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SUMMARY 
A detailed study of the physics of a 1-D sedimentary compaction of a viscous medium 
was carried out both numerically and analytically for columnar and self-gravitating 
spherical cases, in view of applying it to the inner-core growth process of the Earth. 
The effects of sedimentation rate and surface porosity upon the porosity profile were 
investigated. It was found that the porosity profile differs depending on whether or not 
the sedimentation rate is larger than the Darcy velocity (velocity of the solid matrix 
when the fluid flows by buoyancy alone). When the sedimentation rate is larger than 
the Darcy velocity, a thick, constant-porosity layer develops at the surface, and below 
it, the porosity decreases gradually towards the bottom. When the sedimentation rate 
is smaller than the Darcy velocity, the porosity profile is characterized by a mushy 
layer at the top, where the fluid is expelled by the deformation of the solid, underlain 
by a thick layer of constant porosity, termed the residual porosity. Such a porosity 
profile can be understood as the propagation of a half-sided solitary wave. The study 
was extended further for the self-gravitating spherical case. Formation of an unstable 
porosity structure and the appearance of solitary waves were discovered for the case 
of monotonically decreasing sedimentation rate. Given the size of the sphere formed 
by sedimentary compaction, according to the magnitude of the ratio of sedimentation 
rate to Darcy velocity, three types of porosity structure, which differ in force balance 
and the typical length scale required for porosity decrease, were discovered. One such 
structure is where a low-porosity layer forms at the top, accompanied by solitary waves 
beneath it, indicating that a crust-like region can develop at the surface of the inner core. 
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1 INTRODUCTION 

Sedimentary compaction appears in various fields of the earth 
sciences. It is a common process that occurs not only in 
compacting sediments in lakes and on sea floors, but also as 
densification or age-hardening of snow (Gow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ramseier 
1963), sedimentation of volcanic ash, and as cumulate forma- 
tion in magma chambers (Irvine 1980; Sparks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1985) or 
magma oceans, the latter of which are considered to have 
formed during the early stages of the Earth's formation 
(Safronov 1978). 

Another important application is the inner-core growth 
process, which is believed to have been occurring throughout 
the Earth's history by cooling of the core (e.g. Jacobs 1953). 
The formation of a partially molten inner core is an inevitable 
consequence of the solidification of a liquid iron core that 
contains impurities (e.g. Birch 1964), as can be seen in dendritic 
growth of crystals in solidifying alloys, so the inner core can 

be regarded as the cumulative result of precipitation and 
sedimentary compaction of solid iron particles. 

There have been several works concerning the structure of 
the inner core. Fearn, Loper & Roberts (1981) and Loper & 
Fearn (1983) argued that the mushy layer, a layer of partially 
molten state, may extend to the centre of the Earth from 
simple thermodynamic considerations by using a phase dia- 
gram. Loper ( 1983) proposed that through compositional 
freezing by the downward flow of the outer-core fluid into the 
inner core, the mushy layer becomes thin. We propose that 
the compaction process of the solid matrix, which has been 
neglected in the previous studies, is of primary importance to 
the structure of the inner core, because of the large spatial and 
temporary scales involved for the inner-core growth. 

The objective of this paper is to make a detailed study of 
the physics of sedimentary compaction from both numerical 
and analytical aspects, and in columnar and self-gravitating 
spherical cases using fluid dynamic equations and constitutive 
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relations, in order to provide the bases of applying it to the 
inner-core growth process. Our model is simple, but we have 
shown that when we apply this model to the inner core, even 
in the presence of other effects such as that of convection, the 
structure is primarily determined by compaction. 

In modelling the dynamics of partial melt it should be borne 
in mind that there are three types of partially molten states, 
depending on whether each of the two states, solid and liquid, 
link together or not. Stevenson (1990) analogously named 
these as being in the state of the ‘meat ball’, when only the 
liquids link together, the ‘sponge’, when both solid and liquid 
link together and the ‘swiss cheese’, when only solids link 
together. The former two may also be called ‘slurry’ or ‘mush‘, 
respectively. We will assume that the inner core is in the state 
of the ‘sponge’ or ‘mush’ domain where the solid forms a 
matrix (i.e. solid grains link together) and compacts, while the 
interstitial melt, which is also linked together, seeps out from 
the matrix as a permeable flow. 

The physics of sedimentary compaction has long been 
investigated in the study of sedimentary basins (e.g. Gibson 
1958). In most of these studies, the mechanical behaviour of 
the compacting solid material has been regarded as plastic and 
conventionally treated as elastic for mathematical convenience. 
In recent years, numerical solutions have been obtained for 
the evolution of porosity (Audet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Fowler 1992) as well as for 
temperature by considering heat conduction (Wangen 1992). 
In both of these works, the sedimentation rate dependence on 
the porosity profile was studied and it was found that the 
compaction mechanics were governed by the ratio of 
sedimentation rate to permeability. 

The process of compaction was formulated in another way, 
originating from the study of magma. McKenzie (1984) derived 
and analysed the governing equations for compaction by treat- 
ing the compacting solid as a viscous medium. He defined the 
compaction length as a typical length scale for compaction to 
occur when a column of partial melt is placed on an imper- 
meable plane. Richter & McKenzie (1984) obtained dynamical 
solutions for partial melt which was left on an impermeable 
plane and then applied it to the movement of trace elements 
(Richter 1986). Ribe (1985) derived time-independent station- 
ary solutions for a compacting partial melt in an ascending 
magma. He defined the reduced compaction length, which is a 
typical length scale for compaction when the magnitude of the 
velocity given as the boundary condition is smaller than the 
magnitude of the Darcy flow, the flow without compaction 
occurring. Shirley (1986) solved the sedimentary compaction 
problem numerically and applied it to igneous cumulates. 
McKenzie ( 1987) calculated the result of constant sedimen- 
tation of partial melt upon an initially uniform column of 
partial melt. By making several approximations, Fowler ( 1990) 
analysed compaction coupled with heat transfer. In Birchwood 
& Turcotte (1994), unlike in the previous works on sedimentary 
basins, the solid was assumed to deform as a viscous medium, 
and the compaction of an initially present column of solid- 
liquid composite was investigated. 

In this paper we will treat the solid-fluid composite as a 
Newtonian viscous fluid, similar to that in McKenzie (1984), 
but we distinguish the pressure of the solid and the fluid 
following Scott & Stevenson (1986). Verification of the above 
assumption of rheology is also given in this paper. By assuming 
viscous flow, we were able to see that the porosity profile 
could be considered as a propagation of a solitary wave, and 
also discovered a case where decompaction and formation of 

solitary waves occurs. Such a property was analysed, as has 
been done by several authors (Scott & Stevenson 1984; Scott 
& Stevenson 1986; Barcilon & Richter 1986) for similar 
equations for the system where a mass of magma ascends 
through a deformable solid matrix. These phenomena could 
not be described by treating the solid as plastic. 

This paper provides the first thorough numerical and analyt- 
ical study of the time-evolving, compacting sedimentary system 
by treating the solid as a viscous medium. The problem was 
studied not only for the columnar case but also for the self- 
gravitating spherical case, in view of applying it to the inner 
core. Our numerically calculated results of the columnar case 
agree with the study by Shirley (1986), who numerically solved 
a similar set of equations, but did not fully investigate the 
porosity profile and its parameter dependences from analytical 
aspects. In this paper, we have also derived analytical solutions, 
to confirm and understand the numerically obtained results, 
and to present explicit parameter dependences of the features 
that characterize the porosity structure. 

The parameters of importance in non-dimensionalized equa- 
tions are the sedimentation rate and the surface porosity, and 
we will consider the effects of these upon the porosity profile 
thus formed in a wide parametric range. When considering 
dimensionalized solutions, the magnitudes of solid viscosity 
and permeability become important. 

We will treat the problem in Sections 2 to 6 using 1-D 
Cartesian coordinates, in order to understand the basic physics 
of the columnar case, and in Section 7 we will consider the 
sedimentary compaction in a self-gravitating sphere, which is 
the case for the inner core and in planetary bodies. From 
Section 2 to Section 4, the governing equations and the choice 
of constitutive relations are described. In Section 5, we make 
a numerical study of a columnar sedimentary compaction 
problem and the effects of parameters upon the porosity 
profile, which is analytically analysed in Section 6. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 
we study compaction in a self-gravitating sphere and then 
apply it to the inner-core growth process in Section 8. 

2 GOVERNING EQUATIONS 

The statement of the problem is as follows. Solid particles of 
a certain grain size precipitate upon an impermeable plane at 
a constant sedimentation rate V,, a partial melt of porosity I#J, 
forms at the surface, and a column of partial melt grows with 
time. At the same time, compaction of the solid matrix occurs 
due to its own weight and the column decreases in height. By 
solving the time evolution of the sedimentation and com- 
paction, the evolution of the porosity structure and the increase 
in the height of the column are solved, as shown schematically 
in Fig. 1. The situation is the same as in Audet & Fowler (1992). 

The basic equations governing sedimentary compaction are 
described below. The z axis is taken as positive upwards, 
z = 0 being the base and z = h being the surface of the solid- 
fluid composite. The equations described below follow the 
formulation of McKenzie (1984), except that we shall regard 
the pressure difference between solid and fluid as driving the 
compaction process, as has been formulated by Scott & 
Stevenson (1986). 

The most common example of sedimentary compaction is 
the case where the matrix is solid and the fluid is liquid, but 
there could be other types, such as when the fluid is a gaseous 
phase, such as in volcanic ashes and snow. 

The basic equations are written as the set of conservation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Notation. 
Variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 
G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H 
h 
K 
K+ 
Lc 
LR 

Pf 
Ps 
A P  

RE 

TC 

T 

t 

U 
V 
V 

VD 
vo 

c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7; 

z 

77, 

77f 

/I 

IE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 
40 

4? 

1c, 
Ps 
Pf 
AP 

Meaning 

grain size 
gravitational constant 
gravitational acceleration 
mushy layer thickness 
growth rate of the composite system 
constant in permeability 
permeability 
compaction length 
reduced compaction length 
fluid pressure 
solid pressure 
differential pressure: P., - Pf 
radius 
inner core radius 
time 
compaction time 
total volume flux: &I + (1 - 4)V 
solid velocity 
liquid velocity 
Darcy velocity 
sedimentation rate (> 0) 
vertical coordinate 
Lagrangian vertical coordinate 
shear viscosity of solid iron 
effective viscosity of solid 
shear viscosity of melt 
thermal diffusivity 
solid rigidity 
porosity 
surface porosity 
residual porosity 
-In+ 
solidity (1-porosity) 
solid density 
fluid density 
P s  - Pf 

Dimensions 

m 
Nm'kg-' 
m-2 

m 
m-1 

none 
m2 
m 
m 
Pa 
Pa 
Pa 
m 
m 
S 

S 

ms-l 

ms-1 
ms-1 

m-1 

XUS-1 

m 
m 
PaS 
Pas 
PaS 
rn2s-l 

Pa 
none 
none 
none 
none 
none 
k g n ~ - ~  
kgm-3 
kgm-3 

0 a c i r c d e x  denote the non-dimensionalized form 

equations. Conservation of mass for fluid gives 

a4 
- + v * (4v) = 0 ,  
at 

and for a solid matrix 

a 
-( 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4) + V. (  1 - $)V = 0 ,  
at 

where 4 is the porosity, v is the fluid velocity and V is the 
solid velocity. Each one of the two phases is incompressible. 

Conservation of momentum can be described by the Darcy's 
law for fluid, 

(3) K ,  4(v - V )  = - --(VPf - Pfg),  
'If 

and by hydrostatic approximation for the total solid matrix 
and the fluid, 

V{(1-4)Ps+4Pf1 = { (1 - -4 )PS+4Pfk ,  (4) 

where K ,  is the permeability as a function of porosity under 
given grain size, qf is the fluid viscosity, and P, and P, are the 

Height 

/ * 
Time 

Figure 1. A diagram illustrating the setting for sedimentary com- 
paction. The column of the solid-liquid composite grows as the solid 
particles precipitate at the sedimentation rate of V,, but the compaction 
V causes the actual growth rate h to become smaller. The resulting 
evolution of the trajectory of the surface is calculated. 

solid and fluid pressures, respectively. We have assumed hydro- 
static approximation because the compaction is assumed to 
progress slowly and hence we can safely neglect the inertial term. 

The compaction of the matrix occurs by differential pressure, 
i.e. the pressure difference between solid and fluid, 

AP=P, -Pf=  -q$V.V,  ( 5 )  

where q$ is the effective bulk viscosity of the matrix as a 
function of porosity. We have assumed the matrix to behave 
as a viscous fluid, as opposed to the often-assumed elastic or 
plastic deformation in the study of sedimentary basins. This is 
because for the time scale of the inner core growth of N 10l6 s, 
the solid behaves as a viscous medium, as can be found by the 
comparison with the relaxation time of a viscoelastic body, 
given by the ratio of viscosity and rigidity of the solid, 

from which we see that, for the time scale of interest, we may 
well assume viscous deformation. Also in the above formu- 
lation, we have assumed a linear relationship between pressure 
and deformation, i.e. Newtonian creep, rather than, say, power- 
law creep. This assumption is verified for the case of the inner 
core in Section 8. 

The explicit form of the two constitutive relations, per- 
meability and effective viscosity, as functions of porosity, are 
to be discussed in detail in Section 3. 

We will assume 1-D Cartesian coordinates. From eqs (1) 
and (2) we can define the total volume flux, U ,  which is 
independent of z, 

4 u  + (1 - $)V= u . 

AP = pS - pf, as 

a 
- CPf + (1 - 4 W )  = - {Pf + (1 - 4 ) A P k .  

( 6 )  

Eqs (4) and (5) can be rewritten in terms of AP and Ap, where 

(7) 
az zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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We can define solidity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ = 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, which we occasionally use to 
simplify the equations, and then the set of governing equations 
becomes 

a* a 
- + - ( * V ) = O ,  
at aZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

av zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AP= - G 

(9) 

Eq. (9) shows the balance of forces; the left-hand side is the 
viscous resistance of flow through the matrix, the first term on 
the right-hand side is the resistance to compaction and the 
second term denotes buoyancy. 

The boundary conditions can be written with surface 
porosity do, and the sedimentation rate Vo(>O) as follows: 

v = v = o  at z = 0 ,  ( 1 1 )  

AP=0 at z = h ,  (12) 

4 = 4 0  at z = h ,  (13)  

~ ( h )  + V, = h at z = h .  (14) 

Here h is the growth rate of the column of solid-fluid com- 
posite, which becomes smaller than the case when no com- 
paction is occurring (i.e. h = K), because of the subsidence of 
the matrix [i.e. V(h ) ] .  The initial condition is h = 0 at t = 0. 
This situation is also illustrated in Fig. 1. Since we are only 
specifying the amount of solid flux being added to the top of 
the solid-fluid composite, and not how it is being added, 
this model represents both cases where the increase in height 
occurs by sedimentation and those where it occurs through 
dendritic growth. 

Surface porosity is the largest porosity where the solid 
matrix can link together and form a mush. For porosity values 
larger than this, a slurry state is realized, which has no rigidity 
and does not propagate shear waves, and so we can assume 
that this corresponds to the inner-core boundary. The value 
of surface porosity is identical to the melt fraction at the 
rheological front of the solidifying magma (Solomatov & 
Stevenson 19931, which has a value of the rheological critical 
melt percentage (Arzi 1978) determined from the microscopic 
geometry of the sediment. For example, the surface porosity is 
-0.7 for deep-sea sediments (Haq et al. 1990) whose solids 
form a spiny geometry, but it is -0 .2k0.1 (Arzi 1978) or 
-0.29 (Toramaru & Fujii 1986) for magmatic systems. In 
most of the calculations in this paper, we take d0=0.5 for 
analytical simplicity. The difference in surface porosity is not 
influential, as will be verified in Section 5.3. Our interest lies 
in solving a set of these equations, (8), (9) and (lo), for different 
sedimentation rates V,(> 0). 

3 CONSTITUTIVE RELATIONS 

There are two important constitutive relations in the above 
equations. They are the dependence of the permeability, K,, 
and the effective uiscosity, v $ ,  on porosity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The choice of 
constitutive relations is essential for quantitative arguments, 
but there is an uncertainty in its exact form. As noted in the 
introduction, we consider the state of a ‘sponge’ or ‘mush 
domain. It may be that the connectivity of the melt phase 

becomes small as the porosity decreases in the deeper parts of 
the inner core, and the melt phase becomes isolated to form a 
state of ‘swiss cheese’. Such connectivity of the melt phase is 
not only a function of porosity but also of the interfacial 
energy, which is related to the light-element species. We have 
little knowledge of the details of such a microscopic texture at 
present, so we have not attempted to consider the state where 
complete isolation of fluid occurs, to avoid complexity. 
Nevertheless, we have used a strongly porosity-dependent 
formula for permeability, which we believe simulates its textural 
dependence. 

3.1 Permeability 

It should be noted that the porosity profiles obtained in the 
literature vary because the function which determines the 
efficiency of compaction differs. The constitutive relations 
usually used for sedimentary basins tend to make compaction 
difficult from two aspects: a strong porosity dependence of the 
permeability formula used, such as K ,  oc b 8 ,  and a very small 
permeability at the surface, which is caused by a minute grain 
size of -0.1 pm, as in the case for clay (Audet & Fowler 1992; 
Wangen 1992). On the other hand, those usually used for 
magma have a comparatively weak dependence on porosity 
and larger grains size of - 1 mm, making compaction easy to 
occur (McKenzie 1984). 

Although the strict permeability of partial melt cannot 
be given unless the microscopic melt morphology is known, 
we adopt the commonly accepted Blake-Kozeny-Carman 
equation, 

a243 
K -  ’- K ( l  -4)” 

which is known to represent the experimental data of per- 
meability of magma quite well (McKenzie 1984). Here a is the 
grain size and K is the empirical constant of 10 - 1000 
representing tortuosity (McKenzie 1984). In this paper, we 
shall use this expression and take K = 1000. 

3.2 Effective bulk viscosity 

We have described the matrix deformation as follows, using 
the effective bulk viscosity ~ 8 ,  

(16) 

The effective bulk viscosity of the matrix has not been exper- 
imentally measured, but can be derived theoretically as a 
function of porosity and solid shear vicosity, considering the 
deformation of the matrix as 

(see Appendix A for derivation). If we assume that at the 
surface porosity, the solid-fluid composite is in the state of 
‘Hertz contact’, where an increase in porosity no longer allows 
the solid matrix to link together, the effective viscosity would 
drop to zero when the porosity becomes larger than the surface 
porosity. As a result, compaction no longer occurs for porosity 
larger than the surface porosity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 1996 RAS, GJI 124, 502-524 



506 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. Sumita zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 

4 NON-DIMENSIONALIZATION OF BASIC 
EQUATIONS 

We shall non-dimensionalize the governing equations by the 
following scales. The subscript 0 denotes the value at the 
surface. We will non-dimensionalize the velocity by the solid 
velocity when the fluid flows by its buoyancy alone, which we 
shall call the Darcy velocity, 

We take the length scale as the length scale determined by the 
balance of viscous resistance and compaction, the compaction 
length 

Lc= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K+o$o%)':2. (19) 

Note that Lc is independent of gravity g and density difference 
Ap. For the time scale we use the time taken for the Darcy 
flow to flow the distance of the compaction length, the 
compaction time, 

We denote non-dimensional variables by circumflexes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v=  v/vD, (21) 

e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= z/Lc,  (22) 

f = t/Tc. (23) 

Then the governing equations (8), (9) and (10) become zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+-$B=O, 

ai ae 

The boundary conditions are 

V=B=O atz^=O, 

4=40 at P = h ,  (29) 

i.+ go=i at 2 = & ,  (30) 

with the initial condition f i  = 0 at f = 0. Using the boundary 
condition (27), eq. (6) becomes U = 0, thus eq. (25) becomes 

which shows the force balance in the velocity scale. The left- 
hand side represents the viscous resistance, the first term on 
the right-hand side is the negative buoyancy term, and the 
second term is the deformation term. There are three types of 
force balance: 

(1) Darcy balance: the left-hand side balances the first term 
on the right-hand side; 

(2) squeezing balance: the left-hand side balances the second 

(3) deformation balance: the two terms on the right-hand 
term on the right-hand side; 

side balance. 

As we shall see in the solutions, the difference in the 
sedimentation rate results in different force balance structures. 
However, in reality the squeezing balance (2) does not occur. 
Note also that it is not the exact value of the permeability and 
effective viscosity but its functional dependence on porosity 
which is important in the qualitative results. Of course, such 
values are needed in quantitative arguments when transforming 
the results to the dimensionalized form. 

5 TIME-DEPENDENT NUMERICAL 
SOLUTIONS 

We will now solve eqs (24) and (31) numerically and see how 
the porosity structure evolves as a constant flux of partial melt 
is added on the top of the system. We use a finite-difference 
method for spatial discretization. Porosity is solved explicitly 
from eq. (24) and the solid velocity is solved from eq. (31). A 
staggered space grid is used; the porosity and the differential 
pressure are evaluated at the centre of the finite-difference 
volume, while the advection terms are evaluated at both ends 
of the volume. There are two changeable parameters: the 
porosity do at the surface, and the sedimentation rate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. The 
calculated porosity profile takes a distinctively different form 
depending on whether the sedimentation rate is larger than or 
smaller than the Darcy velocity, VD. This was noticed earlier 
by Shirley (1986) through solving a similar set of equations 
numerically, except that he did not make a distinction between 
the solid and the fluid pressures. Our calculated result generally 
agrees with his result, and we have also calculated the force 
balance and differential pressure structures so as to clarify the 
mechanics taking place. 

5.1 Case for V,, > V,, 

First, let us consider the case for sedimentation rate larger 
than the Darcy velocity. The calculated result of the evolution 
of the porosity profile is given in Fig. 2(a). It can be seen that 
the porosity profile is time-dependent, characterized by two 
regions: an equi-porosity zone at the surface, and a gradually 
decreasing porosity towards the bottom. The equi-porosity 
region is in a state of uniform fluidization, as described by 
McKenzie (1984). Compaction does not occur and the liquid 
flows according to Darcy's law, driven only by buoyancy. 
From Fig.2(c) it can be seen that at the surface, liquid 
percolates at the Darcy velocity and the solid matrix subsides 
uniformly at the same rate. We can see from the small value 
of the differential pressure gradient shown in Fig. 2(b) and 
from force balance (Fig. 2d) that Darcy balance predominates 
throughout the whole region. Hence, in this case, the decrease 
in porosity is driven by permeable flow and not by a differential 
pressure gradient. We will thus define the compaction occurring 
under Darcy balance as percofative compaction. Greater 
sedimentation rates result in the increase of the length of the 
equi-porosity region. A theoretical analysis is conducted in 
Section 6.2. 

0 1996 RAS, GJI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA124, 502-524 



s481aq zyxw
vutsrqponm

lkjihgfedcbaZ
Y

X
W

V
U

T
S

R
Q

P
O

N
M

LK
JIH

G
F

E
D

C
B

A
p

a
Z

llW
lO

!S
U

a
W

lP
-U

O
N

 z
y
x
w

v
u

ts
rq

p
o

n
m

lk
jih

g
fe

d
c
b

a
Z

Y
X

W
V

U
T

S
R

Q
P

O
N

M
L

K
J
IH

G
F

E
D

C
B

A
(P) zyxw

vutsrqponm
lkjihgfedcbaZ

Y
X

W
V

U
T

S
R

Q
P

O
N

M
LK

JIH
G

F
E

D
C

B
A

o
w

 zyxw
vutsrqponm

lkjihgfedcbaZY
X

W
V

U
TS

R
Q

P
O

N
M

LK
JIH

G
FE

D
C

B
A

oo+ 
0

9
s
 

O
O

E
 

O
P

Z
 zyxw

vutsrqponm
lkjihgfedcbaZ

Y
X

W
V

U
T

S
R

Q
P

O
N

M
LK

JIH
G

F
E

D
C

B
A

0
0

2
 

O
P

L
 

0
0

1
 

0
s 

0
 

I 
2

' 1
- 

1
- 

8
 0

- 

2
 

9
0

- 
8 
3

 
- 3 

W
O

- zyxw
vutsrqponm

lkjihgfedcbaZ
Y

X
W

V
U

T
S

R
Q

P
O

N
M

LK
JIH

G
F

E
D

C
B

A
3 
ir
 

2
 0

- 

0
 

L 

2
0
0
0
 

0
 

W
O

'O
 f
 

3 3
 

"
O

O
i
 

8
0

0
'0

 ;a 
- 3 s B

 
LO

'O
 

eL 

&
 

Z
L

O
O

 

*L
O

O
 

L- 

S
O

- 

<
 

8 
3

 
0

-
 

0
 

= a
 

n
 

I' 
L

 
s

o
 

L 

I 
O

O
L =

1
 

0
s =

1
 

0
 1
'0

 

2
-0

 

0
'0

 $ 9
 

W
O

 

S
O

 

S
O

 

cn- 

2 



508 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASumita zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 

5.2 Case for V,, < V ,  

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtypical example of the porosity evolution for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVo < V, is 
shown in Fig. 3(a). The profile here is characterized by three 
regions. The upper region, which we call the mushy layer, is 
where compaction is occurring. Its thickness does not change 
with time, therefore the porosity profile is stationary when 
seen from the coordinate which moves with the top boundary. 
We shall refer to this state as being quasi-stationary and call 
the thickness the mushy-layer thickness. We shall show later 
(eq. 76) that its magnitude is determined by the reduced 
compaction length L,  (Ribe 1985), 

which is the compaction length for the system that has a 
boundary condition of V =  Vo with Vo < V,. However, the 
situation in Ribe (1985), who modelled the compaction of 
partial melting caused by upwelling mantle flow, is quite 
different from ours, in that the fluid velocity, instead of the 
solid velocity, is given as the boundary condition. The differen- 
tial pressure profile is given in Fig. 3(b), and it shows that 
compaction is progressing within the mushy layer thickness. 
The force balance at this region is such that the negative 
buoyancy term roughly balances the deformation term forming 
the deformation balance, and decrease in porosity occurs, 
driven by the viscous deformation of the matrix (Fig. 3d). We 
will thus define the compaction occurring under deformation 
balance as deformatiue compaction. A theoretical analysis for 
this region is conducted in Section 6.3. 

The middle region is characterized by constant porosity that 
does not change with time. We shall call this porosity the 
residual porosity. The matrix can no longer deform, due to the 
increase in effective viscosity and inefficient permeable flow, 
which is caused by the drastic decrease in permeability with 
depth. This state also corresponds to the state of uniform 
fluidization described by McKenzie ( 1984) and corresponds to 
the uniform fluidization porosity of Ribe (1985); this was 
termed 'abyssal' porosity in the study of sedimentary basins 
(Fowler 1990). In this region there is a permeable flow of 
liquid, but the solid matrix is hardly mobile (Fig. 3c). Here, 
the viscous resistance term balances the negative buoyancy 
term, forming a Darcy balance, and compaction ceases 
(Fig. 3e). 

There is a region at the bottom where porosity gradually 
decreases again, which is driven by permeable flow and is in 
Darcy balance. This is thus in a state of percolative compaction 
and is the same phenomenon seen for the case for V, > V,. 

5.3 Effect of parameters 

The effect of variation in sedimentation rate can be seen 
in Fig. 4(a) for a sedimentation rate near the Darcy velocity, 
and in Fig. 4(b) for a sedimentation rate smaller than the 
Darcy velocity. A larger sedimentation rate produces a greater 
mushy-layer thickness and residual porosity, due to lesser 
efficiency in expelling liquid, and these figures apply to the 
dimensionalized scale as well. 

To see the effect of surface porosity, the effect of non- 
dimensionalizing scales must be taken into account, since the 
non-dimensionalizing scales are functions of surface porosity. 

Fig. 4(c) shows the surface-porosity dependence on the porosity 
structure when the solid flux (1 - q50)V, added to the top of 
the composite column is the same in the dimensionalized scale 
(see figure caption for details). As can be seen from the 
calculated results, the effect of surface porosity is not as marked 
as that of the sedimentation rate. Therefore we can conclude 
that the surface porosity values are not influential on the 
porosity structures formed when the sedimentation solid flux 
is constant. 

The above results of parameter dependences are verified 
from the theoretical analysis given in Section 6.3.3. To summar- 
ize, there are three basic types of porosity profiles, according 
to the following sedimentation rates. 

(1) V, >> V,. Non-stationary porosity profile characterized 
by two regions: (a) an upper region, with equi-porosity and 
Darcy balance; and (b) a lower region with porosity gradually 
decreasing downwards and percolative compaction occurring 
under Darcy balance. 

(2) Vo - V,. Transitional type between a quasi-stationary 
and a non-stationary porosity profile. 

(3) Vo << V,. Quasi-stationary porosity profile characterized 
by three regions: (a) an upper region with mushy layer, quasi- 
stationary, deformative compaction occurring under defor- 
mation balance; (b) a middle region with equi-porosity (residual 
porosity), no compaction and in Darcy balance; and (c) a 
lower region with porosity gradually decreasing downwards 
and, percolative compaction occurring under Darcy balance. 

Here V, is the Darcy velocity, as defined in eq. (18). This re- 
sult shows that when the sedimentation rate changes from 
fast (>VD) to slow (<VD),  the porosity profile shows a 
remarkable change. 

6 THEORETICAL ANALYSIS 

In order to understand the results of the numerical solutions, 
and to verify those results, it is of help to conduct a theoretical 
analysis. In this section we will perform a theoretical analysis 
in order to give physical and mathematical explanations for 
the numerical solutions obtained in the preceding section. 

6.1 Linear analysis 

First, let us investigate the dispersion relation of the basic 
equations. We take linear perturbation as 

$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$1 + $', (33) 

(34) 

where t j l  is the solidity at the region of Darcy balance. 
Substituting the above expressions into eqs (24) and (31), we 
have 

(35) 

By eliminating $' from eqs (35) and (36), and assuming the 
following form for the perturbation term 

P'ccexp[i(wt^-k2)], (37) 
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we get the dispersion relation pressure, 

(47) 

By expanding by k we get 

From the fact the dispersion effect begin with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2, we can expect 
that the solution behaves analogously to the KdV equation, 
with some nonlinearity. By a reductive perturbation method, 
we can actually derive the KdV equation, as has been done 
by Whitehead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Helfrich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1986); the derivation is shown in 
Appendix B. In Section 6.3, we shall see that the solution can 
indeed be interpreted qualitatively in terms of the solitary wave. t \ 

6.2 Analysis of the percolative compaction region 

A percolative Compaction region was seen in both cases, 
V, > V, and V, < V,. In both cases, percolative compaction 
occurred at the base of the column. Let us now make an 
attempt to provide an analytical solution of these regions. 

(49) 

6.2.2 Comparison ofthe numerical solution and theoretical 
analysis 

Let us compare the results of the numerical solution obtained 
in Section 5 and the analytical solutions obtained above for 
the case of Darcy balance. First, let us consider the case for 
Vo > V,. The numerical solution obtained for Vo > V, can be 
considered as being the combination of two solutions, eq. (47) 
and $ = 40. The reasons are as follows. When the surface 
porosity is $,, = 0.5, the position of the solid-fluid composite 
above which the porosity is equal to the surface porosity 
ascends as 2 = 3f, as can be seen from eq. (47) for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = 4o = 0.5. 
Therefore for sedimentation rates that are larger than 
Po = 3 - P(h) = 4, an equi-porosity region develops at the 
surface that has the solution of surface porosity 4 = $o and 
Darcy velocity = - 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA comparison of the numerical and 
the theoretical solution is shown in Fig. 5(a) and the solutions 
are in good accordance with one another. 

In the case for V, < V,, we notice that the region below the 
mushy layer is changing in a similar way as the case for 
Vo > V,, as can be seen from Fig. 3(a). This can be explained 
theoretically as before, in terms of Darcy balance, as shown 
in Fig. 5(c). 

6.2.1 Analytical solution 

In the non-compacting region, since it is in Darcy balance, 
we can simplify the equations of mass and momentum 
conservation, by neglecting the deformation term, as 

a$ a 
- = - -($P), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf ai 

P=-(-) I - $  3$0 

1 -$o 

Substituting eq. (41) into eq. (40), we get 

a* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at^ 
_ -  

The results of the numerical calculation suggest the existence 
of a self-similar solution in the percolative compaction region. 
We therefore assume that the solution is only dependent on 
[ = i/f, to obtain 

(43) 

(44) 
a i d  
ai t^ d i '  
_ _ _ _  - 

then the governing equation becomes 
6.3 Analysis of the deformative compaction region 

Let us now proceed to the deformative compaction region, 
where deformation balance is established. 

(45) 

6.3.1 Formulation o f a  stationary solution 

From the numerical calculations, we have seen that when 
V, < V,, the region of the mushy layer is quasi-stationary and 
deformative compaction is occurring near the surface. Thus 
we require a stationary solution for mechanical sedimentary 
compaction. Let us look at the compacting system under 
deformation balance at a coordinate moving at the growth 

Through division of both sides of eq. (45) by d # / d i ,  we get 

i=3--( 1-4 A ) 2  

40 40 

Thus, besides the trivial solution of 4 =do, V= - 1 and 
A P  = 0, we can obtain the expressions for the time and space 
distribution of porosity, solid velocity and the differential 
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0 6 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr 

0 x 6' x 

I 1  I I 1 1 . 1  I I 

! 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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By introducing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ = -In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we can rewrite eq. (57) as rate of the system (i.e. Lagrangian), and take the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi axis 
positive upwards, with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2=0 at the surface. The formulation 
which follows is analogous to that performed in Scott & 
Stevenson (1984). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs we shall see, the moving profile can be 
considered as the half-sided solitary wave. 

We introduce as 

and we assume that the solution depends only on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, 

a : a  
- -5 -h - - ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a; a i  

a a  
ai - a i  
_ - -  

Then the non-dimensionahzed basic equations (24) and (31) 
are transformed as 

;a+ a 
h- = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- (+V) ,  

a i  a i  (53) 

(54) 

From eq. (53) we get 

$(V - h) = -$o i$ = const. 

Using eq. (55), the boundary condition given by eq. (28), 
ap/ai = 0, can be transformed into 

(55) 
. i  

a4 - =o .  
a i  
Using the expressions for permeability and effective viscosity, 
and by substituting eq. (54) into eq. (53) we get 

1 - 4  

x ( k - 3 ) ) .  (57) 

The above equation shows the force balance. The balance 
between the first and second terms on the right-hand side 
shows the Darcy balance, the balance between the left-hand 
side and the second term on the right-hand side shows the 
squeezing balance, and the balance between the left-hand side 
and the first term on the right-hand side represents the 
deformation balance. We call the solution of this equation the 
stationary solution. 

6.3.2 Theoretical porosity profile and i ts  parameter dependence 

Now let us focus our attention on finding the relation of the 
residual porosity and mushy layer thickness to sedimentation 
rate and surface porosity, and compare the results with the 
numerical solution. When sedimentation rate Po and growth 
rate i are given arbitrarily, eq. (57) can be solved numerically. 
The solution (Fig. 5b) is similar to a cnoidal wave solution of 
the KdV equation, unlike the solutions obtained earlier. This 
is because it lacks the boundary condition at the bottom. 

x exp(-@) - 

Through the further introduction of -aF(@)/a@ = f ( @ ) ,  the 
above equation can be transformed as 

d 1 d@ -[ d i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 ( ) Z + F ( @ ) ]  = o .  (59) 

Here, 

x exp(-@) + const. (60) 

The first term of eq. (59) is analogous to kinetic energy and 
the second term to potential energy. At i = - cc we require 
a4/ai = a24/ai2 = 0, which makes f (Km) = 0 and kinetic 
energy $(d@/di)’ = 0. The stress-free condition, eq. (56), gives 
the kinetic energy to be 0, i.e. f(d@/di) ’  = 0 at the surface. 
Therefore, in order to solve the residual porosity, we have to 
solve the following equations simultaneously: 

1 1  
[exp(-Q0) - exp(-@,)I = 0. _ - -  

40 Po 
Here dr = 4 - denotes the residual porosity. By eliminating 

h, we derive the following equation: 
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which shows the sedimentation rate and surface porosity 
dependence of the residual porosity. 

When we approximate the above relationship, when 
<< 4o < 1, we get the following expression: 

which becomes 

6 = 6 L (  40 & y l n (  40 2). 
We can assume that ln(&/&) does not vary very much for the 
parameter range of interest, and the simplified relation becomes 

4,.cm. (68) 
We can derive the growth rate of the system as follows. The 
solid velocity at the region of residual porosity is 

R =  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(6) 31-40 __ x - ($)1(1 -do). 
4 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 - 4 1  

From eq. (55), we have 

Using the above two equations we get 

It is also possible to obtain the mushy layer thickness as a 
function of these parameters. At the surface we have, from the 
boundary condition, 

4=40, (72) 

84 
- = 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a i  (73) 

the latter of which was derived in eq. (56). Thus we can 
approximate eq. (57) near the surface as 

(74) 

From eq. (74) we see that the mushy layer thickness is given 
by 

(75) 

The approximation in eq.(75) is valid when compaction is 
efficient, i.e. when permeability is large or sedimentation rate 
is small. 

6.3.3 Comparison of numerical solutions and theoretical analysis 

Let us now compare the numerical and theoretical solutions 
in the deformative compaction region. Fig. 5(c) shows the 

comparison of numerical and stationary solutions for V, < V, 
and shows that they are in good agreement with each other. 
The solutions were obtained by using the stationary solution 
eq. (57) for the mushy layer, constant porosity solution for the 
residual porosity region, and the Darcy balance solution 
(eq. 47) for the deepest region. 

Fig. 5(d) shows the relationship between the sedimentation 
rate, Po, and the residual porosity, &, for cases with particular 
surface porosities 40. From this diagram we can see that the 
numerical and theoretical solutions (eq. 65) agree well with 
each other, allowing us to conclude safely that the numerical 
solution can be considered as being quasi-stationary when the 
sedimentation rate is less than the Darcy velocity. We can use 
Fig. 5(d) to estimate the value of the residual porosity under 
given sedimentation rate and surface porosity. When dr << zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdo, 
we can use eq. (68) as a simplified relation between the 
sedimentation rate and the residual porosity. By transforming 
eqs (75) and (68) to the dimensionalized relations we get, 

mushy layer thickness - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJA V,, 
3APg 

(77) 

From these relations we can see how parameters such as qf, qp 
and K,o affect the typical values above. Note that eq. (76) is 
approximately the same as eq. (32). 

It should be noted that the relation of the sedimentation 
rate to the mushy layer thickness is independent of the 
permeability and surface porosity, while it is linearly pro- 
portional to the square root of the solid viscosity. This 
parameter dependence occurs because deformation balance is 
occurring at this region and the ability of the solid matrix to 
deform controls the rate of compaction in this domain. In 
McKenzie (1987) the position of the base of the mushy layer 
was named the compaction front. He showed that, if the 
amount of subsidence caused by compaction is known from 
the field observations of dykes, one can estimate the solid 
viscosity and the sedimentation rate of the formed composite. 

The magnitude of the residual porosity, on the other hand, 
is proportional to the square root of the ratio of the fluid 
viscosity to the surface permeability, and becomes larger with 
decreasing permeability. This dependence is because the magni- 
tude of the Darcy velocity, i.e. the ability of the liquid to 
percolate, controls the porosity in this domain. It should be 
noted that when we use the Blake-Kozeny-Carman formula 
for permeability, as shown in eq. (15), the magnitude of the 
residual porosity becomes independent of the magnitude of 
surface porosity, under the condition that the precipitating 
solid flux ( 1  - 40)Vo is constant, as was shown in Fig. 4(c). 

It is interesting to see that each of the two characteristic 
scales shown above contain different and independent infor- 
mation about material properties, while they are both depen- 
dent on the sedimentation rate. Also, as has been shown in 
Section 5.3, surface porosity is not influential on the character- 
istic features of the porosity structure. Therefore, we shall not 
consider its effects further, but focus our attention on the 
structural dependences on sedimentation rate, viscosity and 
permeability, which can vary by several orders of magnitude 
for a variety of geophysical phenomena (see Table 2). 

Finally, we can estimate the magnitude of the pressure 
difference, AP, between the solid and the fluid, which is driving 

0 1996 RAS, GJI 124, 502-524 



Sedimentary compaction model for the inner core zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA515 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAList of parameters. 

Variable Meaning inner core 

grain size > 10-8 

gravitational acceleration 4.4(b) 
permeability > 10-20 

sedimentation rate 110-12 
Darcy velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 10-14 
compaction length 110-1 

compaction time < 1013 
length scale 1.22 x 106 

reduced compaction length > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

shear viscosity of solid 

shear viscosity of fluid 

surface porosity 0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 10'6(e) 

1.22 x 

P s  solid density 1.276 x 104(b) 3.3 x io3(a) 

Pf fluid density 1.216 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 104@) 2.8 x 103(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AP P s  - Pf 6.0 x 102(b) 5 x lo2(") 

sediment 

> 10-8 

10-20-12 
9.8 

10-13--10 

10-?--5 

looN4 
100-3 
1011-15 - 103 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

10-3 

N 0.7 
2.5 x 103 - 1.0 x 103 

103 

Dimensions 

m 

ms-2 
m2 

ms-' 
ms-' 
m 
m 

m 

Pas 

Pas 
none 
kgm-3 

kgm-3 

kgm-3 

S 

(a) McKenzie (1984) 
(b) at present ICB (1220.0 km) : Dziewonski and Anderson (1981) 
(c) for Muskox Intrusion : Irvine (1980) 
(d) Tonks and Melosh (1990) 
(e) Yoshida, Sumita and Kumazawa (1996) : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs = 8 x 1021 was used for the numerical calculations 

(f) Arzi (1978) 
of the inner core 

the deformation. Since most of the compaction occurs at the 
length scale of the mushy layer, we can estimate it as 

-4GE. VO AP= -q,*V*V - 
" mushy layer thickness 

We shall use this estimate for the inner core in Section 8. 

7 SEDIMENTARY COMPACTION I N  A 
SELF-GRAVITATING SPHERE 

If we are to apply the physics of sedimentary compaction to 
the Earth's inner-core growth process, we must consider three 
additional effects: spherical geometry, radial dependence of the 
gravity, and time dependence of the sedimentation rate. In this 
section we shall see how the results of the columnar case 
studied above are affected by these effects. This system is non- 
stationary, and it is in such cases that numerical solutions 
become particularly useful. 

We can rewrite the basic equations in spherical coordinates: 

a$ 1 a 
at r2 dr 
- + - -(rz$V) = 0,  

i a  
AP= -q$- -(r2V).  

r2 dr 

(79)  

We shall non-dimensionalize the above equations with the 

same scales as before, and obtain 

Here g(r) = 4nGpr/3, and R is the reference radius taken for 
the gravity value used for non-dimensionalization, hence 

In the numerical calculations which follow, we shall study 
the case for V, < V, where compaction balance forms, to see 
the three separate effects. We shall add the three effects 
mentioned above one after another in the following discussions. 

First we will investigate the effect of spherical geometry. We 
keep g and V, constant: g = g ( R )  and V,=0.5VD. Let us 
compare sedimentary compaction in a sphere to that in a 
column. As can be seen from comparing Figs 3fa) and 6(a), 
whose sedimentation rates are the same, the mushy-layer 
thicknesses are identical in both cases when the sphere becomes 
large enough, while in the region of residual porosity, the 
spherical geometry forbids residual porosity to remain constant 
with depth. As a result, the porosity becomes smaller in a 
sphere than in a column. These results can be understood as 
follows. The effect of spherical geometry becomes negligible 
for the mushy layer because the radius of the sphere is much 
larger than the mushy layer thickness. On the other hand, 
the reason for a monotonically decreasing residual porosity 
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Figure 6. (e) Porosity evolution in a sphere with the effect of radially dependent gravity and a constant volumetric sedimentation rate of 200 non- 
dimensionalized volume per unit time. This corresponds to an initial sedimentation rate of vo = 78.2, which decreases inversely proportionally to 
the square of the radius of the growing sphere. The profiles are those at 100 and 200 non-dimensionalized time. The reference radius of the gravity 
value is i. = 10, as indicated bu the arrow. Note the unstable structure at the region just below the mushy layer, and the appearance of a solitary 
wave packet, which formed due to the subbstantial decrease in sedimentation rate. (f) Differential pressure evolution in a sphere for the condition 
corresponding to Fig. 6(e). The profiles are those at 100 and 200 non-dimensionalized time. Note the decompaction occuring (the region with 
negative differential pressure) due to the upwelling of the fluid-rich solitary wave packet. The negative differential pressure, together with the 
positive one, forms a ‘pressure dipole’. Note the increase in the magnitude of the pressure dipole and steepening of the solitary wave with time. 

with depth is as follows. As can be seen from the equa- 
tion of continuity, if the porosity and solid velocity remain 
approximately constant with depth, from eq. (82) we get 

(note that is negative), which means that the porosity 
decrease is enhanced in the deeper parts (where the radius is 
small), hence the porosity must inevitably decrease with depth. 
When we examine the differential pressure profile in Fig, 6( b), 
we find that the peak differential pressure is larger and that 

the differential pressure is non-zero at the region of residual 
porosity, compared to Fig. 3(b). These are consequences of the 
spherical geometry enhancing compaction. 

Second, let us now add the effect of the radially dependent 
gravity to the results obtained above. As can be seen from 
Fig. 6(c), in the case of the gravity proportional to the radius, 
compaction is not efficient at the centre of the Earth where 
the gravity is zero, and creates a larger residual porosity than 
in the case of constant gravity (Fig. 6a). The differential 
pressure in the mushy layer also increases with sphere radius, 
as can be seen from Fig. 6(d). Another important result is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the gravity proportional to the radius causes the residual 
porosity to remain constant with depth. Let us check that the 
depth-independent solution of the porosity structure actually 
exists. We assume that the region of the residual porosity is in 
Darcy balance 

From eq. (84) 

A B = - - - - (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA" a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi2 ?) = independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi .  
i 2  a i  

Therefore the Darcy balance solution (eq. 85) satisfies eq. (83), 
and this is true only if the gravity is proportional to the radius. 
By substituting eq. (85) into eq. (82) we obtain 

from which we see that 

hence 

(89) 
1 

c#r.c-(s+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa). 
4 

Therefore, the residual porosity decreases uniformly (i.e. inde- 
pendently of depth) and inversely proportionally to the square 
root of time. 

Third, let us add the change of sedimentation rate with the 
sphere radius. For a constant volumetric sedimentation rate, 
which is more realistic for the inner core, the 1-D sedimentation 
rate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,, is inversely proportional to the square of the sphere 
radius, and the sedimentation rate decreases with radius. This 
produces an unstable porosity structure because residual 
porosity is larger at the deeper parts due to a greater sedimen- 
tation rate in the past. From Fig. 6(e) the effect of decreasing 
sedimentation rate is apparent as the decrease in residual 
porosity near the surface. A minimum porosity, or a trough 
porosity, exists at the bottom of the mushy layer, and this 
corresponds to the residual porosity of the recent sedimentation 
rate. Unstable porosity structure may result in the formation of 
solitary waves at the region of residual porosity, as can be 
seen from Fig, 6(e). Formation of solitary waves can be under- 
stood as follows. From the dispersion relation of eq. (39), we 
can see that the porosity profile changes more rapidly in the 
region of larger porosity. Therefore the porosity profile steepens 
if porosity increases with depth. The steepening eventually 
balances the dispersion effect proportional to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk2 to form a 
solitary wave. Formation of the solitary wave is manifested by 
decompaction, where porosity increases with time and a bulge 
of fluid packet forms (Fig. 6f). This differential pressure struc- 
ture of a pair of positive and negative ones may be referred to 
as a 'pressure dipole', as described by Ida & Kumazawa (1986). 
The appearance of solitary waves in a sedimentary compacting 
system was noticed by McKenzie (1987) in the case of constant 
sedimentation on a partially molten column. We have now 
discovered that an unstable structure and solitary waves form 
also in a system of monotonically decreasing sedimentation 

rate. Such waves can form through the inner core growth 
process, and sedimentation of particles in magma chambers 
can affect their dynamics. 

We have seen from the analysis of the Darcy balance in a 
self-gravitating sphere that the porosity inevitably decreases 
with time, elren in the region of Darcy balance. This means 
not only that the residual porosity decreases with time, but 
also that the constant porosity layer near the surface, when 
V, > V, in the case of a column (Fig. 2a), no longer exists. 
Instead, even for the case of Vo > V,, the deformation term 
contributes to the force balance near the surface, which 
becomes more evident as the buoyancy term increases (pro- 
portionally to the radius) with growth. Examples of this are 
shown in the next section, when we consider the spherical case 
in dimensionalized form. 

8 APPLICATION TO THE INNER-CORE 
GROWTH PROCESS 

8.1 The importance of compaction 

The inner core grows from the centre of the Earth as the core 
cools and solid iron precipitates upon the inner-core surface 
throughout its history. This therefore becomes a good example 
of sedimentary compaction. An example of 'snow flakes' or 
dendrites of alloys can be seen from recovered samples of high 
pressure and temperature experiments, e.g. Kato & Ringwood 
(1989). However, as noted in the introduction, past work on 
the inner-core structure has neglected compaction. Apart from 
such models of the inner core, there have been an increasing 
number of theoretical works on the structure of the mushy 
layer and compositional convection occurring there. An ana- 
lytically derived porosity structure in the presence of convec- 
tion was obtained by Worster (19911, whose non-linear effects 
were studied by Amberg & Homsey (1993). Worster (1992) 
discovered two modes of compositional convection, and its 
quantitative understanding was undertaken by Emms & 
Fowler (1994). Further, disequilibrium effects at the mush- 
liquid interface were incorporated by Worster & Kerr (1994). 
As with the previous models of the inner core, in all of the 
above works the solid matrix was assumed immobile, and the 
process of compaction was neglected for simplicity and conse- 
quently excluded from the set of equations considered. The 
reason for this neglect was probably because compaction did 
not occur in laboratory experiments such as those of Tait, 
Jahrling & Jaupart (1992). This neglect is quite serious if one 
wants to deduce the structure of the inner core, since the 
spatial and temporary scales of laboratory experiments and 
those of the inner core differ, and compaction inevitably occurs 
in the inner core, as we shall show in the calculations in the 
next section. It is our belief that any theoretical model aiming 
to simulate the inner core structure must take compaction 
processes into account. Through such considerations, it 
becomes possible to interpret and utilize, as well as predict, 
seismic structure of the inner core. Furthermore, the degree of 
compaction affects the degree of heat and compositional 
transport from the inner core to the outer core and determines 
the boundary condition for outer-core fluid flow. Therefore it 
is essential to clarify the physics of sedimentary compaction 
as one of the elementary processes at the inner-core boundary 
to understand the core dynamics. An analogous phenomenon 
might have occurred in meteorite parent bodies, since iron 
meteorites often exhibit the remanences of a solid-fluid com- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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posite. It is not certain whether the inner-core growth is 
occurring through sedimentation (i.e. snow fall) or dendritic 
growth, but, as explained in Section 2, as far as the compaction 
process is concerned, the structures formed are irrelevant to 
the style of growth. 

We have focused upon the compaction aspect of this problem 
while previous authors have paid attention to the thermal and 
compositional aspects. In the next section, we shall present the 
inner-core structure determined from compaction alone, and 
interpret the results based on the results obtained so far. In 
Section 8.3, we show that compaction is of primary importance, 
even in the presence of a phase change and convection. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.2 Numerical results 

In the case for the inner core, all three factors discussed in 
Section 7 are present. On the dimensionalized scale, we shall 
study the magnitude of mushy layer thickness and residual 
porosity, as well as other characteristic features (i.e. inverted 
porosity structure and solitary waves) of the resulting porosity 
structure. 

Let us first make an estimate of the order of magnitude of 
the mushy-layer thickness and residual porosity. The sedimen- 
tation rate at the present inner core is estimated to be 
-lo-'' m s-' if the inner core formed in 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx lo9 years at a 
constant volumetric rate (i.e. - 100 m3 s-l), which is coinciden- 
tally about the same order of magnitude as the sedimentation 
rate of deep sea sediments (i.e. 1 cm kyr-l). Using eq. (76), and 
typical values for the core as in Table 2 ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq s  - 1OI6 Pa s), we see 
that the mushy layer thickness becomes very small, of the order 
of 10 m. High solid viscosity, of the order of 10" Pa s, still 
makes the mushy layer thickness about 1 km, very small com- 
pared to the inner-core radius of 1220 km. We see from this 
result that compaction is extremely important in determining 
the porosity structure. However, this does not mean that the 
inner core contains a negligible amount of liquid. The residual 
porosity can be sufficiently large, depending on the magnitude 
of permeability, which we consider to be a function of grain 
size. Using Fig. 5(d), the relationship between the residual 
porosity and the sedimentation rate, we see that if the surface 
permeability is smaller than mz, which corresponds to a 
grain size of the order of 10-6m if we use the permeability 
formula given by eq. (15), then the residual porosity becomes 
-0.01, and smaller permeability values mean that the inner 
core contains an appreciable volume of liquid. Though it again 
seems to be a mere coincidence, the permeability value which 
the inner-core porosity structure is sensitive to is similar to the 
permeability of deep-sea sediments (Table 2). 

Let us now proceed on to the numerically calculated inner- 
core structure and study the structure in more detail. According 
to our study of the thermal history of the core, the inner core 
grew proportional to the square root of time (Sumita et al. 
1995), which means that the volumetric sedimentation rate is 
proportional to the square root of the inner-core radius. If we 
assume that the inner core grew to its present size -2500 Myr 
after its nucleation, which can be constrained from the thermal 
history and size of the inner core (Sumita et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1995), we can 
constrain the sedimentation rate, as a function of inner core 
radius r ,  as 

For ease of numerical calculations, we shall use a large solid 
viscosity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqs = 8 x loz1 Pas,  but this does not affect the 
porosity structure greatly, because the major parameter is the 
ratio of the sedimentation rate to Darcy velocity, which is 
independent of solid viscosity. We shall use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, = 0.4 for the 
surface porosity value as a typical value of critical melt fraction, 
but, as has been discussed in Section 5.3, the exact value is 
unimportant to the magnitude of the mushy-layer thickness 
and residual porosity. The grain size of particles in the core 
is uncertain but a study of the entrainment of sediments 
(Solomatov, Olson & Stevenson 1993) suggests that at core 
conditions a particle of diameter greater than 3 x 10-s-10-7 m 
is large enough not to be entrained by the outer-core thermal 
convection. This gives the minimum possible grain size at core 
condition. 

Fig. 7(a) shows the calculated inner-core growth, and its 
associated structural evolution, for a surface permeability value 
of K,o = 2.7 x m. The 
residual porosity decreases with time, together with the 
formation of a solitary wave and porosity inverted structure. 

Fig. 7( b) shows the permeability dependence of the inner- 
core porosity structure at the present inner-core size by calcu- 
lating the evolution after inner-core nucleation. Cases ( I )  to (3) 
are those for which V, >> VD(& << 8 x lo-'' m') and, as has 
been discussed for the columnar case in Section 5.3, we shall 
call this the non-stationary state. Although Darcy balance 
predominates throughout the profile, the deformation term 
gradually grows in magnitude near the surface with the increase 
in surface permeability value. Cases (4) to (6) are those for 
which V, - VD(Kb0 - 8 x lo-'' m2), and deformation balance 
starts to form near the surface. A mushy layer of the thickness 
expected from analytical theory (eq. 76) becomes evident, and 
we shall call this the transitional state between the non- 
stationary and quasi-stationary states. Cases (7) to (10) are 
those for V, < VD(K,o > 8 x lo-" m'), where deformation bal- 
ance in the region of the mushy layer is established, and Darcy 
balance forms in the region of residual porosity. We shall call 
this the quasi-stationary state, in that the mushy layer has 
become the thickness expected from theory. Due to the decrease 
in sedimentation rate with time, the residual porosity decreases 
upwards around the base of the mushy zone. This results in the 
formation of an inverted porosity structure, where a low- 
porosity layer overlies a layer of higher porosity, accompanied 
by solitary waves behind it as a means of fluid transportation. 
The former may be seismically observable as an inner core 
'crust', and the latter may result in the eruption of fluid blobs 
that rise up through the outer core and affect geomagnetism 
(Kobayashi, Abe & Fukao 1993; Moffatt & Loper 1994). When 
the permeability becomes large as in case (lo), it becomes 
difficult for solitary waves to form, and for even larger per- 
meability values it is concluded that the inner core does not 
contain an appreciable amount of liquid. 

Figs 7(c) and (d) show the solid viscosity dependences for 
the quasi-stationary and transitionary states. From Fig. 7(c) 
(quasi-stationary state), we see that the magnitude of the solid 
viscosity affects the region of deformation balance through the 
magnitude of the mushy-layer thickness and the wave length 
of the solitary waves (see eq. 76), but not for the region of 
Darcy balance, and the residual porosity remains unaffected 
(see eq. 77). We also see that solitary waves form more easily 
for the smaller solid viscosity values. From Fig. 7(d) (transition- 
ary state), we see similar effects of the solid viscosity values, 
[cases (d) and (e) of Fig. 7dl.  We can see that the solid viscosity 

m2, or a grain size of 3 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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starts to affect the porosity structure in the scale of the inner 
core only if the solid viscosity becomes larger than about 

Pa s. However, such a huge viscosity, comparable to, or 
larger in magnitude than, that of the mantle, seems hardly 
possible, considering the high homologous temperature of the 
inner core. Thus it can be concluded that the magnitude of 
the solid viscosity does not affect the macroscopic porosity 
structure of the inner core for the reasonable solid viscosity 
estimate of qs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<< Pa s. If solitary waves do form, however, 
their shapes and phase velocities would be affected by the solid 
viscosity, since the wavelength of the solitary wave is about 
twice the mushy layer thickness. Hence we can conclude that 
in the Earth’s inner core, seismically detectable porosity is due 
to residual porosity, and the magnitude of the surface per- 
meability governs the porosity structure and is independent of 
the solid viscosity. 

Some inferences about the seismic structure of the inner core 
can be made, based on the calculated results. Seismic obser- 
vations show that the Poisson’s ratio is anomalously high 
(-0.44; Dziewonski & Anderson 1981), and this is often 
interpreted as being due to partial melting. If we assume that 
the present inner core contains sufficient liquid to affect seismic 
waves, we can conclude that the permeability of the inner core 
is quite small, < m2. Considering the textural dependence 
of permeability given in eq (15), this could be due to small 
grain size, a < 1 pm and/or to a decrease in the connectivity 
of the fluid phase (an increase in the value of K) by the 
appearance of the ‘swiss cheese’ state. We also know the inner- 
core boundary of the Earth is seismically sharp (Masters & 
Shearer 1990), and the thin mushy-layer thickness obtained 
from the discussions above can be its cause, which means that 
the compaction appears to be very efficient. If this is really 
the case then, due to the viscous deformation of the solid 
matrix, the interstitial fluid in the matrix should be in a lens- 
like form, perpendicular to the radial direction. This could 
produce a seismic anisotropy different to that observed already 
(e.g. Shearer 1994) that differs in radial and lateral directions, 
and could be observed from free oscillations. 

It should be noted that the assumption of Newtonian creep, 
as formulated in eq. (5), can be found to be valid by considering 
the deformation mechanism. The ratio of the differential press- 
ure between the solid and liquid, AP as evaluated in eq. (78), 
normalized to the solid rigidity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp - 156.7 GPa (Dziewonski & 
Anderson 1981) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g 4 G z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

P P 

Using the deformation mechanism maps of Frost & Ashby 
(1982), we see that the solid deforms by diffusion creep, i.e. 
as a Newtonian viscous fluid, when APIp < which is 
consistent with the assumption. 

When we focus our attention to the stage of inner-core 
nucleation, the calculations imply that it was easier for a 
porous inner core to form, due to a fast sedimentation rate 
and low gravity. As can be seen from the result of compaction 
in a sphere, a porosity inversion occurred due to the decrease 
in the sedimentation rate as the inner core grew, which can be 
stated as an unavoidable consequence of inner-core growth 
when the effect of compaction is strong. 

8.3 Effects of phase change and convection 

Let us discuss the effects that were not included in the present 
mechanical compaction model, i.e. the effects of phase change 
and convection. Fowler (1990) addressed the problem of 
whether thermodynamics or compaction is the governing factor 
in the coupled problem, and the same problem persists in the 
case for the inner-core growth process as well as in magma 
chambers or the magma ocean. The study of the combined 
result of compaction and thermo-chemical effects is in progress, 
some of whose results are given in Sumita et al. (1995), which 
shows that in the presence of phase change, but in the absence 
of convection, its effects are to decrease the porosity further, 
and the characteristic form of the porosity structure remains 
basically the same as when only compaction is considered. 

As for the effect of convection, from the calculated tempera- 
ture profile of the inner core, we have already shown that 
thermal convection is difficult (Sumita et al. 1995), but com- 
positional convection driven by the existence of comparatively 
light-element-rich fluid at deeper parts may occur. One may 
ask what happens to the porosity structure under the coexist- 
ence of compaction and convection. The condition for composi- 
tional convection is evaluated by the magnitude of the 
compositional Rayleigh number in a porous medium 

where H is the mushy layer thickness, Apmush is the density 
difference of the liquid between the top and bottom of the 
mushy layer, and K is the thermal diffusivity. Laboratory 
experiments and analytical analysis tells us that the critical 
Rayleigh number is of the order of 10 (Worster 1992; Tait & 
Jaupart 1992). By assuming an appropriate phase diagram, 
as in Sumita et al. (1995), the case where compositional 
convection occurs is found to be 

{R$ - (RIc - H)2}KooH > 200, (92) 

where RIc is the inner core radius. When we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH = 1220 km, 
the largest possible value for H ,  we see that compositional 
convection occurs for a surface permeability value of larger 
than mz. The permeability range which drastically affects 
the inner-core porosity structure (Fig. 7b) is smaller than the 
critical permeability required for mushy-layer compositional 
convection to occur, so our calculated porosity structures 
shown in Fig. 7(b) corresponds to the case when compositional 
convection does not occur. For permeability values larger than 
this, we have seen that the residual porosity becomes very 
small, so compositional convection is only possible in the thin 
mushy layer whose Rayleigh number becomes smaller, making 
convection more difficult. Further, it can be shown that 
convective motion cannot prevent the solid matrix from com- 
pacting. The magnitude of the shear stress exerted by the 
convecting fluid upon the solid matrix is of the order of qfoJa, 
where a is the grain size of the matrix, which can be thought 
of as being the maximum stress that the convective fluid can 
exert upon the solid matrix. On the other hand, the magnitude 
of the differential pressure between the solid and the liquid 
has been evaluated, as in eq. (78). The ratio of the above two 
quantities is given by 

Shear stress by convective flow 
Differential pressure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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In the above evaluation, we have used the values in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 
The value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu -  10-4ms-1 used for fluid velocity is the 
typical convective velocity of the outer core (Bloxham 1989), 
and can be taken as the upper limit of the convective velocity 
in the porous mushy layer. The grain size of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- m is the 
minimum grain size required for compositional convection 
when we use the permeability formula given in eq. (15), and 
larger grain sizes only act to enhance compaction. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs can be 
seen from the above evaluation, an extremely fast convective 
velocity of the order of u - 10 m s- l  is required to prevent the 
solid matrix from compacting, which is hardly possible. Thus 
we can conclude that, even if compositional convection occurs 
within the mushy layer due to large permeability, it is imposs- 
ible for the convective flow to prevent the solid matrix from 
compacting. This means that the porosity structure is still 
determined by compaction, and by making the mushy-layer 
thickness small, and lowering the permeability, compositional 
convection eventually ceases. A similar conclusion was quali- 
tatively inferred by Sparks et al. (1985) from a study of 
postcumulus processes in magma. 

9 CONCLUDING REMARKS 

Let us now see what other inferences can be made from this 
study. In the case of the Earth’s core, it is likely that the 
sedimentation rate is smaller than the Darcy velocity [cases 
(6) to (10) of Fig. 7bl. However, in smaller planetary bodies, 
which should have cooled rapidly, it is very probable that the 
solidifying core was in a highly porous, partially molten state, 
because of larger sedimentation rates (i.e. V, >> lo-’’ m s-’) 
than those of the Earth’s inner core. The presence of troilite 
patches in iron meteorites (e.g. Buchwald 1975) suggests that 
partial melts have a ‘sponge’ or mush texture, where both solid 
and liquid are linked together in the parent body. It would be 
intriguing to deduce information from these textures by exam- 
ining the fraction of the cross-section area of the iron-poor 
part that occurs as residual porosity. This would enable us to 
gain more information, such as the size of the parent body, 
together with the thermal history of the parent body deter- 
mined from the Widmanstatten pattern. Similarly, for the 
magma ocean, where solidification proceeded rapidly, the case 
where sedimentation rate is larger than the Darcy velocity, i.e. 
the Vo > V, case, seems to have been realized (Tonks & Melosh 
1990; Solomatov & Stevenson 1993). The results in this paper 
indicate that one need not consider deformative compaction 
for the magma ocean at the stage when sedimentation is in 
progress. This does not mean, however, that differentiation 
does not occur, since the porosity does decrease from the base 
by percolative compaction (Fig. 2a). 

As a final remark, we would like to stress the extreme 
importance of compaction on the porosity profile of the inner 
core, which has hitherto been neglected. Other effects, such as 
that of phase change and compositional convection, do not 
greatly affect the porosity structure, and we anticipate that, 
based on the present work, we can devise a realistic structural 
model of the inner core. 

To summarize, from the study of mechanical sedimentary 
compaction, the following conclusions were reached. 

(1) Mushy layer thickness and residual porosity are charac- 
teristic features for sedimentation rates smaller than the Darcy 
velocity, and are a function of the sedimentation rate, but are 
only weakly dependent on the magnitude of the surface 
porosity when sedimentation solid flux is the same. An analyt- 
ical analysis shows that the evolving porosity profile can be 
considered to be a half-sided solitary wave. 

(2) Decrease in the sedimentation rate as a function of time 
results in the formation of a low-porosity region at the base 
of the mushy layer and in the appearance of a solitary wave. 

(3) If we consider mechanical compaction only, the porosity 
structure of the Earth‘s inner core is governed by the magnitude 
of the permeability at the inner-core boundary alone, and three 
regimes are present. 

(a) If V, >> VD(K,o << 8 x lo-’’ m’), a non-stationary 
porosity profile forms, which shows gradually decreasing 
porosity with depth. Darcy balance predominates, with a 
minor contribution from the deformation term. 

(b) If V, - V,(K,, - 8 x lo-’’ m2), a transitional type 
between a quasi-stationary and a non-stationary porosity 
profile forms. Deformation balance becomes evident near 
the ICB. 

(c) If Vo < VD(Ko, > 8 x 10- l8 m2), a quasi-stationary profile 
forms, characterized by two regions: (i) an upper region with 
a quasi-stationary profile of deformation balance. There is a 
mushy layer with an inner core ‘crust’ (a low porosity region) 
below, accompanied by solitary waves behind (ii) a lower 
region with an equi-porosity (residual porosity) profile, which 
decreases with time. Darcy balance occurs in this region. For 
K,o >> m2, the inner core no longer contains an 
appreciable amount of liquid. 
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APPENDIX A: DERIVATION OF EFFECTIVE 
VISCOSITY 

Let us assume a situation where pores of radius R are uniformly 
distributed throughout a viscous medium. We shall describe 
the overall behaviour of the medium by studying one of the 
pores and neglecting the interaction between pores. 

First, we derive the flow of the solid matrix around a single 
pore, driven by a pressure difference between the solid and the 
fluid, P, - Pf. We assume that the deformation is governed by 
the solid alone, and that the fluid in the pores flows in and 
out of them freely. We assume that the velocity is described 
by the potential @ in the matrix, 

V=V@. ('41) 

We assume incompressibility: 

V*V = V .  V@ = 0 ,  

and a radially symmetric potential: 

('42) 

m 
@ = -  

r ('43) 

We set boundary condition at r = R as d@/dr = R, to obtain 

R2R 

r 
@ =  --, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA('44) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( ' 4 5 )  

We assume that the pressure gradient balances the viscous 
force in the solid, 

V P  = qsAV 

= qs grad A@. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Substitution of eq. (A5) into eq. (A6) gives 

V P s = 0  (A71 

Therefore the pressure in the solid is constant. The pressure 
difference between the fluid and the solid is given by the stress 
boundary condition at the interface: 

We make the Gardner-Morikawa transformation as follows, 
to new variables i and z. The new coordinates move at a 
velocity co relative to the original coordinates 

i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&"2(2 - cot^), (B5) 
Next, we apply the above result to the property of a bulk 

system, neglecting the interaction between the pores. If the 
number of pores per unit volume is n, the porosity becomes 

4 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = - n R 3 n ,  ('49) 

which leads to 
Here, co is the long-wavelength limit of the linear wave given 
by eq. (39), co = 34;( 1 - 40)/do, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE is the factor for per- 
turbative ordering. The factor appearing in eq. (B5) is intro- 
duced in accordance with the coefficient of kZ in the dispersion 
relation in eq. (38): 

Using eq. (AS) we get 

which is transformed to 

1 Dv4 3 
4 Dt 4% 

- --(Ps-PP,). 
Let us expand the variables as follows: 

*' = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& * I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v' = E (  VCO) + &I."'1' + &Z vcz, + .. .) , 

Hence, 

Here, the superscripts represent the order of expansion. To the 
zeroth order, eq. (B4) becomes 4 1 - 4  

% V . V  = 
3 4  

We hereby obtain the expression for effective viscosity as 

APPENDIX B: DERIVATION OF THE KdV 
EQUATION 

The basic equations form the KdV equation when residual 
porosity is large, namely when the amplitude of the porosity 
profile is small. We can derive the KdV equation in the same 
way as that of Whitehead & Helfrich (1986). 

First, we expand the basic equations to the quadratic term 
of non-linearity. We take the basic state of $ and pas  

$ = * 1 *  (B1) 

(B13) 

Substituting eq. (B11) into (B12) and (B13), we obtain 

1 - $ 0  1+2+:  
az 

(B14) 

By expanding eqs (24) and (31) to the second order, we obtain If we define the new variable x as 

we obtain the KdV equation 

ax ax a3x 
aT a i  ax3 - +6x-  + - = O .  
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