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SUMMARY

1 INTRODUCTION

A detailed study of the physics of a 1-D sedimentary compaction of a viscous medium
was carried out both numerically and analytically for columnar and self-gravitating
spherical cases, in view of applying it to the inner-core growth process of the Earth.
The effects of sedimentation rate and surface porosity upon the porosity profile were
investigated. It was found that the porosity profile differs depending on whether or not
the sedimentation rate is larger than the Darcy velocity (velocity of the solid matrix
when the fluid flows by buoyancy alone). When the sedimentation rate is larger than
the Darcy velocity, a thick, constant-porosity layer develops at the surface, and below
it, the porosity decreases gradually towards the bottom. When the sedimentation rate
is smaller than the Darcy velocity, the porosity profile is characterized by a mushy
layer at the top, where the fluid is expelled by the deformation of the solid, underlain
by a thick layer of constant porosity, termed the residual porosity. Such a porosity
profile can be understood as the propagation of a half-sided solitary wave. The study
was extended further for the self-gravitating spherical case. Formation of an unstable
porosity structure and the appearance of solitary waves were discovered for the case
of monotonically decreasing sedimentation rate. Given the size of the sphere formed
by sedimentary compaction, according to the magnitude of the ratio of sedimentation
rate to Darcy velocity, three types of porosity structure, which differ in force balance
and the typical length scale required for porosity decrease, were discovered. One such
structure is where a low-porosity layer forms at the top, accompanied by solitary waves
beneath it, indicating that a crust-like region can develop at the surface of the inner core.

Key words: inner core, permeability, porosity, sedimentation.

be regarded as the cumulative result of precipitation and
sedimentary compaction of solid iron particles.

Sedimentary compaction appears in various fields of the earth
sciences. It is a common process that occurs not only in
compacting sediments in lakes and on sea floors, but also as
densification or age-hardening of snow (Gow & Ramseier
1963), sedimentation of volcanic ash, and as cumulate forma-
tion in magma chambers (Irvine 1980; Sparks et al. 1985) or
magma oceans, the latter of which are considered to have
formed during the early stages of the Earth’s formation
(Safronov 1978).

Another important application is the inner-core growth
process, which is believed to have been occurring throughout
the Earth’s history by cooling of the core (e.g. Jacobs 1953).
The formation of a partially molten inner core is an inevitable
consequence of the solidification of a liquid iron core that
contains impurities (e.g. Birch 1964), as can be seen in dendritic
growth of crystals in solidifying alloys, so the inner core can
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There have been several works concerning the structure of
the inner core. Fearn, Loper & Roberts (1981) and Loper &
Fearn (1983) argued that the mushy layer, a layer of partially
molten state, may extend to the centre of the Earth from
simple thermodynamic considerations by using a phase dia-
gram. Loper (1983) proposed that through compositional
freezing by the downward flow of the outer-core fluid into the
inner core, the mushy layer becomes thin. We propose that
the compaction process of the solid matrix, which has been
neglected in the previous studies, is of primary importance to
the structure of the inner core, because of the large spatial and
temporary scales involved for the inner-core growth.

The objective of this paper is to make a detailed study of
the physics of sedimentary compaction from both numerical
and analytical aspects, and in columnar and self-gravitating
spherical cases using fluid dynamic equations and constitutive
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relations, in order to provide the bases of applying it to the
inner-core growth process. Our model is simple, but we have
shown that when we apply this model to the inner core, even
in the presence of other effects such as that of convection, the
structure is primarily determined by compaction.

In modelling the dynamics of partial melt it should be borne
in mind that there are three types of partially molten states,
depending on whether each of the two states, solid and liquid,
link together or not. Stevenson (1990) analogously named
these as being in the state of the ‘meat ball’, when only the
liquids link together, the ‘sponge’, when both solid and liquid
link together and the ‘swiss cheese’, when only solids link
together. The former two may also be called ‘slurry’ or ‘mush’,
respectively. We will assume that the inner core is in the state
of the ‘sponge’ or ‘mush’ domain where the solid forms a
matrix (ie. solid grains link together) and compacts, while the
interstitial melt, which is also linked together, seeps out from
the matrix as a permeable flow.

The physics of sedimentary compaction has long been
investigated in the study of sedimentary basins (e.g. Gibson
1958). In most of these studies, the mechanical behaviour of
the compacting solid material has been regarded as plastic and
conventionally treated as elastic for mathematical convenience.
In recent years, numerical solutions have been obtained for
the evolution of porosity (Audet & Fowler 1992) as well as for
temperature by considering heat conduction (Wangen 1992).
In both of these works, the sedimentation rate dependence on
the porosity profile was studied and it was found that the
compaction mechanics were governed by the ratio of
sedimentation rate to permeability.

The process of compaction was formulated in another way,
originating from the study of magma. McKenzie (1984) derived
and analysed the governing equations for compaction by treat-
ing the compacting solid as a viscous medium. He defined the
compaction length as a typical length scale for compaction to
occur when a column of partial melt is placed on an imper-
meable plane. Richter & McKenzie (1984) obtained dynamical
solutions for partial melt which was left on an impermeable
plane and then applied it to the movement of trace elements
(Richter 1986). Ribe (1985) derived time-independent station-
ary solutions for a compacting partial melt in an ascending
magma. He defined the reduced compaction length, which is a
typical length scale for compaction when the magnitude of the
velocity given as the boundary condition is smaller than the
magnitude of the Darcy flow, the flow without compaction
occurring. Shirley (1986) solved the sedimentary compaction
problem numerically and applied it to igneous cumulates.
McKenzie (1987) calculated the result of constant sedimen-
tation of partial melt upon an initially uniform column of
partial melt. By making several approximations, Fowler (1990)
analysed compaction coupled with heat transfer. In Birchwood
& Turcotte (1994), unlike in the previous works on sedimentary
basins, the solid was assumed to deform as a viscous medium,
and the compaction of an initially present column of solid—
liquid composite was investigated.

In this paper we will treat the solid—fluid composite as a
Newtonian viscous fluid, similar to that in McKenzie (1984),
but we distinguish the pressure of the solid and the fluid
following Scott & Stevenson (1986). Verification of the above
assumption of rhéology is also given in this paper. By assuming
viscous flow, we were able to see that the porosity profile
could be considered as a propagation of a solitary wave, and
also discovered a case where decompaction and formation of
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solitary waves occurs. Such a property was analysed, as has
been done by several authors (Scott & Stevenson 1984; Scott
& Stevenson 1986; Barcilon & Richter 1986) for similar
equations for the system where a mass of magma ascends
through a deformable solid matrix. These phenomena could
not be described by treating the solid as plastic.

This paper provides the first thorough numerical and analyt-
ical study of the time-evolving, compacting sedimentary system
by treating the solid as a viscous medium. The problem was
studied not only for the columnar case but also for the self-
gravitating spherical case, in view of applying it to the inner
core. Qur numerically calculated results of the columnar case
agree with the study by Shirley (1986), who numerically solved
a similar set of equations, but did not fully investigate the
porosity profile and its parameter dependences from analytical
aspects. In this paper, we have also derived analytical solutions,
to confirm and understand the numerically obtained resuits,
and to present explicit parameter dependences of the features
that characterize the porosity structure.

The parameters of importance in non-dimensionalized equa-
tions are the sedimentation rate and the surface porosity, and
we will consider the effects of these upon the porosity profile
thus formed in a wide parametric range. When considering
dimensionalized solutions, the magnitudes of solid viscosity
and permeability become important.

We will treat the problem in Sections 2 to 6 using 1-D
Cartesian coordinates, in order to understand the basic physics
of the columnar case, and in Section 7 we will consider the
sedimentary compaction in a self-gravitating sphere, which is
the case for the inner core and in planetary bodies. From
Section 2 to Section 4, the governing equations and the choice
of constitutive relations are described. In Section 5, we make
a numerical study of a columnar sedimentary compaction
problem and the effects of parameters upon the porosity
profile, which is analytically analysed in Section 6. In Section 7
we study compaction in a self-gravitating sphere and then
apply it to the inner-core growth process in Section 8.

2 GOVERNING EQUATIONS

The statement of the problem is as follows. Solid particles of
a certain grain size precipitate upon an impermeable plane at
a constant sedimentation rate ¥}, a partial melt of porosity ¢,
forms at the surface, and a column of partial melt grows with
time. At the same time, compaction of the solid matrix occurs
due to its own weight and the column decreases in height. By
solving the time evolution of the sedimentation and com-
paction, the evolution of the porosity structure and the increase
in the height of the column are solved, as shown schematically
in Fig. 1. The situation is the same as in Audet & Fowler (1992).

The basic equations governing sedimentary compaction are
described below. The z axis is taken as positive upwards,
z =0 being the base and z == h being the surface of the solid—
fluid composite. The equations described below follow the
formulation of McKenzie (1984), except that we shall regard
the pressure difference between solid and fluid as driving the
compaction process, as has been formulated by Scott &
Stevenson (1986).

The most common example of sedimentary compaction is
the case where the matrix is solid and the fluid is Liquid, but
there could be other types, such as when the fluid is a gaseous
phase, such as in volcanic ashes and snow.

The basic equations are written as the set of conservation
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Table 1. Notation.

Variable Meaning Dimensions
a grain size m

G gravitational constant Nm?kg
g gravitational acceleration ms~?
H mushy layer thickness m

h growth rate of the composite system ms~!
K constant in permeability none
K, permeability m?

Lc compaction length m

Lr reduced compaction length m

Py fluid pressure Pa

P, solid pressure Pa
AP differential pressure: P, — Py Pa

T radius m
Ric inner core radius m

t time 8

Te compaction time 8

U total volume flux: ¢v + (1 — §)V ms™!
\4 solid velocity s~
v liquid velocity ms™!
Vb Darcy velocity ms™!
Vo sedimentation rate (> 0) mg™!
z vertical coordinate m

¢ Lagrangian vertical coordinate m

Ns shear viscosity of solid iron Pas
" effective viscosity of solid Pas
nf shear viscosity of melt Pag

K thermal diffusivity m?~1
Iz solid rigidity Pa

¢ porosity none
) surface porosity none
ér residual porosity none
[ -Ing none
¥ solidity (1-porosity) none
Ps solid density kgm™3
s fluid density kgm™3
Ap Ps — Py kgrn—a

e a circumflex " denote the non-dimensionalized form

equations. Conservation of mass for fluid gives

%
5 V4w =0, (1)

and for a solid matrix
0
(1= +V-(1-¢)V=0, (2)

where ¢ is the porosity, v is the fluid velocity and V is the
solid velocity. Each one of the two phases is incompressible.

Conservation of momentum can be described by the Darcy’s
law for fluid,

K
pv—V)= —;’—f(VPf—pfg), (3)

and by hydrostatic approximation for the total solid matrix
and the fluid,

V{(1 = )P+ ¢Ps} = {(1 — P)ps + dps}g, 4)

where K, is the permeability as a function of porosity under
given grain size, 7; is the fluid viscosity, and P, and P; are the

Height

' :§ Vz=t\At
b At

Time
Figure 1. A diagram illustrating the setting for sedimentary com-
paction. The column of the solid-liquid composite grows as the solid
particles precipitate at the sedimentation rate of ¥,, but the compaction

V causes the actual growth rate h to become smaller. The resulting
evolution of the trajectory of the surface is calculated.

solid and fluid pressures, respectively. We have assumed hydro-
static approximation because the compaction is assumed to
progress slowly and hence we can safely neglect the inertial term.

The compaction of the matrix occurs by differential pressure,
i.e. the pressure difference between solid and fluid,

AP=P,—P;=—n}V-V, (5

where 7} is the effective bulk viscosity of the matrix as a
function of porosity. We have assumed the matrix to behave
as a viscous fluid, as opposed to the often-assumed elastic or
plastic deformation in the study of sedimentary basins. This is
because for the time scale of the inner core growth of ~10%s,
the solid behaves as a viscous medium, as can be found by the
comparison with the relaxation time of a viscoelastic body,
given by the ratio of viscosity and rigidity of the solid,

1y 1y
2L o6 4y 5
" 6x 10 <10‘6(Pa s)) 5

from which we see that, for the time scale of interest, we may
well assume viscous deformation. Also in the above formu-
lation, we have assumed a linear relationship between pressure
and deformation, i.e. Newtonian creep, rather than, say, power-
law creep. This assumption is verified for the case of the inner
core in Section 8.

The explicit form of the two constitutive relations, per-
meability and effective viscosity, as functions of porosity, are
to be discussed in detail in Section 3.

We will assume 1-D Cartesian coordinates. From eqs (1)
and (2) we can define the total volume flux, U, which is
independent of z,

pr+(1—@)V=U. (6)

Eqs (4) and (5) can be rewritten in terms of AP and Ap, where
Ap =ps— Py, AS

d
E{Pf"'(l_d’)AP}:_{pf'*'(l_d))Ap}g‘ (M
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We can define solidity ¥ = | — ¢, which we occasionally use to
simplify the equations, and then the set of governing equations
becomes

o 0 .

= =0, (8)

Ne d

K—¢(V—U)= —{g(tﬁAPHlﬁApg}, 9)
av

AP = —n;EZm (10)

Eq. (9) shows the balance of forces; the left-hand side is the
viscous resistance of flow through the matrix, the first term on
the right-hand side is the resistance to compaction and the
second term denotes buoyancy.

The boundary conditions can be written with surface
porosity @, and the sedimentation rate V,(>0) as follows:

V=v=0 at z=0, (11)
AP=0 at z=h, (12)
b=, atz=h, (13)
Vihy+V,=h atz=h. (14)

Here h is the growth rate of the column of solid—fluid com-
posite, which becomes smaller than the case when no com-
paction is occurring (i.e. A= ¥,), because of the subsidence of
the matrix [ie. V(h)]. The initial condition is k=0 at ¢t =0.
This situation is also illustrated in Fig. 1. Since we are only
specifying the amount of solid flux being added to the top of
the solid—fluid composite, and not how it is being added,
this model represents both cases where the increase in height
occurs by sedimentation and those where it occurs through
dendritic growth.

Surface porosity is the largest porosity where the solid
matrix can link together and form a mush. For porosity values
larger than this, a slurry state is realized, which has no rigidity
and does not propagate shear waves, and so we can assume
that this corresponds to the inner-core boundary. The value
of surface porosity is identical to the melt fraction at the
rheological front of the solidifying magma (Solomatov &
Stevenson 1993), which has a value of the rheological critical
melt percentage (Arzi 1978) determined from the microscopic
geometry of the sediment. For example, the surface porosity is
~0.7 for deep-sea sediments (Haq et al. 1990) whose solids
form a spiny geometry, but it is ~0.2+0.1 (Arzi 1978) or
~0.29 (Toramaru & Fujii 1986) for magmatic systems. In
most of the calculations in this paper, we take ¢,=0.5 for
analytical simplicity. The difference in surface porosity is not
influential, as will be verified in Section 5.3. Our interest lies
in solving a set of these equations, (8), (9) and (10}, for different
sedimentation rates V;(>0).

3 CONSTITUTIVE RELATIONS

There are two important constitutive relations in the above
equations. They are the dependence of the permeability, K,,
and the effective viscosity, n}, on porosity ¢. The choice of
constitutive relations is essential for quantitative arguments,
but there is an uncertainty in its exact form. As noted in the
introduction, we consider the state of a ‘sponge’ or ‘mush’
domain. It may be that the connectivity of the melt phase
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becomes small as the porosity decreases in the deeper parts of
the inner core, and the melt phase becomes isolated to form a
state of ‘swiss cheese’. Such connectivity of the melt phase is
not only a function of porosity but also of the interfacial
energy, which is related to the light-element species. We have
little knowledge of the details of such a microscopic texture at
present, so we have not attempted to consider the state where
complete isolation of fluid occurs, to avoid complexity.
Nevertheless, we have used a strongly porosity-dependent
formula for permeability, which we believe simulates its textural
dependence.

3.1 Permeability

It should be noted that the porosity profiles obtained in the
literature vary because the function which determines the
efficiency of compaction differs. The constitutive relations
usually used for sedimentary basins tend to make compaction
difficult from two aspects: a strong porosity dependence of the
permeability formula used, such as K, oc ¢8, and a very small
permeability at the surface, which is caused by a minute grain
size of ~0.1 um, as in the case for clay (Audet & Fowler 1992;
Wangen 1992). On the other hand, those usually used for
magma have a comparatively weak dependence on porosity
and larger grains size of ~1 mm, making compaction easy to
occur (McKenzie 1984).

Although the strict permeability of partial melt cannot
be given unless the microscopic melt morphology is known,
we adopt the commonly accepted Blake-Kozeny-Carman
equation,

az ¢3
K¢—K(1_¢)2, (15)
which is known to represent the experimental data of per-
meability of magma quite well (McKenzie 1984). Here a is the
grain size and K is the empirical constant of 10~ 1000
representing tortuosity (McKenzie 1984). In this paper, we
shall use this expression and take K = 1000.

3.2 Effective bulk viscosity

We have described the matrix deformation as follows, using
the effective bulk viscosity 5},

v
AP=P,— P;= —n:gv-vz—ngg. (16)

The effective bulk viscosity of the matrix has not been exper-
imentally measured, but can be derived theoretically as a
function of porosity and solid shear vicosity, considering the
deformation of the matrix as

4(1—-9)
34 s

(see Appendix A for derivation). If we assume that at the
surface porosity, the solid—fluid composite is in the state of
‘Hertz contact’, where an increase in porosity no longer allows
the solid matrix to link together, the effective viscosity would
drop to zero when the porosity becomes larger than the surface
porosity. As a result, compaction no longer occurs for porosity
larger than the surface porosity.

ng =

(17
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4 NON-DIMENSIONALIZATION OF BASIC
EQUATIONS

We shall non-dimensionalize the governing equations by the
following scales. The subscript O denotes the value at the
surface. We will non-dimensionalize the velocity by the solid
velocity when the fluid flows by its buoyancy alone, which we
shall call the Darcy velocity,

K
Vo= ;"%Apg. (18)
f

We take the length scale as the length scale determined by the
balance of viscous resistance and compaction, the compaction
length

s\
Le= <K¢0|p0—n~9) . (19)
£

Note that L is independent of gravity g and density difference
Ap. For the time scale we use the time taken for the Darcy
flow to flow the distance of the compaction length, the
compaction time,

L i * 12
'1'&=_C=_<M> . (20)

We denote non-dimensional variables by circumflexes,

V=V/V, (21)

Z=z/Lc, (22)

f=t/T;. (23)

Then the governing equations (8), (9) and (10) become

w, i!,W—o (24)

of ezT

o=t )t

V-U=—"¢————={—AP);, 25
K, ¥ #\v 29

. X oV

Ap= T (26)

Nyz OF

V=06=0 at £=0, (27)
ov .

—=0 ati=h, (28)
02

d=¢, at 2=h, (29)
V+by=h atz=h, (30)

with the initial condition =0 at f=0. Using the boundary
condition (27), eq. (6) becomes U =0, thus eq. (25) becomes

o K ¥ ﬂ(ﬁ (b ‘3_V>}
v K%{ Vo a2\ gonys 02§ 1)

which shows the force balance in the velocity scale. The left-
hand side represents the viscous resistance, the first term on
the right-hand side is the negative buoyancy term, and the
second term is the deformation term. There are three types of
force balance:

(1) Darcy balance: the left-hand side balances the first term
on the right-hand side;

(2) squeezing balance: the left-hand side balances the second
term on the right-hand side;

(3) deformation balance: the two terms on the right-hand
side balance.

As we shall see in the solutions, the difference in the
sedimentation rate results in different force balance structures.
However, in reality the squeezing balance (2) does not occur.
Note also that it is not the exact value of the permeability and
effective viscosity but its functional dependence on porosity
which is important in the qualitative results. Of course, such
values are needed in quantitative arguments when transforming
the results to the dimensionalized form.

5 TIME-DEPENDENT NUMERICAL
SOLUTIONS

We will now solve eqs (24) and (31) numerically and see how
the porosity structure evolves as a constant flux of partial melt
is added on the top of the system. We use a finite-difference
method for spatial discretization. Porosity is solved explicitly
from eq. (24) and the solid velocity is solved from eq. (31). A
staggered space grid is used; the porosity and the differential
pressure are evaluated at the centre of the finite-difference
volume, while the advection terms are evaluated at both ends
of the volume. There are two changeable parameters: the
porosity ¢, at the surface, and the sedimentation rate, V;. The
calculated porosity profile takes a distinctively different form
depending on whether the sedimentation rate is larger than or
smaller than the Darcy velocity, V;. This was noticed earlier
by Shirley (1986) through solving a similar set of equations
numerically, except that he did not make a distinction between
the solid and the fluid pressures. Our calculated result generally
agrees with his result, and we have also calculated the force
balance and differential pressure structures so as to clarify the
mechanics taking place.

5.1 Case for V, > Vp

First, let us consider the case for sedimentation rate larger
than the Darcy velocity. The calculated result of the evolution
of the porosity profile is given in Fig. 2(a). It can be seen that
the porosity profile is time-dependent, characterized by two
regions: an equi-porosity zone at the surface, and a gradually
decreasing porosity towards the bottom. The equi-porosity
region is in a state of uniform fluidization, as described by
McKenzie (1984). Compaction does not occur and the liquid
flows according to Darcy’s law, driven only by buoyancy.
From Fig.2(c) it can be seen that at the surface, liquid
percolates at the Darcy velocity and the solid matrix subsides
uniformly at the same rate. We can see from the small value
of the differential pressure gradient shown in Fig. 2(b) and
from force balance (Fig. 2d) that Darcy balance predominates
throughout the whole region. Hence, in this case, the decrease
in porosity is driven by permeable flow and not by a differential
pressure gradient. We will thus define the compaction occurring
under Darcy balance as percolative compaction. Greater
sedimentation rates result in the increase of the length of the
equi-porosity region. A theoretical analysis is conducted in
Section 6.2.

© 1996 RAS, GJI 124, 502-524
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5.2 Casefor V< Vyp

A typical example of the porosity evolution for V<V is
shown in Fig. 3(a). The profile here is characterized by three
regions. The upper region, which we call the mushy layer, is
where compaction is occurring. Its thickness does not change
with time, therefore the porosity profile is stationary when
seen from the coordinate which moves with the top boundary.
We shall refer to this state as being quasi-stationary and call
the thickness the mushy-layer thickness. We shall show later
(eq. 76) that its magnitude is determined by the reduced
compaction length Ly (Ribe 1985),

|2 7* Vo
Le=Le [2= | 32
N A’ (32)

which is the compaction length for the system that has a
boundary condition of V=1V, with V, <V,. However, the
situation in Ribe (1985), who modelled the compaction of
partial melting caused by upwelling mantle flow, is quite
different from ours, in that the fluid velocity, instead of the
solid velocity, is given as the boundary condition. The differen-
tial pressure profile is given in Fig. 3(b), and it shows that
compaction is progressing within the mushy layer thickness.
The force balance at this region is such that the negative
buoyancy term roughly balances the deformation term forming
the deformation balance, and decrease in porosity occurs,
driven by the viscous deformation of the matrix (Fig. 3d). We
will thus define the compaction occurring under deformation
balance as deformative compaction. A theoretical analysis for
this region is conducted in Section 6.3.

The middle region is characterized by constant porosity that
does not change with time. We shall call this porosity the
residual porosity. The matrix can no longer deform, due to the
increase in effective viscosity and inefficient permeable flow,
which is caused by the drastic decrease in permeability with
depth. This state also corresponds to the state of uniform
fluidization described by McKenzie (1984) and corresponds to
the uniform fluidization porosity of Ribe (1985); this was
termed ‘abyssal’ porosity in the study of sedimentary basins
(Fowler 1990). In this region there is a permeable flow of
liquid, but the solid matrix is hardly mobile (Fig. 3c). Here,
the viscous resistance term balances the negative buoyancy
term, forming a Darcy balance, and compaction ceases
(Fig. 3e).

There is a region at the bottom where porosity gradually
decreases again, which is driven by permeable flow and is in
Darcy balance. This is thus in a state of percolative compaction
and is the same phenomenon seen for the case for V5 > 4.

5.3 Effect of parameters

The effect of variation in sedimentation rate can be seen
in Fig. 4(a) for a sedimentation rate near the Darcy velocity,
and in Fig 4(b) for a sedimentation rate smaller than the
Darcy velocity. A larger sedimentation rate produces a greater
mushy-layer thickness and residual porosity, due to lesser
efficiency in expelling liquid, and these figures apply to the
dimensionalized scale as well.

To see the effect of surface porosity, the effect of non-
dimensionalizing scales must be taken into account, since the
non-dimensionalizing scales are functions of surface porosity.

Fig. 4(c) shows the surface-porosity dependence on the porosity
structure when the solid flux (1 —¢,)V, added to the top of
the composite column is the same in the dimensionalized scale
(see figure caption for details). As can be seen from the
calculated results, the effect of surface porosity is not as marked
as that of the sedimentation rate. Therefore we can conclude
that the surface porosity values are not influential on the
porosity structures formed when the sedimentation solid flux
is constant.

The above results of parameter dependences are verified
from the theoretical analysis given in Section 6.3.3. To summar-
ize, there are three basic types of porosity profiles, according
to the following sedimentation rates.

(1) Vo> V,. Non-stationary porosity profile characterized
by two regions: (a) an upper region, with equi-porosity and
Darcy balance; and (b) a lower region with porosity gradually
decreasing downwards and percolative compaction occurring
under Darcy balance.

(2) Vo~ V,. Trapsitional type between a quasi-stationary
and a non-stationary porosity profile.

(3) Vo« V. Quasi-stationary porosity profile characterized
by three regions: (a) an upper region with mushy layer, quasi-
stationary, deformative compaction occurring under defor-
mation balance; (b) a middle region with equi-porosity (residual
porosity), no compaction and in Darcy balance; and (c) a
lower region with porosity gradually decreasing downwards
and, percolative compaction occurring under Darcy balance.

Here V;, is the Darcy velocity, as defined in eq. (18). This re-
sult shows that when the sedimentation rate changes from
fast (>Vp) to slow (<), the porosity profile shows a
remarkable change.

6 THEORETICAL ANALYSIS

In order to understand the results of the numerical solutions,
and to verify those results, it is of help to conduct a theoretical
analysis. In this section we will perform a theoretical analysis
in order to give physical and mathematical explanations for
the numerical solutions obtained in the preceding section.

6.1 Linear analysis

First, let us investigate the dispersion relation of the basic
equations. We take linear perturbation as

v=yi+y, (33)
¢ L=y Vo | o,

where , is the solidity at the region of Darcy balance.
Substituting the above expressions into eqs (24) and (31), we
have

W 1=y o Y oV
o ‘(1—%) B

W, 07 Ttz (35)

£ -y, 3% 1+2¢, , <1—¢1>202V’
V_<1_¢0> '//1‘//1(1—'/’1)‘p+ 1—y,/) 08527 (36)

By eliminating ¢’ from eqs (35) and (36), and assuming the
following form for the perturbation term

V' o exp[i(wf — k2)], (37)
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we get the dispersion relation

o\ ¢y 2
gy <¢) .

1o
RO
”(%)k

¢
By expanding by k we get

w_ 1-¢o , _ ﬁzt_zﬂz
p ¢ "’{3 <¢> g O F } (39)

From the fact the dispersion effect begin with k%, we can expect
that the solution behaves analogously to the KdV equation,
with some nonlinearity. By a reductive perturbation method,
we can actually derive the KdV equation, as has been done
by Whitehead & Helfrich (1986); the derivation is shown in
Appendix B. In Section 6.3, we shall see that the solution can
indeed be interpreted qualitatively in terms of the solitary wave.

(38)

|

6.2 Analysis of the percolative compaction region

A percolative compaction region was seen in both cases,
Vo> Vp and ¥, < V. In both cases, percolative compaction
occurred at the base of the column. Let us now make an
attempt to provide an analytical solution of these regions.

6.2.1 Analytical solution

In the non-compacting region, since it is in Darcy balance,
we can simplify the equations of mass and momentum
conservation, by neglecting the deformation term, as

w0 .

e Zum, (40)
1=\

r= (1~¢0> v (41)

Substituting eq. (41) into eq. (40), we get
W e (1=

o 1=\ 1=y A

The results of the numerical calculation suggest the existence
of a self-similar solution in the percolative compaction region.

We therefore assume that the solution is only dependent on
{ = #/f, to obtain

(42)

6__t4d 43
o_1d 14
oz {4y’ (44)
then the governing equation becomes

dg 1—¢ <¢> .l

— =3-— 45
&= b )
Through division of both sides of eq. (45) by d¢/d{, we get

¢o< ¢ >
(= 46
fo \0 4o

Thus, besides the trivial solution of ¢ =¢,, V= —1 and
AP =0, we can obtain the expressions for the time and space
distribution of porosity, solid velocity and the differential
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pressure,

| ¢ 2
d=1—yY=¢, =90 7 (47)

o (8 1—do
V== <¢> =4
go 21" 1—¢o
{3<1—¢0>t} [ 4 2 (48)
EANETErRT:
. 1—¢ go0V
AP=—100 @

b 4») b }%(¢>
{3 o+(¢o —3 52\
i b E b 2
=3 V3090 F T3040 3 ;
V3<1—¢o)?
be 1

6.2.2 Comparison of the numerical solution and theoretical
analysis

Let us compare the results of the numerical solution obtained
in Section 5 and the analytical solutions obtained above for
the case of Darcy balance. First, let us consider the case for
Vy > V. The numerical solution obtained for ¥, > 14, can be
considered as being the combination of two solutions, eq. {47)
and ¢ =¢,. The reasons are as follows. When the surface
porosity is ¢, = 0.5, the position of the solid-fluid composite
above which the porosity is equal to the surface porosity
ascends as 7 = 3{, as can be seen from eq. (47) for ¢ = ¢, =0.5.
Therefore for sedimentation rates that are larger than
V,=3—V(h)=4, an equi-porosity region develops at the
surface that has the solution of surface porosity ¢ =¢, and
Darcy velocity ¥ = —1. A comparison of the numerical and
the theoretical solution is shown in Fig. 5(a) and the solutions
are in good accordance with one another.

In the case for ¥, < Vp, we notice that the region below the
mushy layer is changing in a similar way as the case for
Vo> V5, as can be seen from Fig. 3(a). This can be explained
theoretically as before, in terms of Darcy balance, as shown
in Fig. 5(c).

6.3 Analysis of the deformative compaction region

Let us now proceed to the deformative compaction region,
where deformation balance is established.

6.3.1 Formulation of a stationary solution

From the numerical calculations, we have seen that when
Vo < Vp, the region of the mushy layer is quasi-stationary and
deformative compaction is occurring near the surface. Thus
we require a stationary solution for mechanical sedimentary
compaction. Let us look at the compacting system under
deformation balance at a coordinate moving at the growth
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rate of the system h (ie. Lagrangian), and take the # axis
positive upwards, with 2=0 at the surface. The formulation
which follows is analogous to that performed in Scott &
Stevenson (1984). As we shall see, the moving profile can be
considered as the half-sided solitary wave.

We introduce { as

[=5—hi, (50)
and we assume that the solution depends only on (,

0 0

%= e (51)
o 0
g (52)

Then the non-dimensionalized basic equations (24) and (31)
are transformed as

ﬁlﬁ_i -

havc—a{(lllV), (53)
K v i(i * a_IA//)} 4
g Kll/o{ 11’0+aC Yo Ny o ' (>4)

From eq. (53) we get
WV —h) = — o P = const. (55)

Using eq. (55), the boundary condition given by eq.(28),
aV /8¢ =0, can be transformed into

— =0. (56)

Using the expressions for permeability and effective viscosity,
and by substituting eq. (54) into eq. (53) we get

sloz) - lmma (5) G=8)
oL\¢ o¢ $o (Vol—¢o \ 0/ \1—¢

h 1-¢,
x(%’l—d»)}' 0

The above equation shows the force balance. The balance
between the first and second terms on the right-hand side
shows the Darcy balance, the balance between the left-hand
side and the second term on the right-hand side shows the
squeezing balance, and the balance between the left-hand side
and the first term on the right-hand side represents the
deformation balance. We call the solution of this equation the
stationary solution.

6.3.2 Theoretical porosity profile and its parameter dependence

Now let us focus our attention on finding the relation of the
residual porosity and mushy layer thickness to sedimentation
rate and surface porosity, and compare the results with the
numerical solution. When sedimentation rate ¥, and growth
rate h are given arbitrarily, eq. (57) can be solved numerically.
The solution (Fig. 5b) is similar to a cnoidal wave solution of
the KdV equation, unlike the solutions obtained earlier. This
is because it lacks the boundary condition at the bottom.
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By introducing ® = —In ¢, we can rewrite eq. (57) as
o0, < h ) ( 2h )
— = l——— |exp3®+¢3| -1+ ———
o =\ =g TP T T g7

x exp 2@ M)fl ————exXp D+ % !
X - X
P —¢0>Vo N
X exp(— @) — ¢ 7=/ (58)
0

Through the further introduction of —JF(®)/0® = f(®), the
above equation can be transformed as

d|1/do
i 3(%) +ro] o <59>
Here,

93 h 93 h
F@= ('<1—%)%)e"p”’*?(”l”(1—%)%)
X €X 2@———&%}; exp®—0—— ! ii

P T T =05 7P T T T haT o Vo
x exp(—®) + const. (60)

The first term of eq.(59) is analogous to kinetic energy and
the second term to potential energy. At { = —o0 we require
8¢/ = 0*¢/0L* =0, which makes f(®_,)=0 and kinetic
energy 3(d®/d{)* = 0. The stress-free condition, eq. (56), gives
the kinetic energy to be 0, ie. 1(d®/d{)*=0 at the surface.
Therefore, in order to solve the residual porosity, we have to
solve the following equations simultaneously:

dF(®_
=) j@-)=0 (61)
F(@o)=F(®_,), (62)
which becomes
a1 b _ i g2
¢°(1”(1—¢0)%>e"p3®’+"’°< ”(1—%)%)“"”’
¢3h 1 -
g P Ot g (=0 = =0, (63)
2 h
%(1 — m) (exp 3®, —exp 3D,)
+ 4)20( 1+ 2(1—_?ﬁ;)—%>(exp 2@, — exp 3D,)
_O8h o —exp ©) (B — B
"‘(1_¢0)f/0(eXp o — €Xp @) — (D — r)d’of/o
11
N7 [exp(—®,) —exp(~D,)]=0. (64)

_ Here ¢, = ¢ _ , denotes the residual porosity. By eliminating
h, we derive the following equation:

=gl pwm (@)}
i) -5




514 1. Sumita et al.

Rl
3 1—¢r ¢r ¢0

2 1(_1_ i l i 1 65
*"5"{_3 ¢3_¢S>+2(¢3_%>}’ (63)

which shows the sedimentation rate and surface porosity
dependence of the residual porosity.

When we approximate the above relationship, when
¢, < o < 1, we get the following expression:

+

_ 1 $o\ _1(do?

0‘%%1“(@) 6<¢,>’ (66)
which becomes

o LN (o

"f"%o(fpo) 1“(45,)‘ ©7)

We can assume that In(¢,/¢,) does not vary very much for the
parameter range of interest, and the simplified relation becomes

beoc~ Vol (68)

We can derive the growth rate of the system as foilows. The
solid velocity at the region of residual porosity is

£ ¢r>31'—¢0 <¢r>3 1
=—|=] ——x—{— —¢o). 69

() imhee () aw ()
From eq. (55), we have
= Tt Tl Vo (L= s, (70)
Using the above two equations we get

; . 1_¢0(¢r>2 (¢o>
hae(l—¢)Vy=06 — ) In{ —). 71

(1—¢0)Vo 5 g ) g (71)

It is also possible to obtain the mushy layer thickness as a
function of these parameters. At the surface we have, from the
boundary condition,

¢ = do, (72)
4
=0 (73)

the latter of which was derived in eq.(56). Thus we can
approximate eq. (57) near the surface as

0% 1+h—¥,
8—C2=(1_¢0)(—f/0—>' (74)

From eq.(74) we see that the mushy layer thickness is given
by

$o A quo A
" ~ T 0 l
b 1rh—00 N1 1agepy D<=V

| o -
~JTog e (75)

The approximation in eq.(75) is valid when compaction is
efficient, i.e. when permeability is large or sedimentation rate
is small.

6.3.3 Comparison of numerical solutions and theoretical analysis

Let us now compare the numerical and theoretical solutions
in the deformative compaction region. Fig. 5(c) shows the

comparison of numerical and stationary solutions for ¥, < ¥
and shows that they are in good agreement with each other.
The solutions were obtained by using the stationary solution
eq. (57) for the mushy layer, constant porosity solution for the
residual porosity region, and the Darcy balance solution
(eq. 47) for the deepest region.

Fig. 5(d) shows the relationship between the sedimentation
rate, ¥,, and the residual porosity, ¢,, for cases with particular
surface porosities ¢,. From this diagram we can see that the
numerical and theoretical solutions (eq. 65) agree well with
each other, allowing us to conclude safely that the numerical
solution can be considered as being quasi-stationary when the
sedimentation rate is less than the Darcy velocity. We can use
Fig. 5(d) to estimate the value of the residual porosity under
given sedimentation rate and surface porosity. When ¢, « ¢,
we can use eq.(68) as a simplified relation between the
sedimentation rate and the residual porosity. By transforming
eqs (75) and (68) to the dimensionalized relations we get,

41,
Vi »
3Apg °

$51:Vo
—_— 7
Kool — polog o

From these relations we can see how parameters such as 7y, #,
and K  affect the typical values above. Note that eq. (76) is
approximately the same as eq. (32).

It should be noted that the relation of the sedimentation
rate to the mushy layer thickness is independent of the
permeability and surface porosity, while it is linearly pro-
portional to the square root of the solid viscosity. This
parameter dependence occurs because deformation balance is
occurring at this region and the ability of the solid matrix to
deform controls the rate of compaction in this domain. In
McKenzie (1987) the position of the base of the mushy layer
was named the compaction front. He showed that, if the
amount of subsidence caused by compaction is known from
the field observations of dykes, one can estimate the solid
viscosity and the sedimentation rate of the formed composite.

The magnitude of the residual porosity, on the other hand,
is proportional to the square root of the ratio of the fluid
viscosity to the surface permeability, and becomes larger with
decreasing permeability. This dependence is because the magni-
tude of the Darcy velocity, ie. the ability of the liquid to
percolate, controls the porosity in this domain. It should be
noted that when we use the Blake-Kozeny-Carman formula
for permeability, as shown in eq. (15), the magnitude of the
residual porosity becomes independent of the magnitude of
surface porosity, under the condition that the precipitating
solid flux (1 — @)V} is constant, as was shown in Fig. 4(c).

It is interesting to see that each of the two characteristic
scales shown above contain different and independent infor-
mation about material properties, while they are both depen-
dent on the sedimentation rate. Also, as has been shown in
Section 5.3, surface porosity is not influential on the character-
istic features of the porosity structure. Therefore, we shall not
consider its effects further, but focus our attention on the
structural dependences on sedimentation rate, viscosity and
permeability, which can vary by several orders of magnitude
for a variety of geophysical phenomena (see Table 2).

Finally, we can estimate the magnitude of the pressure
difference, AP, between the solid and the fluid, which is driving

mushy layer thickness ~ (76)

residual porosity
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Table 2. List of parameters.
Variable

Meaning inner core
a grain size > 1078
g gravitational acceleration 4.4(b)
K, permeability >10~%0
1) sedimentation rate > 10712
Vo Darcy velocity >10"14
Lc compaction length >107!
Lgp reduced compaction length > 1
Tc compaction time <1013
z length scale 1.22 x 105
s shear viscosity of solid > 1016(¢)
U shear viscosity of fluid 1.22 x 1073
oo surface porosity 0.4
Ds solid density 1.276 x 104(b)
Py fluid density 1.216 x 104(b)
Ap ps = ps 6.0 x 102(b)

(a) McKenzie (1984)

(b) at present ICB (1220.0 km) : Dziewonski and Anderson (1981)

(c) for Muskox Intrusion : Irvine (1980)
(d) Tonks and Melosh (1990)

(e) Yoshida, SBumita and Kumazawa (1996) : 7, = 8 x 10%! was used for the numerical calculations

of the inner core
(f) Arzi (1978)

the deformation. Since most of the compaction occurs at the
length scale of the mushy layer, we can estimate it as

v,
> ~Apgn,Vs.

AP=—p*V-V ~ .
e s mushy layer thickness

(78)

We shall use this estimate for the inner core in Section 8.

7 SEDIMENTARY COMPACTION IN A
SELF-GRAVITATING SPHERE

If we are to apply the physics of sedimentary compaction to
the Earth’s inner-core growth process, we must consider three
additional effects: spherical geometry, radial dependence of the
gravity, and time dependence of the sedimentation rate. In this
section we shall see how the results of the columnar case
studied above are affected by these effects. This system is non-
stationary, and it is in such cases that numerical solutions
become particularly useful.

We can rewrite the basic equations in spherical coordinates:

i +l£(r2|//V)=0,

o TR (79)
Ve &{ﬁwm b wApg}, (80)
e { Or
10
AP= -1}~ a(rZV). (81)

We shall non-dimensionalize the above equations with the
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magma chamber,ocean sediment Dimensions

10-3(2) > 1078 m

9.8 9.8 ms~2

10-10 10-20~-12 m2

10—8(0)’ 10—5(d) 10~ 13~-10 ms—!

10-8 10-7™~-5 ms™!

102 1004 m

102,108 100~3 m

1010 1011~15 8

~ 103, ~ 10° ~ 108 m

10%5(2) ~ 102 Pas

1(2) 10-3 Pas

~0.2+010) ~0.7 none

3.3 x 103(3) ~25%x10°  kgm™3

2.8 x 103(2) ~10x10  kgm™3

5 x 102(2) ~ 103 kgm™3
same scales as before, and obtain
o 14 , .
- = —(F V - 0 3, 82
st axt Y (82)
. K P i, .
V=_—l{ii)+<(£zw>}, (83)

Ky, (o g(R)  0F Yo
R e 10 .
AP = — — — —(FV). 84
R ") (84)

Here g(r) = 4nGpr/3, and R is the reference radius taken for
the gravity value used for non-dimensionalization, hence
80 _F
gR) R

In the numerical calculations which follow, we shall study
the case for V, < V;, where compaction balance forms, to see
the three separate effects. We shall add the three effects
mentioned above one after another in the following discussions.

First we will investigate the effect of spherical geometry. We
keep g and ¥, constant: g=g(R) and V,=0.57;. Let us
compare sedimentary compaction in a sphere to that in a
column. As can be seen from comparing Figs 3(a) and 6(a),
whose sedimentation rates are the same, the mushy-layer
thicknesses are identical in both cases when the sphere becomes
large enough, while in the region of residual porosity, the
spherical geometry forbids residual porosity to remain constant
with depth. As a result, the porosity becomes smaller in a
sphere than in a column. These results can be understood as
follows. The effect of spherical geometry becomes negligible
for the mushy layer because the radius of the sphere is much
larger than the mushy layer thickness. On the other hand,
the reason for a monotonically decreasing residual porosity
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Figure 6. (¢) Porosity evolution in a sphere with the effect of radially dependent gravity and a constant volumetric sedimentation rate of 200 non-
dimensionalized volume per unit time. This corresponds to an initial sedimentation rate of ¥, = 78.2, which decreases inversely proportionally to
the square of the radius of the growing sphere. The profiles are those at 100 and 200 non-dimensionalized time. The reference radius of the gravity
value is # =10, as indicated bu the arrow. Note the unstable structure at the region just below the mushy layer, and the appearance of a solitary
wave packet, which formed due to the subbstantial decrease in sedimentation rate. (f) Differential pressure evolution in a sphere for the condition
corresponding to Fig. 6(¢). The profiles are those at 100 and 200 non-dimensionalized time. Note the decompaction occuring (the region with
negative differential pressure) due to the upwelling of the fluid-rich solitary wave packet. The negative differential pressure, together with the
positive one, forms a ‘pressure dipole’. Note the increase in the magnitude of the pressure dipole and steepening of the solitary wave with time.

with depth is as follows. As can be seen from the equa-
tion of continuity, if the porosity and solid velocity remain
approximately constant with depth, from eq. (82) we get

oo 1

—oc—=<0

P

(note that V is negative), which means that the porosity
decrease is enhanced in the deeper parts (where the radius is
small), hence the porosity must inevitably decrease with depth.
When we examine the differential pressure profile in Fig. 6(b),
we find that the peak differential pressure is larger and that

© 1996 RAS, GJI 124, 502524

the differential pressure is non-zero at the region of residual
porosity, compared to Fig. 3(b). These are consequences of the
spherical geometry enhancing compaction.

Second, let us now add the effect of the radially dependent
gravity to the results obtained above. As can be seen from
Fig. 6(c), in the case of the gravity proportional to the radius,
compaction is not efficient at the centre of the Earth where
the gravity is zero, and creates a larger residual porosity than
in the case of constant gravity (Fig.6a). The differential
pressure in the mushy layer also increases with sphere radius,
as can be seen from Fig. 6(d). Another important result is that
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the gravity proportional to the radius causes the residual
porosity to remain constant with depth. Let us check that the
depth-independent solution of the porosity structure actually
exists. We assume that the region of the residual porosity is in
Darcy balance

Ky ¥ 20)

= — s 85
Ky, Yo g(R) (83)
From eq. (84)
. m 1 é . ) R
AP = — —= = —(#V)=independent of 7. (86)
na, 7° OF

Therefore the Darcy balance solution (eq. 85) satisfies eq. (83),
and this is true only if the gravity is proportional to the radius.
By substituting eq. (85) into eq. (82) we obtain

o, 1o , -
s = T put Y
3 K, W2
RS S (87)
R K‘I/() lp() \lj )
from which we see that
a¢f 3
af oC _¢r> (88)
hence
1
Lo —=(f = o0). 89
¢ \/?( ) (89)

Therefore, the residual porosity decreases uniformly (i.e. inde-
pendently of depth) and inversely proportionally to the square
root of time.

Third, let us add the change of sedimentation rate with the
sphere radius. For a constant volumetric sedimentation rate,
which is more realistic for the inner core, the 1-D sedimentation
rate, V,, is inversely proportional to the square of the sphere
radius, and the sedimentation rate decreases with radius. This
produces an unstable porosity structure because residual
porosity is larger at the deeper parts due to a greater sedimen-
tation rate in the past. From Fig. 6(e) the effect of decreasing
sedimentation rate is apparent as the decrease in residual
porosity near the surface. A minimum porosity, or a trough
porosity, exists at the bottom of the mushy layer, and this
corresponds to the residual porosity of the recent sedimentation
rate. Unstable porosity structure may result in the formation of
solitary waves at the region of residual porosity, as can be
seen from Fig. 6(e). Formation of solitary waves can be under-
stood as follows. From the dispersion relation of eq. (39), we
can see that the porosity profile changes more rapidly in the
region of larger porosity. Therefore the porosity profile steepens
if porosity increases with depth. The steepening eventually
balances the dispersion effect proportional to k* to form a
solitary wave. Formation of the solitary wave is manifested by
decompaction, where porosity increases with time and a bulge
of fluid packet forms (Fig. 6f). This differential pressure struc-
ture of a pair of positive and negative ones may be referred to
as a ‘pressure dipole’, as described by Ida & Kumazawa (1986).
The appearance of solitary waves in a sedimentary compacting
system was noticed by McKenzie (1987} in the case of constant
sedimentation on a partially molten column. We have now
discovered that an unstable structure and solitary waves form
also in a system of monotonically decreasing sedimentation

rate. Such waves can form through the inner core growth
process, and sedimentation of particles in magma chambers
can affect their dynamics.

We have seen from the analysis of the Darcy balance in a
self-gravitating sphere that the porosity inevitably decreases
with time, even in the region of Darcy balance. This means
not only that the residual porosity decreases with time, but
also that the constant porosity layer near the surface, when
Vo> Vp in the case of a column (Fig. 2a}, no longer exists.
Instead, even for the case of V, > V;, the deformation term
contributes to the force balance near the surface, which
becomes more evident as the buoyancy term increases (pro-
portionally to the radius) with growth. Examples of this are
shown in the next section, when we consider the spherical case
in dimensionalized form.

8 APPLICATION TO THE INNER-CORE
GROWTH PROCESS

8.1 The importance of compaction

The inner core grows from the centre of the Earth as the core
cools and solid iron precipitates upon the inner-core surface
throughout its history. This therefore becomes a good example
of sedimentary compaction. An example of ‘snow flakes’ or
dendrites of alloys can be seen from recovered samples of high
pressure and temperature experiments, e.g. Kato & Ringwood
(1989). However, as noted in the introduction, past work on
the inner-core structure has neglected compaction. Apart from
such models of the inner core, there have been an increasing
number of theoretical works on the structure of the mushy
layer and compositional convection occurring there. An ana-
lytically derived porosity structure in the presence of convec-
tion was obtained by Worster (1991}, whose non-linear effects
were studied by Amberg & Homsey (1993). Worster (1992)
discovered two modes of compositional convection, and its
quantitative understanding was undertaken by Emms &
Fowler (1994). Further, disequilibrium effects at the mush-
liquid interface were incorporated by Worster & Kerr (1994).
As with the previous models of the inner core, in all of the
above works the solid matrix was assumed immobile, and the
process of compaction was neglected for simplicity and conse-
quently excluded from the set of equations considered. The
reason for this neglect was probably because compaction did
not occur in laboratory experiments such as those of Tait,
Jahrling & Jaupart (1992). This neglect is quite serious if one
wants to deduce the structure of the inner core, since the
spatial and temporary scales of laboratory experiments and
those of the inner core differ, and compaction inevitably occurs
in the inner core, as we shall show in the calculations in the
next section. It is our belief that any theoretical model aiming
to simulate the inner core structure must take compaction
processes into account. Through such considerations, it
becomes possible to interpret and utilize, as well as predict,
seismic structure of the inner core. Furthermore, the degree of
compaction affects the degree of heat and compositional
transport from the inner core to the outer core and determines
the boundary condition for outer-core fluid flow. Therefore it
is essential to clarify the physics of sedimentary compaction
as one of the elementary processes at the inner-core boundary
to understand the core dynamics. An analogous phenomenon
might have occurred in meteorite parent bodies, since iron
meteorites often exhibit the remanences of a solid—fluid com-
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posite. It is not certain whether the inner-core growth is
occurring through sedimentation (i.e. snow fall) or dendritic
growth, but, as explained in Section 2, as far as the compaction
process is concerned, the structures formed are irrelevant to
the style of growth.

We have focused upon the compaction aspect of this problem
while previous authors have paid attention to the thermal and
compositional aspects. In the next section, we shall present the
inner-core structure determined from compaction alone, and
interpret the results based on the results obtained so far. In
Section 8.3, we show that compaction is of primary importance,
even in the presence of a phase change and convection.

8.2 Numerical results

In the case for the inner core, all three factors discussed in
Section 7 are present. On the dimensionalized scale, we shall
study the magnitude of mushy layer thickness and residual
porosity, as well as other characteristic features (i.e. inverted
porosity structure and solitary waves) of the resulting porosity
structure.

Let us first make an estimate of the order of magnitude of
the mushy-layer thickness and residual porosity. The sedimen-
tation rate at the present inner core is estimated to be
~1072 ms™* if the inner core formed in 4 x 10° years at a
constant volumetric rate (i.e. ~ 100 m® s~ !), which is coinciden-
tally about the same order of magnitude as the sedimentation
rate of deep sea sediments (i.e. 1 cm kyr~1). Using eq. (76), and
typical values for the core as in Table 2 (5, ~ 10'® Pa s), we see
that the mushy layer thickness becomes very small, of the order
of 10 m. High solid viscosity, of the order of 10%° Pas, still
makes the mushy layer thickness about 1 km, very small com-
pared to the inner-core radius of 1220 km. We see from this
result that compaction is extremely important in determining
the porosity structure. However, this does not mean that the
inner core contains a negligible amount of liquid. The residual
porosity can be sufficiently large, depending on the magnitude
of permeability, which we consider to be a function of grain
size. Using Fig. 5(d), the relationship between the residual
porosity and the sedimentation rate, we see that if the surface
permeability is smaller than 1016 m?, which corresponds to a
grain size of the order of 107 ®m if we use the permeability
formula given by eq. (15), then the residual porosity becomes
~0.01, and smaller permeability values mean that the inner
core contains an appreciable volume of liquid. Though it again
seems to be a mere coincidence, the permeability value which
the inner-core porosity structure is sensitive to is similar to the
permeability of deep-sea sediments (Table 2).

Let us now proceed on to the numerically calculated inner-
core structure and study the structure in more detail. According
to our study of the thermal history of the core, the inner core
grew proportional to the square root of time (Sumita et al.
1995), which means that the volumetric sedimentation rate is
proportional to the square root of the inner-core radius. If we
assume that the inner core grew to its present size ~ 2500 Myr
after its nucleation, which can be constrained from the thermal
history and size of the inner core (Sumita et al. 1995), we can
constrain the sedimentation rate, as a function of inner core
radius r, as

K
200(m?s 1) /1—;2%(%1)‘
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For ease of numerical calculations, we shall use a large solid
viscosity of #,=8 x 10*! Pas, but this does not affect the
porosity structure greatly, because the major parameter is the
ratio of the sedimentation rate to Darcy velocity, which is
independent of solid viscosity. We shall use ¢, = 0.4 for the
surface porosity value as a typical value of critical melt fraction,
but, as has been discussed in Section 5.3, the exact value is
unimportant to the magnitude of the mushy-layer thickness
and residual porosity. The grain size of particles in the core
is uncertain but a study of the entrainment of sediments
(Solomatov, Olson & Stevenson 1993) suggests that at core
conditions a particle of diameter greater than 3 x 1078-10""m
is large enough not to be entrained by the outer-core thermal
convection. This gives the minimum possible grain size at core
condition.

Fig. 7(a) shows the calculated inner-core growth, and its
associated structural evolution, for a surface permeability value
of Ky =27x107"m?, or a grain size of 3 x 1077 m. The
residual porosity decreases with time, together with the
formation of a solitary wave and porosity inverted structure.

Fig. 7(b) shows the permeability dependence of the inner-
core porosity structure at the present inner-core size by calcu-
lating the evolution after inner-core nucleation. Cases (1) to (3)
are those for which V,> V(K «8 x 107** m®) and, as has
been discussed for the columnar case in Section 5.3, we shall
call this the non-stationary state. Although Darcy balance
predominates throughout the profile, the deformation term
gradually grows in magnitude near the surface with the increase
in surface permeability value. Cases (4) to (6) are those for
which ¥, ~ Vp(K4, ~ 8 x 107 m?), and deformation balance
starts to form near the surface. A mushy layer of the thickness
expected from analytical theory (eq. 76) becomes evident, and
we shall call this the transitional state between the non-
stationary and quasi-stationary states. Cases (7) to (10) are
those for ¥, < Vp(K,, > 8 x 107" m?), where deformation bal-
ance in the region of the mushy layer is established, and Darcy
balance forms in the region of residual porosity. We shall call
this the quasi-stationary state, in that the mushy layer has
become the thickness expected from theory. Due to the decrease
in sedimentation rate with time, the residual porosity decreases
upwards around the base of the mushy zone. This results in the
formation of an inverted porosity structure, where a low-
porosity layer overlies a layer of higher porosity, accompanied
by solitary waves behind it as a means of fluid transportation.
The former may be seismically observable as an inner core
‘crust’, and the latter may result in the eruption of fluid blobs
that rise up through the outer core and affect geomagnetism
(Kobayashi, Abe & Fukao 1993; Moffatt & Loper 1994). When
the permeability becomes large as in case (10), it becomes
difficult for solitary waves to form, and for even larger per-
meability values it is concluded that the inner core does not
contain an appreciable amount of liquid.

Figs 7(c) and (d) show the solid viscosity dependences for
the quasi-stationary and transitionary states. From Fig. 7(c)
(quasi-stationary state), we see that the magnitude of the solid
viscosity affects the region of deformation balance through the
magnitude of the mushy-layer thickness and the wave length
of the solitary waves (see eq. 76), but not for the region of
Darcy balance, and the residual porosity remains unaffected
(see eq. 77). We also see that solitary waves form more easily
for the smaller solid viscosity values. From Fig. 7(d) (transition-
ary state), we see similar effects of the solid viscosity values,
[cases (d) and {e) of Fig. 7d]. We can see that the solid viscosity
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starts to affect the porosity structure in the scale of the inner
core only if the solid viscosity becomes larger than about
10?2 Pas. However, such a huge viscosity, comparable to, or
larger in magnitude than, that of the mantle, seems hardly
possible, considering the high homologous temperature of the
inner core. Thus it can be concluded that the magnitude of
the solid viscosity does not affect the macroscopic porosity
structure of the inner core for the reasonable solid viscosity
estimate of 5, « 10?2 Pa s. If solitary waves do form, however,
their shapes and phase velocities would be affected by the solid
viscosity, since the wavelength of the solitary wave is about
twice the mushy layer thickness. Hence we can conclude that
in the Earth’s inner core, seismically detectable porosity is due
to residual porosity, and the magnitude of the surface per-
meability governs the porosity structure and is independent of
the solid viscosity.

Some inferences about the seismic structure of the inner core
can be made, based on the calculated results. Seismic obser-
vations show that the Poisson’s ratio is anomalously high
{~0.44; Dziewonski & Anderson 1981), and this is often
interpreted as being due to partial melting. If we assume that
the present inner core contains sufficient liquid to affect seismic
waves, we can conclude that the permeability of the inner core
is quite small, <107 !9 m?, Considering the textural dependence
of permeability given in eq(15), this could be due to small
grain size, a <1 um and/or to a decrease in the connectivity
of the fluid phase {an increase in the value of K) by the
appearance of the ‘swiss cheese’ state. We also know the inner-
core boundary of the Earth is seismically sharp (Masters &
Shearer 1990), and the thin mushy-layer thickness obtained
from the discussions above can be its cause, which means that
the compaction appears to be very efficient. If this is really
the case then, due to the viscous deformation of the solid
matrix, the interstitial fluid in the matrix shouid be in a lens-
like form, perpendicular to the radial direction. This could
produce a seismic anisotropy different to that observed already
(e.g. Shearer 1994) that differs in radial and lateral directions,
and could be observed from free oscillations.

It should be noted that the assumption of Newtonian creep,
as formulated in eq. (5), can be found to be valid by considering
the deformation mechanism. The ratio of the differential press-
ure between the solid and liquid, AP as evaluated in eq. (78),
normalized to the solid rigidity p ~ 156.7 GPa (Dziewonski &
Anderson 1981) becomes

AP ~ApgnV,

~

i H

~3><10‘8\/ s >< o) (90)
10'5(Pas) /\ 10~ *(ms™1)

Using the deformation mechanism maps of Frost & Ashby
(1982), we see that the solid deforms by diffusion creep, ie.
as a Newtonian viscous fluid, when AP/u < 1075 which is
consistent with the assumption.

When we focus our attention to the stage of inner-core
nucleation, the calculations imply that it was easier for a
porous inner core to form, due to a fast sedimentation rate
and low gravity. As can be seen from the result of compaction
in a sphere, a porosity inversion occurred due to the decrease
in the sedimentation rate as the inner core grew, which can be
stated as an unavoidable consequence of inner-core growth
when the effect of compaction is strong.
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8.3 Effects of phase change and convection

Let us discuss the effects that were not included in the present
mechanical compaction model, i.e. the effects of phase change
and convection. Fowler (1990) addressed the problem of
whether thermodynamics or compaction is the governing factor
in the coupled problem, and the same problem persists in the
case for the inner-core growth process as well as in magma
chambers or the magma ocean. The study of the combined
result of compaction and thermo-chemical effects is in progress,
some of whose results are given in Sumita et al. (1995), which
shows that in the presence of phase change, but in the absence
of convection, its effects are to decrease the porosity further,
and the characteristic form of the porosity structure remains
basically the same as when only compaction is considered.
As for the effect of convection, from the calculated tempera-
ture profile of the inner core, we have already shown that
thermal convection is difficult (Sumita et al. 1995), but com-
positional convection driven by the existence of comparatively
light-element-rich fluid at deeper parts may occur. One may
ask what happens to the porosity structure under the coexist-
ence of compaction and convection. The condition for composi-
tional convection is evaluated by the magnitude of the
compositional Rayleigh number in a porous medium
Rac — gApmushK¢0H , (91)
Kfg
where H is the mushy layer thickness, Ap. 18 the density
difference of the liquid between the top and bottom of the
mushy layer, and x is the thermal diffusivity. Laboratory
experiments and analytical analysis tells us that the critical
Rayleigh number is of the order of 10 {Worster 1992; Tait &
Jaupart 1992). By assuming an appropriate phase diagram,
as in Sumita et al. (1995), the case where compositional
convection occurs is found to be

{Ric — (Ric— H)*}K 4 H > 200, (92)

where Ry is the inner core radius. When we take H = 1220 km,
the largest possible value for H, we see that compositional
convection occurs for a surface permeability value of larger
than 107® m2 The permeability range which drastically affects
the inner-core porosity structure (Fig. 7b) is smaller than the
critical permeability required for mushy-layer compositional
convection to occur, so our calculated porosity structures
shown in Fig. 7(b) corresponds to the case when compositional
convection does not occur. For permeability values larger than
this, we have seen that the residual porosity becomes very
small, so compositional convection is only possible in the thin
mushy layer whose Rayleigh number becomes smaller, making
convection more difficult. Further, it can be shown that
convective motion cannot prevent the solid matrix from com-
pacting. The magnitude of the shear stress exerted by the
convecting fluid upon the solid matrix is of the order of #;v/a,
where a is the grain size of the matrix, which can be thought
of as being the maximum stress that the convective fluid can
exert upon the solid matrix. On the other hand, the magnitude
of the differential pressure between the solid and the liquid
has been evaluated, as in eq. (78). The ratio of the above two
quantities is given by

Shear stress by convective flow

Differential pressure
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B v 10-6(m)\ [10'(Pa s)
~2x 10 (10-4<ms-1)>< a )\/ <

(93)

In the above evaluation, we have used the values in Table 2.
The value of v~10"*ms™! used for fluid velocity is the
typical convective velocity of the outer core (Bloxham 1989),
and can be taken as the upper limit of the convective velocity
in the porous mushy layer. The grain size of ~ 10 %m is the
minimum grain size required for compositional convection
when we use the permeability formula given in eq. (15), and
larger grain sizes only act to enhance compaction. As can be
seen from the above evaluation, an extremely fast convective
velocity of the order of v ~ 10 m s ™! is required to prevent the
solid matrix from compacting, which is hardly possible. Thus
we can conclude that, even if compositional convection occurs
within the mushy layer due to large permeability, it is imposs-
ible for the convective flow to prevent the solid matrix from
compacting. This means that the porosity structure is still
determined by compaction, and by making the mushy-layer
thickness small, and lowering the permeability, compositional
convection eventually ceases. A similar conclusion was quali-
tatively inferred by Sparks et al. (1985) from a study of
postcumulus processes in magma.

9 CONCLUDING REMARKS

Let us now see what other inferences can be made from this
study. In the case of the Earth’s core, it is likely that the
sedimentation rate is smaller than the Darcy velocity [cases
(6) to (10) of Fig. 7b]. However, in smaller planetary bodies,
which should have cooled rapidly, it is very probable that the
solidifying core was in a highly porous, partially molten state,
because of larger sedimentation rates (ie. V,» 1072 ms™1)
than those of the Farth’s inner core. The presence of troilite
patches in iron meteorites (e.g. Buchwald 1975) suggests that
partial melts have a ‘sponge’ or mush texture, where both solid
and liquid are linked together in the parent body. It would be
intriguing to deduce information from these textures by exam-
ining the fraction of the cross-section area of the iron-poor
part that occurs as residual porosity. This would enable us to
gain more information, such as the size of the parent body,
together with the thermal history of the parent body deter-
mined from the Widmanstdtten pattern. Similarly, for the
magma ocean, where solidification proceeded rapidly, the case
where sedimentation rate is larger than the Darcy velocity, i.e.
the V; > ¥}, case, seems to have been realized (Tonks & Melosh
1990; Solomatov & Stevenson 1993). The results in this paper
indicate that one need not consider deformative compaction
for the magma ocean at the stage when sedimentation is in
progress. This does not mean, however, that differentiation
does not occur, since the porosity does decrease from the base
by percolative compaction (Fig. 2a).

As a final remark, we would like to stress the extreme
importance of compaction on the porosity profile of the inner
core, which has hitherto been neglected. Other effects, such as
that of phase change and compositional convection, do not
greatly affect the porosity structure, and we anticipate that,
based on the present work, we can devise a realistic structural
model of the inner core.

To summarize, from the study of mechanical sedimentary
compaction, the following conclusions were reached.

(1) Mushy layer thickness and residual porosity are charac-
teristic features for sedimentation rates smaller than the Darcy
velocity, and are a function of the sedimentation rate, but are
only weakly dependent on the magnitude of the surface
porosity when sedimentation solid flux is the same. An analyt-
ical analysis shows that the evolving porosity profile can be
considered to be a half-sided solitary wave.

(2) Decrease in the sedimentation rate as a function of time
results in the formation of a low-porosity region at the base
of the mushy layer and in the appearance of a solitary wave.

(3) If we consider mechanical compaction only, the porosity
structure of the Earth’s inner core is governed by the magnitude
of the permeability at the inner-core boundary alone, and three
regimes are present.

(a) If Vo> Vp(Ky,«8x 107 m?), a non-stationary
porosity profile forms, which shows gradually decreasing
porosity with depth. Darcy balance predominates, with a
minor contribution from the deformation term.

(b) If Vo~ Vp(Ky ~8x 107" m?), a transitional type
between a quasi-stationary and a non-stationary porosity
profile forms. Deformation balance becomes evident near
the ICB.

(© If V< Vp(Ky, > 8 x 1078 m?), a quasi-stationary profile
forms, characterized by two regions: (i) an upper region with
a quasi-stationary profile of deformation balance. There is a
mushy layer with an inner core ‘crust’ (a low porosity region)
below, accompanied by solitary waves behind; (ii) a lower
region with an equi-porosity (residual porosity) profile, which
decreases with time. Darcy balance occurs in this region. For
K4 > 107 m? the inner core no longer contains an
appreciable amount of liquid.
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APPENDIX A: DERIVATION OF EFFECTIVE
VISCOSITY

Let us assume a situation where pores of radius R are uniformly
distributed throughout a viscous medium. We shall describe
the overall behaviour of the medium by studying one of the
pores and neglecting the interaction between pores.

First, we derive the flow of the solid matrix around a single
pore, driven by a pressure difference between the solid and the
fluid, P, — P;. We assume that the deformation is governed by
the solid alone, and that the fluid in the pores flows in and
out of them freely. We assume that the velocity is described
by the potential ®@ in the matrix,

V=Vo. (A1)
We assume incompressibility:
V:-V=V:Vd=0, (A2)

and a radiaily symmetric potential:
=—. (A3)

We set boundary condition at r = R as 0®/dr = R, to obtain

R?R
o= ——"—, (A4)
T
Ve R<5>2. (AS)
r

We assume that the pressure gradient balances the viscous
force in the solid,

VP =nAV
=, grad AD. (A6)
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Substitution of eq. (AS) into eq. (A6) gives
VP,=0 (A7)

Therefore the pressure in the solid is constant. The pressure
difference between the fluid and the solid is given by the stress
boundary condition at the interface:

v R

Ps_Pf=2ns5= _4715_

R (AB)

Next, we apply the above result to the property of a bulk
system, neglecting the interaction between the pores. If the
number of pores per unit volume is n, the porosity becomes

4
= 3 nRn, (A9)

which leads to

%:3% (A10)

Using eq. (A8) we get

2 ip—py, (AL1)
¢ 4

which 1s transformed to

1Dy 3
p Dt¢ = = 4 P Po). (A12)

Hence,

4 o¢
P,— P;= 3’7s4)(6t +V- V¢)

41-9¢
= V-V. A13
37 (A13)
We hereby obtain the expression for effective viscosity as
41—¢
=3 s (A14)

APPENDIX B: DERIVATION OF THE KdV
EQUATION

The basic equations form the KdV equation when residual
porosity is large, namely when the amplitude of the porosity
profile is small. We can derive the KdV equation in the same
way as that of Whitehead & Helfrich (1986).

First, we expand the basic equations to the quadratic term
of non-linearity. We take the basic state of 3 and Vas

U=y, (B1)

a v\ o
== (1—wo> o (B2)

By expanding eqs (24) and (31) to the second order, we obtain

oy’ (1—1//1> Yo Y oV’ V,6V’ 1'7’_1[1_ oV’

oF  \ 11—y, l//l'é?—‘/"az P’ BArTE

(B3)

V= <1 "l//1>3l//0(1 +241)
L—vo) Yi(1—4y)

_ <1 ~¢1>3l//o(1 +l//1+l//%)‘//,2

-y, Yl =y, )?
. 11—y, \2 82V N 1=y \2> 2—y, oy oV
L—y ) 022 L=t/ Yi(1—yy) 07 02

We make the Gardner—Morikawa transformation as follows,

to new variables { and t. The new coordinates move at a
velocity ¢, relative to the original coordinates

[ = eV2(2 — cof), (B5)
r=83/2601;l/21!//1<i:‘l/;;> . (B6)

Here, ¢, is the long-wavelength limit of the linear wave given
by eq.(39), ¢o=3¢3(1 —do)/do, and ¢ is the factor for per-
turbative ordering. The factor appearing in eq. (B5) is intro-
duced in accordance with the coefficient of k? in the dispersion
relation in eq. (38):

0 )

ISV Sl B
Fr T (B7)
2

i= —&t%co— -i—fs”zcoa +&*%¢, T+ (1-y, _6_
o % 7 3y, \1—yo

(B3)
Let us expand the variables as follows:
Y = ey, (B9)
V' =e(V'® 4 eV'® 4 2@y ), (B10)

Here, the superscripts represent the order of expansion. To the
zeroth order, eq. (B4) becomes

L1\’ Yol 4 2¢,)
Vo= ., Bi1
(1~wo> vy’ (31D
The first-order parts of eqs (B3) and (B4) become
(1+ 21//1)%(1 — m)s W, e
a1 =) \1 =y o 174 o¢
(B12)
i <1 —1//1> Yoll + 4y + Y} )!V‘Z)+ ( ,/,1>zanf<0)
1—yo/ Yi(l—yy) L—yo/) 0
(B13)
Substituting eq. (B11) into (B12) and (B13), we obtain
y 2<1—w0) 14293 v 2
E3 L=y ) (1 =y )(1 + 24,) o’ '
(B14)
If we define the new variable y as
-~ s B15
* 3(1—w1 AT TR (B13)
we obtain the KdV equation
dx o Py
E+6xa—c+5——3—0. (B16)

© 1996 RAS, GJI 124, 502-524



