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Abstract

Social networks are organized into communities with dense internal connections, giving rise to high values of the
clustering coefficient. In addition, these networks have been observed to be assortative, i.e., highly connected vertices tend
to connect to other highly connected vertices, and have broad degree distributions. We present a model for an undirected
growing network which reproduces these characteristics, with the aim of producing efficiently very large networks to be
used as platforms for studying sociodynamic phenomena. The communities arise from a mixture of random attachment
and implicit preferential attachment. The structural properties of the model are studied analytically and numerically, using
the k-clique method for quantifying the communities.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The recent substantial interest in the structural and functional properties of complex networks (for reviews,
see Refs. [1–3]) has been partially stimulated by attempts to understand the characteristics of social networks,
such as the small-world property and high degree of clustering [4]. Before this, social networks have been
intensively studied by social scientists [5–7] for several decades in order to understand both local phenomena,
such as clique formation and their dynamics, as well as network-wide processes, such as transmission of
information. Within the framework of complex networks, studies have concentrated on the structural analysis
of various types of social networks, such as those related to sexual contacts [8], professional collaboration
[4,9,10] and Internet dating [11], as well as models of collective behaviour and various sociodynamic
phenomena [12–14]. One feature of particular interest has been to evaluate and detect community structure in
networks [15–18], where the developed methodologies have found applications in various other fields such as
systems biology [19]. Communities can, roughly speaking, be defined as sets of vertices with dense internal
connections, such that the inter-community connections are relatively sparse. In everyday social life or
professional collaborations, people tend to form communities, the existence of which is a prominent
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characteristic of social networks and has far reaching consequences on the processes taking place on them,
such as propagation of information and opinion formation.

It is evident that theoretical studies of processes and collective behaviour taking place on social networks
would benefit from realistic social network models. Essential characteristics for social networks are believed to
include assortative mixing [20,21], high clustering, short average path lengths, broad degree distributions
[22–24], and the existence of community structure. Here, we propose a new model that exhibits all the above
characteristics. So far, different approaches have been taken to define social network models [20,23,25–30]. To
our knowledge, of the above [23] exhibits community structure, high clustering and assortativity,1 but based
on visualizations given in the paper their community structure appears very different from the proposed
model. Our model belongs to the class of growing network models, i.e., all edges are generated in connection
with new vertices joining the network. Network growth is governed by two processes: (1) attachment to
random vertices, and (2) attachment to the neighbourhood of the random vertices (‘‘getting to know friends of
friends’’), giving rise to implicit preferential attachment. These processes then, under certain conditions, give
rise to broad degree distributions, high clustering coefficients, strong positive degree–degree correlations and
community structure.

This paper is structured as follows: first, we motivate the model based on real-world observations, followed
by description of the network growth algorithm. Next, we derive approximate expressions for the degree
distribution and clustering spectrum and compare our theoretical results to simulations. We also present
numerical results for the degree–degree correlations. We then address the issue of community structure using
the k-clique method [18]. Finally, we conclude with a brief summary of our results.

2. Model

2.1. Motivation for the model

Our basic aim has been to develop a model which (a) captures the salient features of real-world social
networks, and (b) is as simple as possible, and simple enough to allow approximate analytical derivations of
the fundamental characteristics, although one of the desired structural characteristics (positive degree–degree
correlations) makes exact derivations rather difficult. The resulting network is of interest rather than the
growth mechanism.

To satisfy the first criterion, we have set the following requirements for the main characteristics of networks
generated by our model: (i) due to limited social resources, the degree distribution pðkÞ should have a steep tail
[22]; (ii) average path lengths should grow slowly with network size; (iii) the networks should exhibit high
average clustering; (iv) the networks should display positive degree–degree correlations, i.e., be assortative; (v)
the networks should contain communities with dense internal connections.

Requirement (i) is based on the observation that many social interaction networks display power-law-like
degree distributions but may display a cutoff at large degrees [9,10]. In some cases, degree exponents beyond
the commonly expected range 2ogp3 have been observed, e.g., in the PGP web of trust [23] a power-law like
tail with exponent g ¼ 4 has been observed. Similar findings have also been made in a study based on a very
large mobile phone call dataset [24]. In light of these data, we will be satisfied with a model that produces
either steep power laws or a cutoff at high degrees. In the case of everyday social networks, common sense tells
us that even in very large networks, no person can have tens of thousands of acquaintances. Hence, if the
degree distribution is to be asymptotically scale-free pðkÞ / k$g, the value of the exponent g should be above
the commonly observed range of 2ogp3 such that in networks of realistic sizes, NX106 vertices, the
maximum degree is limited,2 kmax%102. As detailed later, such power-law distributions can be attributed to
growth processes mixing random and preferential attachment.

Requirement (ii), short average path lengths, is a common characteristic observed in natural networks,
including social networks. Requirements (iii) high clustering, (iv) assortativity, and (v) existence of
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1The model presented in Ref. [27] also exhibits community structure and high clustering, but weak assortativity, with assortative mixing
coefficients of the order 0:01.

2For networks with a scale-free tail of the degree distribution, kmax%N1=ðg$1Þ.
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communities are also based on existing observations, and can be attributed to ‘‘local’’ edge formation, i.e.,
edges formed between vertices within short distances. The degree of clustering is typically measured using the
average clustering coefficient hci, defined as the network average of cðkÞ ¼ 2E=kðk $ 1Þ, where E is the number
of triangles around a vertex of degree k and the factor 1

2 kðk $ 1Þ gives the maximum number of such triangles.
A commonly utilized measure of degree–degree correlations is the average nearest-neighbour degree spectrum
knnðkÞ—if knnðkÞ has a positive slope, high-degree vertices tend to be connected to other high-degree vertices,
i.e., the vertex degrees in the network are assortatively mixed (see, e.g., Ref. [31]). For detecting and
characterizing communities, several methods have been proposed [15–19]. In social networks, each individual
can be assigned to several communities, and thus we have chosen to investigate the community structure of
our model networks using a method which allows membership in several communities [18].

To satisfy the second criterion, we have chosen a growing network model, since this allows using the rate
equation approach [32,33], and because even very large networks can be produced using a simple and quick
algorithm. It has been convincingly argued [26] that since the number of vertices in a social network changes at
a very slow rate compared to edges, a realistic social network model should feature a fixed number of vertices
with a varying number and configuration of edges. However, as our focus is to merely provide a model
generating substrate networks for future studies of sociodynamic phenomena, the time scales of which can be
viewed to be much shorter than the time scales of changes in the network structure, a model where the
networks are grown to desired size and then considered static is suitable for our purposes.

2.2. Model algorithm

The algorithm consists of two growth processes: (1) random attachment; and (2) implicit preferential
attachment resulting from following edges from the randomly chosen initial contacts. The local nature of the
second process gives rise to high clustering, assortativity and community structure. As will be shown below,
the degree distribution is determined by the number of edges generated by the second process for each random
attachment. The algorithm of the model reads as follows3:

(1) start with a seed network of N0 vertices;
(2) pick on average mrX1 random vertices as initial contacts;
(3) pick on average msX0 neighbours of each initial contact as secondary contacts;
(4) connect the new vertex to the initial and secondary contacts;
(5) repeat steps 2–4 until the network has grown to desired size (Fig. 1).

The analytical calculations detailed in the next section use the expectation values for mr and ms. For the
implementation, any non-negative distributions of mr and ms can be chosen with these expectation values. If
the distribution for the number of secondary contacts has a long tail, it will often happen that the number of
attempted secondary contacts is higher than the degree of the initial contact so that all attempted contacts
cannot take place, which will bias the degree distribution towards smaller degrees. We call this the saturation
effect, since it is caused by all the neighbours of an initial contact being used up, or saturated. However, for the
distributions of ms used in this paper the saturation effect does not seem to have much effect on the degree
distribution.

For appreciable community structure to form, it is essential that the number of links made to the neighbours
of an initial contact varies, instead of always linking to one or all of the neighbours, and that sometimes more
than one initial contact are chosen, to form ‘‘bridges between communities’’. Here, we use the discrete uniform
distributions n2nd%U ½0; k', k ¼ 1; 2; 3 for the number of secondary contacts n2nd , while for the number of
initial contacts ninit we usually fix the probabilities to be p1 ¼ 0:95 for picking one contact and p2 ¼ 0:05 for
picking two. This results in sparse connectivity between the communities. The uniform distributions for n2nd
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3Our network growth mechanism bears some similarity to the Holme–Kim model, designed to produce scale-free networks with high
clustering [34]. In the HK model, the networks are grown with two processes: preferential attachment and triangle formation by
connections to the neighbourhood. However, the structural properties of networks generated by our model differ considerably from HK
model networks (e.g., in terms of assortativity and community structure).
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were chosen for simplicity, but allowing larger n2nd would allow for larger cliques and stronger communities to
form (Fig. 2).

2.3. Vertex degree distribution

We will use the standard mean-field rate equation method [32] to derive an approximative expression for the
vertex degree distribution. For growing network models mixing random and preferential attachment, power-
law degree distributions pðkÞ%kg with exponents 2ogo1 have been derived in e.g., Refs. [36–38].4 Since in
our model the newly added links always emanate from the new vertex, the lower bound for the degree
exponent is 3; by contrast, if links are allowed to form between existing vertices in the network, the exponent
can also have values between 2 and 3 (see, e.g., Ref. [37]).

ARTICLE IN PRESS

Fig. 2. A visualization of a small network with N ¼ 500 indicates strong community structure with communities of various sizes clearly
visible. The number of initial contacts is distributed as pðninit ¼ 1Þ ¼ 0:95, pðninit ¼ 2Þ ¼ 0:05, and the number of secondary contacts from
each initial contact n2nd%U ½0; 3' (uniformly distributed between 0 and 3). The network was grown from a chain of 30 vertices.
Visualization was done using Himmeli [35].

i

j

v

k l

Fig. 1. Growth process of the network. The new vertex v links to one or more randomly chosen initial contacts (here i; j) and possibly to
some of their neighbours (here k; l). Roughly speaking, the neighbourhood connections contribute to the formation of communities, while
the new vertex acts as a bridge between communities if more than one initial contact was chosen.

4The same result is found for generalized linear preferential attachment kernels pk / k þ k0, where k0 is a constant, since mixing random
and preferential attachment can be recast as preferential attachment with a shifted kernel.
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If no degree correlations were present, choosing a vertex on the other end of a randomly selected edge would
correspond to linear preferential selection. In this model network correlations are present, leading to a bias
from pure preferential attachment. Qualitatively, this can be explained as follows: a low-degree vertex will
have on the average low-degree neighbours. Therefore, starting from a low-degree vertex, which are the most
numerous in the network, and proceeding to the neighbourhood, we are more likely to reach low-degree
vertices than their proportion in the network would imply. Hence, the hubs gain fewer links than they would
with pure preferential attachment. Due to degree–degree correlations, then, the simulated curves will not
closely match the theory, but at high values of k the theoretical distributions can be viewed as an upper limit to
the average maximum degrees.

We first construct the rate equation which describes how the degree of a vertex changes on average during
one time step of the network growth process. The degree of a vertex vi grows via two processes: (1) a new
vertex directly links to vi (the probability of this happening is mr=t, since there are altogether %t vertices at
time t, and mr random initial contacts are picked); (2) vertex vi is selected as a secondary contact. In the
following derivations we assume that the probability of (2) is linear with respect to vertex degree, i.e.,
following a random edge from a randomly selected vertex gives rise to implicit preferential attachment. Note
that in this approximation we neglect the effects of correlations between the degrees of neighbouring vertices.
On average ms neighbours of the mr initial contacts are selected to be secondary contacts. These two processes
lead to the following rate equation for the degree of vertex vi:

qki
qt

¼ mr
1

t
þms

kiP
k

! "
¼

1

t
mr þ

ms

2ð1þmsÞ
ki

! "
, (1)

where we substituted 2mrð1þmsÞt for
P

k, based on the facts that the average initial degree of a vertex is
kinit ¼ mrð1þmsÞ, and that the contribution of the seed to the network size can be ignored. Separating and
integrating (from ti to t, and from kinit to ki), we get the following time evolution for the vertex degrees:

kiðtÞ ¼ B
t

ti

! "1=A

$ C, (2)

where A ¼ 2ð1þmsÞ=ms, B ¼ mrðAþ 1þmsÞ, and C ¼ Amr.
From the time evolution of vertex degree kiðtÞ we can calculate the degree distribution pðkÞ by forming the

cumulative distribution F ðkÞ and differentiating with respect to k. Since in the mean field approximation the
degree kiðtÞ of a vertex vi increases strictly monotonously from the time ti the vertex is initially added to the
network, the fraction of vertices whose degree is less than kiðtÞ at time t is equivalent to the fraction of vertices
that were introduced after time ti. Since t is evenly distributed, this fraction is ðt$ tiÞ=t. These facts lead to the
cumulative distribution

F ðkiÞ ¼ Pð ~kpkiÞ ¼ Pð~tXtiÞ ¼
1

t
ðt$ tiÞ. (3)

Solving for ti ¼ tiðki; tÞ ¼ BAðki þ CÞ$At from (2) and inserting it into (3), differentiating F ðkiÞ with respect to
ki, and replacing the notation ki by k in the resulting equation, we get the probability density distribution for
the degree k as

pðkÞ ¼ ABAðk þ CÞ$2=ms$3, (4)

where A, B and C are as above. Hence, in the limit of large k, the distribution becomes a power law pðkÞ / k$g,
with g ¼ 3þ 2=ms, ms40, leading to 3ogo1. In the model, g ¼ 3 can never be reached due to the random
component of attachment. When the importance of the random connection is diminished with respect to the
implicit preferential component by increasing ms, however, the theoretical degree exponent approaches the
limit 3, the value resulting from pure preferential attachment.

2.4. Clustering spectrum

The dependence of the clustering coefficient on vertex degree can also be found by the rate equation method
[33]. Let us examine how the number of triangles Ei around a vertex vi changes with time. The triangles
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around vi are mainly generated by two processes: (1) vertex vi is chosen as one of the initial contacts with
probability mr=t, and the new vertex links to some of its neighbours (we assume ms on average, although
sometimes this is limited by the number of neighbours the initial contact has, i.e., saturation); (2) the vertex vi
is selected as a secondary contact, and a triangle is formed between the new vertex, the initial contact and the
secondary contact. Note that triangles can also be generated by selecting two neighbouring vertices as the
initial contacts, but in the first approximation the contribution of this is negligible. These two processes are
described by the rate equation

qEiðki; tÞ
qt

¼
mrms

t
þmrms

kiP
k
¼

qki
qt

þ
mrðms $ 1Þ

t
, (5)

where the second right-hand side is obtained by applying Eq. (1). Integrating both sides with respect to t, and
using the initial condition Eiðkinit; tiÞ ¼ mrð1þmsÞ, we get the time evolution of triangles around a vertex vi as

EiðtÞ ¼ kiðtÞ þmrðms $ 1Þ ln
t

ti

! "
$mr. (6)

We can now make use the previously found dependence of ki on ti for finding ciðkÞ. Solving for lnðt=tiÞ in terms
of ki from (2), inserting it into (6) to get EiðkiÞ, and dividing EiðkiÞ by the maximum possible number of
triangles, kiðki $ 1Þ=2, we arrive at the clustering coefficient:

ciðkiÞ ¼
2EiðkiÞ

kiðki $ 1Þ
¼ 2

ki þD lnðki þ CÞ $ F

kiðki $ 1Þ
, (7)

where C ¼ Amr, D ¼ Cðms $ 1Þ, and F ¼ D lnBþmr. For large values of degree k, the clustering coefficient
thus depends on k as cðkÞ%1=k.

2.5. Comparison of theory and simulations

Fig. 3 displays the degree distributions averaged over 100 runs for networks of size N ¼ 106 for various
parametrizations, together with analytical curves calculated using Eq. (4). The analytical distributions
asymptotically approach power laws with exponents pðkÞ / k$g (from top to bottom) g ¼ 5, 4:33, 5, and 7.
The tails of the simulated distributions fall below the theoretical predictions due to degree correlations, as
explained earlier. The degree–degree correlations were confirmed as the cause of the deviation by replacing the
attachment to secondary contacts by pure random preferential attachment, after which the simulated and
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Fig. 3. Degree distributions of simulated networks of size N ¼ 106, averaged over 100 runs each. Due to degree–degree correlations in the
network, linking to the neighbourhood of a vertex does not strictly lead to preferential attachment, which causes the distributions to fall
below the theoretical power laws (solid lines) at large k. Curves are vertically translated a decade apart for clarity. Inset: the ratio of
simulated values to theoretical ones. Markers correspond to different parameter values: (þ): number of initial contacts ninit from the
discrete uniform distribution U ½1; 3', number of secondary contacts n2nd from U ½0; 2'. ð)Þ: pðninit ¼ 1Þ ¼ 0:95, pðninit ¼ 2Þ ¼ 0:05,
n2nd%U ½0; 3'. ð*Þ: pðninit ¼ 1Þ ¼ 0:95, pðninit ¼ 2Þ ¼ 0:05, n2nd%U ½0; 2'. ð&Þ: pðninit ¼ 1Þ ¼ 0:95, pðninit ¼ 2Þ ¼ 0:05, n2nd%U ½0; 1'.
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theoretical slopes matched very closely (not shown). Note that the parameter values shown here were chosen
for simplicity, and they could be tuned for different qualities.

The top panel of Fig. 4 displays averaged values of the clustering coefficient cðkÞ for the same networks,
together with analytical curves calculated using Eq. (7). We see that the predictions match the simulated
results well, and the cðkÞ%1=k-trend is clearly visible. The corresponding network-averaged clustering
coefficients are (top to bottom) hci ¼ 0:30, 0:58, 0:54 and 0:43, i.e., the degree of clustering is relatively high.
Of these parameter sets, ð)Þ allows the largest number of links from each initial contact, therefore giving the
largest average clustering. Higher clustering coefficients could be obtained by increasing the possible number
of secondary contacts.
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Fig. 4. Top: clustering coefficient cðkÞ, averaged over 100 iterations for networks of size N ¼ 106. Predictions for cðkÞ (solid lines) agree
well with simulated results. Curves are vertically translated a decade apart for clarity. Inset: the ratio of simulation results to theory.
Bottom left: average nearest-neighbour degree knnðkÞ for the same networks, displaying a signature of assortative mixing. Bottom right:
average shortest path lengths grow logarithmically with network size. (þ): number of initial contacts from U ½1; 3', secondary contacts from
U ½0; 2'. Markers correspond to the same parameters as in Fig. 3.
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2.6. Degree– degree correlations and average shortest path lengths

Next, we investigate the degree–degree correlations of our model networks. Social networks are often
associated with assortative mixing [20] related to vertex degrees, i.e., high-degree vertices tend to connect to
other high-degree vertices. This tendency can be formulated in terms of a conditional probability Pðk0jkÞ that
an edge connected to a vertex of degree k has a vertex of degree k0 at its other end [31]. A quantity more
suitable for numerical investigations is the average nearest-neighbour degree knnðkÞ ¼

P
k0k

0Pðk0jkÞ. If knnðkÞ is
an increasing function of k, the network is assortatively mixed in terms of vertex degrees. The bottom left
panel in Fig. 4 shows knnðkÞ averaged over 100 networks, displaying a clear signature of assortative mixing.
Another measure of degree–degree correlations is the assortativity coefficient r [20], which is the Pearson
correlation coefficient of vertex degrees at either end of an edge. For the model networks generated with the
parameters used in this paper, the coefficients are ðþÞ : 0:18, ð)Þ : 0:10, ð*Þ : 0:10, and ð&Þ : 0:09. For different
co-authorship networks, for example, the assortativity coefficient has been found to range from 0:12 to 0:36
[20].

Qualitatively, the presence of positive degree–degree correlations can be attributed to the neighbourhood
connections, as well as the high degree of clustering. Consider a situation where a new vertex attaches to one
initial contact vi and ms of its neighbours, so that the degree of all the vertices in question is increased by one.
Hence, positive correlations are induced between the degrees of vi and its ms neighbours. In addition, because
of the high clustering, there is a large probability of connections between the ms neighbours. This gives rise to
positive degree correlations between the ms vertices.

It is commonly observed in real-life networks that average path lengths are short with respect to network
size [4]. Together with high clustering, this is called the small world effect. Typically in model networks, the
shortest path lengths are found to grow logarithmically with network size. This is also the case in our model
(Fig. 4, bottom right panel).

2.7. Community structure

The emergence of communities in the networks generated by our model can be attributed to the effects of
the two types of attachment. Roughly speaking, attachment to the secondary contacts tends to enlarge existing
communities; the new vertex creates triangles with the initial contact and its nearest neighbours. If the internal
connections within an existing community are dense, the secondary contacts tend to be members of the same
community, and thus this community grows. On the other hand, new vertices joining the network may attach
to several initial contacts (with our parametrizations, two or three). If they belong to different communities,
the new vertex assumes the role of a ‘‘bridge’’ between these. However, no edges are added between the
vertices already in the network. Therefore, the maximum size of a clique, i.e., a fully connected subgraph, to be
found in the network is limited by the maximum number of edges added per time step. In this model the
number of added edges varies, allowing for fairly large cliques to form while average vertex degree is kept
small. Visualizations of our model networks with proper parametrization exhibit clear evidence of community
structure, as shown in Fig. 2.

In order to quantify the community structure, we have utilized the k-clique method of Palla et al. [18,39] and
the free software package CFinder they provide. In this approach, the definition of communities is based on
the observation that a typical community consists of several fully connected subgraphs (cliques) that tend to
share many of their vertices. Thus, a k-clique-community is defined as a union of all k-cliques that can be
reached from each other through a series of adjacent k-cliques (where adjacency means sharing k $ 1 vertices).
This definition determines the communities uniquely, and one of its strengths is that it allows the communities
to overlap, i.e., a single vertex can be a member of several communities. For social networks, this is especially
justified.

We have found that the size distributions of k-clique-communities in our model networks are broad, and
appear power-law-like (Fig. 5). The slopes of the log–log plots were seen not to depend on the network size N.
In the case of 3-cliques, a very large community spans roughly half of the vertices in any network generated
with these parameters. Similar large 3-cliques can be observed in many other networks with communities as
well, e.g., in the datasets provided with the CFinder package: a snapshot of the co-authorship network of the
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Los Alamos e-print archives, where 54% of the roughly 30 000 vertices belong to the largest 3-clique-
community; in the word association network of the South Florida Free Association norms (67%), and in the
protein-protein interaction network of the Saccharomyces cerevisiae (17%). The requirements for a 3-clique-
community are not very strict, and it is not surprising that one community can span most of the network. With
these choices of parameters, no such supercommunities arise with k43.

Comparison of the resulting community size distributions with randomized networks, where the edges of
the networks were scrambled keeping the degree distributions intact, makes it evident that community
structure is present in the model networks (Fig. 5). Community sizes depend on (i) how the communities are
defined and detected, as different methods divide the networks into differently sized communities, and (ii)
what type of social networks are investigated, as different types of networks can be expected to display
different community structures. Although analysis of the community structure of empirical social networks is
a relevant question, we will leave it for future work. We attempt to provide a generic model that can be tuned
for desired qualities.

3. Summary

In this paper we have developed a model which produces very efficiently networks resembling real social
networks in that they have assortative degree correlations, high clustering, short average path lengths, broad
degree distributions and prominent community structure. The model is based on network growth by two
processes: attachment to random vertices and attachment to their neighbourhood. Theoretical approximations

ARTICLE IN PRESS

100 101 102 103 104 105
10-2

10-1

100

101

102

103

104

Community size

A
ve

ra
ge

 n
um

be
r 

of
 c

om
m

un
iti

es

100 10510-5

10-4

10-3

10-2

10-1

Community size

N
um

be
r 

of
 c

om
m

un
iti

es
 s

ca
le

d 
by

 1
/N

Fig. 5. The average number of k-clique-communities (+: k ¼ 3, ,: k ¼ 4, -: k ¼ 5) of each size found in our model network with N ¼
50 000; number of initial connections pðninit ¼ 1Þ ¼ 0:95, pðninit ¼ 2Þ ¼ 0:05, and number of secondary connections from U ½0; 3', averaged
over 20 networks. In the case of 3-cliques, large communities spanning roughly half the network are seen. The community size
distributions are broad, and their log–log plots appear power-law-like, although the cumulative distributions (not shown) show some
deviation. Approximate slopes of the log–log plots are k ¼ 3: 3 (excluding the supercommunities), k ¼ 4: 4, and k ¼ 5: 10. A very large 3-
clique-community spans roughly half of the vertices in any network generated with these parameters. In the corresponding randomized
networks, where edges were shuffled keeping the degree distribution intact, there were only a few adjacent triangles, and no 4-cliques at all
(& : 3-clique-communities found in the randomized networks). The inset shows the effect of network size N on the 3-clique-community
size distribution for N ¼ 100; 500; 1000; 5000; 10 000; 50 000. As all data fit on the same line when scaled by 1=N, the network size does
not affect the slope. Note that different choices of parameters would allow larger cliques and larger k-clique-communities to form.
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for the degree distribution and clustering spectrum have been derived and compared with simulation results.
The observed deviations can be attributed to degree correlations. Visualizations of the networks and
quantitative analysis show significant community structure. In terms of communities defined using the k-clique
method, the analysed community size distributions display power-law-like tails. These types of features are
also present in many real-life networks, making the model well suited for simulating dynamic phenomena on
social networks.

Acknowledgements

The authors would like to thank János Kertész, Tapio Heimo and Jussi Kumpula for useful discussions.
This work has been supported by the Academy of Finland, Project no. 1169043 (the Finnish Center of
Excellence program 2000–2005).

References

[1] R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74 (2002) 47.
[2] S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51 (2002) 1079.
[3] M. Newman, SIAM Rev. 45 (2003) 167–256.
[4] D.J. Watts, S.H. Strogatz, Nature 393 (1998) 440.
[5] S. Milgram, Psychology Today 2 (1967) 60–67.
[6] M. Granovetter, Am. J. Soc. 78 (1973) 1360–1380.
[7] S. Wasserman, K. Faust, Social Network Analysis, Cambridge University Press, Cambridge, 1994.
[8] F. Liljeros, C. Edling, L. Amaral, H. Stanley, Y. Aberg, Nature 411 (2001) 907–908.
[9] M. Newman, Proc. Natl. Acad. Sci. USA 98 (2001) 404.
[10] M. Newman, Proc. Natl. Acad. Sci. USA 101 (2004) 5200–5205.
[11] P. Holme, C. Edling, F. Liljeros, Soc. Networks 26 (2004) 155–174.
[12] D. Zanette, Phys. Rev. E 65 (2002) 041908.
[13] K. Klemm, V. Eguiluz, R. Toral, M.S. Miguel, Phys. Rev. E 67 (2003) 026120.
[14] Y. Moreno, M. Nekovee, A. Pacheco, Phys. Rev. E 69 (2004) 066130.
[15] M. Girvan, M. Newman, Proc. Natl. Acad. Sci. USA 99 (2002) 7821–7826.
[16] M. Newman, M. Girvan, Phys. Rev. E 69 (2004) 026113.
[17] M. Newman, Phys. Rev. E 69 (2004) 066133.
[18] G. Palla, I. Derényi, I. Farkas, T. Vicsek, Nature 435 (2005) 814–818.
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