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A new model for interference and forgetting is presented. The model is based on the Raaijmakers 
and Shiffrin search of associative memory (SAM) theory for retrieval from long-term memory. It 
includes a contextual fluctuation process that enables it to handle time-dependent changes in re- 
trieval strengths. That is, the contextual retrieval strength is assumed to be proportional to the over- 
lap between the contextual elements encoded in the memory trace and the elements active at the 
time of testing. It is shown that the model predicts a large number of phenomena from the classical 
interference literature. These include the basic results concerning retroactive inhibition, proactive 
inhibition, spontaneous recovery, independence of List 1 and List 2 recall, Osgood's transfer and 
retroaction surface, simple forgetting functions, the use of recognition measures, and the relation 
between response accuracy and response latency. It is shown that these results can be explained by a 
model that does not incorporate an "unlearning" assumption, thus avoiding many of the difficulties 
that have plagued the traditional interference theories. 

In recent years, a number of memory models have been pre- 
sented that successfully predict the major results concerning re- 
call and recognition. Unfortunately, however, many of those 

models have not been applied in a systematic manner to the 
phenomena of interference and forgetting. This is especially re- 
grettable since there exists a wealth of  data, accumulated in the 
years when these topics were the main focus of memory re- 
search, that should not be disregarded by contemporary mem- 
ory theories. 

In this article, we present a model intended to explain the 
basic findings concerning interference and forgetting, findings 
that have been shown in many experiments to be relatively ro- 
bust and reliable. The model is based on the general search of  
associative memory (SAM) theory (Raaijmakers & Shiffrin, 
1981a) but incorporates a new model describing contextual 
fluctuation processes (Mensink & Raaijmakers, 1988). 

The SAM theory is a probabilistic cue-dependent search the- 
ory that describes retrieval processes in long-term memory. Re- 
trieval is assumed to be mediated by retrieval cues, such as cate- 
gory names, words from a to-be-remembered list, contextual 
cues, etc. Sampling and recovery of sampled images (or mem- 
ory traces) are the mechanisms that constitute the central fea- 
tures of the theory. As has been documented in previous papers 
(Gillund & Shiffrin, 1984; Raaijmakers & Shiffrin, 1980, 
1981 a, 1981 b), the SAM theory predicts a considerable number 
of  memory phenomena, such as serial position effects, response 
latency, output interference, list-length effects, cued and non- 
cued recall of  categorized lists, and the relation between recog- 
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nition and recall. However, as yet the theory has not been ap- 
plied to interference phenomena. Since interference is generally 
considered as reflecting the most fundamental process of  forget- 
ring, a general theory of memory such as SAM should be able 
to handle such phenomena. 

Although previously published versions of  SAM (e.g., Raaij- 
makers & Shiffrin, 198 lb) would be able to explain some of  the 
interference phenomena, the theory is not yet equipped with a 
time-dependent mechanism that enables it to handle phenom- 
ena such as proactive inhibition (PI) and spontaneous recovery. 
For the explanation of  such phenomena some aspect of SAM 
has to be turned into a time-dependent variable. In order to 
accomplish this, we started from the assumption that contex- 
tual fluctuation causes the interdependence between memory 
performance and retention time (Bower, 1972; Estes, 1955; 
Raaijmakers & Shiffrin, 198 la). On the basis of  the assumption 
that the influence of  context on recall is a function of  time, we 
have derived a model for context that determines the contextual 
strength, the strength of the context cue at test to the stored 
memory images. A full account of  the mathematical details of  
this development is presented by Mensink and Raaijmakers 

(1988). 

It is assumed that the associative strength of  the contextual 
cue at the time of  testing to a particular memory image (which 
is related to the probability of  retrieving that image; see below) 
is determined by the overlap between the context at the time of  
storage and the test context. As discussed by Raaijmakers and 
Shiffrin (1981 a), there are two basic factors in the general SAM 
theory that may be used to explain forgetting (the observation 
of  a lower probability of  retrieval of  a given image at Time B 
than at an earlier Time A). First, the cues used at Time A may 
be more strongly associated to that image than those used at 
Time B. Second, the strength and number of  other images asso- 
ciated to the cues (even if the cues are the same) may be greater 
at Time B than at Time A. The contextual fluctuation process 
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assumed in the present model can be viewed as an elaboration 
of  this analysis. Contextual fluctuation may lead to a reduction 
in the contextual associative strengths because of a decreased 
overlap in contexts. At the same time, context changes may also 
lead to an increase in the strengths of  other images, namely, 
those images that have a greater overlap with the current con- 
text cue. 

Before we discuss the present model and its applications, we 
shall first give a brief review of  the classical interference theories 
in order to introduce the major issues that are important for 
any theory of  interference phenomena. The first serious attempt 
to explain these phenomena was a three-factor theory proposed 
by McGeoch (1932). In this theory, it is assumed that responses 
learned within the same situation compete with each other for 
recall at the time of test, thus causing retroactive inhibition (RI) 
as well as proactive inhibition (PI). The outcome of  this compe- 
tition depends on the associative strengths of  the responses to- 
be-recalled. An important assumption on which this theory is 
based is the so-called independence postulate. This postulate 
states that the responses are acquired independently of each 
other. That is, the learning of  a competing response has no effect 
on the strength of the originally learned response. We return 
to this assumption in our discussion of  the applications of our 
model. 

Another important, although often neglected, role is played 
by the situation in which the responses are learned and tested. 
According to McGeoch, this situation is not constant but 
changes as time progresses. It acts in fact as a stimulus for the 
retrieval of  the responses. Perfect recall can be realized only 
when the situation at test is completely congruent with the one 
at the time of  storage. However, situations change and therefore 
a decline in recall becomes inevitable. 

The third factor, inadequate set at the time of testing, is sim- 
ilar to modern concepts like retrieval strategies and control pro- 
cesses. Although such a factor will undoubtedly be required for 
a full account of  retrieval processes, there is little relevant em- 
pirical information available that would be useful for theory 
testing. This factor therefore is not further discussed in this arti- 
cle. As we shall show, our model may be viewed as a formaliza- 
tion of  this verbally stated theory. 

In 1940, Melton and Irwin revised McGeoch's theory by pos- 
tulating a so-called unlearning mechanism in addition to re- 
sponse competition. The reason for this was that according to 
these investigators, response competition alone was not capable 
of  explaining all interference data. A number of experiments 
were conducted in order to test the unlearning hypothesis, and 
eventually most memory researchers believed that the unlearn- 
ing concept was properly established by an experiment using 
the modified modified free recall method (MMFR) as devised 
by Barnes and Underwood (1959). In this method, subjects are 
asked to recall both responses associated with a stimulus. This 
was supposed to eliminate response competition. 

Eleven years earlier, Underwood (1948) had interpreted the 
unlearning concept as the analogue of  the concept of  extinction 
in classical conditioning theory. By doing so, he immediately 
provided the theory with the adopted concept of spontaneous 
recovery. This led to the fortunate result that the relation be- 
tween PI and the length of  the retention interval could now be 

easily explained: PI increases with the length of the retention 
interval because the List 1 responses spontaneously recover and 
because this exerts an increasingly interfering effect (because of  
response competition) on the List 2 responses. Interpreted in 
this way, indirect evidence for spontaneous recovery was ob- 
tained in experiments by Underwood (1948) and Briggs (1954). 
Thus, at the end of the 1950s, interference theory finds itself in 
excellent shape. 

Unfortunately, it was soon shown that PI could also be ob- 
served on MMFR tests (Birnbaum, 1965; Houston, 1967; KOP- 
penaal, 1963; Slamecka, 1966), a test that was supposed to 
eliminate response competition. This result cannot be ex- 
plained by the unlearning/response-competition theory. Either 
the MMFR testing procedure is sensitive to some sort of  re- 
sponse competition or there is some other factor (in addition to 
unlearning and response competition) involved in PI. 

Moreover, additional problems arose in connection with the 
concept of  spontaneous recovery. Koppenaal (1963) concluded 
that spontaneous recovery could not be demonstrated when 
MMFR testing was used. In a review of the spontaneous recov- 
ery phenomenon, Postman, Stark, and Fraser (1968) showed 
that it occurred only in specific circumstances. Thus, the evi- 
dence for the concept of spontaneous recovery seemed rather 
shaky. 

This result, together with the observation that PI was ob- 
served in tests supposed to be free of  response competition, 
eventually resulted in a revision of the theory. The unlearning 
hypothesis was replaced by the mechanism of  response-set sup- 
pression (Postman et al., 1968; Postman & Underwood, 1973). 
In this new model, the observation of  PI in MMFR tests was 
still troublesome, although it could be explained by assuming a 
process of output interference. Not surprisingly, Postman and 
Underwood (1973) were not quite satisfied with this ad hoc 
mechanism. On the other hand, a number of spontaneous re- 
covery effects obtained by Postman et al. (1968) could be ex- 
plained by this model. 

So far, we have presented a brief review of  interference theo- 
ries and some of  the data on which they have been based. In the 
next sections, we present a mathematical model for interference 
and forgetting and compare the predictions of this model with 
relevant data taken from the literature. We use one set of  pa- 
rameter values to generate all the predictions. As a result, we 
are interested not in fitting the data in a quantitative sense, but 
only in the qualitative trends predicted by the model. 

Desc r ip t ion  o f  the  Mode l  

The SAM theory (Raaijmakers & Shiffrin, 1981a) can be de- 
scribed as a cue-dependent probabilistic search theory of  re- 
trieval. Its goal is to account for data observed in a variety of 
memory experiments using a variety of retrieval measures (free 
recall, cued recall, and recognition). Our goal in this article is 
not to describe the general SAM theory; rather, we restrict our- 
selves to a presentation of its concepts in relation to paired- 
associate modeling (the most common design in interference 
experiments). Following this, we discuss the contextual fluctu- 
ation model and the way it is used to determine the contextual 
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cue strengths. For a full description of  the basic concepts in 
SAM, see Raaijmakers and Shiffrin (1981 a). 

S torage  

Consider the presentation of a paired associate (a-b). This 
pair enters the short-term store (STS). The amount of  informa- 
tion stored in memory is determined by the nature of  the pro- 
cessing operations carried out on the information in STS (elab- 
orative rehearsal). It is assumed that the amount of  elaborative 
rehearsal will be proportional to the length of  time that an item 
is studied (rehearsed) in STS. This rehearsal process is modeled 
by a limited capacity buffer. Items that are simultaneously pres- 
ent in this buffer build up interitem associative strength. In free 
recall, an item will be associated to previously presented items, 
still present in the buffer. In such studies, all items in STS are 
assumed to be part of the rehearsal buffer. There is, however, 
evidence (Raaijmakers & Shiffrin, 1981b) that the rehearsal 
process is somewhat different in paired-associate paradigms. In 
this case, the buffer and STS do not coincide. That is, the two 
members of  a pair are associated only to each other and not to 
members of  other pairs, still present in STS. This is demon- 
strated by the absence of a primacy effect, indicating the ab- 
sence of  cumulative rehearsal. However, since previous items 
may still be in STS (although not actively rehearsed), a recency 
effect may still be observed (Murdock, 1974). Hence, it is as- 
sumed that at any one time the buffer is occupied only by a 
single paired associate and that the next pair always replaces the 
previous one (Raaijmakers & Shiffrin, 1981 b). 

In SAM, it is assumed that during the stay in the buffer, infor- 
mation about the items to be learned is transferred from STS 
to long-term store (LTS). This information is stored in what is 
called a memory image. An image (or episode) may be consid- 
ered as the unit of  episodic memory, the memory trace corre- 
sponding to a specific event in a particular spatio-temporal  
context. In paired-associate paradigms, the images are assumed 
to consist of  information corresponding to the presented pairs. 
Hence, a single image includes both stimulus, response, and 
contextual information as well as associative information.~ It 
should perhaps be mentioned that the assumption that a pair 
constitutes a single image differs somewhat from previous appli- 
cations of  SAM to free recall paradigms where the images corre- 
sponded to individual words. However, if  we think of  what is 
stored as an episodic event consisting of  a (single) set of  features 
(a quite common assumption in current theories), then the 
above assumption makes perfect sense. Moreover, it may be 
shown that the choice between the two ways of  representing a 
pair of  words is in fact a matter of preference, since the two 
versions make equivalent predictions (see Raaijmakers & 
Shiffrin, 198 lb). 

It is assumed that the amount of  information stored (i.e., the 
number of  encoded features) is proportional to the length of  
stay in the buffer. Since each paired associate is in fact always 
replaced immediately by the following pair, the length of  stay in 
the buffer will be equal to the presentation time. As discussed 
in previous papers (see Raaijmakers & Shiffrin, 1981a), the 
memory structure is represented by a retrieval structure that 
gives the associative strengths between possible retrieval cues 

and the stored episodic images. These associative strengths are 
a function of  the overlap between the set of  features correspond- 
ing to the cue and the set of  features corresponding to the image. 

In the present application, two types of  retrieval cues are 
used: item cues corresponding to the stimulus member of a pair 
and context cues. Although the encoding of  the stimulus may 
be variable (stochastic), it is assumed that this is not a function 
of  time. That is, the stimulus does not have to be encoded in 
exactly the same way on two occasions A and B, but the similar- 
ity of these two encodings does not depend on the temporal 
distance between A and B. Hence, the associative strength of  
the stimulus item to the stored image (henceforth called the in- 
teritem strength) is assumed not to depend on the length of  the 
retention interval. Denoting the interitem strength of  stimulus 
S~ to the corresponding image Ii by S(I~, Si), the above assump- 
tion may be succinctly written as: 

S(I~, S~) = bt,, 

where t~ equals the presentation time in seconds and b denotes 
the amount of  associative information transferred per second 
(the parameter definitions follow the conventions adhered to in 
previous publications; see Raaijmakers & Shiffrin, 1981 a). The 
parameter b is of  course not a fixed constant but depends on 
such factors as the preexperimental associative strength, the im- 
ageability, and the encoding strategy. For the experiments dis- 
cussed in this article, these factors are assumed to be held con- 
stant. The strength of  the stimulus Sj to all other, unrelated, 
images is assumed to be equal to a small, residual value, d. 

Note that in applications to interference paradigms, there 
will in fact be two interitem associative strength parameters 
(which in this article will be set equal to each other): bl for stor- 
age during List 1 learning and b2 for storage during List 2 learn- 
ing. Thus, if  the a-b  pair has been studied t~ seconds and the a -  
c pair t2 seconds, the item cue S, will have a strength of  b~tl to 
the a-b  image and b2t2 to the a-c  image. In addition, S,  will be 
residually associated to all other images from the two lists (with 
strength d). 

Next, we have to discuss the contextual retrieval strengths. It 
is this aspect that represents the major change with respect to 
previous applications of  the SAM theory. This contextual re- 
trieval strength is assumed to depend on the overlap between 
the context at the time of  storage and the context at the time of  
testing. Hence, this strength should be a function not only of  
the number of  presentations and the presentation time, but also 
of  the retention interval and the interpresentation interval. In 
order to accomplish this, we have developed a contextual fluc- 
tuation model based on stimulus sampling theory. A full ac- 
count is given by Mensink and Raaijmakers (1988). 

It is assumed that context may be represented by a set of  ele- 
ments (N + n in total). From these elements only n are in the 
active state at any time. These active elements constitute the 
current context. All other elements (N) are in the inactive state. 

1 Note that the assumption that item and associative information are 
both stored in the same image does not imply that item information 
may not be retrieved separately. This would only be true if recovery was 
assumed to be an all-or-none process (which it is not). 
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During a small time interval dt, with probability c, an inter- 

change occurs between one element of each subset. This defines 

a fluctuation process: During a certain time interval active ele- 

ments may become inactive while inactive elements may be- 

come active. At study time, only active elements can be stored 

in the episodic image. 

We will assume that the number of active elements that is 
stored during the presentation of a paired associate is an expo- 

nential function of the presentation time t, with a rate parame- 

ter denoted by a: 

C(t) = C(O)e -~' + n(l - e-~'), 

where C(t) denotes the expected number of stored elements fol- 
lowing t seconds of study. This may be simplified by noting that 

the probability that an active element that has not already been 

encoded in the image is stored during a study trial of t seconds 

is equal to: 

C ( t )  - C(O) _ e_~, 
w= =1  

n - C ( 0 )  

As mentioned above, the retrieval strength of the test context 

to the stored image is assumed to be proportional to the overlap 

between the contextual elements stored in the image and the set 

of contextual elements active at the time of testing. Since the 

present model will be applied to interference studies, we will 

make use of a classification of the contextual elements that is 

based on the standard AB-AC interference design. Consider a 

particular a-b  pair and its interfering counterpart a-c. At any 

time, the set of contextual elements may be partitioned in four 

subsets: 

xl elements: elements stored only in the a-b  image, 

x2 elements: elements stored only in the a-c  image, 
Xo elements: elements stored in both images, 2 

y elements: elements not stored in either image. 

The contextual fluctuation model enables us to calculate at 

each time the expected number of elements of each type. This 

is based on the following formula which gives the expected 

number of elements of a certain class v (v = Xl, x2, Xo, or y) that 

are active following t seconds of fluctuation, given that the state 

at time t = 0 is known (see Mensink & Raaijmakers, 1988). Let 

A(t) represent the number of active elements at time t: 3 

In this equation, K denotes the total number of elements of that 

type (active plus inactive), and fl and 7 are two parameters of the 

fluctuation process, fl equals the rate at which an active element 

becomes inactive, and 7 equals the rate at which an inactive 

element becomes active. 
Using these two equations it becomes possible to calculate at 

each moment in time the expected number of active elements of 

each type. The Appendix gives a brief summary of the relevant 

difference equations. On each trial during List 1 learning, a pro- 

portion w of the elements not yet stored in the a-b  image will 

be encoded in that image. For reasons of simplicity, it is as- 

sumed that fluctuation occurs only between consecutive study 

trials and not within a study trial. Thus, the fluctuation process 

operates only in the interval between two presentations of a list, 

in the interval between the presentation of the AB list and the 

AC list, and in the interval between the AC list and the final test. 

This simplification will not affect the qualitative nature of the 

predictions since we are not interested in within-list phenom- 

ena (e.g., serial-position effects and output interference effects), 
but only in the average number of list items recalled. 

During the interval between two study trials of List 1, some 

of the active conditioned (i.e., encoded) xl elements will be re- 

placed by unconditioned y elements. Hence, during List 1 

learning, both the number of active and the number of inactive 

x~ elements increases. During List 2 learning, some of the xl 
elements will be encoded in the a-c  image (Xo or overlap ele- 

ments). In addition, as learning progresses, more and more of 

the y elements will also become encoded (x2 elements). Thus, 

at the end of the List 2 learning phase, there will be eight types 

of elements: active x~, x2, xo, and y elements and inactive xl,  

x2, xo, and y elements. 

During the retention interval (the interval between List 2 
learning and the final testing) there will be some fluctuation be- 

tween the active and the inactive sets. The overlap between the 

test context and the a-b  image is given by the number ofx~ and 

Xo elements that are active at the time of testing. Similarly, the 

overlap between the test context and the a-c  image is given by 

the sum of the active x2 and Xo elements. The contextual asso- 

ciative strengths are proportional to these overlaps. Hence, the 

contextual associative strength at test to image It is given by 

I( A~ + Ao)a for List 1 images 

S(Ii, C) = [(A2 + Ao)a for List 2 images, (2) 

where At denotes the expected number of elements of a particu- 

lar type (x~, x2, or Xo) active at the time of testing and a is the 

constant of proportionality. Since all A~s are proportional to n, 

the number of elements active at any time, the contextual 

strengths are proportional to both n and a. Hence, these param- 

eters are not separately identifiable. Because of this, n will be 

set equal to 1, in which case At refers to the proportion of active 

elements that are of a given type. 

Note that as a result of our fluctuation model the contextual 

retrieval strengths will depend not only on the number of pre- 

sentations but also on the interpresentation and retention inter- 

vals. This will enable us to predict a number of time-dependent 

interference effects. 

Re t r i eva l  

As in previous applications of SAM, the retrieval process is 

assumed to consist of a number of elementary retrieval cycles, 

In most applications, the introduction of xo elements would not be 
necessary. One could simply work with x'~ = xl + xo and x~ = x2 + Xo 
(the number of elements encoded in the a-b and a-c image, respec- 
tively). In more complicated analyses (e.g., list discrimination), the pres- 
ent distinction is useful. Hence, it is maintained here for reasons of 
generality. 

3 We have used a simple reparametrization of the model that is some- 
what easier to work with. The new parameters fl and 7 are related to the 
old parameters Nand c in the following way:/5 = c/n and 3, = c/N. 
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each cycle composed of  a sampling and a recovery phase. Re- 
trieval is cue dependent, that is, what is elicited from memory 
is determined by the retrieval cues used at that moment. A 
number of  images will be activated by the cues, in different de- 
grees, depending on how strongly they are associated to the 
probe cues. During each cycle of  the memory search, one image 
is sampled from the activated set. The information in the sam- 
pied image (or part of  it) is then accessed and evaluated. This 
process is called recovery. 

After a subject has learned n paired associates, there will be 
n corresponding images in LTS. At test, the subject is given the 
stimulus as a cue and is asked for the response. It is assumed 
that the search for the correct image is governed by the following 
rules. On every sampling attempt two cues are used: the stimu- 
lus cue, Si, and the context cue, C, the set of  context elements 
presently active. The probability of  sampling image I is then 
given by Equation 3: 

Ps(Itl C, Si) = n S(Ii, C)S(Ii,  Si) (3) 

Z s(6, c)s(6, s , )  + z 
j=l  

The additive constant Z in the denominator of  this sampling 
equation, represents the interfering effect of  all extraexperi- 
mental associations. It has the effect of  reducing the sampling 
probabilities. If  all contextual associative strengths are reduced 
(e.g., because of  a long retention interval), the parameter Z as- 
sures that the probability of  sampling an image from the experi- 
mental list becomes arbitrarily small. Without such an additive 
constant, the sampling probabilities would not decrease to zero, 
but to an intermediate value (since then these probabilities 
would be determined only by the relative strengths, the absolute 
values would not be important). Note that Z does not have to 
be a constant: The number of  extraexperimental associations 
might increase as a function of  the delay between study and test 
(such an assumption was made by Gillund & Shiffrin, 1984). 
In the present analysis, however, Z will be assumed constant, a 
somewhat idealized situation representing "pure delay." 

As mentioned above, sampling of  an image is not enough for 
recall. The information should also be successfully recovered. 
That is, with the aid of  the information activated from the im- 
age, the subject tries to reconstruct the item (in this case the 
name of  the response). This decoding or recovery process is fal- 
lible. It is assumed that the probability of  successful recovery is 
a positive function of  the associative strengths. The SAM theory 
proposes the following equation for the probability of  successful 
recovery: 

PR(Iil C, Si) = 1 - exp [-S(Ii ,  C) - S(Ii, Sl)]. 

Thus, the probability of  recovery is a function of  the sum of the 
retrieval strengths to be probe cues. This probability applies, 
however, only to the first time an image is sampled during the 
search with a particular set of probe cues. If  recovery does not 
succeed on the first sampling attempt using a certain set of  cues, 
then it will (within the same test trial) never succeed with this 
particular set of  cues. 

According to SAM, a number of  retrieval (or sampling) at- 
tempts are made. The search process may end in two ways. The 

first possibility is that the subject retrieves and recalls a re- 
sponse. The second way is when the limit on the allowed number 
of  samples has been reached. This stopping criterion is denoted 
by Lmax. 

In the general SAM theory, we also have the option of  incre- 
menting the strengths to the probe cues upon successful recall 
(learning on test trials). This assumption has been used pre- 
viously to predict certain results in the free-recall paradigm. 
However, it is not necessary to use incrementing in our model: 
the nature of  most of  the predictions that we will consider does 
not change whether incrementing is used or not. Using Monte 
Carlo simulation (see the section Retroactive Inhibition), it may 
be shown that the qualitative pattern of  the results does not de- 
pend on this assumption although the general level of  recall is 
affected by incrementing (but this may be rectified by changing 
some of  the other parameters). Hence, the value of  the incre- 
ment parameter will be set to 0, except where otherwise men- 
tioned. 

There would of  course be no reason to do so if there were no 
advantages to it. However, not using the incrementing option 
enables us to present a number of  analytically derived predic- 
tions. Thus, we do not necessarily have to use the Monte Carlo 
simulation technique as in previous applications of  the SAM 
theory. This not only saves computer time and eliminates vari- 
ability in the predicted results, but also enables us to fit the 
theory quantitatively to experimental data using standard mini- 
mization procedures and to analyze potential identifiability 
problems with respect to the parameters. 

Applicat ions o f  the Model  to Interference Studies 

In this section, we shall present a large number of  predictions 
of  the present model. We pay particular attention to those phe- 
nomena that have been the source of  controversy and debate 
and that have led to modifications of  the traditional interference 
theory (e.g., the findings that led to the postulation of  the un- 
learning process and the eventual abandonment of  this assump- 
tion). In addition, we shall examine a number of  basic findings 
that are part of  the body of  fundamental experimental results 
and that are presented in most textbooks on memory (e.g., Os- 
good's transfer and retroaction surface and McGovern's analy- 
sis of  different interference paradigms). 

We will not be interested in "fitting" the model to these re- 
suits in the usual sense, but only in the qualitative patterns. For 
this reason, we will use the same set of  parameter values for 
all predictions (except where otherwise noted), even though the 
referenced experiments differ in terms of materials, procedure, 
and subjects. Had we been interested in presenting a more or 
less quantitative fit, we would have had to use a different set of  
parameter values for each simulated experiment. We would 
then have been vulnerable to the obvious criticism that the pre- 
dicted effects might be parameter dependent. Instead, we wish 
to emphasize that the predictions are based on inherent proper- 
ties of  the model and not on the specific parameter values used. 
Thus, unless otherwise specified, the qualitative pattern of  the 
predictions does not depend on the parameter values used. 
These parameter values are presented in Table 1. These values 
were selected so as to keep the predictions in the right ballpark. 
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Table 1 

Parameters and Their Values Used in the Simulations 

Parameter Description Value 

ot 

-y 

a 

bl 
b2 
d 
Zmax 

Z 

Conditioning rate for contextual elements .6 
Rate at which active elements become .0035 

inactive 
Rate at which inactive elements become .0001 

active 
Scale parameter for context strengths .3 
Interitem strength for List 1 items .05 
Interitem strength for List 2 items .05 
Residual associative strength .01 
Number of allowed samples 4 
Interference from irrelevant .001 

preexperimental associations 
Length ofintertrial interval (default) 5 
Length of interlist interval (default) 10 

However, there are probably a large number of other combina- 

tions that also work quite well. In each analysis of a published 

experiment, all of the experimental parameters (such as list 
length, presentation time, and number of list presentations) 

have been set to the particular values used in that experiment. 

If such details were not available, the default values given in 

Table 1 were used. In addition, the analyses followed such pro- 

cedural details as the use of learning to criterion or a fixed num- 

ber of study trials on a given list. 

Retroactive Inhibition 

We shall first examine a number of basic findings on retroac- 

tive inhibition. To this end, the predictions of the model for the 

classic experiments of Barnes and Underwood (1959), Thune 

and Underwood (1943), and McGovern (1964) are presented. 

Barnes and Underwood (1959) performed an experiment us- 

ing the AB-AC paradigm. The purpose of this experiment was 

to show that RI could be observed even if response competition 

is eliminated. Such results were regarded as evidence against 

McGeoch's theory and as supporting the unlearning assump- 

tion (see Crowder, 1976). 

In this experiment, the lists consisted of eight paired associ- 

ates. List 1 was learned to a criterion of one perfect anticipation 

trial. List 2 was given either 1, 5, 10, or 20 study trials. A MMFR 

test (supposedly eliminating response competition) was admin- 

istered following the last List 2 trial. Their results indicated that 

List 1 recall decreases as a function of the number of second 

list presentations, whereas List 2 recall increases. To arrive at a 

qualitative fit, we performed a Monte Carlo simulation of the 

model as applied to MMFR recall (simulation is necessary be- 

cause of the learning-to-criterion aspect of the experimental de- 

sign). The algorithm used to model the recall process is shown 

in Figure 1. 

The interpretation of this recall algorithm is as follows. The 

counter i denotes the stimulus to be presented to the statistical 

"subject." Using the stimulus and context cues, the subject 

searches memory for the R~ (or a-b) and the R2 (a-c) images. 

The recovery process takes place as soon as one of these two 

images has been sampled. This may lead to two different out- 

comes. If recovery succeeds, the strength between the stimulus 

and the response may be incremented by an amount denoted 

by INC. For generality the incrementing process is included in 

Figure 1, but as mentioned earlier, we will not make use of in- 

crementing. Thus, we set INC = 0. The retrieval of a response 

may or may not be followed by a list membership decision. (A 

box is drawn around this part of the flowchart because it is only 

needed for the Thune and Underwood predictions discussed be- 

low.) However, if recovery or sampling fails, the counter L is 

incremented and another sampling attempt is made as long as 

L is less than Lmax. After a response is produced, the search may 

be continued for the other response ("ONE LEFT") if testing is 

U"-q 

I"1 

1- -  
I 

I 

I 
/ 

Y 
I recott i L- 

Figure 1. The recall algorithm as used for the computer simulation. (In 
case of modified modified free recall, the blocked region [representing 
list discrimination] of the flowchart should be disregarded. This part is 
only used in case of the Thune and Underwood [1943] simulation. For 
a more detailed explanation, see text.) 
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Figure 2. Predictions generated for the Barnes and Underwood (1959) 
study. (L~ denotes the List 1 response curve; 1.2 denotes the List 2 
c u r v e . )  

by the MMFR method (MMFR = "Y"). Note that the unpaced 
character of  the MMFR test is represented in the simulation 
program by the assumption that L is reset to zero when one 
of  the two responses has been recalled, leaving an additional 
number of  Lmax sampling attempts for the other response. In 
case both responses have already been recalled or if Lmax has 
been reached, the next stimulus is presented by incrementing 
the counter i. This continues until all stimuli have been tested. 
The results produced by this algorithm using the parameter val- 
ues as given in Table 1 and disregarding the list-membership 
decision part, are presented in Figure 2. 

It may be concluded that the model fits the pattern of  data 
obtained by Barnes and Underwood. This is due to the changing 
value of  the associative strength between the stimulus cue and 
the second list image. This strength increases as a function of  
the number of List 2 presentations, which causes a decrease in 
the sampling probability of  a List 1 image and an increase in 
both the sampling and recovery probability of  the second list 
images. NOte that the model predicts retroactive interference 
on a MMFR test despite the fact that no unlearning is assumed. 

Such deteriorations in the recall of  List 1 responses may also 
be observed in the AB-AC design using the List I recall method 
(i.e., when the subject is asked to give only the List 1 response). 
However, besides response competition, results with this 
method are also partly influenced by list discrimination fail- 
ures. Relevant data were presented by Thune and Underwood 
(1943). Using the AB-AC paradigm, they gave 5 acquisition tri- 
als on List 1 and either 2, 5, 10, or 20 trials on List 2. Further- 
more, a control group was run that was not given a second list. 
Both lists consisted of  10 paired associates. Relearning of  the 
first list always started approximately 20 rain after the final List 
1 study trial. The results showed that the measure of  RI, that is, 
control group recall minus the recall score obtained from the 

interference group, increased as a function of  the number of  
List 2 presentations, whereas the number of  intrusions (due to 
list discrimination failures) appeared to be an inverted U- 
shaped function of  this variable. Similar results were presented 
by Melton and Irwin (1940). 

To simulate these results we used the algorithm shown in Fig- 
ure 1. However, a small adaptation has to be made. It is assumed 
that the search process terminates as soon as one response, ei- 
ther correct or incorrect, has been recalled (MMFR = "N"). 

List discrimination must now be included in the algorithm. 
To accommodate list discrimination, we have made a number 
of  simplifying assumptions. It is assumed that the first recalled 
response will be produced unless it is positively identified as 
belonging to the interfering list, that is, unless the subject is rea- 
sonably sure that the response is wrong. We believe that such 
list discrimination decisions have to be based on the contextual 
information encoded in the retrieved image. Each contextual 
element encoded in the image is supposed to give some informa- 
tion regarding list membership. Each time such an element is 
encoded during List 1 learning, there is a probability Pc that it 
may be conditioned to a list code. Hence, after learning of  both 
lists, some contextual elements will be conditioned to both list 
codes, some only to the List 1 or the List 2 code, and some to 
neither code. 

Since the contextual information encoded in a List 1 image 
will seldom lead to a positive List 2 membership identification, 
it is assumed that such a response will always be produced. The 
list discrimination decision with respect to retrieved List 2 im- 
ages is assumed to be a function of  the number of  retrieved 
contextual elements conditioned to the List 1 code (denote this 
by vl) and the number conditioned to the List 2 code (v2). Thus, 
the probability that the subject (incorrectly) identifies a List 2 
image as belonging to List 1 (i.e., fails to identify the response 
as a List 2 response) is assumed to be equal to 

v, + 8(t)v2' 

where 6(0 is a (time-dependent) bias parameter. Although this 
parameter is not used in the present applications, it is included 
here for generality, since it seems likely that ~(t) approaches 0 
with very long delays. This would correspond to a strategy to 
emit every recalled response when retrieval becomes very 
difficult (which will be the case with long delays). 

We wish to emphasize that the details of  this model for list 
discrimination are not very important for our purposes. Un- 
doubtedly, there are a variety of  other ways in which this deci- 
sion process might be modeled. In addition, there are other fac- 
tors that will affect the difficulty of  list discrimination, such as 
the within- versus between-list similarity. Notwithstanding 
these reservations, the present model does capture a number of  
significant aspects. First, list discrimination is based on re- 
trieved contextual information. Second, it makes the not unrea- 
sonable prediction that a long interlist interval (or, more pre- 
cisely, a relatively large context change between lists) makes list 
discrimination easier since this leads to a decrease in vl (fewer 
elements encoded in the List 2 image will be conditioned to 
the List 1 code). Finally, and most importantly for the present 
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Figure 3. Predictions for the Thune and Underwood (1943) study. (The 
ordinate corresponds both to the retroactive inhibition [RI] curve as 
well as to the intrusion function. The RI measure equals the difference 

in recall between the control and interference condition.) 

application, the probability of  an incorrect decision decreases 
with the number of  study trials on the interfering list (this in- 
creases v2). 

Given the parameter values of  Table 1 and assuming Pc = 
0.01, this model yields (for Thune & Underwood's, 1943, de- 
sign) the following probabilities of  correctly identifying a List 2 
response: 0.46, 0.66, 0.78, and 0.87 in case of  2, 5, 10, and 20 
List 2 trials, respectively. Figure 3 gives the predictions of the 
SAM model for experiments of  this type. Again, the pattern of 
the predicted results agrees quite well with the observed data. 
Retroactive inhibition is shown to be a monotonically increas- 
ing function of the number of  trials on the second, interfering, 
list, while the predicted number of intrusions is an inverted U- 
shaped function. 

It must be mentioned that in our experience, the shape of the 
intrusion function depends on the parameter values used; that 
is, the inverted U-shaped function is not a parameter-free pre- 
diction. According to the model, a monotonically decreasing 
function may also be observed. This can be explained as fol- 
lows. The number of  intrusions depends on two factors. The 
first is list discrimination, the second is the probability of recall- 
ing a second list response. Both factors account for the inverted 
O-shaped function. However, these variables may interact in 
such a way that a monotonically decreasing function is ob- 
served. In particular, this will occur when the list discrimina- 
tion probabilities happen to increase rapidly as a function of 
the number of  List 2 trials. As a consequence, few List 2 re- 
sponses are recalled in case of, say, two study trials, but these are 
given incorrectly as a response with a relatively high probability. 
The reverse is true when List 2 has been given many study trials. 

In such a situation, a monotonically decreasing intrusion func- 
tion will be observed. 

Finally, we will apply the model to the results obtained by 
McGovern (1964). McGovern compared the four major inter- 
ference paradigms (C-D, C-B, A-C, and A-Br). We will con- 
sider the List 1 recall scores presented in her article. In this ex- 
periment, List 1 (consisting of eight pairs) was learned to a crite- 
rion of  one errorless trial, requiring approximately 9 
presentations. The second list was presented for 15 trials fol- 
lowed by a List 1 recall test. For our analysis it is important  to 
note that on the final test the subject received a list of  all stimu- 
lus terms and was instructed to guess if unsure about a particu- 
lar association. Furthermore, two scoring methods were used, 
one stringent and one more liberal. With the stringent scoring 
method, a response is counted as correct only if it was given to 
the appropriate stimulus. In the liberal method, all responses 
recalled by the subject were scored as correct regardless of  
placement. With the stringent scoring method, the ordering of  
the conditions with respect to List l recall was C - D  = C-B > 
A - C  -- A-Br. The liberal method, however, produced quite 
different results: C-B > A-Br  > C - D  > A-C. 

Before we present the predictions for this type of  experiment, 
we shall first discuss the (analytical) method that was used to 
obtain these predictions. According to our model, the probabil- 
ity of recalling the target response (R0, given a maximum of  
m = Lmax sampling attempts, is given by 

P(RI) --- [1 - (! - Ps)m][l - exp ( - k i b l t  - &)], (4) 

where Ps denotes the probability of sampling the appropriate 
List I image. For example, in case of  k~ study trials on List 1 
(of t seconds each) and k2 study trials on List 2 in the AB-AC 
paradigm, 

k.bttsl 

P S =  k lb l t s t  + k2b2tSE + (n - l )d(Sl + S2) + Z , (5) 

Si (i = 1 or 2) denotes the List i context strength as obtained 
from the fluctuation model. The first part of  Equation 4 gives 
the probability of  sampling the image at least once; the second 
part gives the probability of  recovery. Note that this equation is 
only valid if there is no incrementing. To facilitate the deriva- 
tion of the sampling probabilities for each of  the interference 
paradigms used in this experiment, Figure 4 shows the various 
interfering relations in a pictorial way. 

For example, in the A-C  design, the stimulus a is shown to 
be strongly connected to the images (ab) and (ac). In addition, 
it is residually associated to (n - 1) List 1 images and to another 
(n -- 1 ) List 2 image. Using the contextual strengths defined in 
Equation 2, we obtain the sampling probability given in Equa- 
tion 5. 

The difference between the four interference paradigms is re- 
flected in the denominator ofPs. For the other cases this denom- 
inator is given as follows: 

C-D:  klbltsl + (n - l)dsl + nds2 + Z; 

C-B: klb,tst + (n - 1)dsl + nds2 + Z; 

A-Br:  k l b l t s l  + k2bElS2 + (n - l)d(Sl + s2) + Z. 
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Figure 4. The retrieval structures for different interference paradigms. 
(Images are denoted by encircled alphabetical characters corresponding 
to the stimulus and the response. The stimulus cue is not encircled. 
Unbroken lines between the cue and the images represent strong asso- 
ciative connections; broken lines denote residual associative connec- 
tions.) 

Note that the equations for the C - D  and C-B designs are identi- 
cal, and similarly for the A - C  and A-Br  designs. Hence, this 
immediately yields the (parameter-free) prediction that these 

designs should lead to identical recall results. The predicted re- 

suits for the stringent scoring method, obtained upon insertion 
of  the parameter values of  Table 1, are presented in Table 2. 
The results are in close agreement with the data presented by 
McGovern (! 964). From Figure 4 it may be concluded that the 
difference between recall for the C - D  and C-B paradigms on 
the one hand and the A - C  and A-Br  paradigms on the other, is 

due to the strong interfering association of  the List 2 response 
in the latter two cases. 

We also derived recall predictions for the liberal scoring 

method. It may be assumed that this method solely measures 
response availability. According to the model, this scoring pro- 
cedure may have a remarkable effect in the C-B and A-Br  para- 
digms. In both cases, each response is part of two images, one 

from each list. 
In order to show how the equations used to generate the pre- 

dicted results for the liberal scoring method were obtained, we 
will derive such an equation for the C-B paradigm. We will as- 

sume that the response belonging to a given stimulus may be 
found in the (a-b) image or, via the residual association, in the 
(c-b) image. Furthermore, as shown in Figure 4, these images 
may also be sampled using the other, residually associated, stim- 
ulus terms. This analysis is supposed to mimic the effects of 
the guessing instructions used by McGovern. If we denote the 

sampling and recovery probabilities of  the image (a-b) by x and 
r respeceively, the probabilities connected with the (c-b) image 

by y and s, and the sum of  the sampling probabilities of  any 
other image by w, then the probability of  recalling a particular 
response b using its associated stimulus is given by 

m m-i m! xi(1 _ r)dlyj( 1 _ s)d2wm_l_j, p(b) = l - Z Z 
i-o j-o i ! f i (m-  i - j ) !  

where d l =  0 for i = 0, else d2 = 1. Similarly for d2: d2 = 0 for 
j = 0, else d2 = 1. m is a shorthand for Lm~. In this equation, i 
gives the number of  times (out of  m) that the (a-b) image is 
sampled, and j  gives the number of  times the image (c-b) is sam- 
pied. 

The b response may also be recalled when memory is 
searched with one of  the (n - 1) residually associated stimuli. 
The probability that the response is recalled using such a stimu- 
lus may also be derived by the above reasoning. Denoting this 
probability by p'(b), we arrive at the overall probability, pt(b), 
of  recalling the response: 

pt(b) = I -- [1 - p(b)][l  - p'(b)] n-,. 

In case of  the other paradigms, such probabilities may be de- 
rived in a similar way. These equations lead to the results pre- 
sented in the second column of  Table 2. As mentioned above, 
the predicted increase in A-Br  recall reflects the fact that two 
different stimuli may produce the same response. Thus, each 
response has a higher probability of  being recalled than in the 
C - D  paradigm, in spite of  the interfering relations. This is also 
true for the C-B design. However, predicted C-B recall does not 
surpass A-Br  recall, as in McGovern's data. In spite of  the latter 
result, which indicates that the model (given the present set of  
parameter values) does not predict the increase in C-B recall 
as strongly as observed, we may conclude that the model pre- 
dicts the differences between stringent and liberal scoring rea- 
sonably well. Moreover, it does so using fairly simple assump- 
tions. 

These results lead to the conclusion that the model is able to 
handle the major RI findings. We shall now turn to proaceive 
inhibition. 

Proactive Inhibition 

The results of many experiments indicate that PI is a function 

of the degree of prior learning and of the retention interval 

(Houston, 1967; Koppenaal, 1963; Underwood, 1949). When 

List 2 learning is immediately followed by a retention test, PI 

will not be observed. As the length of the retention interval in- 

creases, a monotonic increase in PI is observed that eventually 

reaches an asymptotic level. Recall that the occurrence of PI in 

MMFR tests poses a complicated problem for the unlearning/ 

response-competition theory. However, it shall be shown that 

Table 2 

Predicted Results for McGovern's (1964) Experiment 

Scoring method 

Design Stringent Lenient 

A-B, C-D 5.03 5.05 
A-B, C-B 5.03 5.66 
A-B, A-C 2.11 2.12 
A-B, A-Br 2.11 6.29 
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our model does not have any problems with this phenomenon. 
This will be confirmed by applying the model to the experi- 
ments of  Koppenaal (1963) and Underwood (1949). 

Koppenaal used the MMFR method for the final recall test 
(A-B, A-C paradigm). Before presenting the model predic- 
tions, we will first derive the analytical equation used to obtain 
these predictions. Sticking to the representation of the MMFR 
method as used in the computer simulations (see Figure 1), we 
may derive the probability of, for example, RE recall in the fol- 
lowing way. Either R2 is recalled as the first response in m 
(=L~,ax) sampling trials, or the other response, R,,  is recalled 
within the first m sampling trials and there remain m trials for 
R2 to be recalled. Starting with the first possibility, we have to 
derive the probability that R2 is recalled before R m. (This deriva- 
tion will also be needed for the prediction of  Briggs's data; 
see below). 

After both lists are learned, the stimulus is associated strongly 
to R~ and R2 (more precisely, the corresponding images), 
whereas it is residually associated to the other responses (Ro). 
The event that R2 is recalled before R, may be accomplished in 
different ways. First, irrelevant responses (denoted by Ro) may 
be sampled before sampling and recovering Rz. Second, R~ may 
be sampled before RE but recovery fails. If recovery of  Rm does 
not succeed when it is first sampled, then it will also fail on 
subsequent samplings since the same probe set is used. This 
rule also applies to R2. Hence, RE will only be recalled if recov- 
ery is successful when the corresponding image is sampled for 
the first time. From these considerations, we may derive the 
probability of  the following event: On the first n sampling trials 
neither R~ nor R2 is recalled, but on the (n + l)-th trial R2 is 
sampled for the first time and successfully recovered. 

n 

f (n)  = [ ~  (7)p(ROip(Ro)"-i( l - r)~]P(R2)s, 
i -O  

where 6 = 0 if i = 0, else 6 = l; P(Ri) denotes the sampling 
probability of  Ri; and r and s correspond to the recovery proba- 
bilities associated with R~ and RE, respectively. Since we have a 
maximum of m sampling attempts, the combined probability 
of  recalling RE prior to Rm is equal to 

m - - I  

P(R2 before R 0  = ~ f(n).  
n~O 

After simplification of  this sum we finally arrive at 

P(R2 before R 0  

1 - p ( R o )  m ] = rsp(R2) -] ~ j  + s(1 - r)[l - (1 - P(R2))m]. 

The probability of  recalling RE after Rt has been recalled 
within the first m sampling trials equals 

m - - I  

p(R2 after R,) = ~ p(Ro)ip(gOr{ 1 - I1 - p(R2)]"}s. (6) 
i=O 

This equation is based on the fact that on the i trials prior to 
recall ofR~, Ro responses have to be sampled. The total proba- 
bility of  recalling R2 on the MMFR test is then given by 
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Figure 5. Predicted patterns of Koppenaal's (1963) study. (Control 
group [C] recall as well as modified modified free recall List 2 recall [L2] 
are depicted. The difference is given by the proactive inhibition [PI] 
curve.) 

+ s(l -- r){1 -- [1 -p(R2)]m}. (7) 

Using this equation and the parameter values from Table 1 we 
generated PI predictions for Koppenaal's experiment. The lists 
consisted of  10 pairs. List 1 was given 10 study trials and List 2, 
5 study trials (of2 s each). The results are shown in Figure 5 for 
various retention interval lengths (arbitrary time units). 

In this figure, recall decreases in both the control condition 
(C) and the PI condition. However, relative to the control condi- 
tion, second list recall in the PI condition (L2) decreases faster, 
leading to an increase in the standard difference score for PI 
(C - L2). In order to see more clearly how the model explains 
this effect, we will first rewrite the sampling probability Ps 
(Equation 3) for the List 2 image in the PI condition: 

bet 
P,=  

bEt + b,t(sl/s2) + w '  

where w equals the sum of all residual strengths divided by s2. 
This equation clearly shows that the sampling probability is a 
function oftbe ratio of  the contextual strengths Sl and s2. It can 
easily be shown that the ratio s,]s2 is an increasing function of  
the retention interval. 

The consequence of  this is that PI is induced, since the proba- 
bility of  sampling List 2 images deteriorates with increasing in- 
terval length, which is due not only to simple forgetting (as in 
the control condition) but also to a relative increase in the prob- 
ability of  sampling the List 1 image. It should be noted that PI 
will of course decrease again for very large retention intervals. 
This is evident from the fact that recall for both the control as 
well as for the PI condition eventually reaches zero. 

Consider next the results obtained by Underwood (1949). 
Underwood manipulated both the amount of  prior learning and 
the length of  the retention interval. In this experiment, subjects 
were run using the A-B, A-C paradigm. The second list was 
learned until six (out of  eight) responses were anticipated cor- 
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Figure 6. Predicted List 2 recall patterns in case of the Underwood 
(1949) proactive inhibition study. (Retention intervals are given by z 
[arbitrary units].) 

rectly. The first list was learned to a criterion of  three responses 
correct, eight responses correct, or 100% correct plus five addi- 
tional (over) learning trials. The final retention test was admin- 
istered following an interval of  either 20 or 75 min. The results 
indicated that forgetting of  List 2 increased as a function of the 
degree of  prior learning. The length of  the retention interval 
seemed to have no effect on PI. 

Our model accounts for these patterns in the following way. 
Increasing the number of  study trials on the first list increases 
the interfering associative strengths of the List 1 images. How- 
ever, the model also predicts an increase in PI as a function of  
the retention interval because of  the ratio sl/sz. As noted above, 
this is not observed in Underwood's data. However, if we look 
at the data corresponding to the longest interval, we may con- 
elude that the lack of  a further decrease in recall as compared 
with the 20 min interval condition is probably due to floor 
effects in the recall scores. Figure 6 shows the predicted patterns 
based on a List 2 version of  Equation 4 (this equation is used 
since Underwood made use of  the relearning method, which is 
paced). Again, the model behaves satisfactorily. If we had used 
lower interitem strengths, we could have shown a lack of  in- 
crease in PI due to floor effects. 

An interesting finding concerning PI was presented by Ander- 
son (1983a; see also Postman, Stark, & Burns, 1974). Usually, 
the negative interfering effects of  prior learning are much 
stronger in the A - C  design than in the C - D  design. However, if  
the List 2 recall probabilities are made empirically equivalent 
for both designs by giving the A - C  list (which suffers from nega- 
tive transfer) more study trials and testing PI with an unpaced 
MMFR test, then A - C  recall will surpass C - D  recall. This 
counterintuitive phenomenon is predicted by Anderson's ACT* 

model (see Anderson, 1983a). 
It can be shown that our model leads to the same prediction. 

In the present model (as well as in the ACT* model), the proba- 
bility of  recall is based on both the relative and the absolute 
strength of  an image. The probability of sampling depends on 
the relative strength, whereas the recovery probability is based 

on the absolute strength. Following Anderson (1981), let f (R)  

be the sampling probability for the image corresponding to re- 
sponse R and let g(R) be the recovery probability. If  the List 2 
recall probabilities are equalized for the C - D  (Rm) and A - C  
(R,c) conditions, then, according to the model, it must be the 
case that 

f(R~)g(R~) = f(Rac)g(Rae). 

Since the A - C  condition suffers from negative transfer, more 
trials will be required in this condition in order to end up 
equally. Hence, the A - C  images will have a higher absolute 
strength at the end of  List 2 learning than the C - D  images. 
Thus, 

g(Rcd) < g(R,r 

since the probability of  recovery is a monotonic function of  the 
absolute strength. However, since the recall probabilities are 
equal, it must also be true that 

f (R~) > f(Rar 

Consider now what happens if List 2 learning is followed by 
an unpaced retention test. In our model, this means that the 
parameter Lmax must be set at a relatively high value. As a conse- 
quence, 

f (R~)  ~- f(R~). 

However, g( ) does not depend on Lm~. Hence, 

f(Rea)g(R~) < f(Rac)g(Rar 

which demonstrates the prediction. 
In order to check this theoretical analysis, we simulated this 

phenomenon as follows. List 1 was presented for five trials, and 
List 2 was learned to a criterion of 70% correct in both condi- 
tions. A recall test followed the retention interval. Both condi- 
tions were given Lm~x sampling attempts in order to keep them 
fully comparable. The predicted results are shown in Figure 7 
where C - D  and A - C  recall are plotted as a function of  Lm~, 
which may be interpreted as the degree of"unpacedness" of  the 
retention test. 

The results indeed show that as a function ofLm~x, A - C  recall 
eventually exceeds C - D  recall (for related observations about 
interference and test unpacedness, see Adams, Marshall, & 
Bray, 1971). A general eorrollary that follows from this result is 
that statements such as "the response strengths are equalized" 
are theory dependent and must be interpreted quite cautiously. 
That is, equal recall probabilities do not necessarily imply equal 
response strengths. Thus, according to our model, if  the recov- 
ery probabilities for the C - D  and the A - C  designs are equal- 
ized, this implies unequal sampling probabilities, and vice 
versa. We shall return to this issue when we examine the rela- 
tion between response latency and response accuracy. 

Spontaneous Recovery 

As mentioned previously, our model produces (relative) 
spontaneous recovery (i.e., a relative increase in List 1 recall), 
and this factor influences the prediction of  PI. It was demon- 
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strated previously that PI depends on the ratio Sl/S2, which is a 
function of  the retention interval. It will now be shown that 
this same ratio is responsible for the prediction of  spontaneous 
recovery (relative as well as absolute). We shall first show the 
model's predictions for Briggs's MFR data (1954) where spon- 
taneous recovery is observed. Using the A-B, A - C  design, 
Briggs's subjects were interrupted at certain recall levels during 
learning. Immediately after such an interruption, list stimuli 
were shown and subjects had to produce the first response that 
came to mind (MFR method). The most interesting result for 
the moment is the increase in List 1 responses produced as a 
function of  the length of the retention interval. The same pat- 
tern of  results may be analytically derived from our model. Be- 
fore considering the outcome, we shall first discuss the method 
used to generate the predictions. 

Because of  the use of  the MFR method, we have to derive 
the probability of  recalling, say, RI before R2, where both are 
associated to the same stimulus term. In Briggs's study, recall 
terminated as soon as RI,  R2, or Ro (another, irrelevant, re- 
sponse) is recalled. For our predictions, recall of Ro is irrelevant, 
since we are only interested in the relative probabilities of  recall 
of  R~ and R2. Therefore, we will assume that recall only termi- 
nates upon recall of  R~ or R2. This reduces the problem to de- 
riving the probability of  recalling, say, RI before R2. Since we 
have already derived this probability (Equation 6), we may sub- 
stitute the experimental design parameters (for example, pre- 
sentation time, list length) used in Briggs's experiment into that 
equation. Solving the resulting equations, we obtain the predic- 
tions shown in Figure 8. We may conclude that the predictions 
are in good agreement with Briggs's data: Absolute recovery of  

List 1 responses is indeed predicted by the model. 
The model may also be extended to the A-B, A-C, A - D  para- 

digm where MMFR recall is used to measure forgetting. Such 
data were presented by Postman et al. (1968). In this experi- 
ment, the retention interval was either 2 or 20 rain. In order to 

equalize the degrees of List 1 and List 3 learning, the first list 
was presented for six trials and the second and third lists for 
four trials each (see Postman et al., 1968). The results showed 
A - D  recall to be a decreasing function, A - C  recall remained 
approximately equal, whereas A-B recall increased, thus show- 
ing absolute spontaneous recovery. Using an extension of  Equa- 
tion 7, we generated corresponding predictions of our model. 
From the left panel of  Figure 9 it may be verified that the pre- 
dicted recall patterns are quite similar to those obtained by 
Postman et al. (1968). 

However, this result is not as simple as it appears. When we 
generated these predictions, five different retention intervals 
were used. As shown in the right-hand panel of  Figure 9, List 1 
recall first shows a small decrease followed by a much larger 
increase (mainly because of  the higher stored strength). The 
panel on the left depicts only two of  these intervals and they 
have of course been chosen in such a way as to resemble the 
data of Postman et al. Thus, we may have discovered one of the 
reasons for the confusion that accompanied the experimental 
investigation of  the recovery phenomenon. In this particular de- 
sign, absolute recovery might be overlooked if the "wrong" 
points were selected (e.g., the intervals corresponding to 5 
and 50). 

For the more simple case of a two-list design, a similar factor 
may have been involved. This was examined by computing the 
predictions for the A-B, A - C  MMFR recall paradigm. Figure 
10 shows List 1 recall as a function of  the retention interval. 
Consider first the two highest curves. The lower of these has 
been computed using the parameter values of Table 1, whereas 
the top curve was obtained with the interitem strength parame- 
ter set at 0.20. Detailed inspection of the sampling and recovery 
probabilities revealed the mechanism that generates the slightly 
nonmonotonic behavior of  the middle curve. When the inter- 
item strength is high, changes in the contextual strength have 
little effect on the recovery probability since this function will 
already be at the maximum value (1.0). However, when the in- 
teritem strength is relatively low, the recovery probability 
strongly depends on changes in the contextual strength. When 
the sampling and recovery probabilities that produced the non- 
monotonic behavior were examined, it was observed that the 
main increase in the sampling probability occurred at a later 
point in time than the main decrease in the recovery probabil- 
ity. The latter starts immediately after the end of  List 2 learning. 
This causes an initial decrease in the recall function followed 
by an increase. We have not been able to find any evidence for 
this prediction in the literature. 

Moreover, it was found that the absolute recovery effect vani- 
shes when the preexperimental associative strength (Z) is set at 
a somewhat higher value. The bottom curve of  Figure 10 shows 
the results obtained with Z = 0.01. In this case, forgetting oc- 
curs at such a rapid rate (indirectly because of high preexperi- 
mental associations) that the spontaneous recovery process can- 
not compensate for it. This notion is in full agreement with 
Underwood (1948). He proposed that during the retention in- 
terval List 1 response strength is determined by two opposing 
processes: recovery and normal forgetting. Absolute recovery 
will only be observed when the normal forgetting effect is 
weaker than the spontaneous recovery effect. When this is taken 
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into account, the evidence for spontaneous recovery is quite 
strong (see Brown, 1976, for a more extensive review). 

The Independence Phenomenon 

There has been much debate (e.g., Greeno, James, DaPolito, 
& Poison, 1978) about the so-called independence postulate 
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Figure 9. Predictions for Postman, Stark, and Fraser (1968) study. (Left 
panel: For two different retention intervals. Right panel: For five differ- 
ent retention intervals.) 

proposed by McGeoch (1932). This postulate states that re- 
sponses become associated to the same stimulus in an indepen- 
dent fashion. Intuitively, this is not compatible with the un- 
learning concept. It implies that the acquisition of R2 does not 
affect the associative strength between the stimulus and the pre- 
viously associated response R1 (however, see Postman & Under- 
wood, 1973). 

Greeno et al. (1978) have presented impressive empirical evi- 
dence to support the independence assumption and have argued 
that this implies that the unlearning concept is contradicted. 
They argued that the unlearning assumption implies that the 
learning of R2 should lead to the unlearning ofRt. The amount 
of unlearning should increase as the response strength of Rz 
increases. Also, the higher the Rz response strength, the higher 
its recall probability. Moreover, the more unlearning of Ri, the 
lower the probability of recalling this response. This leads to 
the conclusion that the recall probabilities should be dependent: 
P(RI IR2) < P(RO. However, the majority of the data indicate 
independence. Indeed, the evidence is quite strong: The cumu- 
lative of chi-square values obtained in a number of experiments 
fits a chi-square distribution (df = 1) as would be expected if 
the assumption of independence holds (Greeno, James, & Da- 
Polito, 1971). 

Some potential artifacts concerning this result (i.e., subject- 
item selection effects) are discussed by Hintzman (1972). More- 
over, Postman and Underwood ( 1973) have argued that the logic 
used by Greeno et al. (1971, 1978) is faulty and that the ob- 
served independence does not necessarily contradict the un- 
learning assumption. We will not join this debate but instead 
show relevant predictions made by our model that are in agree- 
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ment with the observations ofGreeno et al. Using the algorithm 
presented in Figure 1 (without list discrimination), we gener- 
ated predicted results which are classified here according to 
whether the first list was learned to a criterion of one perfect 
anticipation or was given a constant number of  four study trials 
(the second list was always given four study trials), whether there 
was subject and/or item variability, and whether incrementing 
was used or not. Each predicted result is based on 1 O0 simulated 
subjects. The lists consisted of  eight pairs each. Thus, each 
coefficient is based on a total of 800 observations. Hence, an 
absolute value for ~ of  0.069 would be significant at the 5% 

level. 
According to our model, associating a second response to a 

stimulus does not affect the strength of the first response. Hence, 
the model predicts independence as long as the sampling 
counter L is reset to 0 if one of the two responses is recalled 
(assuming no incrementing takes place); that is, recalling one 
of  the two responses does not have a negative effect on the prob- 
ability of sampling the remaining response. This was confirmed 
by Monte Carlo simulation: Using learning to criterion on List 
1 and assuming no subject-item variability, resulted in a non- 

significant correlation of  0.05. 
Let us now turn to subject-item differences. These were cre- 

ated by sampling subject and item-difficulty values indepen- 
dently from a normal distribution. The sum of these two values 
determined the interitem associative strength for a particular 
subject-item combination. Thus, within the same subject, the 

"subject parameter" remains constant. The means of  the two 
distributions were 0.1 and 0.05 for the subject and item distri- 
butions, respectively, if both were variable, and 0.2 for either if 
only one of them was varied. (These means are not exact since 
we resampled values i fa  value was selected that happened to be 
smaller than a certain criterion.) The variance of both distribu- 
tions was 1.0. Thus, the variance of  these distributions was 
given a relatively large value. 

With learning to criterion on List 1, we observed a ~ o f - 0 . 0 8  
using both subject and item differences. Using only subject 
differences led to a ~ o f - 0 . 0 7 ,  and only item differences pro- 
duced a ~ o f - 0 . 1 4 .  Hence, both subject variability as well as 
item variability lead to negative correlations. With a fixed num- 
ber of  trials on List 1, the situation is somewhat different. In 
this case, the model predicts a similar result for item differences 
only: ~ = -0.13.  However, subject variability now leads to a 
small positive correlation: ~ = 0.04. The magnitude of  these 
effects will of  course depend on the variance of  the strength dis- 
tributions. 

The explanation for this pattern of  results is fairly straightfor- 
ward. Item differences always lead to a negative correlation 
since a strong List 1 association tends to inhibit the sampling of  
the List 2 image and vice versa. The effect of subject variability 
depends on whether List 1 is given a fixed number of  trials or is 
learned to criterion. With a fixed number of  trials, good sub- 
jects tend to recall both responses, leading to a positive correla- 
tion. With learning to criterion, the sign of  the correlation 
changes from positive to negative. At first sight, this may seem 
strange, but it can be understood once it is realized that because 
of  the learning to criterion, the List 1 strengths will not be very 
different, while the List 2 strengths will vary because of  the sub- 
ject variability. Hence, in this case high List 2 strengths are not 
accompanied by high List 1 strengths, thus eliminating the rea- 
son for a positive correlation. A negative correlation will be the 
result, since the probability of  recall for List 1 will be inversely 
related to the strength of  the List 2 images. 

Furthermore, there exists yet another way for the model to 
generate dependence. This will be the case if we set the incre- 
ment parameter at a sufficiently high value (note that there will 
be incrementing on all tests, hence also during the acquisition 
phase). Our simulation results show that the value of  the incre- 
ment parameter must be set at a quite high value compared 
with the value of  the interitem strength parameter to obtain a 
significant effect. With learning to criterion and no subject- 
item variability, an increment of  0.05 leads to a ~ of  0.01, while 
a high increment value (0.50) produces a negative ~ o f - 0 . 1 2 .  
The effect of  incrementing is twofold: It introduces strength 
differences leading to a negative correlation as explained above, 
and second, if a response is recalled during the M M F R  test, 
incrementing the strength of  the retrieved image leads to a de- 
crease in the probability of sampling the remaining image. Note 
that (a) only the interitem associative strengths are incremented 
and (b) with a relatively large number of  trials on both lists, 
incrementing on the MMFR test will not have much effect since 

the interitem strengths are already at a high value. 
This brings us to several conclusions. First, a model based on 

the independence of  associations (i.e., without an "unlearning" 
assumption) may still predict small but significant correlations 
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due to strength differences resulting from subject-item variabil- 
ity or to incrementing on test trials. However, reasonable values 
of  these parameters lead only to small effects on the corre- 
lations. Second, as long as there are subject-item differences or 
incrementing processes, it will not be easy to prove the indepen- 
dence of  associations (see also Hintzman, 1972). Finally, it is of  
some methodological interest that there appears to be an effect 
of  the methods used: A design using learning to criterion will 
lead to different results compared with a design using a constant 
number of trials on List 1. 

Osgood's Transfer and Retroaction Surface 

Osgood (1949) proposed a descriptive model that predicts the 
degree of  second list transfer following prior learning. Accord- 
ing to this model, the amount and direction of  transfer depend 
on the similarity between the stimuli and the responses of  the 
two lists. It may be represented by a three dimensional surface 
in which the x axis represents the response similarity, the y axis 
the stimulus similarity, and the z axis the amount of transfer. 
Following the conventional terminology, the corners of  the x-y 
plane represent the C-D, A-C, C-B, and A-B transfer designs. 

The surface may be described as follows. Going from the A-  
B corner to the A-C corner, positive transfer gradually changes 
to negative transfer. Going from A-C to C-D, negative transfer 
is replaced by neutrality (the C-D design is defined as the zero 
transfer reference level). From the C-D  corner to the C-B cor- 
ner transfer remains zero, whereas positive transfer is induced 
if one moves from C-B to A-B. 

It will now be shown that our model predicts the shape of this 
surface. Let us start with the induction of negative transfer as 
we move from A-B to A-C. We will first describe the represen- 
tation of  the A-B, A-B' transfer design, where B' denotes a re- 
sponse that is similar to the first list response. Positive transfer 
is accomplished in the following way. We will assume that if the 
List 2 response resembles the corresponding List 1 response, it 
will be incorporated in the same image. Thus, instead of the 
two images formed in the A-C design, one unitary image may 
be formed in the A-B' design (as when the same list is presented 
twice). This leads to positive transfer because the contextual 
and interitem associative strengths will increase (as in the A-B 
transfer design) since the image is in fact given an additional 
number of  study trials. 

Thus, the decrease in response similarity is represented by 
assuming that the probability of  forming a unitary image de- 
creases as we move from A-B to A-C. Note that we treat the 
situation in an all-or-none manner: The List 2 response is either 
incorporated in the corresponding List 1 image or it is not. Fig- 
ure 11 gives the predicted transfer results (the probability of 
recall on the first List 2 trial in comparison with the C-D  de- 
sign). Going from A-B to A-C, an initial positive amount of 
transfer is gradually replaced by negative transfer. 

From A-C to C-D  the stimulus similarity changes, which is 
represented by a gradually decreasing associative strength be- 
tween the List 2 stimulus and the List 1 image. This results (for 
obvious reasons) in a decreasing amount of negative transfer 
(see Figure 11). Next we follow the x axis from C-D  to C-B. As 
discussed in the section on retroactive inhibition, no changes 
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Figure 11. Application of the present model to Osgood's (1949) transfer 
surface. (The comers in the plane correspond to the four major transfer 
designs.) 

are predicted because the List 2 stimuli remain different from 
the List 1 stimuli. Going from the C-B to the A-B corner, posi- 
tive transfer is induced by a gradual increase in the probability 
of  forming a unitary image. Hence, Osgood's results can be ac- 
commodated without any difficulty. 

Forgetting Functions 

As explained earlier, there are two basic factors in the SAM 
theory that account for forgetting: (a) an increase in the number 
of other, interfering, images that are associated to the retrieval 
cues; and (b) a decrease in the associative strengths of  the cues 
to the image to be retrieved. In our model, the second of  these 
two factors is explained by the contextual fluctuation process. 
Hence, in the absence of  any interpolated learning, the model 
would still predict forgetting. Although such a condition of  
"pure" forgetting may be hard to realize experimentally, it is of  
some interest to investigate the pattern of  results that would 
be predicted, in view of  the recent controversy concerning the 
interpretation of  the results obtained by Slamecka and McElree 
(1983; see Loftus, 1985a). 

Although we shall not discuss it in detail, it might be noted 
that classical interference theory has some difficulty in provid- 
ing a convincing explanation for this type of  forgetting. Basi- 
caUy, it has been explained as being due to extraexperimental 
interference (see Postman, 1961). However, there is disappoint- 
ingly little evidence to support this hypothesis. 

Slamecka and McElree (1983) observed that as long as the 
recall probabilities are not too low, recall functions starting at 
different values (and hence based on different response 
strengths) decrease in a parallel fashion. This result seems to 
hold for a wide range of  experimental manipulations affecting 
initial response strength. According to Slamecka and McElree, 
contemporary theories of  memory (including SAM) have sur- 
prisingly little to say about this phenomenon. Our model, how- 
ever, does predict this pattern of  results. Forgetting functions 
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Figure 12. Predicted forgetting functions for lists differing in initial asso- 
ciative strength. (The differences in associative strengths were obtained 
by calculating the strengths for two, four, or six study trials.) 

were derived for different associative strengths using Equation 
4. The results are presented in Figure ! 2. 

There has been a recent debate (Loftus, 1985a, 1985b; Sla- 
mecka, 1985)concerning the interpretation of these results. Sla- 
mecka and McElree (1983) described these results as indicating 
equal for~tting in all conditions. This would imply that forget- 
ting is independent of associative strength. However, whether or 
not such a pattern of results is described as "equal forgetting" 
depends of course on the way "equal forgetting" is defined. Such 
statements are model dependent. That is, equality of forgetting 
should be defined in terms of the forgetting parameters defined 
in the model. In the present model, the rate of forgetting is con- 
trolled by the rate of the contextual fluctuation process. Since 
this is the same in all conditions, we may conclude that in terms 
of our model these results should indeed be interpreted as indi- 
cating equal forgetting. However, other models may lead to the 
conclusion of slower forgetting in the conditions starting at a 
higher value. In the end, this issue has to be decided in terms of 
the overall adequacy of the model. 

A general model of this type that leads to the interpretation 
that higher learning produces slower forgetting, was presented 
by Loftus (t985a). A basic assumption of that model is that 
there is a one-to-one correspondence between the "state of the 
cognitive system" and memory performance. One of the rea- 
sons why the present SAM model is not compatible with Lof- 
tus's analysis is that it does not conform to this assumption. 
In the SAM model (and in a number of other models, such as 
Anderson's ACT* model), memory performance is a function 
of both the absolute and the relative strength of the memory 
trace of an item (see the section on PI). Different combinations 
of absolute and relative strengths may lead to equal recall per- 
formance. Hence, the assumption of a one-to-one relation is 
violated. In fact, there is some evidence that this assumption is 
indeed wrong. As discussed in a later section, there is no mono- 

tonic relation between different measures of memory perfor- 
mance. That is, response a~uracy may be equal for two experi- 
mental conditions while the lateneies are different. This would 
seem to be incompatible with the assumption made by Lotus  
(1985a). 

Recognition 

Next we will discuss the application of the model to some 
recognition tasks used in interference experiments. Recogni- 
tion tasks became an issue after Postman et al. (1968) proposed 
the response set theory. It was argued that this theory could be 
tested with recognition tasks. We shall not go into this discus- 
don here, but present only the basic data obtained using such 
recognition measures. 

Recognition experiments have been performed using the four 
classic designs: C-D, C-B, A-C, and A-Br. Frequently, a four- 
choice method is used. Along with the stimulus, four responses 
are presented to the subject. One of the responses is the correct 
one, that is, the one that was associated to the stimulus during 
list learning. The following pattern of results has been obtained 
(Postman & Stark, 1969): The C-D, C-B, and A-C designs 
show about equally high recognition scores; only the A-Br de- 
sign seems to suffer from interference effect. Thus, to the sur- 
prise of most investigators practically no deterioration in A-C 
recognition relative to the C-D performance could be detected. 
This observation severely undermined the unlearning hy- 

pothesis. 
However, a number of comments concerning these results 

have to be made. First, A-C as well as C-B recognition seem to 
be consistently less compared with C-D recognition, in spite of 
the fact that the difference is usually not statistically significant. 
Second, the difference between the C-D design on the one hand 
and the C-B, A-C, and A-Br designs on the other hand is 
greater if the acquisition phase involves learning by recall in- 
stead of learning by recognition. Moreover, detailed examina- 
tions concerning these comparisons have revealed that A-Br re- 
call mainly suffers from the effects oflist discrimination (Ander- 
son & Watts, 1971): If both the List 1 as well as the List 2 

p 

response are presented among the alternatives, the subject may 
recognize quite well which two responses belong to the pre- 
sented stimulus, but may not correctly discriminate between 
them with respect to list membership. Thus, the model should 
account for three observations: (a) A-Br recognition deterio- 
rates relative to the other designs if both responses are present 
in the set of alternatives, (b) there will be only small differences 
between these four designs when list discrimination problems 
are avoided, and (c) there is a consistent but small difference 
between the C-D design and the others. 

To apply the model to recognition we first have to make an 
assumption about the use of response members as retrieval 
cues. In such experiments, the subject is presented with more 
than two cues: the usual context cue, the stimulus cue, and the 
response cues. We shall assume that the subject uses the re- 
sponse cues given in the set of alternatives one by one. This 
means that at any time only three associative strengths are in- 

volved: 

s(DI c, s, R) -- sift, c)s(I~, s)s(I,, R). 
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Table 3 

Predicted Results for Multiple-Choice Recognition 

Interfering response 

Design Not excluded Excluded 

A-B, C-D 6.80 6.80 
A-B, C-B 6.52 6.52 
A-B, A-C 6.47 6.47 
A-B, A-Br 5.66 6.29 

It is assumed that the strength of  the response cue to a particular 
image is the same as the strength of  the corresponding stimulus 
to that image. For example, in the A-B, C-B design, the 
strength of  the B response to the A-B  image is equal to the 
strength of  the corresponding stimulus A to that image. Sim- 
ilarly, its strength to the C-B image is equal to the strength of  
the stimulus C to that image. 

We assume that there are two ways in which the subject may 
identify the correct response. The first is that the correct image 
is found (i.e., sampled and recovered) using the correct pair as 
cues. The second way is that the correct image is found using 
an incorrect S -R  pair as cues. When this happens, it is assumed 
that as a check on the correctness of  the response recovered 
from the retrieved image, the subject searches the set of  alterna- 
tives, finds the matching response, and thus recognizes it. Fi- 
nally, because we are interested only in the relative scores, no 
guessing assumptions have been made. 

It is intuitively clear that such a model is in agreement with 
the fact that recognition is usually better than recall: The reason 
is that three cues are used instead of  two. This focuses the 
search more efficiently on the correct image. The predictions 
generated by this model are presented in Table 3, the middle 
column, for the ease that the interfering response in the A-Br  
design may be included in the set of alternatives. The values in 
Table 3 correspond to the number of  correct recognitions (out 
of  seven). The right-hand column gives the predicted score 
when A-Br  is free from this negative factor. It should be noted 
that the usual method of  making up the set of  alternatives is 
used: Three randomly chosen responses from the same list are 
selected as distractors. Thus, in case of  the A-Br  design, the 
competing response will not always be among the alternatives. 

From the middle column it can be concluded that the model 
correctly predicts that A-Br  recognition is deteriorated. The 
right-hand column shows that the recognition of  A-Br  pairs 
improves as soon as the competitor is eliminated from the alter- 
natives. In agreement with the data, there is a small difference 
between the C - D  design and the other designs. In fact, the 
model predicts C - D  > C-B = A - C  > A-Br. The reason is that 
recognition performance is a function of  the number of  interfer- 
ing relations. This prediction is supported by the observation 
that recognition of  A - C  lists is significantly less when compared 
with the C - D  condition in a PI design (Postman et al., 1974). 

Relat ion Between Response  Accuracy 

and  Response  La tency  

The traditional studies of  interference have nearly always re- 
lied on accuracy measures as a dependent variable. The use of  

latency measures has apparently not been considered very use- 
ful. Presumably, it has been assumed that these two types of  
measures would show parallel effects. That is, a one-to-one rela- 
tion was assumed between response accuracy and response la- 
tency. Anderson (1981) has shown, however, that this is not the 
case. He found a difference in latencies even when the interfer- 
ence and control conditions were equalized in terms of  percent 
correct. Moreover, he demonstrated that this result was pre- 
dicted by a model based on the ACT theory. In this section, we 
show that this relation is also predicted by the present SAM 
model. To show this, we shall fit our model to the data of  Ander- 
son's recall experiment (Anderson, 1981, Experiment 1). One 
additional reason for this exercise is that this experiment is one 
of  the few that report the data in sufficient detail to make a 
quantitative comparison meaningful. 

In this experiment, subjects were given eight anticipation tri- 
als on the first list (A-B) followed by eight anticipation trials on 
the second list (C-D or A-C).  This was again followed by four 
relearning trials on List I and another four relearning trials on 
List 2. Since the set of  responses consisted of  the first 10 digits, 
it is perhaps better to describe these designs as C-B and A -  
Br. However, following Anderson (1981), we ignore this in the 
application of  the model and treat the two conditions as regular 
C - D  and A - C  conditions. Hence, the effects of  guessing will not 
be taken into account. The results of  this experiment are shown 
in Figure 13. A closer look at these data reveals positive transfer 
on the C - D  anticipation trials (Anderson, 1981), probably a 
learning-to-learn effect. 

It will be assumed that such an effect influences the amount  
of  associative information stored in LTS per second of(elabora- 
tive) rehearsal. One of  the simplest ways to achieve this is by 
using a negative exponential formula for the interitem associa- 
tive strength parameter b: 

b( i ) = b(1 - e-i~), 

where i denotes the total number of  list presentations and ~ is a 
scale parameter. The total strength accumulated for a specific 
item, say a List 1 item, after the nth study trial is given by 

S,(Ij, S)  = t ~ b(i), 
i ~ l  

where the summation is taken only over the List I presentations. 
Next, an equation has to be derived for response latency. We 

shall assume that the latency is linearly related to the number 
of  sampling attempts. The expected number of samples given 
recall within a maximum of  m(=Lm~x) attempts, E(LIRm), is 
given by 

1 - (mp,~ + 1)(1 - p s )  m 
E(LIRm) = 

ps[l - (1 - p~)"] 

where Ps represents the probability of  sampling in one draw. 
Furthermore, we have to transform E(L I Rm) into real time. 
This will be accomplished by using a linear transformation and 
adding a constant denoted by v, representing encoding and de- 
cision processes: 

RT = v + wE(L I Rm). 
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Figure 13. Predicted and observed results for the Anderson ( ! 981) experiment. (The control condition is 
given by the reaction time curves that are lower and the percent recall curves that are higher.) 

Since all recall tests were paced, we will assume that retrieval 

stops as soon as Lmax has been reached. 
The chi-square loss function used in fitting the model to the 

data was the same as used by Anderson ( 1981). Parameter esti- 

mation was performed using the STEPIT minimization routine 

(Chandler, 1965). The following parameter values were ob- 

tained: a = 1.47, b = 0.07, d = 0.0, a -- 4.54, B = 0.01 l, 3, = 

0.012, Lmax = 4.90, ~ = 0.31, v = 0.61, and w = 0.65. The result- 

ing chi-square value is 121.95. Figure 13 gives the predicted and 

observed data. Inspection of Figure 13 shows that the overall fit 

is satisfactory, although the chi-square value is a bit high (al- 

though not exactly, it should be approximately x 2 distributed 

with a dfof 77). We cannot compare our loss value with the one 

obtained by Anderson, because he fitted two data sets simulta- 

neously. Therefore, we fitted his model to the same subset of the 

data considered above. For his model we obtained a loss value 

of 64.16, which is about half the value of our model. 

However, the difference in loss value may not be so impor- 

tant, since our model predicts the data fairly well according to 

visual inspection. This conclusion is based on our experience 

that if a good qualitative fit is obtained, a good quantitative fit, 

that is, a significant decrease in the loss value, may also be ob- 

tained by using a number of auxiliary ad hoc assumptions. For 

example, Anderson made the assumption that there is a speed- 

up in the intercept time, the time for encoding and decision 

processes. We did not use such an assumption (v is a constant). 

If in the Anderson model we also fix the speed-up parameter b 

to zero, a loss value of 110.86 is obtained. Thus, a considerable 

increase in the loss value results if one of the auxiliary assump- 

tions is deleted. 
Such results strengthen our belief that a further decrease in 

the loss value may be obtained provided enough time and effort 

is invested to tailor the model to the specific details of the exper- 

iment. However, such an exercise would not add much to our 

knowledge, given that we have already shown that the general 

pattern of the results is quite well predicted by the model in its 

present form. We have therefore chosen not make such assump- 
tions and to use the model as it has been presented in previous 

applications. 
We now turn to the most interesting aspect of Anderson's 

(1981) data, the relation between the response latencies and re- 

sponse accuracies for the interference and control conditions. 

Anderson showed that there is a difference in latency between 

the two conditions even when they are equated in percent recall 

by giving extra study trials to the interference conditions. An- 
derson argued that this relation can be explained by models that 

are based on relative as well as absolute associative strengths. 

Since our model is of this general type, it is easy to show that it 

also predicts this result. 
As described earlier, in the SAM model the probability of 
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recall (PC) is a product of  the probability of  sampling, denoted 
by a function f and a function describing the probability of  
recovery, g. f i s  a function of  the relative strength, whereas g is 
a function of  the absolute strength. Let the sampling probability 
be mapped into a response latency by a function h. That is, we 
assume that the response latency (RT) is only determined by 
the duration of  the sampling process (plus an additive constant 
reflecting encoding and response processes). Hence, h is as- 
sumed to be a function of  the relative strength. Then, 

PC = f(R)g(R) 
and 

R T  = h(R). 

We assume that if two sampling probabilities are equal, the cor- 
responding latencies will also be equal. Thus , f  and h are mono- 
tonic functions of the relative strength and of each other: 

f (R l )  > f (Rz)  ~=0 h(Rl) < h(R2). 

Now, if we have a probability correct for the C - D  condition and 
an equal probability correct for the interference condition then 

f(R~)g(Rea) = f(R,e)g(Rac). 

Note that the interference condition needs more trials to es- 
tablish this equality because it suffers from negative transfer. 
This means that the absolute strength will be higher in the inter- 
ference condition. Hence, g(Rca) will be smaller than g(Rar To 
maintain equality, it must be the case tha t f (R~)  >f(Rar From 
this we may conclude that 

h(R~) < h(Rac). 

Thus, the latency in the interference condition will be larger 
than in the control condition, even when the conditions are 
equalized in terms of  percent recall. 

Discuss ion  

We have presented a model for interference and forgetting 
that is based on the SAM theory for retrieval from long-term 
memory. The major new aspect of the present model is the in- 
corporation of  a process of  contextual fluctuation. We have 
shown that a few relatively simple assumptions concerning the 
effects of contextual changes lead to a model that is capable of 
handling the major classical phenomena from the interference 
literature in a straightforward manner. It is perhaps worth em- 
phasizing that we do not believe that this feat can only be ac- 
complished by such a model based on the SAM theory. Instead, 
we are quite certain that other recent memory theories (e.g., 
Anderson's ACT* theory) will also be capable of  handling these 
results. 

What is important, however, is that it has been shown that 
these phenomena can be explained within a single framework. 
This is quite contrary to the impression one would get from 
a cursory review of the classical interference literature. In our 
opinion, the problem with the classical interference theories is 
that far-reaching conclusions were drawn on the basis of  dubi- 
ous interpretations of  certain empirical observations. For ex- 
ample, the introduction of  the unlearning concept was moti- 
vated by the observation that interference could be observed 
even when MMFR testing was used. Such a conclusion, how- 

ever, is based on a number of  tacit assumptions concerning the 
retrieval process. These may have seemed to be logical in the 
past but are not shared by contemporary theories of  memory. 
As discussed previously by Baddeley (1976), the assumption 
that MMFR testing eliminates response competition is based 
on a model that assumes that retrieval involves a sampling- 
without-replacement process: Given enough time, subjects will 
recall all available information. Hence, when there is no need 
to discriminate between the responses with respect to list mem- 
bership (as in MMFR testing), all response competition should 
be eliminated. Such a test should therefore constitute a pure 
measure of  response availability. 

Most contemporary theories of  memory, on the other hand, 
do not make such an assumption. Instead, it is quite customary 
to assume some sort of  sampling-with-replacement process: Re- 
call of  one of  the responses does not increase the probability 
of  recalling the remaining response. On the contrary, it is not 
uncommon to assume a negative effect due to output interfer- 
ence (as in the general SAM theory). However, i f M M F R  testing 
does not eliminate response competition (broadly defined), 
then it can be easily explained why proactive interference is ob- 
served on a MMFR test, a finding that has been particularly 
troublesome for the classical interference theories. Moreover, 
the finding that interference effects are quite weak when a recog- 
nition test is used is no longer puzzling. Hence, there is no need 
to introduce such assumptions as "response-set suppression" to 
explain the (near) absence of  interference on recognition tests. 

It is interesting to note that the present model for interference 
may be viewed as an updated mathematical version of  Mc- 
Geoch's response competition theory. As discussed in the intro- 
ductory section, McGeoch assumed that responses were ac- 
quired independently and that the source of interference was 
located in the retrieval process. Moreover, McGeoch attached 
some importance to context changes as a source of forgetting. 
This is all quite consistent with the present formulation. The 
major difference between McGeoch's theory and our model is 
that in our model response competition is given a somewhat 
different interpretation. In his formulation, the competition 
seems to be mainly between available responses, whereas in the 
present model the competition is rooted in the retrieval process 
itself. We do not interpret this as a fundamental difference. 
Rather, it reflects the increased sophistication of  modem mem- 
ory theories. We believe that our formulation does not run 
counter to the basic spirit of McGeoch's theory, namely, that 
interference is not an encoding phenomenon. 

Comparison with Other Models  

In our presentation of the predictions of  the SAM model we 
have (with one or two exceptions) not discussed the predictions 
made by other recent models for human memory. Although an 
extensive comparison of the present model to these other 
models is outside the scope of  the present article, it is appropri- 
ate to discuss briefly the two major theoretical approaches that 
have similar aims and scope as the SAM theory, namely Ander- 
son's ACT* theory (Anderson, 1983a, 1983b) and the holo- 
graphic model advocated by Murdock (1982) and Eich (1982). 
We have chosen these two models for comparison because both 
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(as well as the SAM theory) are general theories of  memory, 
are not limited to a single paradigm, have been formalized in 
a quantitative manner, and have been explicitly applied to the 
traditional memory paradigms. 

Anderson's ACT theory has undergone a number of  modifi- 
cations since its initial presentation (Anderson, 1976). The lat- 
est version, called ACT*, was shown by Anderson (1983a) to be 
able to generate a number of  predictions for interference phe- 
nomena. It assumes an all-or-none trace formation mechanism 

and gradual strengthening of  existing traces. In the case of  
paired associates, the model assumes, as does the SAM model, 
that the trace consists of stimulus, response, and context infor- 
mation. Once a trace has been established, its associated 
strength is increased by one unit on each subsequent study trial. 
These strengths determine the probability and speed of  re- 
trieval. Anderson assumes a spreading activation model for re- 
trieval: When a stimulus is presented, it and the list context con- 
stitute sources of  activation. The response will be retrieved if a 
trace connecting stimulus, response, and context has been 
formed and can be retrieved within a specific cut-offtime. The 
amount  of activation converging on a trace (that determines the 
probability and speed of  retrieval) is a function of  the relative 
strength of  the target trace compared with the other traces that 
are connected to the same stimulus and context. The ACT* the- 
ory assumes that trace strengths are subject to decay. It is as- 
sumed that the strength is a power function of time. 

There are a number of  interesting similarities between the 
ACT* model and the present SAM model. First, an important  
aspect in both models is that performance is assumed to be a 
function of  both relative and absolute strength. Both models 
assume that probability of  recall is a function of  relative as well 
as absolute strength, whereas reaction time is a function of  rela- 
tive strength only. In SAM, "absolute strength" affects the prob- 
ability of  recovery. In ACT*, a similar role is played by the prob- 
ability that the trace has been formed, which is also a function 
of  the absolute number of  presentations. Given that a trace has 
enough "absolute strength," the probability of recall is deter- 
mined by its "relative strength" (in comparison with the com- 
petitors). Second, both models assume that interference has no 
effect on encoding, only on retrieval. Thus, there is no unlearn- 
ing assumption; that is, learning of  List 2 does not lead to a 
differential effect on the decay of  List 1 strengths. Given this 
similarity, it is reasonable to assume that the ACT* model will 
be able to generate most, if not all, of  the qualitative predictions 
for interference phenomena that we have considered in this 
article. 

However, there are certain differences between the two 
models that would seem to make a quantitative comparison 
quite informative. For example, the ACT* model assumes that 
trace strengths are subject to decay. In the SAM model, a similar 
role is played by the assumption that the contextual overlap is 
a decreasing function of  the retention interval. Another, poten- 
tially important  difference is that ACT* assumes that the effects 
of  stimulus and context activation summate. In SAM, on the 
other hand, item and context strengths are combined in a multi- 
plicative fashion. Hence, a high item strength cannot compen- 
sate for a zero (or near zero) context strength. A quantitative 
comparison of  these two models might be quite interesting. In 

particular, it would be of  interest to see how well the new ACT* 
model handles the Anderson ( 1981) data on interference, since 
the 1981 ACT model differs in several important  respects from 
the 1983 version. 

Eich (1982) proposed a model for associative recall that is 
based on the holographic metaphor. This model, called CHARM 
(Composite Holographic Associative Recall Model), is based on 
the convolution/correlation model proposed by Murdock 
(1979; see also Murdock, 1982). It assumes that items may be 
represented as patterns of  features. An association between two 
such items is represented by the mathematical operation of  con- 
volution. The result of  all these associations is stored in a single 
composite memory trace. Retrieval occurs by correlating the 
test stimulus with this composite memory trace. The resulting 
feature pattern is identified by being matched to every item in 
a lexicon (representing semantic memory). 

Eich (1982) described a number of qualitative predictions for 
interference phenomena. The model predicts C - D  interference 
compared to a control group. As in SAM, this prediction is 
based on a list-length effect. Everything else being equal, the 
level of  recall is inversely related to the number of  unrelated 
associations that have been stored in the composite memory 
trace. This is due to the increase in the level of  noise in the 
memory trace. The model also predicts the Barnes and Under- 
wood (1959) MMFR results in the A-B, A - D  interference par- 
adigm. This prediction is due to the fact that the recall probabil- 
ity (equivalent to the probability that the target item produces 
the best or second best match) is correlated with the number of  
times (study trials) the association is added to the memory 
trace. Finally, it is able to account for Osgood's (1949) transfer 
surface because the representation of  similarity is an integral 
part  of  the model. 

As appealing as the model may be, there remain certain dis- 
advantages. First, it should be noted that all "fits" were qualita- 
tive and it remains to be seen whether the model can predict 
the correct magnitudes of  the effects. Second, there are some 
conceptual problems with the prediction of  interference in C -  
D paradigms (and list-length effects in general). It must be the 
case that the memory trace already incorporates thousands of 
associations when the subject enters the experiment. Adding 20 
or so associations will not increase the amount of noise to a 
significant degree. The only way in which this explanation 
might be saved is to invoke a factor that focuses retrieval on the 
list of  associations learned in the experimental session. In SAM, 
this focusing of  the search is accomplished by the assumption 
that context is one of  the retrieval cues. It is not evident how 
such a factor should be incorporated in the CHARM model. 

In conclusion, it seems fair to say that the present application 
of  the SAM theory represents an important new step toward 
the explanation of  interference and forgetting. It is hoped that 
this work will arouse renewed interest in these old topics. We 
believe that these phenomena are too important  to be neglected 
by any theory that aspires to be a truly general theory of  
memory. 
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A p p e n d i x  

In this Appendix, we will describe the relevant difference equations 
that are required to generate predictions for a two-list design. The fol- 
lowing notation is used: 

Av(i,j, t): expected number of contextual elements of type v that are 
active t s after the j th  trial on List 2 and following i trials on 
List 1. 

Kv(i,j): expected total number of elements of type v (active plus in- 
active) after i trials on List 1 andj  trials on List 2. 

Thus, At gives the expected number of active x~ elements, A2 the ex- 
pected number of active x2 elements, and similarly for Ao and Ay. We 
shall assume a constant intertrial interval offi s. Hence, Av(i,j, tO gives 
the expected number of active elements of type v on the test phase that 
precedes the ( j  + I)th study trial on List 2 (or, i f j  = 0, the (i + l)th 
study trial on List 1). For i = j  = 0, we have Al(0, 0, tO = K~(0, 0) = 0. 
The following equation gives the results after the i th trial on List 1. 

Al(i ,  O, O) = A l ( i  - 1, O, fi) + [n -- A l ( i  -- 1, 0, tl)]W, 

Kl(i ,  O) = K~(i - 1, O) + [n - A l ( i  -- 1, O,/i)]w, 

where w gives the probability of encoding an element on a given study 
trial. 

At the end of the intertrial interval of tt s, AI will have a different 
value because of the contextual fluctuation process (see Equation 1): 

At(i ,  O, h )  = Al( i ,  O, 0)e -~'+a)q + Kl(i,  O)h(fi), 

where 

_ 'Y e-(-t+a)t] h(t) - ~ [1 - 

Assume that a total of I List 1 study trials are given, followed by an 
interlist interval oft2 s. At the end ofthis interval we have 

AI(L  0, t2) = AI (L  0, 0)e-r + K , ( L  0)h(t2), 

A2(L 0, t2) = Ao(I, 0, t2) = 0, 

As(I, O, t2) = n - Al(I ,  O, t2), 

K2(L O) = Ko(1, O) = O. 

The next set of difference equations describes the state of affairs after 
the j th  trial on List 2. 

Al ( I , j ,  0) = (1 -- w)A~( l , j  - 1, tt), 

K~(I , j )  = K ~ ( L j -  1) - WAl( I , j  -- 1, fi), 

A 2 ( L L  O) = A 2 ( L j  - 1, fi) + w A y ( L j  - 1, tO, 

K 2 ( L j )  = K 2 ( L j  - I) + w A y ( L j  - 1, q),  

Ao(L j ,  O) = Ao( I , j  - 1, t~) + w A t ( l , j  - 1, tl), 

K o ( L j )  = K o ( L j  - 1) + WAl( I , j  -- 1, fi), 

Ay(I , j ,  0) = (1 - w ) Ay ( L j  - 1, tl). 

At the end of the intertrial interval offi s, the A~ will be equal to 

Av(1,j ,  q )  = Av(1,j ,  0)e -('+~)`, + K,(1, j )h( f i ) .  

Finally, assume that the final testing follows t3 s after the last List 2 trial. 
The number of active elements of type v on this test is given by 

Av(I, J , /3)  = A~(L J, 0)e -('+~)'~ + K g L  J)h(t3), 

where Jequals the total number of List 2 study trials. 
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