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[1] It is known that GPS time series contain a seasonal variation that is not due to tectonic
motions, and it has recently been shown that crustal seismic velocities may also vary
seasonally. In order to explain these changes, a number of hypotheses have been
given, among which thermoelastic and hydrology‐induced stresses and strains are
leading candidates. Unfortunately, though, since a general framework does not exist
for understanding such seasonal variations, it is currently not possible to quickly
evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize
a two‐dimensional thermoelastic strain model to provide an analytic solution for the
displacements and wave speed changes due to either thermoelastic stresses or hydrologic
loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic
model assumes a periodic surface temperature, and the hydrologic models similarly
assume a periodic near‐surface water load. Since all three models are two‐dimensional and
periodic, they are expected to only approximate any realistic scenario; but the models
nonetheless provide a quantitative framework for estimating the effects of thermoelastic and
hydrologic variations. Quantitative comparison between the models and observations is
further complicated by the large uncertainty in some of the relevant parameters. Despite this
uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to
explain a large fraction of the observed annual variation in a typical GPS displacement time
series or of the observed annual variations in seismic wave speeds in southern California.
Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the
annual variations in displacements and seismic wave speeds. Neither model is likely to
explain all of the seismic wave speed variations inferred from observations. However, more
definitive conclusions cannot be made until the model parameters are better constrained.

Citation: Tsai, V. C. (2011), A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and
hydrologic variations, J. Geophys. Res., 116, B04404, doi:10.1029/2010JB008156.

1. Introduction

[2] Due to the importance of thermoelastic stresses and
strains in engineered materials, the theory of thermoelasticity
has a long and well developed history [see, e.g., Love, 1944;
Timoshenko and Goodier, 1970]. Only in the past few de‐
cades, however, have thermoelastic effects been examined in
a geologic context. In particular, Berger [1975] developed the
theory to describe thermoelastic strains in a two‐dimensional
(2‐D) homogeneous elastic half‐space with a periodic surface
temperature variation, and used this theory to describe how
observed periodic strains within the Earth can be modeled
satisfactorily. Ben‐Zion and Leary [1986] expanded upon
Berger’s work to explicitly treat the same case but with an
unconsolidated, incompetent surface layer above the elastic
half‐space. They found reasonable agreement between observed

strains at a few sites in southern California and strains mod-
eled using observed temperature variations, with typical strains
being on the order of 10−7–10−6 and being delayed relative to
the temperature variation by 2 to 3 months.
[3] Hydrologic variability has also been studied for many

years [e.g., Todd, 1959], primarily due to the importance of
groundwater as a source of drinking water. However, the
loading on the Earth produced by these variations has not
been studied until more recently [e.g., Crowley et al., 2006;
Bettinelli et al., 2008]. Fortunately, the theory that governs
both the direct elastic loading and the poroelastic loading
due to hydrologic variability is well understood. In fact, the
theory of poroelasticity is known to have a one‐to‐one cor-
respondence with the theory of thermoelasticity [Biot, 1956;
Rice and Cleary, 1976].
[4] GPS time series are well known to be affected by a

potentially large number of factors, including tectonic
motions, tidal loading, and the hydrologic cycle [Dong et al.,
2002]. Prawirodirdjo et al. [2006] further suggested that
thermoelastic strains contribute significantly to the observed
seasonal periodicity in GPS displacements (which has typical
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annual variations on the order of a few millimeters).
Prawirodirdjo et al. [2006] found that the phase of the yearly
variations in GPS positions could be well matched using
the thermoelastic model of Ben‐Zion and Leary [1986] with
reasonable choices of parameters. However, in this study, the
amplitudes of these variations were not considered, even
though the displacements expected from thermoelastic strains
are easily calculated by integrating the strains. In section 2.4,
I provide expressions for these displacements and compare
the calculated amplitudes with those observed (section 3.1).
I find that estimates of the maximum realistic thermoelastic
displacements can account for a fraction of the observed GPS
signal at a typical site in southern California. Bettinelli et al.
[2008] have also shown that direct elastic loading from
water table variations can contribute to significant GPS dis-
placements, and in section 2.4 I also calculate displacements
corresponding with both this elastic effect and the poroelastic
effect. I find that the maximum realistic hydrology‐induced
displacements can also account for a significant fraction of the
observed GPS signal.
[5] Even more recently, by examining the coda of cross

correlations of ambient seismic noise, Meier et al. [2010]
have found a seasonal variation in observed seismic travel
times in southern California. While there remains some
possibility that these observations are due to seasonal var-
iations in the location of seismic noise sources [e.g., Zhan
and Clayton, 2010], the most straightforward interpretation
of the observations is in terms of seasonal changes in seis-
mic velocity structure on the order of dV/V ≈ 0.1%. Meier
et al. [2010] suggest that two possible reasons for these
temporal variations in seismic wave speed are hydrologic
and/or thermoelastic variations, but do not estimate whether

the expected variability can produce the observed results. In
section 2.5, I evaluate both of these hypotheses by calculating
the expected wave speed variations using the third‐order
elasticity theory of Murnaghan [1951]. After performing
order‐of‐magnitude estimates of certain parameters, I find
that the calculated wave speed variations are unlikely to
explain most of the observed variations (section 3.2), but that
uncertainties in the parameters precludes making a stronger
conclusion.
[6] Finally, before turning to the details, I would like to

stress that the model results presented here, like many purely
analytical results, can only be expected to approximate any
given realistic scenario. Not only will it be seen that some of
the model parameters are poorly constrained, but a number
of approximations are also used that are not expected to hold
perfectly. The usefulness of these analytical results are in
understanding how quantitative results depend on the various
key physical parameters, and in allowing researchers to
quickly evaluate the plausibility of certain models explaining
the observed phenomena. Since such plausibility studies have
not yet been done to the extent performed here, I believe it
to be useful for the community, as a step toward under-
standing the observations. I further believe that attempting
more accurate and/or more precise quantitative analysis is not
currently prudent, and should await further constraints.

2. Theoretical Results in Thermoelasticity
and Poroelasticity

2.1. Berger’s Thermoelastic Strain Solution

[7] Berger [1975] derived a solution to the uncoupled
quasistatic thermoelastic equations [e.g., Timoshenko and
Goodier, 1970; Boley and Weiner, 1997] for a 2‐D elastic
half‐space in plane strain subjected to a sinusoidal surface
temperature variation in both space and time. This 2‐D
approximation to a truly 3‐D situation is used throughout this
work; as in other periodic elasticity problems, 3‐D effects are
of second‐order importance especially when wavelengths
in one direction are considerably shorter than in the other
direction [Malvern, 1969], and I do not attempt to include
any of these dependencies. With x denoting horizontal posi-
tion, y denoting depth, and t denoting time, the surface tem-
perature boundary condition is given by

T x; y ¼ 0; tð Þ � Tavg ¼ T0 sin kxð Þ cos !tð Þ: ð1Þ

Tavg is a constant background average temperature, T0 is half
of the peak‐to‐peak amplitude of the periodic temperature
variation, k is the horizontal wave number, and w is fre-
quency (see Figure 1). Assuming the temperature variation
approaches zero at depth (T(x, y→ ∞, t) − Tavg = 0), Berger
finds expressions for the strains �xx, �yy and �xy. These
expressions contain “equivalent body force” terms that
decay with depth in proportion to the temperature variation
and “surface traction” terms that decay with depth propor-
tional to e−ky.
[8] For annual variations on the Earth (w ≈ 2 · 10−7 s−1)

with kilometer‐length scales and thermal diffusivity � ≈
10−6 m2/s [Berger, 1975], then �k2/w � 1, and Berger finds
that the expressions simplify significantly, especially for depths
not within the thermal boundary layer. Using these approx-

Figure 1. Schematic of the thermoelastic model. TS is the
surface temperature variation, yT is the thermal boundary
layer thickness, yb is the thickness of the incompetent layer,
and L is the wavelength of the surface temperature variation.
The GPS station (with position ux and uy) is assumed
anchored below yT, and seismic velocities, Vij, are calculated
in the elastic half‐space. Schematic depth profiles for tem-
perature, T(y), and strain, �ij(y), are graphed.
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imations and accounting for an incompetent layer of thick-
ness yb, as in the work of Ben‐Zion and Leary [1986] (see
Figure 1), I obtain simple expressions for the strains

�xx x; y; tð Þ � A tð Þ sin kx � e�ky 2 1� �ð Þ � ky½ �; ð2aÞ

�yy x; y; tð Þ � �A tð Þ sin kx � e�ky 2� � ky½ �; ð2bÞ

and

�xy x; y; tð Þ � A tð Þ cos kx � e�ky 1� ky½ �; ð2cÞ

where n is Poisson’s ratio and A(t) is given by

A tð Þ ¼ 1þ �

1� �
k�thT0

ffiffiffi
�

!

r
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� �
: ð3Þ

In this expression, ath is the coefficient of linear thermal
expansion (ath ≈ 10−5°C−1) [Berger, 1975], and equations (2)
are appropriate for depths outside the thermal bound-
ary layer, i.e., y � ffiffiffiffiffiffiffiffiffi

�=!
p

. Examining equations (2), one
observes that all components of the thermoelastic strain have

the same time dependence, similar amplitudes, and decay
with depth in a similar fashion. Equation (3) shows that the
strains are delayed relative to the temperature variation by
an amount

Dt � ybffiffiffiffiffiffiffiffiffi
2!�

p þ �

4!
¼ yb

2

ffiffiffiffiffiffi
�

��

r
þ �

8
; ð4Þ

where t ≡ 2p/w is the period.
[9] Using equation (4) to solve for yb in terms of Dt (and

other parameters), we can rewrite A(t) as a function of Dt as

A tð Þ ¼ 1þ �

1� �
k�thT0

ffiffiffi
�

!

r
e�=4�!Dt cos ! t �Dtð Þ½ �: ð5Þ

The strain amplitude versus phase lag of equation (5) is
plotted in Figure 2 with n = 0.3, k = 2p/(10 km), T0 = 10°C,
and other values as before (w ≈ 2 · 10−7 s−1, � ≈ 10−6 m2/s).
The value of T0 chosen is on the high end of representative
temperature variations [Berger, 1975].

2.2. Poroelastic Hydrologic Modification

[10] Since thermoelasticity and poroelasticity share the
same mathematical framework [Biot, 1956; Rice and Cleary,
1976;Wang, 2000], the corresponding decoupled quasistatic
poroelastic problem is solved with the correspondence

�thET

1� 2�
$ �p; ð6aÞ

� $ �hy; ð6bÞ

where E is Young’s modulus, a is the Biot‐Willis coeffi-
cient, p is pore pressure, and �hy is hydraulic diffusivity. For
this problem, the boundary condition is

p x; y ¼ 0; tð Þ � pavg ¼ p0 sin kxð Þ cos !tð Þ; ð7Þ

where pavg is a constant pressure and p0 is the amplitude
of the pore pressure variation. In reality, such a boundary
condition does not exist but can be used to approximate
variations in water table level. In addition, the decoupled
approximation is not completely valid [Detournay and
Cheng, 1993], but gives a reasonable approximation to the
fully coupled problem [Roeloffs, 1988].
[11] For a nominal �hy ≈ 0.4 m2/s, �̂hy ≡ �hyk

2/w ≈ 0.8
does not satisfy �̂hy � 1 as in the thermoelastic solution.
However, the approximate solution is still roughly valid as
long as �̂hy ] 1, with modification to equation (4) so that

Dt � ybffiffiffiffiffiffiffiffiffiffiffiffi
2!�hy

p þ cot�1 �̂hy

2!
� � cot�1 �̂hy

4�
; ð8Þ

where the approximation is valid for�hy^ 10−3m2/s (and yb <
10m). (Note that Berger’s full unapproximated solution could
be used if better precision were desired.) The approximate
poroelastic solution is then given by equations (2) and (3) with
equation (8) substituted for equation (4) and equations (6)
replacing thermoelastic parameters. The strain amplitude
versus phase lag is plotted in Figure 2 for a range of �hy, E =
1.6 · 1010 Pa, p0 = 2.9 · 104 Pa, a = 0.7, and other values as

Figure 2. Strain amplitude A(t) (amplitude only, without
time dependence) as a function of time delay Dt. Thermoe-
lastic results are for varying yb, poroelastic results are for
varying �hy, and water table elastic results are for varying
�. Maximum strain and minimum time delay for the thermo-
elastic solution occur when the incompetent layer thickness,
yb, is small. Maximum strain and minimum time delay for
the poroelastic solution occur for the largest values of �hy.
Maximum strain for the water table elastic solution occurs
at the largest values of �. Representative values of parameters
are chosen as described in the text (e.g., T0 = 10°C, p0 = 2.9 ·
104 Pa). For Figure 2, k = 2p/(10 km). Note that the thermo-
elastic and poroelastic amplitudes scale directly with k and
that in section 3 it is suggested that k may actually be closer
to 2p/(40 km).
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before. It is of interest to note that the strain amplitude and
phase lag for the poroelastic solution for �hy ≈ 0.05 m2/s is
nearly the same as that of the thermoelastic solution for yb = 0.

2.3. Direct Elastic Hydrologic Modification

[12] In addition to the poroelastic effect just discussed,
water table fluctuations also produce a direct elastic loading
due to the weight of the additional fluid. This purely elastic
loading can be calculated with the same methods as given
by Berger [1975], yielding

�xx ¼ �Ae tð Þ sin kx � e�ky 1� 2� � ky½ �; ð9aÞ

�yy ¼ �Ae tð Þ sin kx � e�ky 1� 2� þ ky½ �; ð9bÞ

�xy ¼ Ae tð Þ cos kx � e�ky � ky; ð9cÞ

where Ae(t) is given by

Ae tð Þ ¼ 1þ �ð Þ�p0
E

cos !tð Þ; ð10Þ

and � is porosity (so that fluid weight per unit area is �p).
The primary difference between these strains and the poroelastic
strains is that these strain amplitudes scale with �p0/E instead
of ap0

ffiffiffiffiffiffiffi
�̂hy

p
/E and the strains are exactly in phase with the

water level forcing (Dt = 0). The strain amplitude for this
direct elastic strain from water table fluctuations is plotted in
Figure 2 for a range of �, and other values as before. Note that
for � = 0.2, the strain amplitude is similar to the poroelastic
strain amplitude when �hy = 0.15 m2/s.

2.4. GPS Displacements From Modeled Strain

[13] Given the strains of equations (2), it is straightfor-
ward to integrate to obtain displacements. By assumption,
horizontal and vertical displacements, ux and uy, approach
zero as y → ∞ and rigid body motion is ignored. Therefore

uy x; y; tð Þ ¼
Z y

∞
�y′y′dy′ � �A tð Þ

k
sin kx � e�ky 1� 2� þ ky½ �;

ð11aÞ

and

ux x; y; tð Þ ¼
Z x

�=2k
�x′x′dx′ � �A tð Þ

k
cos kx � e�ky 2 1� �ð Þ � ky½ �:

ð11bÞ

[14] For a GPS station anchored at a point beneath
the thermal boundary layer (see Figure 1), ux and uy of
equations (11a) and (11b) are the temporal variations in GPS
position expected of thermoelastic variations. GPS stations
anchored within the thermal boundary layer (including at
the surface) will include additional terms related to terms
ignored in the approximations of equations (2). Under the
approximations made, these additional terms are only sig-
nificant for the vertical displacement, uy. Integrating Berger’s
full solution, one finds that the magnitude of uy would be
increased by about a factor of 3 at the near surface if these
terms were included. For the purposes of this paper, GPS
stations will be assumed to be deeply anchored.

[15] For water table fluctuations, the same analysis applies.
Equations (11a) and (11b) apply to poroelastic displace-
ments with the modifications of equations (6) and (8), and
equations (9) can similarly be integrated to obtain displace-
ments for the purely elastic component. However, since
actual water table fluctuations occur at depths of a few meters
and furthermore �hy � �, the GPS stations are likely anchored
within the “porous” boundary layer. Thus, there are additional
poroelastic displacements as discussed in the previous para-
graph. Since only the vertical displacement, uy, is significantly
affected and only horizontal displacements are compared,
these additional displacements will not be discussed further.

2.5. Seismic Wave Speed Variation From Modeled
Strain

[16] For a given strain field, expressions for elastic wave
speeds can be obtained by keeping up to third‐order terms in
the strain energy function [Murnaghan, 1951; Norris, 1998].
For an initially isotropic body, Hughes and Kelly [1953] and
Egle and Bray [1976] provide V11, V12 and V13 as

	0V
2
11 ¼ 
þ 2�þ 2l þ 
ð Þ�þ 4mþ 4
þ 10�ð Þ�1; ð12aÞ

	0V
2
12 ¼ �þ 
þ mð Þ�þ 4��1 þ 2��2 � n�3=2; ð12bÞ

and

	0V
2
13 ¼ �þ 
þ mð Þ�þ 4��1 þ 2��3 � n�2=2; ð12cÞ

where Vij is the speed propagating in the i direction with
polarization in the j direction, r0 is the initial density, l
and m are the Lame constants (l = En/[(1 + n)(1 − 2n)], m =
E/[2(1 + n)], where E is Young’s modulus), �i are the prin-
cipal strains, � = �1 + �2 + �3, and l,m and n are theMurnaghan
third‐order elastic constants.
[17] Rotating equations (2) into principal strain coordinates,

then

�1;2 ¼ A tð Þe�ky sin kx � 1� 2�ð Þ 	 1� kyð Þ½ �; ð13Þ

and �3 = 0 (plane strain). (The ± is + for the first subscript, − for
the second subscript.) In this coordinate system, thermoelastic
and poroelastic relative wave speed changes can be expressed
as

DV11;22

V 0
11;22

� A tð Þe�ky


þ 2�
	 2
þ 5�þ 2mð Þ 1� kyð Þ½

þ 3
þ 5�þ 2l þ 2mð Þ sin kx 1� 2�ð Þ�; ð14aÞ

DV12;21

V 0
12;21

� A tð Þe�ky

"
	 1� kyð Þ þ 
þ 3�þ m

�
sin kx 1� 2�ð Þ

�
;

ð14bÞ

and

DV13;23

V 0
13;23

� A tð Þe�ky

"
	 2þ n=4�ð Þ 1� kyð Þ

þ 
þ 2�þ m� n=4

�
sin kx 1� 2�ð Þ

#
; ð14cÞ
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where Vij
0 are the wave speeds in the unstressed body, and the

expressions are accurate for small DV/V0. Using the elastic
strains of equation (9) results in identical expressions except
with Ae(t) replacing A(t) and ky replacing (1 − ky).
[18] Equation (14a) expresses the P wave component

of the relative change in elastic wave speeds, whereas
equations (14b) and (14c) express the S‐wave components.
Since the 1–2 axes do not (in general) line up with the x − y
axes, only quasi‐P, quasi‐SV and quasi‐SH waves exist
in the x − y − z coordinate system. For the same reason,
only quasi‐Rayleigh and quasi‐Love waves exist, and there
remains coupling between them [e.g., Anderson, 1961]. How-
ever, approximate expressions for these anisotropic Rayleigh
and Love wave components can be computed [Backus, 1970;
Smith and Dahlen, 1973; Crampin, 1981]. It may be of use to
note, also, that the anisotropic expressions of equations (14a),
(14b), and (14c) share an isotropic component (terms multi-
plying sin kx) in addition to the anisotropic component (terms
multiplying 1 − ky), so that there exists an isotropic part to the
thermoelastic wave speed variations. Finally, one should
note that all expressions make use of “average” Murnaghan
constants that are assumed to be uniform throughout the entire
half‐space, an assumption that may not be very realistic.

3. Comparison of Seasonal Observations
With Modeled Annual Variations

[19] In the following subsections, I use the theory pre-
sented in section 2 to estimate whether it is possible for the
three models discussed (thermoelastic, poroelastic hydro-
logic, and direct elastic hydrologic response) to explain the
displacements and wave speed variations observed in south-
ern California. The general approach taken is to use estimates
of model parameters that are realistic but generous in terms of
producing the desired effect, and to compare these “maximum
realistic” model results with single observations that are
representative of the southern California region. For example,
as model parameters I choose temperature and water table
amplitudes that are among the highest observed in southern
California. The reasoning behind such a choice is that if
these maximum realistic models are still unable to produce
the desired effect, these models can be falsified more con-
vincingly as being large contributors to the observed effect. It
should be noted that the ability of some of these maximum
realistic models to reach observed levels only implies that
thosemodels are potentially credible, not that they necessarily
explain the observations everywhere throughout southern
California (or elsewhere). Finally, as described in more detail
below, model uncertainties are significantly higher for seismic
wave speed variations than for displacements; nonetheless, as
will be shown, all of the models require parameter choices
outside the likely realistic range in order to produce wave
speed variations that are in the observational range.

3.1. GPS Observations

[20] GPS displacement time series are well known to have
seasonal variability [Dong et al., 2002] and a subsequent
study by Prawirodirdjo et al. [2006] suggested that thermo-
elastic strains are a significant contributor to this vari-
ability. However, despite successfully matching much of
the observed signal, Prawirodirdjo et al. [2006] do not
attempt to quantitatively compare the observations with the

thermoelastic model. In particular, they compare horizontal
GPS displacements with calculated horizontal strains by
arbitrarily scaling the amplitudes, without attempting to
account for the fact that local displacements could have
been determined from the modeled strain field. Comparison
of equation (2a) with equation (11b) shows that ux has a
spatial variability exactly out of phase with �xx. Further-
more, once k and Dt are determined, the amplitudes of the
thermoelastic displacements are no longer arbitrary and can
be calculated using equations (11a) and (11b). To make a
quantitative comparison of the models with the observa-
tions, I apply the results of section 2.4 to the observations
of Prawirodirdjo et al. [2006]. It should be noted that the
direct elastic displacements from water table variability
have been modeled previously by Bettinelli et al. [2008],
and that Bawden et al. [2001] and Watson et al. [2002]
have previously suggested groundwater seasonality to be
important.
3.1.1. Thermoelastic Model Comparison
[21] In using equation (11b) to calculate the annual vari-

ability in horizontal displacements, I choose representative
values of parameters as before. To summarize, I take n = 0.3,
ath = 10−5°C−1, � = 10−6 m2/s, w = 2 · 10−7 s−1. To approx-
imately match the data of Prawirodirdjo et al. [2006], I fur-
ther take T0 = 10°C, k = 2p/(20 km), yb = 0.5 m. The value of
T0 is chosen to match the high end of observed temperature
variations in southern California (specifically, matching the
annual Fourier component of the temperature record from
Palm Springs as shown in Figure 3a); the value of k is chosen
to fit the spatial variability in the observations; and the value
of yb is chosen to fit the phase delay of the thermoelastic
variations relative to the observed temperature variations, as
described in equation (4). Here, and below, best‐estimate
values are provided.
[22] The horizontal displacement, ux, is evaluated at y ≈ 0

(close to the surface, where the GPS station is assumed to be
anchored). Substituting these numbers into equation (11b)
results in

ux x; 0; tð Þ � �0:5 mm � cos kx � cos 2� t � 55 daysð Þ=�½ �: ð15Þ

The observed amplitudes of GPS annual variability in the
study region are about 2 mm. Thus, the thermoelastic dis-
placements calculated could potentially represent a signifi-
cant fraction (≈25%) of the observed displacements (see
Figure 3b). Some of the parameter values (e.g., thermal dif-
fusivity or thermal expansion coefficient) have some uncer-
tainty and heterogeneity, and a slightly higher fraction of the
observed signal could potentially be explained with appro-
priate modification of those values. One may note that after
substitution of equation (5), equation (11b) is independent of
k, has an amplitude that decays exponentially with yb, and is
proportional to T0. It is likely that some fraction of the tem-
perature fluctuation is recorded uniformly by the subsurface
(resulting in a uniform temperature field without thermo-
elastic strains), implying a lower value of T0 and therefore
explaining a smaller fraction of the observed displacements.
Moreover, as stated above, the value of T0 used is already on
the high end of observed values. It is therefore likely that the
thermoelastic model achieves less than 25% of the observed
displacement amplitude.
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[23] The spatial dependence of ux on −cos kx given a
temperature variation with dependence on sin kx suggests
that if thermoelastic variations are a significant component
of the observed displacements then the maximum subsur-
face temperature variations occur spatially out of phase with
the maximum observed displacements. This conclusion is
counter to that assumed by Prawirodirdjo et al. [2006].
3.1.2. Hydrologic Model Comparisons
[24] For variations in water table level, I use equation (11b)

to calculate the poroelastic horizontal displacement and the
equivalently integrated form of equation (9a) to calculate the
direct elastic horizontal displacement. As before, for param-
eter values I use E = 1.6 · 1010 Pa, a = 0.7 and � = 0.15 to
approximate sandstone values from Detournay and Cheng
[1993]; and I use p0 = 2.9 · 104 Pa, equivalent to height of
water of h0 = 3 m, to match observed water table variation in
the (Los Angeles) region (see Figure 4a). Values of �hy for
sandstone vary substantially, from 0.005 m2/s to 1.6 m2/s
[Detournay and Cheng, 1993]; here, I use 0.4 m2/s as a
nominal value, but note that this could be significantly dif-
ferent from the true value. I also note that the value of p0
(or equivalently, h0) also varies spatially in a significant
manner; for example, some parts of southern California, such
as the Mojave region, receive less rain than the Los Angeles
region and have smaller values of p0 and h0.
[25] Evaluating the modeled ux as previously, I obtain the

results as plotted in Figures 4b and 4d for the poroelastic

and direct elastic effects, respectively. As shown, both of
these models have order‐of‐magnitude agreement with the
amplitude of the observations, with a slight overprediction
(by about 10%–30%). The phase of both models is rea-
sonable but does not match the observations perfectly, partly
due to the fact that the observations have subyearly Fourier
components whereas the models have a single prescribed
annual component. It should be noted that some of the
overprediction is likely due to using a value of p0 larger than
is appropriate for the 29 Palms region where the GPS ob-
servations are taken; some of the overprediction may also be
due to the fact that the direct elastic and poroelastic effects
tend to cancel each other (they would have exactly opposite
signs for large values of �hy), with the true effect being
equivalent to the difference in the two signals. Finally, the
overprediction may also be because the 29 Palms observa-
tions are not entirely representative of displacements in the
southern California region; for example, for a similar region,
Watson et al. [2002] find peak‐to‐peak displacements on the
order of 6 mm, rather than the 4 mm of Prawirodirdjo et al.
[2006].

Figure 4. Comparison of observed (solid blue) and mod-
eled (dashed red) quantities from water table variability.
(a) Water table record from California state well
04S12W36J001S in Rossmoor, California (http://www.
water.ca.gov) and modeled water table with h0 = 3 m, cor-
responding to p0 = 2.9 · 104 Pa. (b and c) Comparisons
equivalent to those in Figures 3b and 3c but for poroelastic
effects. (d and e) Comparisons equivalent to those in Figures 3b
and 3c but for direct elastic effects. Both Figures 4c and 4e
use the less extreme choice of m/m = 2 · 103.

Figure 3. Comparison of observed (solid blue) and mod-
eled (dashed red) (a) T, (b) ux, and (c) DV/V0 as a function
of time. All model results are shown at the horizontal posi-
tion, x, for which the signal is largest. (Figure 3a) Smoothed
temperature record from Palm Springs Airport (PSP) and
modeled temperature with T0 = 10°C. (Figure 3b) Approxi-
mate averaged GPS N‐S ground displacement from the
29 Palms region of Prawirodirdjo et al. [2006] and the mod-
eled displacement of equation (15). The chosen GPS record
is representative of displacements observed in the region;
details regarding the GPS observation and site conditions are
given byPrawirodirdjo et al. [2006]. (Figure 3c) Approximate
averaged DV/V0 observed by Meier et al. [2010] in the Los
Angeles basin and the modeled DVSV/VSV

0 of equation (18)
with m/m = 104.
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3.1.3. Summary of GPS Displacement Comparison
[26] Based on the above considerations, I conclude that

thermoelastic variations may be responsible for an observable
fraction of the annual variability of horizontal GPS dis-
placements but that it is not likely to explain the entire annual
signal even in places with large temperature fluctuations. I
further conclude that in regions with significant water table
variability, those variations could potentially explain the full
signal through either the direct elastic effect, the poroelastic
effect, or a combination. The sum of the three contributions
could also potentially explain the observations better than any
singlemodel (especially with regards to the precise phasing of
the signal, which is not well fit by any of the models alone).
Given the difficulties of knowing precise values of some
parameters such as the hydraulic diffusivity and thermal
expansion coefficient, there remains some ambiguity in these
conclusions. However, given that the calculations shown
represent “maximum realistic”models, I believe it prudent to
consider alternative mechanisms for causing the remainder
of the observed seasonal signal. Dong et al. [2002] and Hill
et al. [2009] list some potential alternatives that include
atmospheric effects and other environmental influences.

3.2. Seismic Observations

[27] The recent study of Meier et al. [2010] found sea-
sonal variations in the travel time of seismic coda that they
interpret to be due to changes in wave speed. The authors
further suggest that these changes in wave speed may be due
to thermoelastic or hydrologic effects, but do not attempt to
evaluate their hypotheses. Previous studies [Whitcomb et al.,
1973; Clymer and McEvilly, 1981; Li et al., 2007] have also
suggested that hydrologic changes are important. In order
to test the plausibility of these claims, I use the results of
section 2.5 to calculate (the magnitude and phase of) the
change in wave speeds expected of annual thermoelastic
and hydrologic variations. In order to make this compar-
ison, though, a number of complications remain. First of
all, Murnaghan’s third‐order elastic constants (l, m and n)
are poorly constrained for the geologic materials of interest.
Much of the work done on geologic materials has focused
on the changes in elastic constants due to changes in uni-
form pressure [e.g., Lee et al., 2004; Gret et al., 2006;
Larose and Hall, 2009], with a smaller number of materials
(e.g., pyrex, iron, steel, sandstone, shale and concrete)
having complete characterization of the 3 Murnaghan con-
stants [Hughes and Kelly, 1953; Egle and Bray, 1976;
Johnson and Rasolofosaon, 1996; Sarkar et al., 2003;
Prioul et al., 2004; D’Angelo et al., 2008; Payan et al.,
2009], and none of these experiments being done at high
pressures or temperatures. Given the large variability in the
values of the Murnaghan constants, with l, m and n all
varying in the range ±1014 Pa (i.e., of magnitudes up to
1000 times larger than the Lame constants, and not neces-
sarily of one sign), I believe it premature to attempt a truly
quantitative comparison of observations with theory. Instead,
I estimate roughly how large the Murnaghan constants must
be in order to achieve reasonable fits to the observations,
and compare these estimates with the range of measured
values. While such a comparison may be unsatisfying, my
opinion is that such constraints are better than a complete
lack of quantitative constraints.

[28] Johnson and Rasolofosaon [1996], D’Angelo et al.
[2008] and Payan et al. [2009] suggest that the Murnaghan
constants in rock are typically negative and 2 to 4 orders
of magnitude larger than the Lame constants. While these
experiments are not done at appropriate confining stresses to
truly be applicable to the depths discussed here, they repre-
sent the best constraints currently in the literature. Thus, as a
first estimate, I take the Murnaghan constants (l, m and n) to
range between −100 and −10,000 times the Lame constants
(l and m). Equations (14a), (14b), and (14c) can then all be
written as A(t)e−ky(C1 + C2ky), with nondimensional con-
stants C1 and C2 in the range ±102–5. One can therefore
roughly estimate an upper bound on DV/V0 to be

DV

V 0

����
���� 
< 105 A tð Þj je�ky 1þ kyð Þ: ð16Þ

More importantly, under these same approximations, all
in‐plane VS variations are given by

DV12;21

V 0
12;21

� m

�
A tð Þe�ky sin kx 1� 2�ð Þ; ð17Þ

so that they are approximately isotropic and only depend
on Murnaghan constant m. This is of interest because the
observed DV/V0 are for Rayleigh waves, which are pri-
marily sensitive to VSV ≡ Vxy = V12 = V21. One may also note
that the direct elastic version of equation (17) is identical
except with Ae(t) replacing A(t).
3.2.1. Thermoelastic Model Comparison
[29] Taking representative values as in section 3.1.1,

I obtain

DVSV

V 0
SV

� 4 � 10�8 m

�
cos 2� t � 55 daysð Þ=�½ �e�ky sin kx ð18Þ

Compared to the observed DV/V0 ≈ (0.2 − 1) · 10−3 [Meier
et al., 2010], the calculated thermoelastic changes in wave
speed are plausibly in the right amplitude range if m/m is
close to the maximum possible value of ≈ −10,000, which
would give a wave speed perturbation of amplitude 0.4 · 10−3

(see Figure 3c). One may note that it is perhaps unlikely that
these extreme values are reached for average sandstones,
for which m/m are typically in the range −200 to −1000
[D’Angelo et al., 2008], with the most extreme values occur-
ring for highly cracked specimens [Johnson and Rasolofosaon,
1996]. (Under the large confining stresses appropriate for the
≈ few kilometer depths considered, seismic wave speeds in
the highly cracked specimens should be less sensitive to
applied stresses and therefore have smaller magnitude
Murnaghan constants.)
[30] Equation (18) also shows that these changes in

velocity exponentially decrease with depth with a length scale
of 1/k ≈ 3.2 km (using the k from section 3.1). Since the
observed DV/V0 are for Rayleigh‐wave coda in the period
range 0.5–10 s [Meier et al., 2010], which generally have
sensitivity to depths of ≈1–20 km, the short‐period range of
the observations is expected to sample primarily near‐surface
VSV ≡ Vxy (i.e., vertically polarized shear waves in the range
ky� 1); on the other hand, the long‐period range will have
diminished amplitudes due to the Rayleigh wave kernel
having sensitivity to depths outside the thermoelastic expo-
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nential tail. The observations of Meier et al. [2010] do not
clearly display this dependence of perturbation amplitude on
period, and in fact may show the opposite trend, but the dif-
ference may not be resolved. Furthermore, it should be noted
that Meier et al. [2010] observe the wave speed variations
even when averaged over the entire Los Angeles basin, which
has a horizontal length scale of roughly 40 km. The spatial
wavelength of 20 km (and associated k) that is used to match
the data of Prawirodirdjo et al. [2006] therefore cannot
explain this aspect of the seismic observations. Arbitrarily
choosing a spatial wavelength of 80 km instead, however,
does not improve comparisons because it results in a fourfold
decrease in k, and therefore a fourfold decrease in A(t) and
DV/V0.
[31] The phase of the calculated thermoelastic signal may

also be somewhat different from the observed seismic wave
speed variations. The temperature variations peak approxi-
mately in February and August of each year. This results in
a thermoelastic variation peak as early as late March and late
September, but potentially up to 2 months later, depending
on exactly how thick the incompetent layer (yb) is (see
Figure 2). However, the observations of Meier et al. [2010]
seem to peak roughly in January–February and September–
October (with some variability). Thus, while the autumn peak
may have approximately the right phase to be explained
through thermoelastic variations, the winter/spring peak is
offset (too early) by a significant amount (a minimum of
about 1 month) (see Figure 3c). Interestingly, this uneven
variation (with a faster wave speed decrease and a slower
wave speed increase) is qualitatively similar to the uneven
variation in observed strains and GPS displacements [Ben‐
Zion and Leary, 1986; Prawirodirdjo et al., 2006], though
neither of these features are well modeled with purely ther-
moelastic effects. This also suggests that phenomena other
than thermoelasticity may be important for explaining the
observations. As proposed by Meier et al. [2010], one pos-
sibility for this unexplained offset in phase is that seasonal
hydrologic changes simply affect the thermoelastic para-
meters enough, e.g., through the known dependence of l, m
and n on water content [Johnson and Rasolofosaon, 1996].
This may explain why the observed wave speed variation is
more robust within the LosAngeles basin [Meier et al., 2010];
otherwise, the thermoelastic model has difficulty explaining
this fact. In the following section, I only assess how well the
pure hydrologic effect explains the observations.
3.2.2. Hydrologic Model Comparisons
[32] Taking representative values as in section 3.1.2,

keeping k as before (so as to obtain a similar comparison),
and using the poroelastic modifications of equations (6),
I obtain

DVSV

V 0
SV

� 17 � 10�8 m

�
cos 2� t � 35 daysð Þ=�½ �e�ky sin kx ð19Þ

for the poroelastic effect. For the direct elastic effect, using
the elastic modification to equation (17) gives

DVSV

V 0
SV

� 14 � 10�8 m

�
cos 2� t � 0 daysð Þ=�½ �e�ky sin kx: ð20Þ

Again comparing with Meier et al. [2010], I find that both
the poroelastic effect and the direct elastic effect from water

table variability produce changes in wave speed that are
plausibly in the right amplitude range if m/m ≈ −2 · 103 (see
Figures 4c and 4e). Compared to the value needed for the
thermoelastic calculation (−104), this is closer to the likely
range of m/m, though still on the high end compared to the
average sandstone values of −200 to −1000 [D’Angelo et al.,
2008].
[33] As with the thermoelastic model, the value of k used

in these calculations is likely at least a factor of 4 too large
for two reasons. For one, the observed wave speed varia-
tions occur fairly deep (deeper than the exponential tail with
the given k would suggest) and, second, the wave speed
variations seem to be consistent across a 40 km horizontal
length scale. Interestingly, although the poroelastic A(t) is
directly proportional to k, Ae(t) contains no k dependence.
Therefore, decreasing k (by a factor of 4) results in a smaller
DV/V0 (by a factor of 4) for the poroelastic effect but does
not affect the direct elastic effect. This suggests that the
direct elastic response from water table variations is most
likely to best explain the observed wave speed variations.
Comparing the phase of the modeled signals with the
observations of Meier et al. [2010] (see Figure 4), I also
observe that the direct elastic response does a slightly better
job with the phase. However, as discussed for the GPS
displacements, the existence of subyearly Fourier compo-
nents in the observations makes it difficult to be certain of
which (single frequency) model agrees better with the observed
phasing.
3.2.3. Summary of Seismic Wave Speed Comparison
[34] Based on the above considerations, I conclude that

thermoelastic variations are unlikely to explain the observed
annual variability in seismic wave speeds. Hydrologic var-
iations, on the other hand, potentially better explain the
observations, with the direct elastic effect having a stronger,
more robust signal compared to the poroelastic effect. How-
ever, even the direct elastic effect requires m/m to be on the
very high end of what may be expected. This questionable
agreement suggests that it is prudent to consider alternative
hypotheses regarding both the likely models for causing
seasonal velocity changes as well as the interpretation of
the observations as seismic velocity changes [e.g., Zhan
and Clayton, 2010]. I emphasize, though, that due to the
uncertainties in many important parameters, including order‐
of‐magnitude uncertainty in the Murnaghan constants, there
remains some ambiguity in these conclusions.

4. Conclusions

[35] I present simple expressions for the GPS displace-
ments and wave speed variations expected of thermoelastic
and hydrology‐induced annual variations. The thermoelastic
model assumes a periodic surface temperature field whereas
the hydrologic model assumes periodic fluctuations in water
table levels. I then use these expressions to compare calcu-
lations of annual variations with observations of GPS varia-
tions [Prawirodirdjo et al., 2006] and wave speed variations
[Meier et al., 2010]. For GPS, I find that thermoelastic dis-
placements can explain a significant fraction of the observed
annual variations (perhaps up to 25%), but likely not the
entire signal. Hydrology‐induced (poroelastic and direct
elastic) displacements can explain the full amplitude of the
observed annual variations, and may even overpredict the
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amplitudes. Phases for all three models can be partially
matched with appropriate choice of free parameters.
[36] For seismic wave speeds, I find that thermoelastic

variations can only explain the observed variations with
extremely high values of the Murnaghan constants (which
are unlikely to exist); similarly, hydrology‐induced varia-
tions also require very high values for these constants to
explain the observations, though not as extreme. Of the three
models, the direct elastic effect from hydrologic loading is
able to explain the observations the best but still requires
values of the Murnaghan constants that may not be realistic.
This questionable agreement suggests that alternative hypoth-
eses be considered either for models or for interpretations of
the observations. However, I emphasize that the Murnaghan
constants for relevant materials must be much better charac-
terized if a truly accurate quantitative comparison is to be
made. Phases can also only be partially matched, possibly
suggesting that other seasonal processes may be important,
but perhaps only that subyearly Fourier components must
be included in the analysis. Due to a large amount of uncer-
tainty and potential heterogeneity in many model parameters,
none of the conclusions drawn here should be taken as
definitive; more precise constraints must await better mea-
surements of the relevant parameters.
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