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Abstract

A model is developed herein for predicting the mechanical response of inelastic crystalline solids.

Particular emphasis is given to the development of microstructural damage along grain boundaries,

and the interaction of this damage with intragranular inelasticity caused by dklocation dissipation

mechanisms. The model is developed within the concepts of continuum mechanics, with special

emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone

model based on fracture mechanics. In addition, the crystalline grains are assumed to be

characterized by nonlinear viscoplastic mechanical material behavior in order to account for

dislocation generation and migation. Due to the nonlinearities introduced by the crack growth and

viscoplastic constitution, a numerical algorithm is utilized to solve representative problems.

Implementation of the model to a finite element computational algorithm is therefore briefly

described. Finally, sample calculations are presented for a

particular focus on effects of scale on the predicted response.

polycrystalline titanium alloy with
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1. Introduction

Polycrystalline solids such as metals experience a variety of thermodynamically dissipative

processes during inelastic deformation. These dissipative processes may include several types of

dislocation reamangement mechanisms within grains (Ashby, 1983), as well as fracture and/or

“

sliding along grain boundaries. When these processes occur at temperatures that are generally in

excess of about three-tenths of the melting point of the solid, they are inherently rate dependent. Due

to the complexity of these events, and the fact that they occur in multiple grains simultaneously,

analytic models of these phenomena have not been completely developed at this time.

One part of this problem that is quite difficult deals with the dissipative processes that occur

along,grain boundaries. Due to the migration of dislocations to grain boundaries, vacancies can open

up, thereby assisting sliding and fracture between grains. In some environmental circumstances, this

process can produce the majority of eneregy dissipation during loading. Thus, models that can

physically account for this mechanism are needed.

In the current paper, the authors wili discuss the deployment of a rate-dependent cohesive

zone model to account for the process of grain boundary fracture and/or sliding. Inelasticity within

the grains will be accounted for by employing a unified viscoplasticity model. The resulting

boundary value problem will be formulated within the framework of continuum mechanics. In order

to solve the resulting highly nonlinear set of integral-partial differential equations, the finite element

method wiH be employed.
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1.1 Rece!lt sesearclr

Considerable research has focused on developing models for predicting the behavior of inelastic
.

materials that undergo evolving damage. For purposes of the present paper, these efforts are

distinguished herein as either continuu& damage models, or discrete fracture models. In the

continuum damage class of models, an internal variable is formulated within the macroscopic

constitutive model for the multi-grtiular material that accounts for the locally averaged dissipation

due to microfracture (Voyiadjis and Kattan, 1993). In the discrete fracture class of modek, a

micromechanical analysis of a multi-granular material is petiormed, with each microcrack modeled

explicitly as an evolving internal boundary in a representative volume element (RVE) of the

material. The former of these approaches has been studied in much greater detail, and due to the

rather large quantity of research by this approach, no attempt will be made herein to review the

works that utilize continuum damage mechanics approaches. In the current paper, the latter approach

will be considered. We detail below some recent research related to this approach,

Experimental evidence indicates that numerous polycrystalline solids undergo significant

grain boundary cracking, such as metals (Hertzberg, 1976; Suresh, 1991; Majumdar and Newaz,

1991), argillaceous salt (Chan et al., 1997~ Chan et al., 1997b), and sea ice (Schapery, 1997). In the

current paper we have chosen to model the multi-granular behaviorofTimetal-21 S, a beta titanium

alloy with microstructure as shown in Figure 1. Introduced in 1989, Timetal-21 S was developed as

a strip producible, oxidation resistant beta titanifi alloy (Larsen et al., 1993). Timetal-21 S is cold

formable, age hardenable, and weldable. In addition to being used as a matrix material in metal

matrix composites,, Timetal-21 S has also found limited applications in neat form. Because of many

promising qualities, Timetal-21S has become the subject of much research (Foulk et al., 1998).

Numerous models have been proposed to predict the undamaged inelastic material behavior
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of Timetal-21 S. At elevated temperatures, titanium is highly rate dependent. In fact, some

viscoplasti’c theories were developed specifically for titanium-based matrices (Arnold et al., 1996).

.

However, because the Bodner-Partom (B-P) model was used herein, the discussion has been limited

to the B-P viscoplastic constitutive model (Chan et al., 1988). Neu (1993) first determined the

material parameters for the B-P model in the temperature range of 23°C to 815°C. Although these

parameters were extremely accurate for monotonic simulations, cyclic fatigue yielded negative

hardening values. The initial parameters emphasized directional hardening and upon stress reversal

(compression), the directional hardening term, Z~, and consequently the total hardening term, Z,

became negative. Zuiker ~d Sanders (1995) proposed a new set of constants stressing the effects

of isotropic hardening. After further review of more test dat% Neu and Bodner (1995) presented a

revised set of constants which also emphasized the effects of isotropic hardening. In addition,

exponential evolution laws were proposed to govern the hardening rates and thermal recovery terms.

A revised set of constants was developed for two specific temperatures, 482°C and 650”C.

In order to model the progression of cracks in a multi-granular inelastic solid, certain

pragmatic assumptions must be made in order to construct a model that is both reasonably accurate

and computationally solvable. Although singuhi.rfinite elements can be employed to simulate crack

propagation in a general viscoplastic crystalline material, highly refined finite element meshes are

required to accurately predict even the growth of a single crack. In addition, the critical ener=~

release rate is generally not a material constant in inelastic solids. Furthermore, the geometric scale

of intergra.mdar zones is such that it is feasible to approximate them by planes of zero thickness in

the undeformed state.

Cohesive zone models, fust introduced by Dugdale (1960) and Barenblatt (1962), provide

a computationally efficient and thermodynamically consistent method for the transition fi-ominternal
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surfaces to traction-free bound~es (Yoon and Allen, 1998; Allen and Searcy, 1998). Additionally,

a cohesive zone formulation can account for a non-stationary critical energy release rate, and it does

not require monitoring of the critical energy release rate in order to predict crack extension. For the

above reasons, and due to the fact that numerous evolving microcracks are to be modeled

simultaneously, we have chosen to employ a cohesive zone model.

Recent cohesive zone models that have influenced the current research have been proposed

by Needleman (1987) andTvergaard(1990). Needleman provided a unified framework to describe

the evolution from initial debonding to complete separation in a cohesive zone using a cubic

traction-displacement relation that was intended to simulate the microphysics of molecular bond

stretching. Needleman has employed cohesive zones to model debonding of spherical (Needleman,

1987) and cylindrical (Nutt and Needleman, 1987) inclusions. Other works followed that studied

the behavior of ceramic inclusions in metal matrices (Christman et al., 1989; Llorca et al., 1991), as

well as modeling the decohesion of a viscoplastic block from a rigid substrate (Needleman, 1990a;

Needleman, 1990b).

Tvergaard (1990) developed a model similar to hTeedleman’s model. The fommlations were

identical for purely normal separation, but Tvergaard (1990) coupled normal and tangential

displacements to predict other modes of separation. Tvergaard (1990) modeled the decohesion of

transversely staggered SiC whiskers in an aluminum matrix and subsequent void formation by

normal and tangential separation. Tvergaard (1995) also investigated fiber fracture and decohesion

for a similar system with transversely aligned fibers. In addition to modeling metal matrix

composites, Tvergaard also employed similar methods to predict crack bridging in ceramics

(Tvergaard, 1992).

Several efforts have used Tvergaard’s model to predict crack growth. Allen et al. (1994)
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predicted interface cracking in continuous fiber metal matrix composites. Lissenden et al. (1996)

also used cohesive zone elements to predict interface cracking. Allen et al. (1996) modeled the
.

effect of surface cracking on fiber/matrix debonding.

The cohesive zone models proposed by both Needleman and Tvergaard are elasto-plastic in

the sense that they both account for dissipation in the cohesive zone that is both rate and history

independent (for the case of monotonic loading). Recently the second author and coworkers have

developed a cohesive zone model that can account for both history and rate dependent features of

crack growth (Allen and Searcy, 1998; Yoon and Allen, 1998). It is somewhat similar to models

previously developed by Schapery (1986) and Knauss and Losi (1993). This model will be utilized

in the cu~ent approach.

2. Model Development

This section details the development of a model for predicting grain boundary cracking in

polycrystalline viscoplastic solids. Towards this end, Figure 2 shows a representation of the

material of interest along with a ma=wified view

polycrystalline material. Both views are assumed

of the heterogeneous microstructure of the

to be sufficiently large that the concepts of

continuum mechanics are applicable. We consider herein an analysis of the heterogeneous

microscale. Using local continuum mechanics, we formulate the governing field equations in the

following sections.

2.1 Conservation Laws

Consider a general continuum, B, with initial boundary, ~l?l, and time dependent internal

boundaries, ~/?l(t), as depicted in Figure 3. The primary observable state variables to be modeled
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are the displacement, ui, the Cauchy stress tensor, al, and the infinitesimal strain tensor, so. The

consemation of mass is assumed to be trivially satisfied, assuming smail displacements. The

conservation of energy can be shown to be satisfied by the constitutive equations used herein,

together with the assumption of constant temperature throughout the analysis (Allen, 1991). The

conservation of anbg.darmomentum is satisfied by the assumption that there are no body moments

when the stress tensor is symmetric. Finally, the consenation of linear momentum is satisfied by

the following:

Ojj,j = o

where it has been assumed that body forces and inertial effects are negligible,

2.2 Kij~e]llatics

Assuming small displacement gradients, the strains are defined as follows:

.

1
z~= ‘(”i,j + ‘j,i)

2

(1)

The above description produces strains that are an energy conjugate to the stress tensor.

2.3 Viscoplastic Constitutive Model

The mechanical constitutive behavior of each of the grains is assumed to be accurately modeled by

a unified viscoplastic constitutive model of ordinary differential equation type. This formulation is

given by (Chan, et al., 1988):

(3)



where S~[ is the inelastic strain tensor, and ~QL[is the elastic modulus tensor. The inelastic strain

tensor and additional internal variables are assumed to be governed by internal variable &olution

laws of the form:

k:=~:(&k[, E:l, T,@ q=l,..., n; p=l,..., ?l (4)

where n is the number of internal state variables. Bodner’s unified viscoplasticity model (Chan et

al., 1988) was chosen to model the evolution of the inelastic strain. The evolution laws me ~

follows:

The evolution of plastic strain (flow law):

which is related to the deviatoric stress tenso~

and ~ through the kinetic equation:

1[IIZ2
n

P=D;
‘2

——
3J2

,

(5)

(6)

(7)
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with

Z=Z1+ZD

D;
i2=—

J2

(8)

(9)

(10)

(11)

Z is the summation of isotropic and directional hardening while DOrepresents the maximum shear

strain rate. Jz is a deviatoric stress invariant. The exponential behavior is governed by the kinetic

parameter, n.

Evolution equations for the remaining internal state variables are expressed in terms of

isotropic and directional hardening. The evolution law for isotropic hardening is:

zx=’+=lJ?p-Alz~(12)
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where the plastic work rate and the initial value of isotropic hardening are:

Wp=c$.s
iJg

.

(13)

z~(o) = z* (14)

The first term in Equation (12) involves the isotropic hardening rate term, ml, and the upper limit

of isotropic hardening, Z1. The second term contains tie isotropic fierrnal recovery rate term Al,

the lower limit of isotropic hardening, Zz, and the exponential tern dictating isotropic thermal

recovery, rl. Directional hardening is governed by:

. .

where Vij and ~j are the norms of Bijand ~ij, respectively, given by:

(15)

(16)

(17)
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Coupled with the following initial conditions:

z~(o)=o
“,. .,’: .: ..’

Bij(0)= O

.

(18)

(19)

the evolution law yields the expression for directional hardening:

zD=pguv (20)

The first term in Equation(15) involves the directional hardening rate term, mz, and the upper limit

of isotropic hardening, Z3. The second term contains the directional thermal recovery rate term Az,

and the exponential term governing directional thermal recovery, rz. In order to more accurately

capture the behavior of Timetal-21 S, Neu and Bodner (1995) wrote isotropic and directional

h~dening rate terms as exponential fimctions of the current hardening levels, ZI and Z~:

‘2=m2b ‘(m~-mJ+-m2czJ

(21)

(22)

where ml~ and m,, represent initial values while mlb and ~b represent asymptotic values. In

addition, the isotropic thermal recovery rate term was also rewritten as an exponential function:
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(23)

where A,. and AIbrepresent the initial and asymptotic values, respectively.

Implementation of Bodner’s model into the finite element algorithm is most easily accomplished

in the following alternate form:

69 = c..i
&l k-l (24)

where Cti~lis the tangent modulus tensor and kti is the total strain rate tensor. See Allen, et al. (1994)

for the derivation of the tangent modulus tensor.

2.4 Co/lesive Zone Constiturive Model

The second author and coworkers have recently developed a micoromechanically based cohesive

zone model that is based on the assumption that the intergranular material can be characterized

roughly as an assemblage of parallel fibrils bridging across grains, as shown in Figure 4. The

constitutive equations for this cohesive zone model are given by (Allen and Searcy, 1998; Yoon and

Allen, 1998):

[

t
u;(t)

J

(5??
q (t)= ~(1- a(t)) O{+ E’(t - r)~dr

i o 1 (25)
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where the index i specifies the coordinates normal and tangential to the crack tip plane; ~ are the

corresponding components of the cohesive zone traction; ~ are the corresponding components of

.

the displacements; o{ is the associated stress component at the crack tip upon the initiation of

darnage; a is a darnage evolution parameter describing successive fracture of the fibrils due to

elongation; Ec is the relaxation modulus of the cohesive zone; and A is the boundary imposed

longitudinal strain of fibrils in the cohesive zone such that:

(26)

where the subscripts n, t, ands denote local coordinates that are normal and parallel to the cohesive

zones. The empirical material len=@parameters, ~n, ~,, and ~, are additional material constants

for the cohesive zones. Specifically, 3., is arbitrary while 8, and ~t are determined empirically by

mixed-mode fracture experiments.

The following power law representation is used for the damage evolution:

where a ~ and m are material parameters. When a reaches the value of unity, the tractions go to

zero and the crack propagates.

The mechanics and thermodynamics of the fracture process as predicted by the cohesive zone



model are described in Yoon and Allen ( 1998). Briefly, it has been shown that the above cohesive

zone model is consistent with the concepts of fracture mechanics in that there exists an available and
.

critical energy release rate necessary,for crack extension. However, in the current model, the critical
. .

ener=~ release rate is a material property that is history and rate dependent.

2.5 Initial and Boundaiy Conditions

Both tractions and displacements are specified on the boundary of the body. Figure 5 illustrates the

displacement boundary conditions imposed on the RYE. Traction boundary conditions are imposed

along the cohesive zones in accordance with the equations (25) through (28).

3. Finite Element Implementation

The above equations have been implemented to the three-dimensional finite element code

SADISTIC (Structural Analysis of Damage Induced Stresses in ThermoInelastic Composites) (Allen

et al., 1994). The details of this implementation are discussed in (Foulk et al., 1996).

4. ModeI Results

Results are presented for several trial representative volume elements (TRVE’S) of Timetal-21 S

under monotonically increasing uniaxial displacements. The uniaxial displacement is prescribed

vertically on the free end, as shown in Fi=gure5. In order to simplifi the computations, only two

dimensional plane stress analyses have been carried out. Although this is clearly an approximation,

Rodin has shown in similar research using a repeating cell structure that the trends are comparable

for both two- and three-dimensional analyses (1995).

Simulations of grain boundary cracking have been performed for a variety of geometries.

The objective of these analyses on TRVE’S is to determine if a representative volume element exists



for this material. Herein we define a representative volume element (RVE) to be a solution for a

given size of geometry in which the boundary averaged traction versus displacement relation is not
.

significantly changed if the geometry is @creased in size. Below this size, the homogenized results

cannot be considered to be a representation of the macroscopic constitutive behavior of the material.

Interestingly, when no damage is present, the size of thk RVE is essentially inftitesirnal for the

material considered because without grain boundary material, the medium is spatially homogeneous.

The inclusion of cohesive zones along the grain boundaries renders the material not only

heterogeneous, but also, at least potentially, anisotropic due to the orientation of the crack geometry.

All of this leads to the possibility that there may indeed not be a representative volume element, or

equivalently, that the material considered herein may exkbit a significant size effect when viewed

on any scale. The ramifications of this result would be that traditional local constitutive theory

would at the very least have to be discarded in favor of a nonlocal continuum description. Therefore,

this is an important issue to be considered.

In order to address the above issues, solutions have been obtained for several geometries

The solution may in fact be sensitive to any or all of the following: 1) the number of grains for fixed

specimen size(grain size dependence); 2) the fineness of the finite element mesh (mesh refinement);

3) the size of the representative volume element with fixed grain size (scale effect); and 4) the

geometry of the grains obtained from the Voronoi tessellation model (orientation effect). Each of

these effects has been studied in some detail herein. Results have been obtained for the following

geometries: 5 grain model (two geometries); IOgrain model (five geometries); 30 grain model (three

geometries, one with two mesh refinements); and 100 grain model (one geometry). A Voronoi

tessellation approach has been used to randomly establish grain boundaries. As it is well understood

that the grain structure in granular materials can be represented by Voronoi tessellation, the details



of the technique have not been included here. The interested reader is directed to other previous

studies for more details (Van der Burg and Van der Giessen, 1994). The various geometries and

.

meshes used in this study are shown in Figures 6 and Figure 7. Statistical Mormation about each

geometry and mesh has been collected into tabular form as shown in Table 1 and Table 2,

respectively.

All results herein have been obtained using the material properties shown in Table 3. Note

that in order to perform these sensitivity studies the constitutive behavior in the grains has been

initially assumed to be linear elastic. Although not shown, model cases have been solved for each

grain geometry wherein no damage is allowed. As expected, the stresses and strains resulting ilom

these analyses are spatially homogeneous, thus lending credence to the correctness of the geometries

tested.

#.1 Effect of Grain Size

The effect of grain size has been simulated by 5, 10,30, and 100 grain models. Each model has

varying geometry and assumes the same TRVE size of 20pm x 40ym with a different number of

grains thus yielding a different average grain size in each model. In the first level of analysis, one

5 grain, one 10 grain, one 30 grain, and one 100 grain model were considered. Both the length and

the geometry of grain bounda~ cracks were observed to vary significantly in each of the models as

is evidenced by the representations of crack growth for the 5 grain and 100 grain models as shown

in Figures 8 and 9, respectively. A comparison of all four models resulted in predictions of force

vs. prescribed displacement behavior as shown in Fi=g.xre10. From this fi=g-ure,one could possibly

conclude that the behavior is appearing to converge as the number of grains considered approaches

100. To confirm this conclusion, other geometries of 5 grain, 10 grain, and 30 grain models were

considered as shown in Figure 11. From these simulations, one could possibly conclude that the



behavior is converging with only 30 grains. This conclusion conflicts with the conclusion drawn

from Figure 10. Consequently, we were unable to dete~inethe effect of an average grain size from
.

the limited cases considered., .,. . ..

4.2 Effect of Finite Element Mesli ReJnement

In the geometries considered above, only coarse meshes have been used. As a finer mesh could

impact convergence, two levels of mesh refinement were considered for one of the 30 grain

geometries considered above. Each level of refinement approximately doubled the number of

elements used. The finest mesh also incorporated multiple cohesive zone elements along the grain

boundaries allowing for better ability to capture stress concentration behavior. The comparison of

the predicted force vs. prescribed displacement for the three different meshes is shown in Fi=me 12.

A1though each of the finer meshes more smoothly captured the damage accumulation, there was no

marked difference in overall response thus leading to the conclusion that mesh refinement alone may

not have a si=~ificant effect on convergence.

4.3 Scale Effect

As all of the TRVE’S considered above were the same size, two different size TRVE’S were

extracted from the 100 grain geometry to allow for study of scale effect on convergence. The frost

TRVE extiacted contained a 10 grain 5pm x 10pm portion from the lower left comer of the 100

grain geometry. The second TRVE extracted was larger containing a 30 grain 10pm x 20pm portion

which included all of the 5pm x 10#m TRVE. The response of these two simulations are compared

to the original 10pm x 20pm 100 grain model in Figure 13. Although the predicted responses did

exlibit a noticeable trend in strength, larger TRVE’s must be considered to identi~ convergence.

4.4 Orientation Eflect

To simulate the effect of orientation of grains unpredicted response, the grain size was kept constant
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while various geometries were considered. The response of four different geometries of a 10Pm x

20pm TRVE each with 10 grains is shown in Figure 14. The responses show a great deal of
.

variation leading to the conclusion that orientation has a significant effect on thepredicted response

of the TRVE.

5. Concision

A model to predict grain boundary cracking has been presented and applied to a general

polycrystalline viscoplastic material, Tirnetal-21 S, a titanium alloy. This model has incorporated

both the effects of material inelasticity and damage. Material inelasticity has been predicted using

Bodner’s unified viscoplastic constitutive model. Damage has been included explicitly via cohesive

zone elements.

Previous studies have shown that both inelastic material behavior which is rate dependent

and d&nage effects must be incorporated into effective modeling of typical polycrystalline

materials such as titanium, argillaceous salts, or sea ice. The current modeling efforts focused on

determining a suitable representative volume element (if one exists) by considering the separate

effects of 1) grain size, 2) mesh refinement, 3) scale, and 4) orientation. To this end, several

aeome~ies were considered to isolate these individual parameters. Average ~wainsize alone was nota

found to lead towards convergent behavior. Using the one trial representative volume element

considered, mesh refinement by itself was found to have ordy a small effect on predicted response.

The scale parameter alone was found to affect predicted material response; however, for the three

TRVE’S considered, no trend towards convergent behavior was observed. Varying only orientation

was found to siatificantly affect material response, and further study is warranted to better describe

this effect. NO attempt in the current study, however, was made to filly vary the other three

parameters simultaneously; consequently, a definitive conclusion regarding convergence or lack of
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convergence to determine a RVE could not be drawn.
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Table 1

Geometries Considered, ~~ ~ i ~I
( I

# Geometry based on TRVE size #of grains Average 2-D Grain Size

1 Voronoi tessellation 20x40 5 160

2 Voronoi tessellation 20x40 5 160

3 I Voronoi tessellation I 20x40 I 10 I 80
I

4 Voronoi tessellation 20x40 10 80

5 Voronoi tessellation 20x40 10 80,

6 I Voronoi tessellation I 20x40 I 10 I 80 I
7 part of Geometry 11 5X1o I 10 8

8 Voronoi tessellation 20x40 I 30 26.67

9 Voronoi tessellation 2CIX40 1 30 26.67

10 part of Geometry 11 10X20 I 30 8

11 Voronoi tessellation 20x40 100 8



.

Table 2

Meshes Considered
# Geometry #of grains #of elements Average # elementslgrain

1 1 5 16 3.2

2 3 10 28 2.8

3 8 I 30 97 3.233

4 11 100 292 2.92

5 2 5 26 5.2

6 4 10 } 37 3.7

7 5 10 37 3.7

8 6 I 10 44 4.4

91 9 30 109 3.633

10 8 30 185 6.167

11 8 30 290 9.67

12 7 10 37 3.7

13 10 I 30 88 2.93



Table 3

[ Material Prowks for TimetaWIS at 482 C ].

Young’s Modulus 98100MPa

Poisson’s ratio 0.34
s

Elastic Yield Stress [ 90000MPa I
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