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Abstract
Complexities in sample handling, instrument setup and data analysis are barriers to the effective
use of flow cytometry to monitor immunological parameters in clinical trials. The novel use of a
central laboratory may help mitigate these issues.

Flow cytometry has historically not constituted a large segment of the monitoring assays in
clinical trials. The technology tends to be complex and expensive and often uses
idiosyncratic methods for instrument setup and analysis. However, new technologies have
evolved that can substantially enable the use of flow cytometry in clinical trial settings.
These include lyophilized, preformatted, multiwell staining plates that decrease operator
time and error1; multicolor analysis of many cell subsets simultaneously from a single
stained cell sample2; automated instrument setup and compensation routines3; and batched
analysis from templates that can include dynamic gates to allow for run-to-run staining
differences4.

Together with those technological advancements, there is growing interest in collecting
more information from preclinical and early phase clinical trials for better prediction of the
performance of candidate drugs and identification of risks before an expensive, late-stage
clinical trial5. As a platform for monitoring immune function and immunotoxicity, flow
cytometry is extremely powerful. In fact, it is arguably the most powerful single-cell
analysis technology available at present. It is therefore not surprising that there is growing
interest in the use of flow cytometry as a tool for monitoring clinical trials.

Despite the technological advancements listed above, there are still many factors that
impede the widespread use of flow cytometry in clinical trials. These can be roughly
categorized as issues of sample handling, instrument setup and data analysis (Fig. 1). Here
we will briefly review each of these areas and then propose a model that could in many
cases minimize the effect of these variables in multicenter clinical trials.

Under the heading of ‘sample handling’ are many questions about how to process and ship
blood samples so their viability and function are not unduly compromised while still
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following a workflow that can be used by all laboratories involved in the study. This is
perhaps the most vexing area, as invariably compromises must be made between the
preservation of sample integrity and maintenance of a practical workflow.

Sample handling issues
Sample handling begins with blood collection, the timing of which may introduce circadian
variation, as has been demonstrated for the frequency6 and functions7,8 of various
lymphocyte subsets and for serum cytokine production9. The type of anticoagulant used for
blood collection can also influence the phenotype and function of peripheral blood
mononuclear cells10–12. The length of time from blood draw to sample processing can be
crucial for the counting of certain cell types13, staining of labile markers10 and preservation
of function11. Density-gradient centrifugation, frequently used for the isolation of peripheral
blood mononuclear cells, can also result in differences in staining patterns and subset
distributions and function relative to those obtained by the analysis of whole blood14–16.
One approach that allows sample batching and deferred analysis is cry-opreservation, but
this can introduce additional changes in labile phenotypic markers and subset
distributions17–19.

Functional assays, such as intracellular cytokine staining, analysis of proliferation or flow
cytometry to assess phosphorylated epitopes, incur additional variation related to the method
of in vitro stimulation of cells. The stimulation media, source and lot of stimulation reagent,
titer, stimulation time and type of stimulation vessel can all influence the degree of
activation or proliferation seen in such assays1.

The actual staining of samples can introduce variability; for example, whether whole blood
samples are stained before or after erythrocyte lysis, the time and temperature of staining,
the fluorochrome conjugate, titer and even the lot of staining reagent used can all affect the
readout. The increasing use of intracellular staining protocols for the examination of
cytokines or phosphorylated signaling molecules introduces additional variables; for
example, the fixation and permeabilization system used and whether cell-surface markers
are stained before or after fixation and permeabilization can have an effect. Many cell
surface epitopes are mostly destroyed by fixation and permeabilization, at least with the
harsher fixation-permeabilization schemes needed to detect certain intracellular epitopes.
Finally, the use of tandem dyes (conjugates of two fluorochromes that create a greater shift
in emission wavelength than do single dyes) must be considered. Some of these tandem dyes
(such as phycoerythrin-indotricarbocyanine and allophycocyanin-indotricarbocyanine) are
particularly labile in the presence of light, fixation and higher temperatures20. They can also
have greater lot-to-lot variability in optical spillover properties than do single dyes. Thus,
reproducible and well-controlled sample handling, as well as consistency of reagent lots,
becomes critical.

Instrument setup and data analysis issues
In the area of instrument setup, much standardization can be achieved with the software
packages available with newer digital cytometers. However, this instrumentation and
software is not yet widely used in clinical research organizations or other clinical trial–
associated laboratories. In addition, these systems do not continuously track performance but
instead assume that the cytometer does not change over the course of a day. If sufficient
warm-up time has been given (up to 2 hours for some types of lasers), this assumption might
hold true. However, analyzing a control bead population before and after each experiment is
also advisable for the detection of any performance changes that might occur over the course
of a run. Finally, instrument setup software does not necessarily address standardization
across different cytometers, particularly if those cytometers vary in their configuration. For
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example, cytometers equipped with green lasers (usually 532-nm emission) have better
sensitivity for phycoerythrin itself and tandem phycoerythrin dyes21 than do those that use
blue (usually 488-nm) lasers. In such cases, there will invariably be performance differences
that cannot be overcome.

Analysis of multicolor flow cytometry necessarily involves compensation for optical
spillover between detectors22. Fortunately, automated algorithms are now available with
most acquisition and analysis software that calculate compensation from a set of single-color
controls. Additionally, the use of software-based compensation on newer digital instruments
allows adjustment of compensation, if necessary, even after sample acquisition. However,
variability and potential inaccuracy can still be introduced into the process via the following
parameters: the type of single-color controls chosen (such as beads or cells), the antibody
used to stain each control, the handling of those controls relative to the handling of
experimental samples and the choice of a negative population associated with each
compensated parameter. Normally compensation should not have to be adjusted after it has
been computed by the software, but depending on the variables outlined above, some
corrections may occasionally be necessary and this then becomes a subjective process and a
source of variability.

Of course, the degree of optical spillover in a particular experiment is dependent on the
choice of fluorochromes and antibodies used20. Suboptimal panel design will negatively
affect the quality of data because of the use of fluorochromes that are too dim for particular
markers and/or that have excessive optical spillover. In general, efforts should be made to
standardize reagent panels for particular purposes so data are comparable and development
time is minimized. However, because research questions constantly change, there is always
pressure to redesign existing panels, and the addition of even one more reagent often
requires extensive rearrangement of fluorochrome-antibody combinations so acceptable
performance is maintained. This is especially true as the number of fluorochromes in the
experiment increases.

In addition to variability in compensation controls, there can be variability in the choice of
gating controls used to determine positive-negative boundaries in the data23. Fluorescence-
minus-one controls22 include all the experimental staining reagents except one and can be
useful for setting gates when staining is dim or smeared. However, these controls do not take
into account background staining of the reagent that has been left out. This can be estimated
by substitution of a non-staining antibody of the same isotype as the experimental reagent
(isotype-matched control antibody), but the amount of background may still not be
accurately assessed because of differences in concentration, the fluorochrome/protein ratio
and inherent nonspecific binding. Also, it is still necessary to use isotype-matched control
antibodies in the context of the other staining reagents to account for optical spillover
between reagents.

Another useful type of control, the so-called ‘process control’, can be added to verify the
performance of certain steps in the assay. For example, prestained lyophilized cells can be
used to verify instrument setup and gating independently of sample handling and staining.
Alternately or additionally, serial aliquots of a single cryopreserved sample may be thawed
for each assay and stained to simultaneously verify the performance of that day’s staining,
instrument setup and gating.

In the area of data analysis, there have been advances in gating tools and batch-analysis
options. However, the analysis software now available does not allow efficient archiving
and retrieval of large amounts of data or analysis across multiple experiments. The tools
available are still highly focused on experiment-specific analysis and are generally
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insufficient to achieve the ultimate goal of reliable, single-step transformation of raw data
into quantified results for large numbers of files.

Perhaps the largest single contributor to variability in flow cytometry is differences in
gating. In one example of this, as part of a multisite standardization study1, prestained
lyophilized cells were distributed to 15 experienced laboratories and researchers were asked
to acquire the samples and then analyze the data, and to also send the raw data files to a
single laboratory for central analysis. The data from individual laboratory analyses showed a
mean coefficient of variation of 20.5% across four samples, whereas the data from central
analysis showed a mean coefficient of variation of 4%. This means that instrument setup and
statistical counting errors accounted for only a very minor proportion of the variability,
whereas individualized gating methods accounted for the vast majority of the inter-
laboratory variation.

In the study described above, the inclusion of ‘dim’ populations for key markers such as
CD4 and CD8 accounted for most of the gating variability noted. When populations are
tightly clustered and easily discriminated from each other, such variability will of course be
less. This means that a certain amount of gating variability can be avoided by optimal design
of reagent panels. However, the remaining variability needs to be handled through the use of
either a shared gating template or central analysis by a single operator. The shared template
can still suffer from problems, as some adjustment of gates may be required between donors
and between experiments, so there will still be a degree of operator bias. This can be
minimized in some cases by the use of dynamic gates (available in some analysis software)
that adjust to shifting data4. However, such gates need to be rigorously tested and their
settings must be optimized to ensure the desired results, and they might not be feasible for
use in some situations.

Most flow cytometry data are reported as the percentage of cells positive for a particular
marker or set of markers, with the denominator of the percentage being a chief subset of
interest, such as CD4+ or CD8+ T cells, B cells and so on. Because the numbers of these
subsets can vary, particularly in certain conditions such as infection with human
immunodeficiency virus, it is sometimes desirable to convert percentages to absolute counts
per microliter of blood (or per milliliter, for rarer subsets). This is straightforward if an
absolute counting test for the subset of interest is done concomitantly with the blood draw
for which immunophenotyping is done. However, such conversion is not routinely done in
the vast majority of clinical immunomonitoring studies.

In cases in which a cell population displays a continuous distribution of staining intensity,
rather than discrete positive and negative populations, it can be more appropriate to report
the median fluorescence intensity of the entire cell population. However, differences in
staining and instrument setup from experiment to experiment warrant the use of some type
of standard to ensure the reproducibility of this approach. This could involve simply
calculating the ratio of the median fluorescence for the experimental sample to that of a
sample stained with isotype-matched control antibody. Alternately, so-called ‘quantitation
beads’, which contain a known number of fluorochrome molecules per bead, can be used as
a reference for converting raw fluorescence units to fluorochrome molecules per cell24. If a
1:1 conjugate of antibody/fluorochrome is used for staining, these numbers are identical to
the antibodies bound per cell.

Beyond simply reporting the results of a flow cytometry experiment, there are efforts under
way to encourage more complete and consistent reporting of the methodology used to
achieve that result. For example, the MIFlowCyt (minimal information about a flow
cytometry experiment) standard25 has been approved by the International Society for
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Advancement of Cytometry for the reporting of any flow cytometry results. Basically, the
standard specifies information that should be supplied with any experiment under the
following headings: Experiment Overview, Flow Sample/Specimen Details, Instrument
Details and Analysis Details.

For particular classes of experiments, other standards are being developed. For example, the
MIATA (minimal information about T cell assays) approach26 aims to set standards about
the reporting of tetramer and intracellular cytokine staining and other related T cell assays.
Obviously, consistent adherence to such standards would increase the transparency of
published data, making the data easier to interpret and reproduce.

Strategies to minimize these issues
For inter-institutional or cooperative studies, or even separate studies attempting to produce
comparable data, the issues described above present barriers to the generation of accurate
and precise data with the least variation among different sites and studies. This represents a
huge obstacle in clinical research, as data from one study or institution may have little
meaning in the context of data gathered separately without control of many variables.
Several options can be considered to address the issue of standardization of data collection,
each having associated drawbacks and benefits. In a broad context these can be grouped into
three models: the remote model, the central model and the mixed model.

In the remote model, inter-institutional studies are undertaken in every institution, each
operating under (hopefully) standard or ‘harmonized’ protocols determined before the start
of the study. The key advantages of doing cytometry at remote sites is that these sites are
more proximal to the patients; thus, issues of sample handling before staining are minimized
and the potential of obtaining data on labile cells or markers is maintained. Disadvantages of
this model include variations in protocols (and protocol adherence) among the participating
institutions. Subjective nuances can be introduced even if there is an attempt to follow an
identical protocol at different sites. Clearly, this model has little chance of minimizing
variability among sites unless strict standardization procedures are implemented.

In the central model, all remote samples are sent to a central facility for processing and
analysis. Although this can more easily ensure standardization of process, instruments and
analysis, it does introduce the vagaries associated with the necessity of shipping samples.
There is also the introduction of time as a factor in the evaluation of which markers can be
analyzed and the subsequent interpretation of the results obtained. Essentially, this model
acts as a clinical reference laboratory would.

The mixed model (Fig. 2) would blend the desired aspects of the remote and central models
into one to minimize variation as much as possible while still allowing each institution
separate ‘ownership’ of the respective laboratories. In this model, samples would be
obtained, processed and acquired at local sites through the use of strict standard operating
procedures (SOPs) to expedite sample handling and processing. The central laboratory
would ‘harmonize’ the remote sites by confirming SOPs were used, training researchers and
so forth. In this scenario, care must be taken to ensure that instruments are standardized at
the various sites so each is able to detect the anticipated staining in a universally consistent
way. Major clinical reference laboratories with multiple locations have pioneered this
approach, and similar procedures could be implemented in academic institutions.
Furthermore, technical staff should be centrally trained to ensure that all procedures are
done in a uniform manner and SOPs are strictly followed. Ideally, in this scenario, all sites
would use identical reagents, including the same lots of reagents tested and distributed to
each site. If possible, lyophilization of reagents, which prevents any alteration in reagents
during shipping, would be used. All reagents and SOPs would be tested by the central
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laboratory and then distributed to remote laboratories. Additionally, quality-assurance
samples could be shipped to all laboratories, similar to the proficiency testing among
laboratories certified by the Clinical Laboratory Improvement Amendments, to ensure
consistency among the sites.

One issue discussed before is the variability that arises when flow cytometry data are
analyzed by different researchers not working under strict guidelines1. Variability due to
subjective gating and how positive versus negative events are delineated can result in
considerable deviations. At a minimum, templates for acquisition and data analysis would be
distributed among the remote sites. Perhaps centralization of data analysis would be even
more desirable. This could be accomplished easily if acquisition of data at remote sites were
followed by secure, electronic transmission of the data files to the central laboratory for
analysis.

Thus, in this mixed model, all sample procurement, staining, and acquisition of flow
cytometry data would be conducted at local or institutional laboratories. This would be done
under the aegis of the central facility through the use of strict SOPs and training procedures.
The central laboratory’s role would include training, SOP development, titration, validation
and distribution of reagent lots to remote sites, proficiency testing and instrument
standardization at remote sites, and centralized analysis of the flow cytometry standard files
generated remotely.

Clearly, the operation of a central laboratory in the context of the mixed model would add
up-front costs to inter-institutional group studies. It is possible that some of these costs could
be offset by centralized reagent procurement and validation, as well as centralized data
analysis. Additionally, cost savings (relative to the costs of the central model) might be
gained from the lack of a need to ship specimens by express courier. Furthermore, once the
initial investment is made, the cost per study may not be much different for the mixed model
versus the central model.

Concluding remarks
Regardless of the model used for the monitoring of multicenter clinical trials, the application
of complex (and powerful) flow cytometry assays in this setting needs to be carefully
planned. Investments in training and personnel, as well as use of the appropriate hardware
and software tools, are necessary to ensure the production of consistent and accurate data in
a study and ideally to create data that can be compared by meta-analyses of the same assays
across studies. Building an infrastructure that can support the generation of such data is a
tremendous challenge for the immunology community. However, this is a challenge that
must be met if immunologists are to realize the potential of human translational
immunology.
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Figure 1.
Flow chart of decisions that can affect the quality of data produced in clinical trials in which
immunological parameters are monitored by flow cytometry.
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Figure 2.
Proposed mixed model of the operation of a multisite clinical trial.
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