form a system of hyperbolic balance laws that can be written in matrix form

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= S (7)

where U = (h, hvx, hvy)t, F = (hvx, hv2
x+0.5kapgzh

2, hvxvy)t, G = (hvy, hvxvy, hv2
y+

0.5kapgzh
2)t , and S = (es, Sx, Sy)t and where

Sx = esvx+gxh−hkapsgn(∂vx/∂y)∂y(gzh) sin ϕint−sgn(vx)
[
gzh

(
1 +

vx

rxgz

)]
tan ϕbed

Sy = esvy+gyh−hkapsgn(∂vy/∂x)∂x(gzh) sin ϕint−sgn(vy)
[
gzh

(
1 +

vy

rygz

)]
tanϕbed

This system has a structure similar to the shallow water equations, except for the
complexity of the dissipation terms on the right-hand side. The system is strictly
hyperbolic and genuinely nonlinear away from the “vacuum state” h = 0, with
characteristic speeds λ± = u±√βh, where β = kap.

4. TITAN2D code. TITAN2D is a parallel adaptive-mesh finite volume compu-
tational environment based on a Godunov solver, for solving the governing PDEs
Eqns (7). A detailed description of the code can be found in [15]; here we give a
brief review of important features of the code.
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TITAN2D begins by importing digital elevation data from the GRASS data
(Geographic Resource Analysis Support System) geographic information systems
(GIS) data source. This GRASS data is then geo-rectified and coded into a grid,
in a manner similar to the GRID module of ARC/INFO [1]. From this data, the
elevation slopes and curvatures, which are parameters in the governing equations,
are computed and a regular Cartesian grid on which Eqns. (7) will be solved is
defined.

The equations are solved by a finite-volume method using a Godunov method
in an explicit time-integration scheme. The basic approach employed here is due
originally to Davis [3]. The dependent variables are considered as cell-averages,
and their values are advanced by a predictor-corrector method; the source terms
are included in these updates, and no splitting – neither for the source nor the
multiple dimensions – is necessary.

un+1
i,j = un

i,j −∆t

(Fi+1/2,j −Fi−1/2,j

∆x
+
Gi,j+1/2 − Gi,j−1/2

∆y
+ Si,j

)
(8)

In this update formula, both the numerical fluxes F , G and the source terms S are
evaluated at the mid-time n + 1

2∆t values, which are obtained in a predictor step:

un+ 1
2

i,j = un
i,j −

∆t

2
(Ai,j∆xu + Bi,j∆yu + Si,j) (9)

Here, A and B are the Jacobians of the physical flux functions F and G, respectively,
and ∆xu and ∆yu are slope-limited approximations to the x- and y-derivatives,
respectively. The numerical fluxes are then evaluated at the cell edges using an
approximate Riemann solver. We have experimented with Riemann solvers due to
Davis, Roe, Russanov, and the HLL solver [3, 10, 27], and all give similar results.
Testing suggests that a correct handling of the snout and tail of the pile is the
most important of the several factors influencing the computations. In particular,
robust results rely on sufficiently fine grids and a proper accommodation of waves
propagating into the h = 0 vacuum at the front and back of the pile.

Although numerical difficulties often accompany hyperbolic systems with source
terms, the approach just described has provided acceptable results especially when
used with fine enough grids [15] (see also [27] for results from shallow water com-
putations, and [29] regarding so-called positivity preserving schemes). In addition,
the simplicity and small operation count of the method recommend its use.

This numerical method is integrated into a parallel implementation coupled with
adaptive meshing, allowing for efficient processing of large data sets without de-
grading numerical accuracy. In particular, a special scheme based on a space-filling
curve is used to index grid cells, an important feature when cells are refined and
unrefined [14, 15].

5. Results and Experiments. We have tested our model equations (without
erosion) and numerical solver against results from table-top experiments and against
field measurements of historical flows over natural terrain; see, for example, [15, 16,
24]. Here we report on numerical results of the erosion model system, and compare
these against flow on a simple inclined plane flow. We also show a comparison of flow
with and without erosion at the Little Tahoma Peak on Mt. Ranier, Washington.

Consider then the dynamics of a pile of sand, about 400 g in mass, released on
an inclined plane. The experimental plane is about 1

2 meter wide and 1 meter
long, made of a composite particle board with coarse sandpaper glued on the top.
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Figure 1. Location of pile front and tail, and maximum pile
height and velocity, for sand flowing down an inclined plane in
numerical experiments. A) Erosion is not active, while B) erosion
with a threshold of 0.1 is active.

At a distance of 0.8 meters from the top, the incline abruptly meets a horizontal
plane. We have performed two sets of experiments, one with an erodible surface,
one without erosion. For runs with erosion, we have covered the plane surface with
a layer of sand about 1 cm. deep. Because the friction angle between the sand and
the sandpaper is large, this layer remains stable for a range of inclination angles at
which we run experiments.

We investigate velocities at a series of time steps, as well as runout distance,
sediment deposition, and final mass of sediment load. Physical experiments and
detailed comparisons are reported in [2]. Figure (1) gives results from TITAN
simulations; Figure(2) presents results from the experiment. In Figure (1) we show
the position of the nose and tail of the flowing pile as it descends an incline, as
well as velocity and pile height during the run. Plots A and B compare results of
simulations without erosion and with erosion activated. In the erosion simulation,
the threshold for the initiation of erosion is 0.1 - that is, 10% of the maximum
initial pressure - and the erosion rate α = 0.1. In Figure(2), the location of the
front of the pile is plotted, as is the maximum speed of the pile. For the physical
experiments, the internal friction is 36.6 degrees, the basal friction 29 deg. The
plane inclined at an angle of 44.3 degrees in the run with no erosion, and 42.5 deg.
in the run with erosion. In the numerical runs, the initial pile was ellipsoidal, with
a maximum height scaled to unity. The various friction and inclination angles were
set to match the experimental values.

Experimental and numerical flows show similar overall characteristics, and all
stop rapidly soon after the incline meets the horizontal. The maximum pile height
in the experiments was 1 cm in the case of no erosion, and 1.5 cm with erosion (a
50% difference). These values compare with final maximum pile heights of 0.7 cm
in the case of no erosion, and 0.8 cm with erosion for the numerical results (a 15%
difference). As intuition might suggest, maximum pile height in both laboratory
and numerical runs is somewhat larger for the case of erosion, but not significantly.
The most obvious difference and perhaps the most important difference between the
cases of erosion and no erosion is in maximum downstream speed, which is 15−20%
larger without erosion in both laboratory and numerical experiments. In comparing
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(A) (B)

Figure 2. Location of pile front, and maximum speed, for sand
in laboratory experiments flowing down an inclined plane. (A)
Erosion is not active, while (B) erosion is active.

experimental and numerical results, perhaps the biggest discrepancy is the time
scale on which flow occurs. In the numerical simulations with and without erosion,
the front of the pile reaches the end of the plane - and effectively halts - after about
0.45 sec. On the other hand, in experiments this takes about 0.6 sec. Comparison
between the numerical and experimental finding of the maximum flow speed are
not well established. It does appear that, in the experiments, the maximum speed
without erosion is perhaps as much as 20% larger than with erosion, consistent with
the simulation results. But these experiments did not provide sufficient detail to
determine the time course of the maximum velocity profile, particularly in the no
erosion experiments.

There are several shortcomings with this analysis, including differences in friction
and slope angles among the comparison datasets, but the results suggest that the
model mimics several characteristics of real flows, at least real, small-scale flows.

We turn attention now to simulations of a 1963 rockfall avalanche at the Little
Tahoma Peak. Field work suggests that a flank of this peak gave way during a series
of avalanches over several weeks, with a total of about 107 m3 of material falling.
Numerical results here simulate one large avalanche flowing over the terrain as
measured in recent GIS data. At the top of the mountainside is Emmons Glacier,
while lower down the basal surface is made of geologic material. This changing
terrain presents a challenge to our simulations - we have not yet included a variable
basal friction in the code. For simulations reported here, we use a small basal
friction angle, intermediate between that for geologic material (∼ 30 degrees) and
ice (perhaps ∼ 5−10 degrees). We show the peak velocities computed in simulations
with and without erosion in Figure 3. The peak velocity is seen to be about 10%
smaller when erosion is activated. In Figure 4 we show contours of flow simulations
at several times down Little Tahoma, with and without erosion. The pile height
during these simulations are differ, especially during the latter stages of the flow.
The final deposit with erosion is about twice as large as when erosion is not active.

During the simulations, the moving pile sweeps out an area that is in good agree-
ment with field reconstruction of the deposit from the ’63 events. The simulations
show qualitative agreement with the flow history and run-out, as estimated from
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Figure 3. Maximum velocity of a simulated flow down Little
Tahoma Peak, with and without erosion. Erosion is activated
whenever the shear stress is greater than 1% of the initial grav-
itational pressure.

Figure 4. Contour of the flowing mass down Little Tahoma Peak
at three different times. For each pair of figures, in the frame on
the left erosion is absent, and erosion is active in the frame on the
right, with a threshold of 1% of the peak initial stress.

field studies, but the match is not quantitatively right. Nonetheless, the comparison
is encouraging; see [24] for further details.

6. Summary. We provide a summary of a mathematical system of PDEs describ-
ing dry geophysical mass flows over realistic, erodible surfaces. We then briefly
describe the TITAN2D computer code for solving this model system, and offer a
comparison of simulations results with experiments. There are significant model-
ing issues yet to be addressed, such as the presence of pore fluid in the moving
mass. Nonetheless, for dry flows, preliminary analysis suggests TITAN provides a
computational environment with adequate fidelity to the physical flows it intends
to simulate; experiments and computational validation is continuing. The code is
designed to help scientists and civil protection authorities assess the risk of and
mitigate hazards due to dry debris and avalanche flows. The the core numerical
solver can be adapted as more complete rheological models are developed.
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We now have in place a computational environment for simulating the system of
equations modeling single-phase geophysical mass flows, including a model of ero-
sion, and a compute environment that integrates accurate topographical data into
a parallel, adaptive mesh Godunov solver. Simulation results match experimen-
tal findings qualitatively, but detailed quantitative comparison, especially large-
scale fieldwork against which to compare simulations, is still required. The Mohr-
Coulomb theory which lies at the heart of the physical modeling presented here
requires only a small number of physical parameters (internal and basal friction
angles, and two erosion parameters), these parameters are only loosely defined, and
the measurements of these quantities are crude.

The thin layer modeling, and our numerical solution methodology is capable of
extension to constitutive theories other than the Mohr-Coulomb relation used here.
One may rightly ask Does the specific constitutive theory employed in such a thin
layer model qualitatively change simulation results?

It is also important to recognize that, by necessity, any “thin layer” model hides
important information through the averaging process. For instance, one open prob-
lem is to recover information about the internal flow dynamics.

The numerical method described here, and similar approaches by others [4, 5],
are (or can be) formally second order accurate. The sheer size of the regions on
which we wish to simulate flow, however, necessitates large grid cells. Adaptive
gridding and a parallel computing framework provides the capacity to perform
computations on reasonably sized grid cells. Our experience shows that a grid with
sufficiently small cells is necessary for reasonable simulations. At the same time,
elevation data must be accurate enough to allow these fine grids to be faithful to
the actual topography. In some cases, this topographical data is available down to
5m× 5m-scale with a ±1m vertical accuracy. A remaining challenge is to develop
a strategy for computational mesh refinement coupled to a hierarchy of refined
topographical mappings.

Finally, the model used here accounts only for the deformation of solids material.
Missing is the effect of interstitial fluid, especially water mixed into the granular
material. Pore fluid may also be important in initiating mass flows. Iverson [7, 8]
has taken a first step by in including fluid into a thin layer model, but more work
is required before we can be confident of any approach.
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