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A MODEL FOR INVESTMENT DECISIONS WITH
SWITCHING COSTS

By Kate Duckworth and Mihail Zervos

King’s College London

We address the problem of determining in an optimal way the sequence
of times at which a firm can enter or exit an economic activity. In particu-
lar, we consider an investment model which involves production scheduling
as well as a sequence of entry and exit decisions. The pricing of an invest-
ment conforming with this model gives rise to a stochastic impulse control
problem that we explicitly solve. Our solution takes qualitatively different
forms, depending on the problem’s data.

1. Introduction. The past two decades have seen the emergence of new
techniques in the area of investment pricing. These approaches extend the
more classical discounted cash flow approaches to asset pricing such as the
net present value approach, and can account for the value of managerial flex-
ibility which is associated with every real-life investment. Their development
has been facilitated by recent advances in the theories of stochastic optimal
control and mathematical finance. The new research area has been termed real
options and has been documented in several references including the books
by Dixit and Pindyck [8] and Trigeorgis [19].
In this paper, we formulate and study, on a rigorous mathematical basis,

an investment model that can be described informally as follows. An invest-
ment project can produce a single commodity whose price is modelled by a
geometric Brownian motion. The project can operate in two modes: active and
passive. In the active mode, the project yields payoff at a rate which depends
on the commodity price as well as on the choice of a production rate which is a
decision variable. In the passive mode, the project incurs losses at a constant
rate. The transition from one mode to the other can be realised immediately
at certain fixed costs, and constitutes an additional decision strategy. There is
no limit to the number of times the project’s mode can be changed. In practice,
activation of the project can correspond to the case where a company expands
its position in the market by developing a production unit, whereas rendering
the project passive can correspond to the case where the company abandons
the unit under consideration.
Variants of this model have attracted the interest of several researchers.

The model itself was proposed by Brennan and Schwartz [5] as an approxima-
tion to a realistic model that they developed for the life cycle of an investment
in the natural resource industry such as a copper mine or an oil field. Dixit [7]
analysed the special case which arises if there is no choice of a production
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rate, the rate of payoff that the investment yields in its active mode is a lin-
ear function and the investment yields neither profits nor losses in its passive
mode (see also Dixit and Pindyck [8], Section 7.1). His analysis was devel-
oped using heuristic arguments and is based on deep intuition and insight.
A rigorous analysis, though still not a complete one and of somewhat less
explicit nature, of the same special case was developed by Shirakawa [17].
Both of these authors failed to unveil the full spectrum of optimal actions.
Also, the same special case, but with the additional feature that the invest-
ment can produce at most a given amount of the commodity, was solved by
Brekke and Øksendal [3, 4]. At this point, observe that allowing for much more
general choices of the running payoff function is interesting because it offers
more flexibility when modelling and pricing actual investments. Also, it is
worth observing that more general choices of the running payoff function give
rise to further qualitatively different optimal strategies (see also Remark 1 in
Section 4). A further investment model of the same nature was analysed by
Trigeorgis [18] under the assumption that the commodity price is modelled by
a binomial tree. Other related models have been considered in the economics
literature by Paddock, Siegel and Smith [14], who considered investments in
the natural resource industry, Pindyck [15], who also considered the problem
of capacity choice, Cortazar and Schwartz [6], who also considered existence
of intermediate inventories, and McDonald and Siegel [13]. These, as well
as a number of other models, can also be found in the books by Dixit and
Pindyck [8] and Trigeorgis [19].
The problem that we solve is also closely related with the models analysed

by Knudsen, Meister and Zervos [11] and Duckworth and Zervos [9]. These
authors solve the problems which arise if there is no option of multiple entry
and exit decisions, but the project can be totally abandoned or it can be acti-
vated and then totally abandoned at discretionary times, respectively. From
the perspective of mathematical analysis, the solution of these problems pro-
ceeds through their reduction to appropriate optimal stopping problems. In
contrast, the problem that we consider here has the structure of an explicitly
solvable stochastic impulse control problem. In fact, it can easily be reduced
to a special case of the most general model that Brekke and Øksendal [4]
analyse. Of course, the maximal generality that these authors adopt cannot
lead to results of such an explicit nature as the ones obtained in this paper.
With regard to economics considerations relating to the theory of real

options, we address the problem of pricing the project considered from the
perspective of the so-called dynamic programming approach. However, our
model conforms with all of the assumptions made by Knudsen, Meister and
Zervos [12]. As a consequence, our analysis also yields an expression for the
so-called contingent claim price of the investment in a straightforward way.
The paper is organised as follows. Section 2 is concerned with the formula-

tion of the investment model. In Section 3, we establish and discuss the asso-
ciated dynamic programming differential equation. In Section 4, we explicitly
solve the resulting stochastic impulse control problem under the assumption
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that the commodity price is a geometric Brownian motion, whereas, in the
Appendix, we collect the proofs of some of the more technical results.

2. Problem formulation. Let ���� �P� be a complete probability space
equipped with a filtration ��t� satisfying the usual conditions of right con-
tinuity and augmentation by P-negligible sets and carrying a standard one-
dimensional ��t�-Brownian motion W. We denote by � the set of all
(�t)-progressively measurable processes U with values in a compact subset
of the real line � and denote by � the family of all ��t�-adapted, finite vari-
ation, càglàd processes Q with values in �0�1�.
We consider an investment that can produce a single commodity. We model

the commodity price by the solution of the stochastic differential equation
(SDE)

dXt = b�Xt�dt+ σ�Xt�dWt� X0 = x > 0�(1)

where the following assumption holds.

Assumption A1. b� σ � �+ → � are given functions such that (1) has a
unique strong solution with values in 	0�∞�, P-a.s.

Specific assumptions under which (1) has a unique solution can be found
in any book that treats the subject of SDEs (e.g., see Corollary 5.5.16 and
Proposition 5.5.17 in Karatzas and Shreve [10] or Theorem IX.3.5 in Revuz
and Yor [16]), whereas Feller’s test for explosions (Karatzas and Shreve [10],
Theorem 5.5.29) yields necessary and sufficient conditions for the solution of
(1) to have values in 	0�∞�.
The investment can operate in two modes, say “open” and “closed.” The tran-

sition from one operating mode to the other is immediate and forms a sequence
of decisions made by the management. These decisions form an intervention
strategy and we model them by a process Q ∈ � . Specifically, Qt = 0 means
that the investment is closed at time t, whereasQt = 1 means that the invest-
ment is open at time t. Also, the stopping times at which the jumps of Q occur
are the intervention times at which the investment’s mode is changed. At time
0, we assume that the investment can be in either of the two modes that we
denote by q ∈ �0�1�.
Given that the investment is open, the management can decide on a pro-

duction rate that we model by a process U ∈ � . Assuming that the investment
is open, if, for some u ∈ �, Us = u, for all s in a given time interval �t� t+�t	,
then the investment produces an amount of the commodity equal to u�t dur-
ing this time. Also, we make the assumption that the production rate can be
changed instantly to any value within the set of allowable values � without
cost.
We define the set of admissible strategies to be

�q = ��Q�U�� Q ∈ ��Q0 = q�U ∈ � ��
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With each admissible strategy �Q�U� ∈ �q, we associate the performance
criterion

Jq�x�Q�U� = E
[∫ ∞

0
e−rs

[
h̄�Xs�Us�Qs −C�1−Qs�

]
ds

−∑
0≤s
e−rs

[
KI��Qs�+ +KO��Qs�−

]]
�

where �Qt = Qt+ −Qt and ��Qt�± = max�±�Qt�0�. Here, h̄� 	0�∞�×� → �
models the running payoffs/costs resulting from an open investment. If in
a time interval �t� t + �t	 the investment is open, the commodity price is x
and the production rate is set at u, then, depending on whether h̄�x�u� is
positive or negative, the investment yields a profit or incurs a loss equal to
h̄�x�u��t. The constant C models running “standby” costs resulting from a
closed investment. Also, the constants KI, KO are the costs resulting from
“switching” the investment from the closed to the open mode and vice versa,
respectively.
The objective is to maximise the performance criterion Jq�x�Q�U� over �q.

Accordingly, we define the value function v by

v�q� x� = sup
�Q�U�∈�q

Jq�x�Q�U��

The following general assumption ensures that the optimisation problem
is well posed, in the sense that there are no integrability problems and there
are no admissible strategies with payoff equal to ∞.

Assumption A2. The running payoff function h̄ is upper semicontinuous
and if h� 	0�∞�→ � is the function defined by

h�x� = max
u∈�

h̄�x�u��(2)

then

E
∫ ∞

0
e−rt�h�Xt��dt <∞(3)

for every initial condition x > 0. Also, KI +KO > 0.

Note that, since h̄ is upper semicontinuous, h is upper semicontinuous as
well (see Bertsekas and Shreve [2], Proposition 7.32). Moreover, Proposition
7.33 in [2] implies that there exists a Borel measurable u� 	0�∞�→ � such
that

h�x� = h̄�x�u�x���(4)

At this point, observe that although we have used C, KI, KO to model
costs, we only require that KI +KO > 0. The reason is that this condition
is sufficient for the development of our analysis. To some extent, negative
values of these constants offer more flexibility in the modelling. For instance,
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a negative value of KO can correspond to a situation where the cost of KI,
which now has to be strictly positive, is not totally sunken, but can be partly
recovered when switching the investment to its closed mode.
On the other hand, we cannot dispense with the assumption that

KI +KO > 0. If this condition failed, then the management would be able to
generate arbitrarily high profits by rapidly changing the investment’s oper-
ating mode, which would be unrealistic. From the perspective of mathemat-
ical modelling, this condition ensures that any intervention strategy which
requires an infinite number of interventions within a finite time interval, on
a set of positive probability, has payoff equal to −∞. Therefore, every inter-
vention strategy which is associated with a finite payoff can be modelled by a
process in � , and so the problem is well posed.

3. The Hamilton–Jacobi–Bellman (HJB) equations. Since the choice
of a production rate does not affect the dynamics of the problem’s state vari-
able, namely the commodity price, we can expect that the optimal production
rate process is indistinguishable from u ◦X, where u is a function satisfy-
ing (4). In light of this observation, we can see that the problem reduces to
the choice of the intervention times at which the investment’s operating mode
is changed. Therefore, our problem can be viewed as a stochastic impulse con-
trol problem; for a treatment of impulse control theory, see Bensoussan and
Lions [1].
With reference to standard results of the theory of impulse control, we

expect that the value function v should satisfy the HJB equation which takes
the form of the quasivariational inequality

max
{ 1
2σ

2�x�wxx�q� x� + b�x�wx�q� x� − rw�q� x� + qh�x� − �1− q�C�
w�1− q� x� −w�q� x� − qKO − �1− q�KI

} = 0�
(5)

To obtain some qualitative feeling about the origins of this equation, sup-
pose that at time 0, the investment is open, that is, q = 1. In view of the
foregoing discussion regarding the optimal choice of a production rate, the
management’s immediate decisions consist of choosing between two options.
The first one is to produce according to the optimal rate u ◦ X for a short
time �t and then continue optimally. With reference to Bellman’s principle of
optimality, we must have

v�1� x� ≥ E
[∫ �t

0
e−rsh�Xs�ds+ e−r�tv�1�X�t�

]

for every �t > 0. Here, we can have strict inequality because this is not
necessarily the best option. Assuming that v�1� ·� is sufficiently smooth, we
can apply Itô’s formula to the last term and divide by �t before letting �t ↓ 0,
to obtain

1
2σ

2�x�vxx�1� x� + b�x�vx�1� x� − rv�1� x� + h�x� ≤ 0�(6)
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The second option is to pay the cost of KO to switch the investment to its
closed mode and then continue optimally. Therefore, we must have

v�1� x� ≥ v�0� x� −KO�(7)

Since these two are the only options available, we can conclude that, given
any value of x > 0, one of (6) or (7) should hold with equality. Therefore, we
expect that the value function v�1� ·� satisfies

max
{ 1
2σ

2�x�vxx�1� x� + b�x�vx�1� x� − rv�1� x�
+ h�x�� v�0� x� − v�1� x� −KO

} = 0�
(8)

Using similar reasoning, we can conclude that the value function v�0� ·�
satisfies

max
{ 1
2σ

2�x�vxx�0� x� + b�x�vx�0� x�
− rv�0� x� −C� v�1� x� − v�0� x� −KI

} = 0�
(9)

Now, combining (8) and (9), we conclude that the value function v of the
control problem under consideration should be a solution of the HJB equation
(5). In general, this equation can have uncountably many solutions even with
w�q� ·� ∈ C∞�	0�∞��� q = 0�1, as the following example reveals.

Example 1. Suppose that σ�x� = √
2x, b�x� = x, r = 4, h�x� = x+4, C = 2

and KI = KO = 1. It is straightforward to verify that each of the functions
defined by

w�q� x� = Ax2 +Bx−2 + 1
3x+ q�

where A�B ∈ �, satisfies (8)–(9).

On the other hand, it turns out that, in general, the functions v�q� ·�, q =
0�1, are not twice continuously differentiable. For this reason, we have to
consider functions in a Sobolev spaceW2� p

loc �	0�∞�� for some p ≥ 1. (Note that
the elements of this function space have sufficient smoothness to be able to
apply Itô’s formula.)
The following verification theorem provides conditions under which a solu-

tion of the HJB equation (5) can be identified with the value function v of
our control problem. This is of the same nature as Theorem 3.4 in Brekke
and Øksendal [4]. However, the assumptions that we make in the context
of our special case can be verified more easily for the value function of the
problem explicitly solved in the next section. On the other hand, it does not
follow from the results of Bensoussan and Lions [1], because they assumed
that −h is lower bounded, which is not a reasonable assumption to impose in
the context of our economic application.

Theorem 1. Consider the control problem described in Section 2 and
assume that A1 and A2 hold. Suppose that the HJB equation (5) has a solution
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w� �0�1�×	0�∞�→ � such that w�q� ·� ∈W2� p
loc �	0�∞�� for some p ∈ �1�∞	, for

q = 0�1, such that

lim inf
t→∞

e−rtE�w�Qt�Xt�� = 0 ∀Q ∈ ��(10)

and the processMQ defined by

M
Q
t =

∫ t
0
e−rsσ�Xs�wx�Qs�Xs�dWs� t ≥ 0�(11)

is a martingale, for all Q ∈ � . Given any initial condition �q� x� ∈ �0�1�×
	0�∞��
(a) v�q� x� ≤ w�q� x�, and
(b) if there exists a process Q∗ ∈ � such that

1
2σ

2�Xt�wxx�Q∗
t �Xt� + b�Xt�wx�Q∗

t �Xt�
− rw�Q∗

t �Xt� +Q∗
th�Xt� − �1−Q∗

t �C = 0�
(12)

[
w�Q∗

t+�Xt� −w�Q∗
t �Xt� −KI

] ��Q∗
t �+ = 0�(13) [

w�Q∗
t+�Xt� −w�Q∗

t �Xt� −KO
] ��Q∗

t �− = 0�(14)

for all t ≥ 0, P-a.s., then v�q� x� = w�q� x� and the optimal strategy is �Q∗�U∗�,
where U∗

t = u�Xt� and u satisfies (4).

Proof. (a) Fix any admissible strategy �Q�U� ∈ �q and define the
sequence of ��t�-stopping times �τn� by τ1 = inf�t > 0 � Qt �= q� and τn+1 =
inf�t > τn � Qt �= Qτn+�, with the usual convention that inf � = ∞. Note
that the assumption that Q is a finite variation process implies that τn → ∞,
P-a.s. Using the Itô–Tanaka formula (see Theorem IV.1.5, Corollary IV.1.6,
and the remarks thereafter in Revuz and Yor [16]), we can see that

e−rtw�Qt�Xt� = e−rtw�Qt�Xt�1�t≤τ1�

+
∞∑
n=1

[
e−rtw�Qt�Xt�−e−rτnw�Qτn+�Xτn�

+
n−1∑
j=1

[
e−rτj+1w�Qτj+1�Xτj+1�−e−rτjw�Qτj+�Xτj�

]
+e−rτ1w�Qτ1�Xτ1�

+
n∑
j=1
e−rτj

[
w�Qτj+�Xτj�−w�Qτj�Xτj�

]]
1�τn<t≤τn+1�

= w�q�x�+
∫ t
0
e−rs

[
1
2σ

2wxx+bwx−rw
]
�Qs�Xs�ds

+
∫ t
0
e−rsσ�Xs�wx�Qs�Xs�dWs

+ ∑
0≤s<t

e−rs
[
w�Qs+�Xs�−w�Qs�Xs�

]
�
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This implies∫ t
0
e−rs

[
h�Xs�Qs−C�1−Qs�

]
ds− ∑

0≤s<t
e−rs

[
KI��Qs�++KO��Qs�−

]

=w�q�x�−e−rtw�Qt�Xt�+
∫ t
0
e−rs

[
1
2σ

2�Xs�wxx�Qs�Xs�+b�Xs�wx�Qs�Xs�

−rw�Qs�Xs�+h�Xs�Qs−C�1−Qs�
]
ds

+MQ
t +

∑
0≤s<t

e−rs
[
w�Qs+�Xs�−w�Qs�Xs�−KI

]��Qs�+
+ ∑

0≤s<t
e−rs

[
w�Qs+�Xs�−w�Qs�Xs�−KO

]��Qs�−�
Since w satisfies (5), this implies∫ t

0
e−rs

[
h�Xs�Qs −C�1−Qs�

]
ds

− ∑
0≤s<t

e−rs
[
KI��Qs�+ +KO��Qs�−

]
(15)

≤ w�q� x� − e−rtw�Qt�Xt� +MQ
t �

Taking expectations and noting that the stochastic integral has expectation 0,
we obtain

E

[∫ t
0
e−rs

[
h�Xs�Qs −C�1−Qs�

]
ds

− ∑
0≤s<t

e−rs
[
KI��Qs�+ +KO��Qs�−

]]

≤ w�q� x� − e−rtE�w�Qt�Xt�	�
In view of (10), we can let t → ∞ through an appropriate subsequence to
obtain

E

[∫ ∞

0
e−rs�h�Xs�Qs −C�1−Qs�	ds

− ∑
0≤s
e−rs

[
KI��Qs�+ +KO��Qs�−

]] ≤ w�q� x��

Here, we have used the dominated convergence theorem in conjunction with
(3), as well as the monotone convergence theorem. Now, observing that the
left-hand side of this inequality dominates Jq�x�Q�U�, because of (2), we can
conclude that Jq�x�Q�U� ≤ w�q� x�.
(b) If Q∗ satisfies (12)–(14), then it follows that (15) holds with equality. By

following the same arguments as before, we can then see that Jq�x�Q∗�U∗� =
w�q� x�, and the proof is complete. ✷
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4. The solution of the control problem when the commodity price
is a geometric Brownian motion. We now solve the stochastic optimal
control problem formulated in Section 2 under the following assumption.

Assumption A3. The functions b and σ are given by b�x� = bx and σ�x� =√
2σx for some constants b and σ . The function h̄ satisfies Assumption A2 and

the function h defined by (2) is nondecreasing and satisfies limx→∞ h�x� = ∞.
Also, KI +KO > 0.

Note that, since the function h is the best rate of payoff that the investment
can yield in its open mode, the additional assumptions on h are very reason-
able as far as the modelling of the application that we consider is concerned.
To solve the problem, we are going to construct a solution of the HJB equa-

tion (5) which satisfies the requirements of the verification theorem in the
previous section. In the case that we consider here, the HJB equation takes
the form of the pair of coupled quasivariational inequalities

max
{
σ2x2w′′

I�x�+bxw′
I�x�−rwI�x�+h�x��wO�x�−KO−wI�x�

} = 0�(16)

max
{
σ2x2w′′

O�x� + bxw′
O�x� − rwO�x� −C�wI�x� −KI −wO�x�

} = 0�(17)

To simplify the notation, we write wI and wO in place of w�1� ·� and w�0� ·�,
respectively, throughout this section.
Now, every solution of the homogeneous ordinary differential equation

(ODE)

σ2x2w′′�x� + bxw′�x� − rw�x� = 0(18)

which is associated with (16)–(17) is given by

w�x� = Axm +Bxn
for some constants A�B ∈ �, where the constants m < 0 < n are defined by

m�n = 1
2σ2

[
σ2 − b±

√
�b− σ2�2 + 4σ2r

]
�

Also, a special solution of the ODE

σ2x2w′′�x� + bxw′�x� − rw�x� + h�x� = 0(19)

is the nondecreasing function given by

wp�x� =
1

σ2�n−m�
[
xm

∫ x
0
s−m−1h�s�ds+ xn

∫ ∞

x
s−n−1h�s�ds

]
�(20)

In particular, a special solution of the ODE

σ2x2w′′�x� + bxw′�x� − rw�x� −C = 0(21)

is equal to the constant −C/r. For future reference, also note that wp admits
the probabilistic characterisation

wp�x� = E
∫ ∞

0
e−rsh�Xs�ds(22)
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and satisfies

lim
x→∞wp�x� = ∞�(23)

lim
t→∞

e−rtE�wp�Xt�� = 0(24)

and

E
∫ t
0
e−2rsX2

s �w′
p�Xs��2ds = a�t�(25)

for some increasing function a. Note that (25) follows immediately from
Lemma 3.4 and Proposition 4.1.c in [11]. All of the other assertions, as well
as a number of related results, are proved in [11], Section 4.)
Back to the control problem, we can make the following observations. In

view of (22), if the investment is open at time 0, then producing according to
the optimal production rate u◦X (see Theorem 1) and never switching it to its
closed operating mode yields a payoff equal to wp�x�. On the other hand, if the
investment is closed at time 0, then never switching it to its open operating
mode incurs a total cost equal to −C/r. Now, since wp is nondecreasing and
satisfies (23), we can expect the following to be true. First, it is always part of
the optimal scenario to switch the investment from its closed to its open mode
if the commodity price is sufficiently high. Second, if switching the investment
from its open to its closed mode is ever part of the optimal strategy, then this
should occur only if the commodity price is sufficiently low.
Bearing in mind these observations, we can distinguish several possibilities.

The first arises if the investment is very profitable operating in open mode, and
it is not worth keeping it in its closed mode for any length of time, that is, if
wp�x� is large relative to the costs C�KI for every x > 0. In such a situation,
the optimal strategy takes the following form. If the investment is closed at
time 0, it is optimal to switch it to its open operating mode immediately. Once
in its open operating mode, it is optimal to produce according to the rate u◦X
and never switch the investment to closed mode. This strategy can be depicted
as in Figure 1a. In view of (22), if this strategy is indeed optimal, the functions
defined by wI�x� = wp�x� and wO�x� = wp�x�−KI for all x > 0 should satisfy
the HJB equations (16)–(17) (see Figure 1b).
The next lemma proves a necessary and sufficient condition under which

these functions constitute a solution of (16)–(17).

Lemma 2. The functions wI�wO ∈W2�∞
loc �	0�∞�� defined by

wI�x� = wp�x�� wO�x� = wp�x� −KI
satisfy the HJB equations (16)–(17) if and only if h�x� ≥ −C + rKI for all
x > 0.
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Fig. 1.

We collect in the Appendix the proofs of those results which are not devel-
oped in the text.
A second possibility arises if it is never optimal to switch the investment

from its open to its closed mode, but it may be optimal to wait for the commod-
ity price to rise before switching it from its closed to its open mode. In such a
case, the optimal strategy is composed by the following actions. If the invest-
ment is originally closed, then it is optimal to wait if the commodity price is
below a certain level, say z, and switch the investment to its open operating
mode as soon as the commodity price exceeds z. Once in open operating mode,
it is optimal to produce according to the rate u◦X and never switch the invest-
ment to its closed mode. This strategy can be depicted as in Figure 2a. If this
strategy is indeed optimal, we should find a solution of the HJB equations
(16)–(17) such that wI�x� = wp�x� for all x > 0, wO�x� = wp�x�−KI for x ≥ z
and wO satisfies the ODE (21) for x < z, that is,

wO�x� = �xm +Bxn −C/r for x < z�(26)



250 K. DUCKWORTH AND M. ZERVOS

Fig. 2.

for some constants ��B ∈ �. Now, we must have � = 0, because otherwise
(10) cannot be satisfied. To see this, suppose that � �= 0 and observe that we
can write

wO�x� = �xm +wp�x�1�z<x� + η�x��
where η is a bounded function. In view of (24) and the fact that

e−rtEXkt = xk exp
(�σ2k2 + �b− σ2�k− r	t) = xk for k =m�n�(27)

we can see that

e−rtE
∣∣wO�Xt�∣∣ ≥ e−rt∣∣�∣∣EXmt − e−rtE∣∣wp�Xt�∣∣− e−rtE∣∣η�Xt�∣∣ −→ xm > 0�

As a consequence, if Q is defined by Qt = q1�t=0� for all t ≥ 0, then

lim inf
t→∞

e−rtE
∣∣w�Qt�Xt�∣∣ = lim inf

t→∞
e−rtE

∣∣wO�Xt�∣∣ > 0

and (10) fails. We conclude that the conjectured solution takes the form shown
in Figure 2b. Furthermore, to specify the parameters B, z, we require that wO
is C1 at the free boundary point z.
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The following lemma is concerned with the construction of the function wO
and with a necessary and sufficient condition under which the functions just
described provide a solution of the HJB equations (16)–(17).

Lemma 3. The equation

f1�z� �=
∫ z
0
s−m−1�h�s� +C− rKI	ds = 0(28)

has a unique solution z > 0 if and only if inf x>0 h�x� < −C+rKI. In this case,
the functions wI�wO ∈W2�∞

loc �	0�∞�� defined by

wI�x� = wp�x�� wO�x� =
{
Bxn −C/r� if x ≤ z�
wp�x� −KI� if x ≥ z�(29)

where B is given by (39) or (40) in the Appendix, satisfy the HJB equations
(16)–(17) if and only if inf x>0 h�x� ≥ −C− rKO.

A final possibility arises if switching the investment from either of its two
operating modes to the other one is part of the optimal scenario. In this case,
the optimal strategy takes the following form. If the investment is originally in
its closed operating mode, then it is optimal to wait as long as the commodity
price is below a certain level, say z, and it is optimal to switch it to its open
operating mode as soon as the commodity price rises above z. On the other
hand, if the investment is originally in its open operating mode, then it is
optimal to produce according to the rate u ◦X as long as the commodity price
is above a certain level, say y, and switch it to its closed mode as soon as
the commodity price falls below y. Clearly, this strategy is well defined as
long as y < z. It can be depicted by Figure 3a. If this strategy is indeed
optimal, we should find a solution of the HJB equations (16)–(17) such that
wI�x� = wO�x� −KO for x ≤ y, wI satisfies the ODE (19) for x > y, that is,
wI�x� = Axm+/xn+wp�x� for x > y, for some constants A�/ ∈ �, wO solves
the ODE (21) for x < z, that is, wO�x� = �xm +Bxn −C/r for x < z, for some
constants ��B ∈ � and wO�x� = wI�x� −KI for x ≥ z. In view of (27), we can
develop a line of argument similar to the one that led to the choice � = 0 in
(26) to conclude that we must have / = � = 0 for (10) to hold. Therefore, the
solution takes the form shown in Figure 3b. The parameters A, B, y, and z
can be specified by the requirement that the functions wI, wO are C1 at the
free boundary points y, z, respectively.
In the following lemma, we construct the previously described functions

wI, wO and we prove a necessary and sufficient condition under which they
satisfy (16)–(17).

Lemma 4. The system of equations

f�y� z� �=m
∫ z
y
s−m−1h�s�ds+ y−m[C+ rKO

]− z−m[C− rKI
] = 0�(30)

g�y� z� �= n
∫ z
y
s−n−1h�s�ds+ y−n[C+ rKO

]− z−n[C− rKI
] = 0(31)
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Fig. 3.

has a unique solution �y� z� such that 0 < y < z if and only if inf x>0 h�x� <
−C− rKO. In this case, the functions wI�wO ∈W2�∞

loc �	0�∞�� defined by

wI�x�=
{
Bxn −C/r−KO� if x ≤ y,
Axm +wp�x�� if x ≥ y,

wO�x�=
{
Bxn −C/r� if x ≤ z,
Axm +wp�x� −KI� if x ≥ z,

(32)

where A and B are given in (46)–(47) and (48)–(49), respectively, in the
Appendix, solve the HJB equations (16)–(17).

We can now prove the main result of the paper.

Theorem 5. Consider the stochastic optimal control problem defined in
Section 2, and suppose that Assumption A3 holds. The value function v is
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given by v�1� ·� = wI and v�0� ·� = wO, where:
(i) If −C+ rKI ≤ h�x� for all x > 0, then wI, wO are given by Lemma 2.

In this case, the optimal strategy is

Q∗
t = q1�t=0� + 1�t>0�� U∗

t = u�Xt�� t ≥ 0�(33)

(ii) If −C − rKO ≤ inf x∈	0�∞� h�x� < −C + rKI, then wI, wO are given by
Lemma 3. In this case, the optimal strategy is

Q∗
t = q1�t≤τz� + 1�τz<t�� U∗

t = u�Xt�� t ≥ 0�(34)

where z is the unique solution of (28) and

τz = inf�t ≥ 0 � Xt ≥ z��
(iii) If inf x∈	0�∞� h�x� < −C−rKO, then wI, wO are given by Lemma 4. The

optimal production rate is again given by U∗
t = u�Xt�, whereas the optimal

switching process Q∗ can be constructed as in the following proof.

Proof. Consider any of the three cases. Each of the functions v�q� ·�, q =
0�1, belongs toW2� ∞

loc �	0� ∞�� and the candidate value function v satisfies the
HJB equation (5). Also, we can write

�v�q� x�� ≤ �wp�x�� +L1 ∀�q� x� ∈ �0�1�×	0�∞�
for some constant L1, which implies (10), by virtue of (24). Similarly, we can
write

�vx�q� x�� ≤ �w′
p�x�� +L2x

n−1 +L3 ∀�q� x� ∈ �0�1�×	0�∞�
for some constants L2, L3, which, combined with (25), implies that the process
MQ defined as in (11) is a square integrable martingale if stopped at any
constant time, for all Q ∈ � . These observations prove that v satisfies the
assumptions of Theorem 1.
Now, in cases (i) and (ii), the processes Q∗ defined by (33) and (34), respec-

tively, clearly satisfy (12)–(14). In case (iii), if q = 1, then we can see that the
process Q∗ ∈ � defined by

Q∗
t = 1�t=0� +

∞∑
j=0

1�τ2j<t≤τ2j+1��

where τ0 = 0 and the stopping times τn, n ∈ �∗, are defined recursively by

τ2n+1 = inf�t ≥ τ2n �Xt ≤ y�� n = 0�1�2� � � � �

τ2n = inf�t ≥ τ2n−1 �Xt ≥ z�� n = 1�2� � � � �

satisfies (12)–(14). If q = 0, a process Q∗ ∈ � can be constructed in a similar
way and the proof is complete. ✷
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Remark 1. It is of interest to examine the form that our solution takes in
the special case considered by Dixit [7] and Shirakawa [17], whose analysis
resulted in only case (b) that follows. Let us assume that h̄�u�x� = x −K
for some constant K > 0, C = 0, and KI�KO > 0. In this case, (3) can
hold only if r > b. Indeed, if this is not true, then we can readily see that
the strategy which consists of switching the investment to its open operating
mode forever has infinite payoff and the problem’s solution is trivial. Under
these assumptions, we can have one of the following two cases:
(a) If K < rKO, then we are in case (ii) of Theorem 5. The value function

is given by

v�1� x� = x

r− b − K
r
� v�0� x� =

{
Bxn� if x ≤ z,
x

r− b − K
r

−KI� if x ≥ z,

where

z = �K+ rKI�
m− 1
m

> 0 and B = z−n
(
z

r− b − K
r

−KI
)
�

(b) If rKO < K, then case (iii) of Theorem 5 holds. The value function is
given by

v�1� x� =
{
Bxn −KO� if x ≤ y,
Axm + x

r− b − K
r
� if x ≥ y,

v�0� x� =
{
Bxn� if x ≥ z,
Axm + x

r− b − K
r

−KI� if x ≥ z,

where 0 < y < z are the unique solutions of

n

n− 1
y−n+1 − n

n− 1
z−n+1 + �rKO −K�y−n + �rKI +K�z−n = 0�(35)

m

m− 1
y−m+1 − m

m− 1
z−m+1 + �rKO −K�y−m + �rKI +K�z−m = 0�(36)

and A�B are given by appropriate expressions resulting from (46)–(49).

APPENDIX

Proofs of selected results.

Proof of Lemma 2. We have to show that

wO�x� −KO −wI�x� ≤ 0�(37)

σ2x2w′′
O�x� + bxw′

O�x� − rwO�x� −C ≤ 0�(38)
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Now, (37) is equivalent to −KI −KO ≤ 0, which is true. Since wp satisfies
the ODE (19), (38) holds if and only if h�x� ≥ −C+ rKI for all x > 0 and the
proof is complete. ✷

Proof of Lemma 3. The requirement that wO is C1 at z gives rise to the
system of equations

Bzn = wp�z� −KI +
C

r
(39)

= 1
n
zw′

p�z��(40)

Equating the right-hand sides and using the definition (20) of wp as well as
the fact that σ2mn = −r, we obtain (28) by simple calculations.
Clearly, (28) can have a solution z > 0 only if inf x>0 h�x�+C−rKI < 0. So,

suppose that this condition is true and let α �= inf�x � h�x�+C−rKI > 0� > 0
(recall that h is nondecreasing). Clearly, f1�z� < 0 for all z ≤ α. Now, given a
constant M > 0, our assumptions imply that there exists a β > 0 such that
h�x� +C− rKI ≥M for all x ≥ β. As a consequence,

lim
z→∞f1�z� ≥ lim

z→∞

[
f1�β� +

M

m
β−m − M

m
z−m

]
= ∞�

because m < 0. Moreover, since f′1�z� = z−m−1�h�z� + C − rKI	, f1 is nonin-
creasing in 	0� α	 and strictly increasing in 	α�∞�. However, these observations
imply that the equation f1�z� = 0 has a unique solution z > 0. For future ref-
erence, note that this solution satisfies

h�z� +C− rKI > 0�(41)

To show that the functions wI, wO defined by (29) satisfy the HJB equa-
tions (16)–(17), we have to prove that

wO�x� −KO −wI�x� ≤ 0 for x > 0�(42)

σ2x2w′′
O�x� + bxw′

O�x� − rwO�x� −C ≤ 0 for x > z�(43)

wI�x� −KI −wO�x� ≤ 0 for x ≤ z�(44)

For x ≥ z, (42) is equivalent to −KI−KO ≤ 0, which is true. With reference
to (40), we can see that for x ≤ z, (42) is equivalent to

g1�x� �=
1
n
z−n+1w′

p�z�xn −
C

r
−KO −wp�x� ≤ 0�(45)

Using the integration by parts formula (see [11], Remark 4.6)

m
∫ x
0
s−m−1h�s�ds+ x−mh�x� =

∫ x
0
s−mdh�s�
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and the definition (20) of wp, we can see that

d

dx

(
x−n+1w′

p�x�
) = − 1

σ2
xm−n−1

∫ x
0
s−mdh�s� ≤ 0�

which implies that the function x → x−n+1w′
p�x� is nonincreasing. As a

consequence,

g′
1�x� = xn−1

[
z−n+1w′

p�z� − x−n+1w′
p�x�

] ≤ 0 for x ≤ z�
Now, since g1�z� = −KI−KO and g1 is nonincreasing in 	0� z	, (45) will follow
if and only if limx↓0 g1�x� ≤ 0. However, this is true if and only if inf x>0 h�x� ≥
−C − rKO because wp is nonincreasing, and inf x>0wp�x� ≥ −C/r −KO is
equivalent to inf x>0 h�x� ≥ −C−rKO (see Knudsen, Meister and Zervos [11],
Lemma 5.1).
Since g1�z� = −KI −KO and g1 is nonincreasing in 	0� z	, it follows that

−KI −KO ≤ g1�x� for x ≤ z. However, this implies trivially (44).
Finally, following arguments similar to the ones used in the

proof of Lemma 2, we can see that (43) is equivalent to h�x� ≥ −C + rKI
for x > z. However, this is true because of (41) and the assumption that h is
nondecreasing. ✷

Proof of Lemma 4. For wI and wO to be C1 at y and z, respectively, we
require

Byn −Aym = wp�y� +
C

r
+KO�

nByn −mAym = yw′
p�y��

Bzn −Azm = wp�z� +
C

r
−KI�

nBzn −mAzm = zw′
p�z��

This system is equivalent to

A = − n

n−my
−m

[
wp�y� −

y

n
w′
p�y� +

C

r
+KO

]
(46)

= − n

n−mz
−m

[
wp�z� −

z

n
w′
p�z� +

C

r
−KI

]
�(47)

B = − m

n−my
−n

[
wp�y� −

y

m
w′
p�y� +

C

r
+KO

]
(48)

= − m

n−mz
−n

[
wp�z� −

z

m
w′
p�z� +

C

r
−KI

]
�(49)

Equating the right-hand sides of (46) and (47), and using the definition (20)
of wp and the identity σ2mn = −r, it is a matter of calculations to verify that
the points y and z must satisfy (30). Similarly, (48) and (49) imply (31).
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To study the solvability of the system (30)–(31), we first prove that (30)
defines uniquely a mapping l� 	0�∞� 	0�∞� such that

f�y� l�y�� = 0 and l�y� > y�(50)

To this end, fix any y > 0 and consider the function f̂� �y�∞�→ � defined by

f̂�z� �= f�y� z� =m
∫ z
y
s−m−1[h�s� +C− rKI

]
ds+ r(KI +KO)y−m�

Since h is nondecreasing and limx→∞ h�x� = ∞, there exist constants β > y,
M> 0 such that h�x� +C− rKI > M for all x ≥ β. Therefore,

lim
z→∞ f̂�z� ≤ lim

z→∞

[
f̂�β� +Mβ−m −Mz−m

]
= −∞�

becausem < 0. Also, f̂�y� = r�KI+KO�y−m > 0. Now, f̂′�z� =mz−m−1�h�z�+
C−rKI	, so if α �= inf�x� h�x�+C−rKI > 0� > 0, then f̂ is nondecreasing in
the interval �y�α	 if y < α and f̂ is strictly decreasing in the interval 	y∨α�∞�.
From these observations, we can conclude that the equation f̂�z� = 0 has a
unique solution z = l�y� which satisfies (50) as well as

h�z� +C− rKI
∣∣∣∣
z=l�y�

> 0�(51)

Furthermore, by implicit differentiation of f�y� l�y�� = 0, we obtain

l′�y� = y−m−1�h�y� +C+ rKO	
l−m−1�y��h�l�y�� +C− rKI	

�(52)

Now, to prove that the system of equations (30)–(31) has a unique solu-
tion �y� z� such that 0 < y < z, we have to show that the equation ĝ�y� �=
g�y� l�y�� = 0 has a unique solution y > 0. Since

ĝ�y� = n
∫ l�y�
y

s−n−1�h�s� +C− rKI	ds+ r�KI +KO�y−n�

h is nondecreasing and limy→∞ h�y� = ∞, we can see that

∃L > 0 � ĝ�y� > 0 ∀y ≥ L�(53)

Also, using (52), we can calculate

ĝ′�y� = gy�y� l�y�� + gz�y� l�y��l′�y�
= ny−m−1�h�y� +C+ rKO	�lm−n�y� − ym−n	�

In view of (50) and the fact that m < n, lm−n�y� − ym−n < 0. Therefore, if
inf x>0 h�x� ≥ −C− rKO, then ĝ is nonincreasing, which, combined with (53),
implies that ĝ�y� = 0 cannot have a solution y > 0. So, assume inf x>0 h�x� <
−C− rKO and let γ �= sup�x� h�x� +C+ rKO < 0� > 0. Then

ĝ is strictly increasing in 	0� γ� and nonincreasing in �γ�∞��(54)
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Moreover, there exist constants δ� ε > 0 such that h�x� + C + rKO ≤ −ε for
all x ≤ δ. For these parameters, we can calculate

lim
y↓0

∫ ∞

y
s−n−1�h�s� +C+ rKO	ds

≤ lim
y↓0

[
− ε
n
y−n + ε

n
δ−n +

∫ ∞

δ
s−n−1�h�s� +C+ rKO	ds

]
= −∞�

Combining this with the fact that

ĝ�y� = n
∫ ∞

y
s−n−1�h�s� +C+ rKO	ds− n

∫ ∞

l�y�
s−n−1�h�s� +C− rKI	ds

and with (51), we can see that limy↓0 ĝ�y� < 0. However, this, (53) and (54)
imply that the equation ĝ�y� = 0 has a unique solution. Also, observe that
this solution satisfies

h�y� +C+ rKO < 0�(55)

It remains to show that wI, wO solve the HJB equations (16) and (17),
which amounts to proving that

σ2x2w′′
I�x� + bxw′

I�x� − rwI�x� + h�x� ≤ 0 for x < y�(56)

wO�x� −KO −wI�x� ≤ 0 for x ≥ y�(57)

σ2x2w′′
O�x� + bxw′

O�x� − rwO�x� −C ≤ 0 for x > z�(58)

wI�x� −KI −wO�x� ≤ 0 for x ≤ z�(59)

Since x→ xn, x→ xm and wp solve the ODEs (18) and (19), respectively,
(56) and (58) are equivalent to h�x� ≤ −C − rKO for all x < y and h�x� ≥
−C + rKI for all x > z, respectively, which are true in view of (55) and (51),
respectively, and the monotonicity of h.
For x ≥ z, (57) is equivalent to −KI −KO ≤ 0, which is true. Similarly, for

x ≤ y, (59) is again equivalent to −KI −KO ≤ 0.
For y ≤ x ≤ z, we can use (46), (48) and the definition (20) of wp to show

that

g2�x� �=wO�x� −KO −wI�x�

= xn

σ2�n−m�
∫ x
y
s−n−1�h�s� +C+ rKO	ds

− xm

σ2�n−m�
∫ x
y
s−m−1�h�s� +C+ rKO	ds�

(60)

Making similar calculations with (47) and (49), we can also show that

g2�x�=
xm

σ2�n−m�
∫ z
x
s−m−1�h�s� +C− rKI	ds−KI −KO

− xn

σ2�n−m�
∫ z
x
s−n−1�h�s� +C− rKI	ds�

(61)
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From (60), it follows that g2�y� = g′
2�y� = 0, whereas from (61), it follows that

g2�z� = −KI −KO and g′
2�z� = 0. Moreover, taking into account that

g′
2�x� =

nxn−1

σ2�n−m�
∫ x
y
s−n−1�h�s� +C+ rKO	ds

− mxm−1

σ2�n−m�
∫ x
y
s−m−1�h�s� +C+ rKO	ds�

m < 0 < n, h is upper semicontinuous and nondecreasing, and y, z = l�y�
satisfy (55) and (51), respectively, we can see that g′

2�x� is nonincreasing as x
increases from y to a point µ satisfying

sup
x<µ
h�x� +C+ rKO ≤ 0 ≤ h�µ� +C+ rKO

and is nondecreasing as x increases from µ to z. Combining this with the fact
that g′

2�y� = g′
2�z� = 0, we can conclude that g′

2�x� ≤ 0, for all x ∈ �y� z	.
These observations imply

−KI −KO ≤ g2�x� ≤ 0 for y ≤ x ≤ z�
However, the second inequality implies (57) for y ≤ x ≤ z, whereas the first
inequality implies (59) for y ≤ x ≤ z. ✷
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[18] Trigeorgis, L. (1993). Real options and interactions with financial flexibility. Financial
Management 22 202–224.

[19] Trigeorgis, L. (1996). Real Options: Managerial Flexibility and Strategy in Resource Allo-
cation. MIT Press.

Department of Mathematics
King’s College London
The Strand
London WC2R 2LS
United Kingdom
E-mail: Mihail.Zervos@kcl.ac.uk


