
A Model for Software Product Quality

Author

Dromey, Geoff

Published

1995

Journal Title

IEEE Transactions on Software Engineering

DOI

https://doi.org/10.1109/32.345830

Copyright Statement

© 1995 IEEE. Personal use of this material is permitted. However, permission to reprint/
republish this material for advertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

Downloaded from

http://hdl.handle.net/10072/15682

Link to published version

http://ieeexplore.ieee.org/Xplore/dynhome.jsp

Griffith Research Online

https://research-repository.griffith.edu.au

146 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, FEBRUARY 1995

A Model for Software Product Quality
R. Geoff Dromey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstrucf- A model for software product quality is defined.
It has been formulated by associating a set of quality-carrying
properties with each of the structural forms that are used to de-
fine the statements and statement components of a programming
language. These quality-carrying properties are in turn linked
to the high-level quality attributes of the International Standard
for Software Product Evaluation ISO-9126. The model supports
building quality into software, definition of language-specific
coding standards, systematically classifying quality defects, and
the development of automated code auditors for detecting defects
in software.

Index Terms-Software quality, product evaluation, ISO-9126,
code auditing, quality defect classification, quality model, qual-
ity attributes, software characteristics, maintainability, quality-
carrying properties.

I. INTRODUCTION

IGNIFICANT gains in the quality of software will not S take place until there is a comprehensive model of soft-
ware product quality available. Several different models of
software product quality have been proposed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[11-[6]. While
these models offer interesting insights into various aspects of
software quality they have not been strong enough to stimulate
significant gains in the quality of software or to gain wide
acceptance.

Most recently the international standard ISO-9 126 Software
Product Evaluation Characteristics (199 1) [7] has been put
forward as a high-level framework for characterizing software
product quality. This standard appears to have drawn consid-
erably on the model originally proposed by Boehm et al. [l].
While this standard can provide high-level guidance it does not
go nearly far enough to support building quality into software.

What must be recognized in any attempt to build a quality
model is that software does not directly manifest quality
attributes. Instead, it exhibits product characteristics that imply
or contribute to quality attributes and other characteristics
(product defects) that detract from the quality attributes of a
product. Most models of software quality fail to deal with
the product characteristics side of the problem adequately
and they also fail to make the direct links between quality
attributes and corresponding product characteristics. We will
address these two issues. Our focus will be on the primary
software product, the code or implementation. However, the
framework we will provide may be equally well applied to
other components of software products such as requirements
specifications and user-interfaces. To support this claim we

Manuscript received January 1, 1994; revised October 10, 1994. Recom-

R. G. Dromey is with Software Quality Institute, Griffith University,

IEEE Log Number 9407725.

mended by R. Jeffery.

Nathan, Brisbane QLD 41 1 1, Australia.

will also sketch part of a quality model for a requirements
specification.

There is a wealth of knowledge about software quality
available. The greatest challenge in proposing any model for
software product quality is to find a framework that can accom-
modate this knowledge in a way that is constructive, refinable,
and intellectually manageable. The prime requirement of any
such model is that it makes clear and direct links between high-
level quality attributes and explicit product characteristics at
all levels. Beyond this the model must provide:

systematic guidance for building quality into software,
a means to systematically identifyklassify software char-
acteristics and quality defects, and
a structure that is understandable at a number of levels,
refinable and adaptable

A. Framework for a Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Software Product Quality

A common approach to formulating a model for software
product quality is to first identify a small set of high-level
quality attributes and then, in a top-down fashion decom-
pose these attributes into sets of subordinate attributes. The
Software Product Evaluation Standard, ISO-9 126 is typical
of this approach. For example, it decomposes maintainability
into the four attributes analyzability, stability, testability and
modijiability. While this provides some indication of what
maintainability is about the subordinate terms are still very
vague and of little assistance in building quality into software.
Seeking even further direct decomposition of such vague
attributes is not the best way forward. Instead, it is better to
employ a model that places only a single level (a set of quality-
carrying properties) between the high-level quality attributes
and the components of a product. For complex applications
like software we will show that such an approach is both
simpler and much more powerful. It allows us to approach
the task of building a model for software product quality in a
systematic and structured way by proceeding from the tangible
to the intangible. This is a practical strategy for dealing with
concepts as elusive and complex as quality.

Elsewhere we have described a generic model along these
lines that supports building quality into products and processes
[SI. This quality model consists of three primary entities:
a set of components, a set of quality-carrying properties of
components, and a set of high-level quality attributes. There
are at most six binary relations among these entities. The
following diagram illustrates the potential relations that must
be considered to build quality into designs.

For building quality into a product or process only four
of these relations are important (i.e., the ones with solid
arrowheads). The model supports the examination of quality

0098-5589/95$04.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1995 IEEE

DROMEY: A MODEL FOR SOFIWARE PRODUCT QUALITY

QUALITY-CARRYINC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 1. Generic quality model.

from two important perspectives. Firstly building in quality
from the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbottom-up. That is, for each component we can
identify which quality-carrying properties are important to
satisfy and which high-level quality attributes each of these
properties impacts. In defining this perspective the quality-
carrying properties serve as the intermediaries that link entities
to high-level quality attributes. It is also possible to employ
this model to look at building in quality from the top-
down. That is, for each high-level quality attribute we can
identify which quality-carrying properties imply that attribute
and which product entities possess particular quality-carrying
properties. Applying this scheme we can define the scope
of the task of building each high-level quality- attribute into
software products. In adapting this model to software we will
replace the term component by structural form and we will
focus upon the four primary constructive directed relations
that may be used to assist building quality into software. The
first two of these relations are:

structural form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 quality-carrying property relation
quality-carrying property + quality attribute relation

Together these two relations allow us to view the task of
building high-level quality attributes into software from the
bottom-up by ensuring that particular product properties are
satisfied. This perspective is most useful to those (that is, the
programmers) with the responsibility of implementing quality
software. In fact a programming standard can be usefully
structured along these lines. The other two relations that are
useful are:

quality attribute + quality-carrying property relation
quality-carrying property + structural form relation

These two relations allow us to view the task of building
high-level quality attributes into software from the top-down
by identifying which properties need to be satisfied for each
structural form in order to build in a given high-level quality
attribute. This perspective is most useful to designers who
have the responsibility for specifying and factoring high-level
quality attributes into the design of software. Only when we
have access to both these perspectives are we in a position to
understand what must be done to build quality into software.
This bottom-uphop-down model can provide the concrete
advice that is so vitally important to implement the process
of building quality into software.

In formulating a model for software product quality based
upon the generic model we have just sketched we will ex-
ploit the property that programs are constructed only using

PROPERTIES
STRUCTURAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIAs+zned

147

QUALITY-CARRYING
PROPERTIES

Fig. 2. Quality-canying properties of variables and expressions.

structural forms (that is, the statement types and the state-
ment components of the implementation language). A basic
characteristic of structural forms is that they possess, or
alternatively, they may each be assigned a set of quality-
carrying properties. The form-property model can facilitate
building quality into software, detecting and classifying quality
defects in software and the creation of a framework that is
refinable and understandable at a number of levels. A focus on
quality defects also makes a positive, if indirect, contribution
to building quality into software by telling us what not to do. In
considering software the two principal categories of structural
forms are:

computational forms-that describe processes
representational forms-that describe data

We will first use two simple examples to illustrate the process
of applying the form-property model and then proceed to
describe the model in more detail.

B. Examples

Consider the fundamental structural forms: variables and
expressions. To be free of quality defects they should possess
a number of defined properties. For the moment we will
simply list the quality-carrying properties of variables and
expressions.

To build-quality-into variables and expressions when we
implement programs we should therefore ensure that all of
the above properties are satisfied. In a similar way we can
associate a set of quality-carrying properties with each of
the other structural forms used in programs for a particular
programming language. The syntax of a language identifies
all its structural forms.

Violation of any of the quality-carrying properties of a
structural form results in a quality defect which affects its
integrity. Our use of the term defect here does not necessarily
imply that its presence will cause the functionality or reliability
of a software system is to be affected. In some circumstances
only nonfunctional properties are impacted by quality defects.
In other circumstances defects may point to functionality and
reliability problems. Some defects that violate the quality-
properties of expressions are:

- uncomputable (e.g., divide by zero)
- inconsistent (e.g., contains side-effects)
- ineffective (e.g., contains computational redundancy)
- unadjustable (e.g., contains numbers)

I48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, FEBRUARY 1995

Leve l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEBaTr;ss. S m u m l Forms
Highest
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASystem (si of p m m m r)
2
3

Lihary (-of rcusablc ADTs. funcuons and poculum)
Mcm-program (e.g. Shell scrip wing p m g m m)

All of the above types of defects detract from the quality of
expressions. Therefore to build quality into expressions when
we implement programs they should all be avoided. There are
other problems that can arise with expressions. For example,
an expression may contain an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunassigned variable. However,
because of the precedence rule used in the classification
discipline we impose (see below) this defect will be classified
as a variable integrity defect rather than as an expression
integrity defect even though it impacts the computation of
the expression. The classification discipline employed to char-
acterize defects fits our normal intuition. It focuses on the
source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the problem rather than on the consequences of the
defect. In the previous example there is no defect directly with
the expression. Rather the problem resides elsewhere-the
variable should have been assigned before being used in
the expression. A crucial requirement in developing such a
framework for categorizing quality defects is that the process
is repeatable. That is, two people confronted with the same
defect should arrive at the same classification for that defect.
The present proposal sets out to achieve repeatability. In
addition, with the proposed model many quality defects can be
detected by automatic means. Elsewhere we have described a
system for doing this [9].

The conceptual groundwork for constructing a model of
software product quality has now been outlined. In the remain-
der of this paper we will seek to flesh out the model by defining
the two important quality perspectives for building in quality
by specifying their four supporting relations. To do this we
will first examine the various structural forms associated with
processes and data for the imperative paradigm. The proposed
framework can be extended to handle other programming
paradigms, 4GLs, user interfaces and other software product
components such as software requirements specifications, etc.

Level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASL3T.& Struculrd Fwm~

Highest
12 Rsads
I3 Variables

14 Conrlanlo

11. STRUCTURAL FORMS FOR PROCESSES AND DATA

To be entirely accurate it is necessary to focus on the
structural forms for a particular language. The reason for this
is because we find differences like the assignment being an
expression in C but a statement in Pascal. Even with this
difference it is possible to adopt a style of programming in C
where assignments are only used in statements. Putting these
sort of difficulties aside, a common set of structural forms for
processes within the imperative paradigm, listed in order from
the highest level structures to the lowest level structures (in-
creasing numerical order) is given below. The set of structural
forms for data (which are ranked below "expressions") within
the imperative paradigm, are also ranked from the highest
to the lowest structural level, (again in increasing numerical
order) are also listed below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. ClassiJication Discipline

In classifying quality defects we should always associate
them with the lowest level structural form to which they apply.

As an example, if a defect can be associated with either
an assignment or an expression we should classify it as an
expression defect because of its lower structural level. We
will have more to say about this later. To apply this model to a

TABLE I
STRUCTURAL FORMS FOR PROCESSES AND DATA

I I
particular language it will be necessary to make adjustments to
accommodate the differences associated with structural forms.
Our intent here is not to completely characterize any particular
language but rather to describe the whole process in enough
detail so that it can be repeated or adapted as necessary for
any particular language, programming environment or other
application context.

111. HIGH-LEVEL QUALITY ATTRIBUTES OF SOFTWARE

The quality of software is most often discussed in terms
of high-level attributes such as functionality, reliability and
maintainability, etc. Ideally, any such choice of high-level
quality attributes should be complete, compatible and nonover-
lapping. For software this turns out to be a difficult task.
Each high-level quality attribute depends on a number of low-
level quality-carrying product characteristics that are certainly
not mutually exclusive in their high-level quality impact. For
example, various forms of redundancy in software affect both
its efficiency and its maintainability. Similarly, correctness
properties affect both reliability and functionality. There is
not much we can do about this overlap problem. Instead we
must ensure that the links between low-level quality-carrying
product characteristics and high-level quality attributes are
clearly established. In addition, we must satisfy ourselves that
the high-level quality attributes we choose adequately describe
the high-level needs we have for software.

The Intemational Standard ISO-9126 Software Product
Evaluation which is built on six quality attributes (functional-
ity, reliability, usability, eflciency, maintainability, portability)
represents one such attempt that appears to have gained wide
acceptance and consensus. Because of the status of this model
as an international standard we have chosen to link our model
for software product characteristics to it. There is however
one serious omission with this standard. It does not emphasize
the reusability of software. We conjecture that reusability is
an important high-level quality attribute of software, which,
because of its impact on productivity and quality, deserves a
similar status to the other high-level attributes in ISO-9 126.

If we accept this minor augmentation of the ISO-9126
model then we must define what we mean by reusability
and factor it into the model. A structural form is reusable
if it uses standard language features, it contains no machine
dependencies and it implements a single, well-defined, encap-
sulated and precisely specified function whose computations
are all fully adjustable and use no global variables or side-

._

DROMEY: A MODEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR SOFTWARE PRODUCT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA149

effects. All ranges associated with computations and data
structures in a reusable module should have both their lower
and upper bounds parameterized. Also no variable should be
assigned to a number or any other fixed constant and all
constants used should be declared. Some might argue that
reuability is already covered by maintainability and portability.
However, it is strongly dependent on a distinctive subset of
modularity, structural and descriptive properties. This suggests
that reusability is deserving of separate recognition. There is
also one other strong reason for giving reuse the status of a
high-level quality attribute. It will encourage those responsible
for software development to pay more serious attention to
constructing software that is reusable.

Iv. QUALITY-CARRYING PROPERTIES OF SOFTWARE

In broadest terms the properties associated with struc-
tural forms that impact the quality of software involve two
fundamental things: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcorrectness and style. The correctness
properties we will use cover characteristics that impinge
on the specification-independent minimum requirements for
correctness, irrespective of the problem being solved (that is,
weak correctness criteria rather than strong formally proved
correctness criteria). The style properties cover characteristics
associated with both high and low-level design, and the
extent to which the software’s functionality at all levels
is specified, described, characterized and documented. It is
therefore convenient to divide the quality-carrying properties
associated with the structural forms of programs into four basic
categories. In order of precedence (for classification purposes)
these categories are:

correctness properties (minimal generic requirements for
correctness)
structural properties (low-level, intramodule design is-
sues)
modularity properties (high-level, intermodule design is-
sues)
descriptive properties (various forms of specifica-
tioddocumentation)

The next step, which is probably the most difficult and open to
question, is to identify a set of properties that adequately cover
these four categories. In presenting a set of properties that do
what is required we do not pretend that this is the only or the
best set of properties for a particular application. What we do
however claim is that a model of this form provides a very
useful way to tackle the problem of software product quality
systematically and constructively. Over time, we may expect
with experience of application, that a more refined and accurate
set of properties will emerge. Our criteria for selecting and
defining these properties has been based on the requirements
that they form an orthogonal (nonoverlapping), consistent, and
complete set. Quality defects that are discovered that do not
result from a violation of any of these properties will provide
the constructive force needed to refine the property model
and definitions of the properties. It may, for example, be
appropriate to have a set of properties that focus much more
intermodular issues.

With this model there may be occasions where we must
make the choice of classifying a defect as for instance either
a correctness problem or perhaps a modularity problem. In
this case the precedence (which we have arbitrarily chosen)
suggests the problem should be to classified as a correctness
problem. The precedence rule is correctness problems before
structural, before modularity, before descriptive problems. Our
reasoning in choosing this order is based on our perception of
their relative impact on the utility of software.

We should not be discouraged by this situation as this sort of
framework is used over and over again in science to build any
good and useful empirical model. What we propose is a frame-
work for climbing the ladder of software product quality and
thrust our foot only on the first rung-the task remains to climb
to the top of the ladder, We will list a set of properties that may
be associated with structural forms and then provide definitions
for each of these properties. Only by examining the definitions
of each in detail will it be possible to judge how successful
we have been in characterizing the quality-carrying properties
of the structural forms of programs. Some quality-carrying
properties are much harder to define and characterize than
other properties. To assist with the definition process we will
use a variety of devices including both positive and negative
examples. For example, take the property structured which can
apply to a number of structural forms. We can at least partially
define the property structured in an indirect way by identifying
deviations from being structured. When a deviation from being
“structured” occurs it results in a quality defect. We claim that
a structural form must be structured in order not to contribute
negatively to the quality of a software product. Exhibiting any
of the deviations such as being “unstructured” or ill-structured
prevents a given structural form from having the property of
being “structured”. The “definitions” we will use are always
corrigible and open to refinement and improvement. They do
however provide a basis for developing a useful constructive
model of software product quality.

There are a number of defects associated with structural
forms that are language-specific. For example expressions in
C may have side-effects whereas expressions in Pascal do not
permit side-effects. We identify the impact of each product
defect on the, high-level quality attributes of the ISO-9126
Software Product Evaluation standard in each case. In the
quality impact specification, the intent is that the greatest
impact is upon the first listed quality attribute and then
successively lesser impacts are on the other listed quality
attributes. These decisions are empirical.

The order, and hence precedence, of subproperties, within a
category has been chosen based on a judgment of the relative
impact of a subproperty on its parent property. This is purely
an empirical heuristic decision. However it is not hard to
justify to most people that a violation of a computability
property is likely to have a much more significant impact
on correctness than violation of a consistency property (see
the following page)-hence the rank of C1 for “computable”
compared with C8 for “consistent”.

We will now look at a range of properties that are relevant
to structural forms. In each case, deviations from particular
properties result in quality defects.

150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21, NO. 2, FEBRUARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Correctness Properties

Correctness properties fall broadly into three categories that
deal with computability, completeness and consistency. The
particular properties we have selected have been chosen in
such a way that any violation of one of these properties
could potentially mean, that under some circumstances at least,
the software may not exhibit its intended functionality. For
example, if the structure of a loop indicates that under some
circumstances there is a risk that it may not terminate then
this risk threatens correctness and hence functionality and is
therefore a quality defect. By contrast a loop may be classified
as progressive if upon examining its structure we find that
for all paths through the loop there is evidence of progress
towards termination and it is not possible to by-pass the
termination point. These characteristics are a weak statement
of the formal requirements for a proof of termination. The
correctness properties we will use are therefore:

C 1. Computable Result obeys laws of arithmetic, etc.
C2. Complete All elements of structural form

satisfied
C3. Assigned Variable given value before use
C4. Precise Adequate accuracy preserved in

computations
C5. Initialized Assignments to loop variables

establish invariant
C6. Progressive Each branchhteration decreases

variant function
C7. Variant Loop guard derivable from variant

function
C8. Consistent No improper use or side-effects

Each of these properties which is ranked from highest to
lowest precedence will now be defined and discussed in more
detail.

CI. Computable: A structural form is computable if it
only involves computations that are defined according to the
standard theory of computation and are within the limits
defined by the program, the programming language and/or
the machine. The property applies to all expressions including
subscripts.
Applies to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* expressions
Quality Impact: ==+ functionality, reliability
Sample Defects: (noncomputable)
- division by zero or other impossible computation
- subscript out-of-range
- writing to an unopened file
- division by a variable of unknown status
- square root of a negative number or number of unknown

C2. Complete: A structural form exhibits the property of
being complete when it has all the necessary elements to
define and implement the structural form so that it may fulfil
its intended role in a way that will not impact reliability or
functionality. As well as using a general completeness property
we have chosen to identify three other properties which are
specializations of completeness, i.e., assigned, initialized and
progressive. These properties are singled out because of their

status.

key contributions to correctness of loops and other statements.
Applies to: * objects, modules, statements
Quality Impact: functionality, reliability, usability,

Sample Defects: (incomplete)
maintainability

- if-statements that may abort (language-specific)
- self-assignment (e.g., z := zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2)

- unreachable code in a selection mechanism
- module that generates no output.
C3. Assigned: A variable is assigned if it receives a value

either by assignment, input, or parameter assignment prior
to its use. The property assigned is a specialization of the
completeness property that applies specifically to variables and
data structures of all types.
Applies to: 3 variables
Quality Impact: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa functionality, reliability
Sample Defects: (unassigned)

- use of a variable in a term or expression that has not

C4. Precise: A variable or constant is imprecisely typed
when its precision is not sufficient to meet the required
accuracy of the computation.
Applies to: + variables and constants
Quality Impact: + functionality, reliability
Sample Defects: (imprecise)
- use of single precision when a computation demands

double precision
- use of an integer when problem demands only in the

range 0..9.

C5. Initialized: A loop structure is initialized if all variables
in a loop are initialized prior to loop entry and as late as
possible prior to loop entry. The initialized property is a
specialization of the assigned property that applies to loops. It
is therefore a completeness property. Initialization, is central
to the correct and efficient functioning of loop structures. It is
also an area of a computation that is vulnerable. The most
appropriate initialization is that which establishes the loop
invariant for a loop. Defects in initialization can arise largely
from doing either too much or too little in the initialization
step [101. Initialization defects identify composition problems
between the body of a loop and the initializations chosen
for the loop variables. They identify higher level structural
problems rather than simply the assignment of variables. The
problem of a variable not being initialized for use in a loop is
a variable integrity defect, rather than on initialization defect.

Quality Impact: 3 functionality, reliability,

Sample Defects: (underinitialized, overinitialized,

been previously assigned a value.

Applies to: ===3 Loops

maintainability

prematurely initialized)

- For a detailed treatment of initialization defects see [10,

C6. Progressive: A loop or recursive algorithm is pro-
gressive if there is clear evidence that the structure makes
progress towards termination with each iteration or recursive
call and the associated variant function is bounded below by

Ch. 121.

DROMEY A MODEL FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASOFIWARE PRODUCT QUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA151

zero. Recursive calls must have a reachable base case. The
progressive property is a completeness property of iterative
and recursive constructs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applies to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA===+ modules (recursive), loops
Quality Impact: ===+ functionality, reliability,

Sample Defects: (nonprogressive)
maintainability

- nested loop where outer loop variables are only changed
(make progress) in an inner preguarded loop or called
function [lo, Ch. 121.

C7. Variant: A loop guard (or inductive guard in recursive
structures) is variant if it defines a relation (the variant
condition) that is congruent with, and derivable from, the
variant function used to prove termination of the loop [lo]
(e.g., for loop that has a variant function j - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi - 1 which is
decreased by i := i +I and/or j := j - 1 an appropriate guard
that is variant would be i # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj - 1. A variant guard has a form
that makes it easy to assess the termination behavior of a loop.
Applies to: ==+ guards (for loops and recursive

Quality Impact: ==+ functionality, reliability,

Sample Defects: (nonvariant)

structures)

maintainability

- loop that uses a boolean variable flag as a loop guard
(e.g., while not found d o . . .) is nonvariant and not
derivable from the variant function for the loop.

C8. Consistent: A structural form is consistent if its usage
maintains its properties or functionality and if all its elements
contribute to and reinforce its overall intent or effect. Side-
effects and any other forms of misuse violate the consistency
of a structural form.
Applies to: ==+ modules, statements, guards,

Quality Impact: * functionality, reliability,
expressions variables and records

maintainability, reusability,
portability, usability.

Sample Defects: (inconsistent)
- using a variable for more than one purpose in a given

- modifying a loop variable on exit from a loop
- using a variable as a constant
- changing a variable in an expression (is a side-effect)
- unused input (read(z);. . .:read(z))
- output of a variable twice without change
- use of variableskonstants of different precision/type in

scope

a computation.

B. Structural Properties

The structural properties we have used focus upon the
way individual statements and statement components are im-
plemented and the way statements and statement blocks are
composed, related to one another and utilized. They enforce
the requirements of structured programming and demand that
there should be no logical, computational, representational and
declarative redundancy or inefficiency of any form either in
individual statements or in sequences or in components of
statements. There is a requirement that computations should

be expressed directly, efficiently, simply and not in an obscure
fashion. Redundant testing is sometimes advocated as a means
to increase reliability but this is not defensible at the intramod-
ule level. Another requirement is that every structural form
that is declared in a program should be utilized. This applies
to such diverse entities as variables and modules. While the
main focus of structural properties is intramodular some of
these properties also apply at higher levels of organization.
These structural properties are:

S 1. Structured Single-entrykingle-exi t
S2. Resolved Data structurekontrol structure

matching
S3. Homogeneous Only conjunctive invariants for

S4. Effective No computational redundancy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S5. Nonredundant No logical redundancy
S6. Direct Problem-specific representation
S7. Adjustable Parameterized
S8. Range-independent Applies to variables (arrays),

S9. Utilized To handle representational zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SI . Structured: A structural form exhibits the property of

being structured if it follows rules of structured programming
[11]. That is, there should be only a single point of entry
and exit for every control structure. Too many conditions
associated with a guard and poor bracketing of an expression
also represent deviations from being structured.
Applies to: sequences, guards, and expressions
Quality Impact: j maintainability, reliability,

functionality
Defects: (unstructured, ill-structured)

loops

types, loops

redundancy

- exit from the middle of a loop
- multiple returns from a function
- loop guard with too many conditions.

S2. Resolved: A structural form is resolved if the control
structure of the implementation involved matches the structure
of the data [121 or the problem [101 in the sense advocated by
Jackson (that is, the control structure matches data structure
and thereby satisfies the correspondence principle). At all times
the strategy seeks to construct loops that minimize the number
of variables they change.

Quality Impact: maintainability, efficiency
Defects: (unresolved)

Applies to: * loops

- use of a single loop to process a two-dimensional array

S3. Homogeneous: An iterative or recursive form is homo-
geneous if it can be described by an invariant where the major
predicates assume a conjunctive form (e.g., the invariant must
be of the form “A and B and . . .” but A etc. may involve
disjunction). An iterative or recursive form is inhomogeneous
if it involves an invariant where major predicates must be
combined by disjunction.
Applies to: loops, modules (recursive)
Quality Impact: ==+ maintainability
Defects: (inhomogeneous)

[ref. 10, Ch. 121.

152 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21, NO. 2, FEBRUARY 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- a loop structure with functionality that is not cohesive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S4. Effective: A structural form exhibits the property of

being effective when it has all the necessary elements and
only the necessary elements to define and implement the
structural form. Elements beyond what are necessary and
sufficient to specify the process, computation, data structure
or user-interface violate the property of effectiveness for the
particular structural form. In other words, unnecessary vari-
ables or computations or lack of simplification of structures or
computations, violates the property of effectiveness. It applies
particularly to expressions and assignment statements and
other statements but not to conditions. The redundancy result-
ing from failing to have a resolved control structure (according
to Jackson’s methodology) is excluded from an “ineffective”
classification. It is treated as unresolved (see above). Note we
might at first think an assignment in the body of a loop that
does not change its value with each iteration could be classified
as a sequence (the loop body) defect. However this structure
only shows as a defect in the context of the loop and so it is a
defect of the loop structure. Any executable statement that does
not change the state of a computation is classified as ineffec-
tive. Also if the same result can be achieved more simply then
a computation is ineffective (e.g., using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 O} i := 0 do
i # N + i := i + 1 od instead of i := N makes the sequence
consisting of the loop plus the initialization ineffective)
Applies to: * expressions, statements
Quality Impact: * usability, efficiency, maintainability
Defects: (ineffective)

(see examples in [ref. 10, Ch. 121.

- assignment that establishes an already-established con-

- expression with unnecessary computation (e.g., y :=

S.5. NonRedundant: A structural form exhibits the prop-
erty of being nonredundant when it has all the necessary
logical elements and only the necessary elements to define
the structural form. Conditions beyond what are necessary
and sufficient to specify the process violate the property of
nonredundancy for the particular structural form. In other
words, unnecessary conditions or lack of logical simplification
of computations, violates the property of nonredundancy . This
property is distinguished from “effective” in that it involves
some form of logical redundancy rather than computational
(arithmetidalgebraic) redundancy. In other words it applies to
conditions not assignment statements. The redundancy result-
ing from failing to have a resolved control structure (according
to Jackson’s methodology) which can be a form of high-level
logical redundancy is excluded from a “redundant” classifica-
tion. It is instead given the more specialized classification of
being unresolved.
Applies to: =+ guards
Quality Impact: ==+ efficiency, maintainability
Defects: (redundant)

dition

5 + 1 + 1).

- testing a condition that has already been established.
S6. Direct: A computation is expressed directly if the ab-

straction, choice of representation and the structure of the
computation are congruent with the original problem being

modelled by the computation. An indirect way of framing a
computation makes it harder to understand because at least one
more level of detail must be considered. When a computation
is expressed indirectly there is, from the user’s view at least,
an inefficiency in the representation. Something additional,
that is not present or relevant to the original problem is
introduced. The use of boolean flags or numbers to represent
other real-world items and clever but obscure computational
tricks are all typical of an indirect way of formulating and
representing computations. Modern languages through devices
like enumerated types make it easy to avoid an indirect
style of programming. In early versions of languages like
Fortran it was difficult to avoid the use of an indirect style
of programming for many applications. Some argue for an
indirect way of formulating computations to gain efficiency but
this is hard to defend given the power of today’s computers.
Applies to: + statements, expressions, variables,

Quality Impact: ===+ maintainability, efficiency
Defects: (indirect)

constants, types

-- use of flags (boolean and others)
- use of numbers to represent colours
-- use of clever tricks, (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(I/J)*(J/I) to initialize

- use of boolean variables to represent conditions.

S7. Adjustable (parameterized): A structural form is ad-
justable if it contains no undeclared constants (apart from 1, 0,
or - 1) and if the minimum number of single-purpose variables
needed to support the computation it performs are used.

The word adjustable has been chosen to specifically deal
with parameterization internal to the structure of modules and
programs.
Applies to: ==+ module calls, expressions
Quality Impact: =+ maintainability, reusability,

Defects: (unadjustable)
- if a structural form contains numbers instead of defined

constants. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S8. Range Independent: A structural form is range-

independent if both its lower and upper bounds are not
fixed numeric or character constants. This property applies
particularly to array specifications and iterative structures
designed to process a segment of elements in an array.
Most often arrays and loops assume a fixed lower bound.
For example, an array-sort will be written to sort all the N
elements in an array a[l . . . NI. A more widely useful, range-
independent, algorithm is one which sorts a segment of an
array a [L . . . U] .
Applies to: ==+ declarations (arrays), loops
Quality Impact: =+ reusability, maintainability
Defects: (range-dependent)

identity matrix)

portability

- an array type or variable is declared with a fixed lower
or upper bound

- an array-processing loop assumes processing starts at 0
or 1.

SY. Utilized: A structural form is utilized if it has been
defined and then used within its scope. This property applies to

DROMEY: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA MODEL FOR SOFTWARE PRODUCT QUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA153

all forms of data structures and modules. Its negation identifies
any form of redundancy resulting from declaration as opposed
to logical, representational or computational redundancy. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Applies to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA==+ objects, modules,

all forms of declared data
Quality Impact: ==+ maintainability, efficiency
Defects: (unutilized)
- a variable that has been declared but is not used
- a function is declared but is not used.

C. Modularity Properties

The modularity properties employed largely address the
high-level design issues associated with modules and how they
interface with the rest of a system. These issues include how
a module encapsulates its data, how it is coupled to other
modules, how loose its functionality is, how flexible it is
and what potential does it have for reuse. These modularity
properties are:

M1. Parameterized All inputs accessed via a
parameter list

M2. Loosely coupled Data coupled
M3. Encapsulated Uses no global variables
M4. Cohesive The relationships between the

elements of an entity are
maximized
Is independent of the type of its
inputs and outputs

M5. Generic

M6. Abstract

be encapsulated. A module that uses global variables or side-
effects violates this property. Consistent with the discipline of
identifying quality defects with the lowest-level structural form
to which they may be associated, encapsulated is treated as
a variable-usage property even though it impacts modularity.
To build quality software that is easy to maintain and reuse
we should ensure that each module is allowed to access and
modify only those data items that are absolutely needed by
the module. Other data items should be “hidden” in other
appropriate modules.
Applies to: ==+ variables, constants and types
Quality Impact: ===+ maintainability, reusability,

Defects: (unencapsulated)
portability, reliability

- use of variable in a module that has not been declared
in the module’s scope.

M4. Cohesive: A structural form is cohesive if all its ele-
ments are tightly bound to one another and they all contribute
to achieving a single objective or function. Statements within
a cohesive component should be organized from the least to
the most dependent, that is, the last statement, in a sequence
depends on all its predecessors (see [14]). Any interleav-
ing of independent statements destroys cohesion. A variable-
dependency graph may be used to assess the cohesion of a
given sequence of statements [15]. This concept of cohesion
applies at more than one level. That is, for three blocks in
sequence, the computations in the third block should depend

higher level form.
MI . Parameterized: A module is parameterized if it con-

tains as parameters all and only the necessary and sufficient
inputs and outputs to characterize a particular well-defined
functiodprocedure.
Applies to: * modules
Quality Impact: ==+ maintainability, reusability,

Defects: (unparameterized, over-parameterized,
portability

ill-parameterized)
- unparameterized, (e.g., module with no parameters)
- over-parameterized (e.g., swap(i, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj , 421, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa [j]))
- ill-parameterized (e.g., function that modifies input pa-

M2. Loosely Coupled: A module or a program is loosely
coupled if all module calls are data-coupled (see Myers [13])
to the calling program/module.
Applies to: ==+ module calls
Quality Impact: ==+ maintainability, reusability,

Defects: control-coupled, stamp-coupled,

rameters).

portability, reliability

content-coupled,
common-coupled, externally coupled

- see Myers [131 for a detailed discussion of these defects.
M3. Encapsulated: The way variables are used can have a

significant impact on the modularity and hence self-contained
quality of modules, programs and systems. A variable (or
constant or type) should be used only within the scope in
which it is defined. If it satisfies this property it is said to

Identifying statements and blocks that could be executed in
parallel is a good way of assessing cohesion and independence.
Applies to: * sequences
Quality Impact: * maintainability, reusability,

portability
Defects: (uncohesive)
- a module with a lot of parameters has low cohesion

as it probably implements more than one well-defined
function.

- loop with dispersed initialization (see [lo]).
M5. Generic: A module is generic if its computations are

abstracted to a type-parameterized form.
Applies to: ===+ modules
Quality Impact: ===+ maintainability, reusability,

Defects:
portability

- primitive type-dependant (procedure to swap just integers).

M6. Abstract: An object/module is su.ciently abstract if
there is no obvious, useful higher level concept that encom-
passes the structural form.
Applies to: * Objects
Quality Impact: * reusability, maintainability
Defects:
- specialized module/object (e.g., declaring a car object

class instead of vehicle object class). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Descriptive Properties

There are three primary properties that reflect how well
software is described. Explicit comments may be added to

154 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995

a program to document how the implementation realizes
its desired functionality by manipulating variables with pre-
scribed properties. To precisely characterize the functionality
the process can be taken a step further by including zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprecondi-
tion and postcondition specijications for all functions and other
significant computations in a program. Also by appropriate
choice of identifiers and module names it is possible to
make zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan important contribution to the analyzability and self-
descriptiveness of programs. The descriptive properties are
therefore:

D1. Specified Preconditions and postconditions
provided

D2. Documented Comments associated with all
blocks

D3. Self-descriptive Identifiers have meaningful names.
D1. Specified: A module or program or other structural

form is speci’jied if its functionality is described by precon-
ditions and postconditions. A structural form is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfully specijied
if all blocks are specified and loops have attached invariants,
variants, preconditions and postconditions. The highest level
of specification involves the use of a formal specification
language. When a structural form is not specified there is
always a doubt about its intended functionality. Use of spec-
ifications, if done properly, provides the most rigorous form
of documentation and description.
Applies to: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA==+ objects, modules, loops, sequences
Quality Impact: * functionality, maintainability,

reliability, usability,
portability, reusability

Defects: (under-specified, unspecified, ill-specified)

- functionality is not described by preconditions and post-

- contains no preconditions or postconditions (unspeci-

- specification is ambiguous, inaccurate, inconsistent or

0 2 . Documented: A structural form is documented if its
purpose, strategy, intent and properties are all explicitly and
precisely defined within the context of the structural form.
Applies to: * objects, modules, loops, sequences,

conditons (under-specified)

fied)

incomplete (ill-specified)

module-calls, data structures,
variables, constants, types

Quality Impact: ==+ maintainability, portability, ..

reusability, usability
Defects: (undocumented, under-documented,

over-documented, ill-documented).

- structural form contains no comments (undocumented)
- insufficient comments are used to describe purpose

- more comments are used than are needed (over-

- documentation is misleading or wrong (ill-documented)
03. Self-Descriptive: A structural form is self-descriptive

if its purpose, strategy, intent, or properties are clearly evident
from the choice of names for modules and various identi-
fiers are meaningful and congruent with the context of the
application.

(under-documented)

documented)

Applies to: ==+ objects, modules, module-calls,
variables, constants,
data structures,

reusability, usability
Quality Impact: maintainability, portability,

Defects: (undescriptive, over-described,
ill-described)

- name chosen bears no relation to property (undescrip-

- name chosen is unnecessarily long (over-described)
- name is ambiguous, misleading or wrong (ill-described)

tive)

E. Rejning the Dejinition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Quality-Carrying Properties

The definitions we have provided for the various quality-
carrying properties are by no means comprehensive. Our
intent, because of the empirical nature of the model, has
been to provide base working definitions that can be refined
as necessary in a given application context. There are three
options for refining these definitions. One way to do this is
to aim for completeness by trying to see if the property is
applicable to each possible structural form in its usage and
representation and context. In our definitions above we have
listed the structural forms to which each property applies
but we have not detailed how the property is interpreted
for each structural form. The second thing we can do is
extend the list of examples showing defects and positive
instances of the property. For some properties (involving
correctness and logical redundancy and incompleteness, etc)
it is possible to provide formal definitions. For example, the
concept of strongest postconditions sp(P, S) [16] may be
used to formally prescribe when a statement S , executed in
the presence of a precondition P is redundant. That is, the
strongest postcondition after executing S under P will be
equivalent to P if S is redundant. In other words, S does not
change the state of the computation. This may be expressed
formally by the following equivalence sp(P, S) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE P.

v. MODEL FOR SOFTWARE PRODUCT QUALITY

Having defined a set of structural forms, a set of quality-
carrying properties and a set of high-level quality attributes we
can proceed to build a constructive model of software product
quality by defining the relations among these three sets of
entities. The first of these tasks is to identify and associate a set
of quality-carrying properties with each of the structural forms
that may be used in a program (implicitly we have already
done this in the previous section). This is the key relation that
may be used to support building quality into software. The
constructive theorem that supports this task is:

Constructive Theorem: If each of the quality-carrying prop-
erties associated with a particular structural form is satisfied
when that particular structural form is used in a program, then
that structural form will contribute no quality defect to the
software.

From this follows the complementary assertion: i fany of the
properties associated with a structural form are violated in a
program, then each violation will contribute a quality defect
to the software.

DROMEY: A MODEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR S O W A R E PRODUCT QUALITY I55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Using a model based on these two principles allows us to

achieve our two primary goals. It gives us zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdirect advice on
building quality into software and at the same time it may be
used to assist in the systematic classification of quality defects
in software. Two important consequences follow if we are
willing to accept and adopt this model: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Building Quality into Sojbvare:
The task of building quality into software reduces to sys-
tematically ensuring that all the quality-carrying prop-
erties associated with each structural form used in a
program are satisfied for all applications of that struc-
tural form in the program.

Detecting quality defects in software reduces to system-
atically checking whether, for each structural form, in all
of its occurrenceS, any of its quality-carrying properties
that imply high-level quality attributes are violated}.

In the previous section we have already identified the struc-
tural forms to which each of the quality carrying properties
apply. To build quality into software it is far more useful to
identify all the quality-carrying properties associated with each
structural form. As we will see below, for quick reference, this
information may also be neatly summarized in tabular form.

We will now systematically work through the product
properties that imply quality attributes for each of the main
structural forms in imperative programs. For each structural
form its properties will be listed according to the precedence
rules set out in Section VI1 below. In this context it is important
to define exactly what we mean by a given property when we
associate it with each structural form. For example, incon-
sistent translates into something different when applied to an
expression compared to what it means for a function/module.
In our presentation here we will not fully develop properties
in this way. What we will do instead is give instances for
various properties and structural forms. For example, we will
provide instances of inconsistency as it applies to modules,
expressions and so on.

2) Systematic DetectiodClassijication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof defects:

A. The Relation Between Structural Forms
and Quality-Carrying Properties

In the previous sections we have identified a set of quality-
carrying properties that can be attached to structural forms
in programs. We also identified the structural forms to which
each of the properties could be attached. For building quality
into software it is important to organize this information so
we can see at a glance what quality-carrying properties are
associated with each structural form. In what follows we will
carry out this organization and finally summarize the results in
a table. The highest level forms are not dealt with here because
we have chosen not to emphasize system-level quality issues.
Examples of quality defects associated with each structural
form are given. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I) Object Integrity: An object may be realized by decla-
ration of an abstract data type. Its key high-level quality
attributes depend on its, specification, completeness and the
level of abstraction employed in choosing the data structure
and its operations. The internal quality properties of a module

are handled by .the quality-carrying properties that are assigned
to its data structures/variables and its operations or functions.

a) Quality-Carrying Properties: Complete, utilized, ab-
stract, specified, documented, self-descriptive

Defects:
incomplete (does not enable access to all components
of data)
over-specialized (the abstraction is not at a high enough
level)
unutilized (declared but not used)
unspecified (no precondition/postcondition specifica-
tions)
undocumented (no comments stating the functions of
object)
unself-descriptive (poorly chosen name for object).

2) Module Integrity: The term module is used to describe
procedures, functions and subroutines, etc. The quality of a
module depends on how well its functionality is described,
its level of abstraction, its degree of independence and how
easy it is to reuse. Its internal quality is covered by a quality-
carrying properties that are assigned to the statements from
which it is composed.

a) Quality-Carrying Properties: Complete, progressive
(recursive modules), consistent, homogeneous, utilized,
loosely-coupled, parameterized, generic, abstract, specified,
documented, self-descriptive.

Defects: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- incomplete (no apparent input and/or output parameters)
- nonprogressive (not all inductive branches appear to

- tightly coupled (control information passed to module)
- unparameterized (module defines a fixed computation)
- type-specific (handles data of a predetermined type

- unutilized (module declared but not used)
- unspecified (no preconditionlpostcondition specifica-

- undocumented (no comments stating the purpose of

- unself-descriptive (module name poorly chosen).

3) Sequence Integrity: A sequence is used to describe com-
putations formulated using one or more consecutive executable
statements in a given block. The quality of a sequence structure
depends on its level of cohesion and whether there is any
transfer of control out of the sequence. Other quality problems
associated with sequences like, for example, redundant assign-
ments in a sequence are handled at the statement or statement
component level. That is, a redundant assignment is ineffective.
This conforms to the principle of always classifying quality
defects at their source. It should be noted that all executable
statements in a program (if-statements, assignments, loops,
etc.) have the quality-carrying property effective associated
with them. If they do not change the state of computation or
the same overall result can be achieved more simply then an
executable statement (or sequence of statements) is ineffective.

a) Quality-Carrying Properties: Structured, effective,
cohesive, specified, documented

make progress)

only)

tions)

module)

156 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 2, FEBRUARY 1995 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Defects: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- unstructured (e.g., contains a goto, break, etc. in se-

- ineffective (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi := 0; do zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi # N + i := i + 1 od can

- uncohesive (exist interleaved statements in a sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Loop Integrity: The structural form loop is used to char-

acterize the various forms that implement iteration (e.g., the
while, repeat, for, etc. loop structures used in Pascal and
other imperative languages). The quality of a loop depends
on its partial and total correctness properties [8], the way it
is composed (including its initialization) and on how well its
behavior is described. The quality of a loop is also strongly
influenced by whether it has a single point of entry and exit.
The property is associated with the loop body (rather than the
loop itself) which consists of a sequence of statements that
possess the property of being structured.

initialized,
progressive, consistent, resolved, homogeneous, effective,
range-independent, specified, documented

quence (block))

be replaced by i := N)

that are independent).

a) Quality- Carrying Properties: Complete,

Defects:
- incomplete (only decreases variant function)
- nonprogressive (not clear that all branches make

- inconsistent (a loop that does just one iteration)
- underinitialized, overinitialized, uninitialized (see [lo])
- ineffective (does not change state of computation)
- unresolved (hidden loop, if-statement and loop-guard

- inhomogeneous (see example [lo])
- unspecified (no invariant and variant function specified)
- undocumented (no comment on the purpose of loop) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5) Selection Integrity: The selection structural form is used

to characterize if-statements, case statements and switch state-
ments, etc. How selection statements are implemented can
have a significant impact on the quality of programs. The key
quality property associated with selection is completeness; that
is, whether all cases have been covered and also whether all
cases are reachable. Another problem with selection statements
is the inconsistency associated with switch statements (in
C) which allows control to flow from one selection into
another. Other problems associated with selection statements
are handled as either guard defects or as defects associated.,
with statements that are guarded by the selection structure. For
example, when the execution of the statements in the branch of
a selection do not change the state of a computation, the defect
is classified as its source, that is, as a problem with the guarded
statements rather than with the selection statement itself. Of
course if no branches change the state of a computation the
selection statement is redundant (that is, ineffective).

a) Quality-Carrying Properties: Complete, consistent,
effective

Defects:

progress)

are same)

- incomplete (e.g., not all cases covered, or there is an

- inconsistent (e.g., fall-through in a C switch statement)
unreachable statement)

- ineffective (e.g., statement does not change state of

Note: a guard in an if-statement that tests an established
condition is classified as a logical defect of the guard rather
than a defect of the if-statement.

6) Module-Call Integrity: In the scope where it is em-
ployed, a module-call has the purpose of changing the state
of a computation by changing the values of one or more
variables. The way parameters are used in a module-call can
have an impact on quality. There are two main problems: a
given variable may be passed more than once andor fixed
constants (e.g., numbers) are passed as parameters. Like other
executable statements, a module call is ineffective if it can be
demonstrated that it does not change the state of a computation.
Other quality problems associated with module calls can
be traced back to problems with the use of statements and
variables in the body of the module. Module calls that employ
either no input and/or output parameters might be thought to
violate the property of completeness. However this structural
defect should be traced back to a defect in the design of the
module in the first place rather than associating it with the
module call.

a) Quality-Carrying Properties: Consistent, effective,
adjustable, documented

Defects:

computation).

- inconsistent (e.g., same parameter passed twice)
- ineffective (e.g., call is computationally redundant)
- unadjustable (e.g., numbers passed as parameters).

7) Assignment Integrity: Most of the quality-carrying prop-
erties associated with assignment statements are not associated
with the assignment itself but with its components; its variables
and the expression being evaluated. The two quality-carrying
properties that remain are whether the statement is redundant
or not and whether it is complete. It would be possible to
consider both these issues in terms of effectiveness because
they involve no state change. However the completeness
property deals with whether an assignment has been properly
formed which may have direct implications for correctness.

a) Quality-Carrying Properties: Complete, effective
Defects
- incomplete (statement lacking an additional term, e.g.,

- ineffective (statement does not change state of compu-

8) Guard Integrity: The guard structural form is used to
guard state-changing statements in loops and selection state-
ments. Guards are logical constructs and therefore vulnerable
to logical redundancies and inefficiencies which may be iden-
tified using standard logical equivalence formulas that define
simplifications. For loop guards, the ideal form is that they
define a relation (the variant condition) that is congruent with
the variant function used to prove termination of the loop [lo].
Sometimes guards contain numbers or other fixed constants
(e.g., while i < 100 do) which make them not adjustable.
It may seem appropriate to assign the property adjustable
to the guard itself. However following the rule of always
associating quality defects with the lowest level structural with

z := z)

tation).

DROMEY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA MODEL FOR SOFTWARE PRODUCT QUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA157 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which they are associated, this problem is assigned to the
component expression that forms part of the relation. That is,
the expression should be adjustable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(‘‘100’’ is not) rather than
the guard. Guards should be appropriately structured using
parentheses. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a) Quality-Carrying Properties: Variant, structured,
nonredundant

Defects:
- redundant (e.g., logical redundancy “while ch = space

- nonvariant (e.g., while zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu[i] # z do . . .>.
9) Expression Integrity: Expressions are the primary ve-

hicle for implementing computations. The quality-carrying
properties associated with expressions relate to computability,
side-effects, the presence of any redundancy and the use of
fixed constants. Other quality problems associated with ex-
pressions relate to their constituent variables and are classified
at a lower level accordingly. The appearance of fixed constants
in expressions is however definitely an expression defect and
not a variable or constant problem.

a) Quality-Carrying Properties: Computable, consistent,
structured, effective, direct, adjustable

Defects:

& ch # eo1 do”)

- uncomputable (e.g., divide by zero)
- inconsistent (e.g., contains side-effects)
- inconsistent (e.g., use of variabledconstants of different

- ineffective (e.g., contains computational (arithmetic)

- unadjustable (e.g., contains numbers or other fixed con-

I O) Record Integrity: A record is just a composite variable.
It therefore has associated with it the same quality-carrying
properties as variables. These properties are discussed in detail
in the next section. An added problem with records is that they
may admit the insecurity of only being partially initialized.

11) Variable Integrity: The way variables are used has a
significant impact on the quality of programs. A variable
possesses correctness, structural, modularity and descriptive
properties. In terms of correctness, a variable must always be
assigned before it is used, it must be of the appropriate preci-
sion and it should only ever be used for a single purpose within
a given scope. The only structural obligation for variables
is that they be utilized if they are declared. The modularity
quality of a variable is that it must only be used (encapsulated)
within the scope in which it is declared. Use of a variable at
a lower scope, that is, as a global variable, is probably the
single most significant thing that detracts from the quality of
imperative programs. Assignment to a global variable in such
a context results in a side-effect of the lower scope. From
an external perspective side-effects are hidden actions which
have a severe impact on the analyzability of programs. Another
vital quality requirement for variables is that any name chosen
should clearly and accurately characterize the property that is
ascribed to the variable. It is also wise to strengthen the defini-
tion of the intended use of a variable by including a comment
that defines its property at the time the variable is declared.

precision)

redundancy)

stants).

a) Quality-Carrying Properties: Assigned, precise, con-
sistent, encapsulated, direct, range-independent, utilized, doc-
umented, self-descriptive

Defects:
unassigned (e.g., variable not assigned prior to use in
expression)
imprecise (e.g., single precision used when double
needed)
inconsistent (e.g., variable used for more than one
purpose in scope)
unencapsulated (e.g., global variable used in function)
unutilized (e.g., declared variable not used)
undocumented (e.g., no comment when variable declared)
unself-descriptive (e.g., variable ‘z’ used to store “max-
imum”)
indirect (e.g., use of a boolean flag).

12) Constant Integrity: A declared constant possesses cor-
rectness, structural. modularity, and descriptive properties. In
fact it possesses a subset of the quality-carrying properties of
variables. It differs from a variable only in that being used for
more than one purpose and being assigned are not issues.

encapsulated,
direct, utilized, documented, self-descriptive

a) Quality- Carrying Properties: Precise,

Defects:
- imprecise (e.g., single precision used when double pre-

- unencapsulated (e.g., global constant used in function)
- unutilized (e.g., declared constant not used)
- undocumented (e.g., no comment when constant de-

- unself-descriptive (e.g., constant ‘z’ used to store

Z3) Type Integrity: The set of quality-carrying properties
that apply to types is a contraction of the set of properties that
apply to variables and constants. The problems with global
use that apply to variables also apply to types. A type should
be used if it is declared and it should be both self-descriptive
and documented.

a) Quality-Carrying Properties: Encapsulated, direct,
utilized, range-independent, documented, self-descriptive

Defects:
- unencapsulated (e.g., global type used in function)
- unutilized (e.g., declared type not used)
- undocumented (e.g., no comment when type declared)
- unself-descriptive (e.g., type ‘z’ used to represent “job-

A table summarizing the quality-carrying properties associ-
ated with each structural form is given above.

This table defines two of the sets of relations of our generic
quality model: the quality-carrying properhes associated with
each structural form and the set of structural forms which
exhibit a particular quality-carrying property. The information
presented in this way is useful for two purposes: assisting
those that implement software to build in quality to the various
structural forms that programs are composed of and to assess
whether particular quality-carrying properties have been built
into software.

cision needed)

clared)

“3.14159265”).

tYpe”).

158 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 21. NO. 2, FEBRUARY 1995

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII
QUALITY-CARRYING PROPERTIES FOR STRUCTURAL FORMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. The Relation Between Quality-Carrying
Properties and Quality Attributes

Another important way in which we can view product
quality-carrying properties is to directly relate them to the
high-level quality attributes that are used to characterize the
quality of software. For this purpose we will use the high-level
attributes advocated in the International Standard ISO-9126
Software Product Evaluation. We will however add to this list
the attribute of reusability as we believe (see Section 111) this
characteristic is important enough in its own right to deserve
such high level status. Reusability clearly depends on low-level
design.

The intent of this view is to more explicitly identify the re-
quirements for building each of the high-level quality attributes
into software. The product properties we have identified and
defined provide direct advice, or rather a specification that
must be satisfied to build the desired high-level quality at-
tributes into software. This specification is clearly empirical.
When we try to construct a systematic process for deciding
which product properties contribute to which high-level quality
attribute we run into the same difficulty that the naturalist
John Muir had: “when we try to pick out anything by itseK we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
find it connected to the entire universe”. For example, it is not
hard to make an argument that most, if not all quality-carrying
product properties make a contribution to the maintainability
of software. Given this situation, the issue has to be “which
product properties make the most significant contribution to
the maintainability of software?” Making this judgement is
clearly an empirical step. The criteria we will use to make this
judgement are as follows:

a minimal subset of quality-carrying properties will be
selected in each case
the properties will be ranked in terms of the assessed
importance of their contribution to the quality attribute.

We will now examine each of the major quality attributes
for software and associate with each a set of quality-carrying
properties. Little work has been done on trying to make such
direct links. This is a problem which we consider needs to be
thoroughly explored.

I) Functionality: The quality attribute functionality de-
pends heavily on two things, correctness properties and the
extent to which the functionality of a system is accurately

characterized. A program cannot be correct in its own right;
it can only be correct with respect to a specification. In a
similar way, it makes sense to talk about the functionality
of a program with respect to its specification. The product
properties that impact functionality are listed in order of their
likely impact on functionality (see also the table that follows).

COMPUTABLE
COMPLETE
ASSIGNED
PRECISE
INITIALIZED
PROGRESSIVE
VARIANT
CONSISTENT
STRUCTURED
ENCAPSULATED
SPECIFIED

The only problem with this is that it does not say which
structural forms possess these properties. To use this informa-
tion effectively we must link it back to the various structural
forms of the product which possess these various character-
istics. This information is available in Table 11, Section V.A.
Properties like structured and encapsulated are included in this
list because of the widely held opinion that there is a much
higher risk of their being functional defects in software that is
neither structured nor modular in form.

2) Reliability: Functionality implies reliability. The relia-
bility of software is therefore largely dependent on the same
properties as functionality, that is, the correctness properties
of a program. However where differences arise is in relation
to completeness. A program can be correct with respect to its
specification, and therefore satisfy its functional requirements
and yet fail because the inputs do not satisfy the expected
precondition. Unstructured code and side-effects represent
high-risk factors for reliability. It is claimed that compliance
to the structured and encapsulated properties significantly
reduce these risks. For this high-level quality attribute and the
remaining attributes the relevant properties are summarized in
Table 111.

3) Usability: Usability is concerned with the quality of the
user interface, its design and performance characteristics. In
this specification we have chosen not to describe it in detail
as it depends on a completely different set of structural forms
(buttons, menus, etc.) which have their own set of quality-
carrying properties. At this point we will simply list the
quality-carrying properties defined for programs which are also
relevant to specifying the quality of a user interface (see Table
111).

4) ESJiciency: The position taken is that computational and
logical redundancy are important factors that effect the effi-
ciency of a program. Ensuring that there is a match between
program control structure and data structure also makes a
contribution to efficiency. These contributions to efficiency
are all independent of the algorithms or strategies used in
an implementation. In many instances their contribution to
efficiency is not likely to be nearly as great as the contribution
of the algorithms. For example, using an O (N log, N) instead
of an O (N 2) sorting algorithm will have a dramatic impact

DROMEY: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA MODEL FOR SOFTWARE PRODUCT QUALITY 159 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on efficiency for large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN . Unfortunately it will not
be practical or even possible to determine the optimal compu-
tational complexity for each algorithm in an implementation.
We must therefore settle for a much weaker qualitative model
for efficiency that is based on excluding various forms of
redundancy. The contributing properties are listed in Table 111.

5) Maintainability: There is a widely held belief that soft-
ware which is very easy to maintain is software of high quality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[171. There is a very wide range and a large number of quality-
carrying properties that make an important contribution to the
maintainability of software. There are two primary concerns
for maintaining software: it must be clearly specified and well-
documented so the intent of the whole and various fragments
of the software is beyond doubt; the software must also be easy
to understand. And, for software to be easy to understand, there
is a multitude of structural, modularity and descriptiveness
factors that need to be satisfied. The most important of these
are listed in Table I11

6) Portability: A program or system is portable if it re-
quires little or no changes to compile and run it on other
systems. The three primary things that affect portability are
machine dependencies, compiler dependencies and operating
system dependencies. There are two strategies that may be
used to minimize portability impact: effective use of param-
eterization can isolate and minimize machine dependencies,
modularization and isolation of compilerhystemAanguage de-
pendencies in a single (or small number of) place can also
improve the portability of software. The relevant quality-
carrying properties are listed in Table 111.

7) Reusability: There are at least two interpretations of
reusability. It may used to describe software that is ease to
adapt and modify for use in other contexts or, more strictly,
it may describe software that has properties that allow it to
be used in other application contexts without change. We will
apply the latter interpretation here. Using this interpretation,
for a module to possess the quality attribute reusability it
depends on two things: the functionality of the module must
be clearly and precisely described; the module must decoupled
and therefore independent of its implementation context. A
structural form is reusable if it uses standard language features,
it contains no machine dependencies, it implements a single
well-defined function and all computations are fully adjustable,
use no global variables and contain no side-effects. All ranges
associated with computations and data structures should have
both their lower and upper bounds parameterized. To be
completely reusable no variable in a computation should be
assigned to a number or any other fixed constant. All constants
used should be declared. Type independence also increases
reusability. The relevant quality-carrying properties are listed
in Table 111.

Table I11 summarizes the relations between high-level qual-
ity attributes and the set of quality-carrying properties. The
table may be used to answer two questions: “which quality-
carrying properties may be used to satisfy a given high-level
quality attribute?” and “which high-level quality attributes
does a given quality-carrying property impact?”

The information in this table is useful for assisting the
designer to build particular high-level quality attributes into

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIII
RELATIONSHIP BETWEEN QUALITY AT~RIBUTES

AND QUALITY-CARRYING PROPERTIES

software and for understanding which product properties im-
pact particular high-level quality attributes.

VI. ASSURING QUALITY HAS BEEN BUILT INTO SOFTWARE

To assure, that the sort of quality properties we have
described in our proposed model for software product quality
are adhered to, some means of inspection are needed. Code
inspection has long been recognized as a powerful method
for assuring and improving the quality of software. The only
problem is that it is very costly and labour-intensive to perform
systematically and rigorously on large amounts of software.

To overcome this problem we have developed a powerful
and flexible static analysis system (code auditor) [9] which
supports and conforms to the model of software product
quality that we have described. This system, which is rule-
based, allows users to analyze the quality of software from a
number of different perspectives. For example, it is possible
to assess the high-level quality attribute maintainability of the
software by running all the rules that have been classified as
impacting this high-level quality attribute. To do this, sim-
ply involves selecting maintainability in the quality-attributes
menu. In a similar way it is possible to assess high-level
product characteristics such as correctness. It is also possible
to select subordinate correctness properties such as assigned
which checks whether all variables are assigned before being
used. Overall the system for running the various rules is very
flexible. Implementation of many of the rules in the system
involves a detailed and sophisticated static analysis of the
program text.

In analyzing software the PASS (Program Analysis and
Style System) tool provides a comprehensive report on the
quality of C programs. In the summary part of the report
it presents such statistics as number-of-quality-defects-per-
thousand-lines-of code, the number of maintainability, relia-
bility, etc defects in the entire file. There is also a summary
of how many times each defect was found. The main part of
this report uses a format not unlike that used by compilers
to report syntax errors. The line number and function where
each defect occurs is pin-pointed. This system has been
successfully employed to assess the quality of a wide range
of industry software. The system allows an industry average
to be maintained [9].

VII. DISCIPLINE FOR CLASSIFYING QUALITY DEFECTS

As we have seen programs consist of structural forms
that describe data and processes. In order to classify and

160 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlEEE TRANSACTIONS ON SOFTWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21, NO. 2, FEBRUARY 1995

describe quality defects we need to talk about the properties
of structural forms. An alternative approach would have been
to use a model where relationships between structural forms
were considered but this was rejected because it makes the
characterization of defects more difficult. Provided our chosen
set of structural forms admits composition (the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsequence
structural form does this) there is no need to speak directly
of interrelationships between structural forms. For example
suppose, in a sequence of statements, a guard tests a condition
that has already been established by prior statements then we
say that the guard is “redundant” (it violates the nonredundant
usage property of guards). That is, we have assigned a defect
to a structural form because of the problem associated with its
usage in a particular context.

It was stated earlier that a primary requirement for the
proposed model of software product quality was that it should
possess a defect classification procedure that was repeatable.
That is, two people familiar with the model should arrive at
the same classification for any given defect.

The fundamental basis for classification we have employed
to achieve repeatable classification involves the use of prece-
dence to establish order. For this to work it is essential to have
a fully structured system of precedence rules for classifying
defects. Otherwise, we may end up classifying a given defect
in an arbitrary number of different ways. One primary and two
secondary classification rules are needed to implement system.

A. Primary ClassiJication Rule

Always associate a defect with the lowest level structural
form fo r which it assumes the status of a property.

This rule greatly simplifies the decision process for classi-
fication and ensures that defects zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare characterized in terms of
their origin rather than in terms of their consequences.

Once the task of deciding which structural form the defect
is to be associated with is accomplished the next task it to
identify the property of the structural form which is violated.
If there is any conflict in making this decision then first
intercategory and then, if necessary, intracategory precedence
rules may be applied to make the final classification decision.

The high level precedence for the principal product-property
classijcations which dictates the priority order is:

correctness -+ structural -+ modularity -+ descriptive

That is, classification of a defect as violating a correctness
property takes precedence over a classification violating a
structural property, and so on.

In a similar way, within a given principal property, a prece-
dence order also applies. Take, for example, the correctness
properties:

C 1. Computable
C2. Complete
C3. Assigned
C4. Precise
C5. Initialized
C6. Progressive
c 7 . variant
C8. Consistent

Here, if a choice must be made say, between classifying a
defect as violating the “complete” property, and the “consis-
tent” property, the former should be given precedence, and so
on. Defect classification will now be illustrated by discussion
of several examples.

1) Unassigned Variable in an Expression of an Assignment
Statement:

Defect ClassiJication: We have the choice of associating
this defect either with an assignment, with an expression or
with a variable:

assignment integrity -+ incomplete (incorrect)
expression integrity + incomplete (incorrect)
variable integrity -+ unassigned (correct)

Examples:

At first glance this defect might seem like an expression
integrity problem (e.g., the expression is undefined if one
of it’s variables is unassigned). However the source of the
problem is not the expression itself but the variable. The rule
that a variable should be assigned before use has been broken.

Defect ClassiJication: In this case we have the choice
between classifying the problem as a defect in the if-statement
or as a problem with the statement that is not reachable.

2) Unreachable Statement in an @Statement:

selection integrity + incomplete (correct)

We do not classify a statement as unreachable because this
amounts to treating it as a relation between structural forms.
Instead we classify it as a defect of a structural form at one
higher level where it reverts to a property of a structural form.
We say a statement at a higher level (the if) is incomplete-this
is the source of the defect.
3) ModiJication zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a Loop Variable on Exit from a Loop:

Defect ClassiJication: This could be potentially seen as
either a defect in the sequence or as a problem with variable
usage.

sequence integrity -+ inconsistent (incorrect)
variable integrity -+ inconsistent (correct)

Precedence dictates that the source of the problem is variable
usage. Changing a loop variable on loop exit means the
variable is being‘used for more than one purpose because
the invariant property associated with its use in the loop
is destroyed. A formal treatment of this problem is given
elsewhere [181.
4) Double Initialization, that is, Initialization of a Variable
Prior to Execution of a Loop and then Initialization of the Same
Variable Again Prior to Loop Entry: This might potentially be
seen as an assignment integrity or a variable integrity problem.

assignment integrity + ineffective (incorrect)
variable integrity -+ inconsistent (correct)

Precedence dictates that the problem be classified as a variable
usage problem rather than as a problem with the assignment.
5) Function which Returns no Values but which makes an
Assignment to at Least One Variable External to the Function:

Defect ClassiJcation:

DROMEY A MODEL FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASOFTWARE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPRODUCT QUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA161

QUALITY-CARRYING

QUALITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL I

PROPERTIES

Adjuaaoic I

Fig. 3. Quality-canying properties and programming languages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Defect Classijication: This example was chosen because

it indicates the presence of a composite defect. There is
inconsistent use of a module-it returns no values. And
secondly, the module exhibits a side-effect because it makes an
assignment to a global variable. Fixing either of these problems
would still leave a remaining problem. So we end up with the
following two classifications.

module integrity 4 inconsistent (correct)
variable integrity 4 unencapsulated (correct).

VIII. LANGUAGES AND SOFTWARE PRODUCT QUALITY

The model for software product quality that we have pro-
vided raises a number of important issues about programming
language design. Most existing languages leave the respon-
sibility for satisfying the various quality-carrying properties
in the hands of the designedprogrammer. This places a very
heavy burden for software quality on the shoulders of the
programmer. Design and code inspections and static analysis
tools may be used to assist the programmer in ensuring
that various quality-carrying properties are satisfied. These
approaches however do not offer the best way to deal with
the issue.

A far better way to proceed is to shift the major part of
this burden from the programmer to the language designer
and the compiler writer. By appropriate choices in the design
of languages and compilers many of the quality-carrying
properties associated with various structural forms can be
satisfied or enforced. This means that the programmers have
to change their style of implementation and/or submit their
programs to much more rigorous compiler checks which insist
that quality requirements are satisfied before a compiler will
produce executable code. As examples, Fig. 3 illustrates for
variables and expressions where the responsibilities for satis-
fying various quality-carrying properties cadshould reside.

Elsewhere we have shown how a simple yet powerful lan-
guage may be defined to implement the quality requirements
that we have defined [19].

QUALITY-CARRYING PROPERTIES

Aliu *** I

Fig. 4. Quality-canying properties for a requirements variable.

I x . APPLICATTON OF THE MODEL
TO OTHER SOFTWARE PRODUCTS

The model we have described is generic. It can be utilized in
many other contexts including for other products of software
development. Our intent here is not to develop quality models
for such applications but rather to establish the feasibility of
the approach by sketching a small part of a quality model
for a requirements specification. Such specifications consist
of a set of required functions each of which has associated
with it a set of input and output variables. In addition,
there are usually a set of constraints associated with the
variables and functions. Relations are used to define these
constraints. As with the model we have developed for software
implementations we may associate a comprehensive set of
quality-carrying properties with each of the components that
are used to define individual requirements (e.g., the input
and output variables and any constraints and/or properties
associated with the function and its variables). In addition,
other quality-carrying properties must be defined which apply
to subsets and even the complete set of requirements (e.g..
matters relating to consistency and completeness). Proceeding
in this way we can develop a comprehensive quality model
for software requirements. To illustrate the process let us focus
once again on variables. As in programs, the way variables are
used in a requirements specification has a key impact on its
quality. The quality-carrying properties needed for a variable
in a specification are somewhat different from those needed in
a program. To specify the quality of a variable in a program
it is only necessary to deal with properties that are either only
present or absent. In a requirements specification things are
different. We need to specify quality-carrying properties that
can take on a small set of values. A subset of the quality-
carrying properties of variables is given below together with
the brief explanation of their role and the identification of
defect status.

A. Quality-Carrying Properties zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Variables
in a Requirements Specification

Fig. 4 shows the quality-carrying properties (category, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU 0
status, domain, form, name) for variables in a requirements
specification. A quality defect occurs when a property has a
value marked with "***".

1) Category: For the purposes of specifying requirements
the two possible values of category are sufficient. Common is

162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON SOFIWARE ENGINEERING, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 21, NO. 2, FEBRUARY 1995

used to characterize variables whose properties are commonly
known (e.g., phone-book) and technical describes variables
whose properties are context-dependent. There is a tendency
in requirements to refer to common variables and not to bother
to define them for the purposes of shorthand. While this is a
defect in a requirements specification it is not a problem that
is hard to overcome. However when a technical variable (e.g.,
reentry-velocity) is not defined this is a much more serious
quality defect that needs rectification.

phone-book zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ common -+ undefined -+ not serious defect
reentry-velocity -+ technical -+ undefined -+ serious defect

. Note to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdejine common variables we can use an example or
cite a reference (e.g., Brisbane telephone book). We may also
refer to a certain page in an organization’s data model.

2) I/O-Status (source/sink properties): The quality of a
requirement’s specification depends very much on the
source/sink properties of variables. If this is definedexplicit
this is important, if it is unknown then it detracts from the
quality of a requirement. Each variable should have a source
and at least one zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsink. If there is more than one source there
could be a problem. If this information is not known then it
detracts from the quality of the requirement. The source could
be EXTERNAL (e.g., user input, an existing database etc.) or
the source may be the output of a functiodprocess. A sink
might be the input to a function. Variables can also be input
to and output from a function-in this case a variable must
also have some other source.

3) Domain: The domain of a variable must be defined. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Form: From a requirement it should be possible to

determine a variable’s form. If this is not be possible-it
represents a quality defect.

5) Alias: Defect when more than one name is used to refer
to a particular variable

Using the approach we have begun to outline here for
variables it is possible to build a comprehensive quality model
for a requirements specification. A similar approach can also
be taken to construct quality models for user interfaces and
other software products.

X. CONCLUSION

The model we have defined and illustrated here provides an
explicit process for building quality-carrying properties into
software. These properties in turn imply particular quality
attributes. In other words we have proposed a model that
establishes the link between tangible product characteristics
and less tangible quality attributes.

An important advantage of this model is that it can assist
in conducting a systematic search for quality defects. The
model guides us where to look for defects and also indicates
the properties that will need to be violated to create defects.
This information provides constructive guidance for building
a comprehensive set of defects for any particular language
environment.

No claim is made that the model we have proposed is
“correct” or that it is the only one that might be employed.

The model is empirical and therefore corrigible and open
to refinement. Irrespective of disputes or disagreement over
the details of the model the framework provided offers a
means for, in the longer term, providing direct guidance for
building quality into software both from the top-down (during
design) and from the bottom-up (during implementation). In
addition the model supports assuring the quality of software
and systematic classification of quality defects. While the
details of the model might need to be changed and refined the
framework should provide a sound constructive foundation for
achieving a better understanding of software product quality.

REFERENCES

B. W. Boehm, J. R. Brown, M. Lipow, G. J. MacLeod, and M.
J. Merritt, Characteristics of Software Quality. New York: Elsevier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Kitchenham, “Towards a constructive quality model,” Softwure Eng.

B. W. Kemighan and P. J. Plaugher, The Elements of Programming
Style. New York: McGraw-Hill, 1974.
M. Deutsch and R. Willis, Softwure Quality Engineering. Englewood
Cliffs, NJ: F’rentice-Hall, 1988.
T. P. Bowen, “Specification of software quality attributes,” Rome
Laboratory, New York, Tech. Rep. RADC-TR-85-37, vols. 1-3, 1976.
R. Nance, “Software quality indicators: An holistic approach to mea-
surement,” in Proc. 4th Ann. Sofmare Quality Workshop, Alexandria
Bay, New York, Aug. 1992.
Software Product Evaluation--Quality Characteristics and Guidelines
for Their Use, ISOnEC Standard ISO-9126 (1991).
R. G. Dromey, “A generic model for building quality into products and
processes,” in preparation.
R. G. Dromey and K. Ryan, PASS-C: Program Analysis and Style System
User Manual, Software Quality Inst., Griffith Univ., 1993.
R. G. Dromey, “Program Derivation,” in International Series in Com-
puter Sciences. London, England: Addison-Wesley, 1989.
N. Wirth, “Program development by stepwise refinement,” CACM, vol.
14, pp. 221-227, 1971.
M. Jackson, Principles of Program Design. London, England: Aca-
demic, 1975. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G. Myers, Software Reliability; Principles and Practices. New York:
Wiley, 1976.
R. G. Dromey and A. D. McGettrick, “On specifying software quality,”
Software Quality J., vol. I , no. 1, pp. 45-14, 1992.
R. G. Dromey, “A framework for engineering quality software,” keynote
address, 7th Australian Software Eng. Con$, Sydney, Australia, Sept.
1993.
E. W. Dijkstra and C. S. Scholten, Predicate Calculus and Program
Semantics. New York Springer-Verlag, 1989.
T. Manns and Coleman, Software Quality Assurance. London, Eng-
land: MacMillan, 1988.
Si Pan and R. G. Dromey, “A formal basis for measuring software
product quality,” 17th Australian Comput. Sci. Conj, Christchurch, NZ,
Jan. 1994.
B. Oliver and R. G. Dromey, “SAFE A programming language for
software quality,” 1st zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAInt. (Asia-Pacific) Con$ Software Quality and
Productivity, Hong Kong, China, Dec. 1994.

North-Holland, 1978.

J . , pp. 105-112, July 1987.

R. Geoff Dromey is the Foundation Professor of the
School of Computing and Information Technology
at Griffith University. He founded the SQI in 1989.

Through the SQI. he has worked closely for a
number of years with industry, national and in-
ternational standards bodies and government. He
has worked at Stanford University, the Australian
National University, and Wollongong University
before taking up the Chair at Griffith University
in Brisbane Australia. His current research interests
are in applying formal and empirical methods to

improve the quality of software and the productivity of software development.
Dr. Dromey has authoredko-authored two books and over fifty refereed

research papers. He is on the Editorial Board of four international joumals.

