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Abstract. We propose a model for Stochastic Hybrid Systems (SHSs) where transitions between
discrete modes are triggered by stochastic events much like transitions between states of a continuous-
time Markov chains. However, the rate at which transitions occur is allowed to depend both on the
continuous and the discrete states of the SHS. Based on results available for Piecewise-Deterministic
Markov Process (PDPs), we provide a formula for the extended generator of the SHS, which can be
used to compute expectations and the overall distribution of the state.

As an application, we construct a stochastic model for on-off TCP flows that considers both the
congestion-avoidance and slow-start modes and takes directly into account the distribution of the
number of bytes transmitted. Using the tools derived for SHSs, we model the dynamics of the moments
of the sending rate by an infinite system of ODEs, which can be truncated to obtain an approximate
finite-dimensional model. This model shows that, for transfer-size distributions reported in the litera-
ture, the standard deviation of the sending rate is much larger than its average. Moreover, the later
seems to vary little with the probability of packet drop. This has significant implications for the design
of congestion control mechanisms.
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1 Introduction

The idea of integrating logic and continuous dynamics in the control of complex systems is not new but
only in the last 15 years has the theoretical analysis of hybrid systems (i.e., systems with both continuous
dynamics and discrete logic) been pursued in a systematic fashion. A fair amount of research has been done
on the modeling of hybrid systems [1, 3, 10, 12, 29, 30, 36, 40, 44, 46], but most of this work concentrated
on deterministic systems.

Instances of stochastic hybrid systems can be found in the work on stochastic impulse control. For example
Bensoussan and Lion [6], considered the problem of optimally choosing impulse times and intensities for a
given stochastic differential equation. In more recent hybrid systems terminology, this would amount to
optimally selecting reset times and the values to which the state is reset. One specific example is the classic
optimal stopping time problem, where one wants to determine an optimal time instant at which the evolution
of a differential equation is to be “frozen.” Interestingly enough, Bensoussan and Lion [6] also considered the
case of integer-valued states.

One of the more general formal models for stochastic hybrid systems was proposed by Hu et al. [20], where
the deterministic differential equations for the continuous flows are replaced by their stochastic counterparts,
and the reset maps are generalized to (state-dependent) distributions that define the probability density of
the state after a discrete transition. However, in this model transitions are always triggered by deterministic
conditions (guards) on the state.
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In the model proposed in this paper for SHSs, transitions between modes are triggered by stochastic
events, much like the transitions between states of a continuous-time Markov chains. However, the probability
that a transition occurs in a given interval of time depends both on the continuous and discrete components of
the current SHS’s state. The state of the SHS so defined is a Piecewise-Deterministic Markov Process (PDP)
in the sense of [14]. Based on this observation, we provide a formula for the extended generator of the SHS,
which can be used to compute expectations and probability distributions/densities of its discrete/continuous
states.

The basic model proposed is (i) limited to a deterministic evolution of the continuous state inside each
discrete mode and (ii) it does not allow for transitions triggered by deterministic conditions on the state
(e.g., guards being crossed). The first restriction is only introduced for simplicity of presentation and it is
shown how the model can be generalized to allow for continuous evolutions driven by stochastic differential
equations. The rationale for disallowing transitions triggered by guard-crossings is that this allows us to
exclude Zeno phenomena [24, 46]. However, we show how one can approximate systems with guards (and
potentially prone to Zeno phenomena) by a sequence of Zeno-free SHSs.

The model proposed is inspired by piecewise deterministic jump systems (PDJSs), where the evolution of
the continuous state in each mode is modeled by a deterministic differential equation and transitions between
modes are governed by a continuous-time Markov process [5, 13, 15, 16, 45]. In general, the transitions rates
in PDJSs are assumed independent of the continuous state, which is too restrictive for our applications.
The work of Filar et al. [16] is a notable exception but requires a time-scale separation between the (purely
deterministic) continuous dynamics and the discrete jump dynamics. In switched diffusion processes (SDPs),
as defined by Ghosh et al. [17], the evolution of the continuous state in each mode is modeled by a stochastic
differential equation and transitions between modes are controlled by a continuous-time Markov process. The
transition rates of the Markov process can depend on the state but transitions do not generate jumps on the
continuous state (i.e., no resets). The reader is referred to [39] for a comparison of the models in [14, 17, 20].
The SHSs considered here can be viewed as special cases of general jump-diffusion processes [23]. In fact,
Theorem 1 can be viewed as an Itô rule for SHSs. However, in the application of interest, we are faced with
the technical difficulty that jump-intensities are not bounded and moreover the jump-distributions do not
have compact support.

Our SHS model was inspired by the need to obtain accurate models for TCP congestion control in
communication networks. The use of hybrid models to characterize the behavior of congestion control was
proposed by Hespanha et al. [19] and further pursued in [8, 9]. In these models, packet drops trigger transitions
between different “modes” for the evolution of TCP’s congestion window size. The drop models in [8, 19]
were completely deterministic but, as noted in [9], their use is limited to simple network topologies.

There is an extensive literature on models that describe the behavior of TCP congestion control for long-
lived flows, i.e., flows that have an infinite amount of data to transmit. A great deal of effort has been placed
in characterizing the steady-state behavior of these flows [32, 33, 37, 38, 42]. In particular, in studying the
relationship between the average transmission rate µ, the average round-trip time RTT , and the per-packet
drop rate pdrop for a single TCP flow. In most of this work, µ and pdrop should be understood as time-averages
for a single TCP flow. This type of approach was also pursued in [25–28, 38, 41] to derive dynamic models
for the congestion avoidance stage of long-lived TCP flows. However, these single-flow models are only valid
over time scales much longer than the round-trip time for one packet. To avoid averaging over long time
intervals, Misra et al. [34, 35] utilized ensemble averages to construct models for the dynamics of long-lived
flows. Shakkottai and Srikant [41] also used stochastic aggregation to reduce the time-scales over which a
single-flow model is valid. They showed that when n single-flow models are aggregated, the average model
becomes valid over time scales n times smaller than those of the original single-flow models. Interestingly,
aside from the different interpretation of the quantities involved, the ensemble-average models for long-lived
flows do not differ significantly from the time-average ones.

We pursue here a stochastic analysis of the hybrid models proposed in [9]. As in [34, 35] time averaging is
done over intervals of roughly one round-trip time to obtain continuously varying sending rates, and we then
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investigate the dynamics of ensemble averages. However, here we consider ensembles of on-off TCP flows.
The off-periods are assumed exponentially distributed whereas the on-periods are determined by the amount
of data being transfered. We take as given the probability distribution of the transfer-sizes, which implicitly
determines the distribution for the on-periods. The model takes into account the correlation between the
(variable) sending rate and the duration of the (also variable) on-periods. Not surprisingly, the ensemble
behavior of on-off TCP flows varies very significantly with the probability distribution of the transfer sizes.
By feeding our models with realistic distributions reported in the literature, we conclude that the dynamics
of the sending rate is dominated by high-order statistics, exhibiting much larger standard deviations than
the average value. Moreover, the packet drop rate seems to have a surprisingly small effect on the average
drop rate but provides a strong control on its standard deviation. This has significant implications for the
design of congestion control mechanisms.

To reach a wide audience we placed a great deal of effort in keeping technicalities to a minimum and
relegated the most technical arguments to Sect. 3.3, which can be skipped without loss of continuity. The
remainder of this paper is organized as follows: the basic stochastic hybrid model is introduced in Sect. 2 and
several possible generalizations are discussed. Sect. 3 discusses the basic theoretical tools to analyze SHSs. In
Sect. 4, we utilize SHSs to model TCP congestion control and illustrate how the tools derived in Sect. 3 can
be used to analyze the resulting system. Sect. 5 contains some conclusions and directions for future research.
The proofs of a few technical results are included in Appendix. A subset of the results in this paper were
presented at the 2004 Workshop on Hybrid Systems : Computation and Control.

Notation. By a piecewise continuous signal it is meant a function x : [0,∞) → R
n that is right-continuous

and has left-limit at every point. We denote by x−(t) the left-limit of x(τ) as τ ↑ t. A signal x is called
piecewise constant if it is piece-continuous and it is constant on every interval where it is continuous. Given a
measurable space (Ω,F) and probability measure P : F → [0, 1], vector-valued random variables α : Ω → R

n

and stochastic processes x : Ω × [0,∞) → X ⊂ R
n are denoted in boldface. A stochastic process with

piecewise constant sample paths is called a jump process. When a jump process takes values on the set N of
nonnegative integers it is called a stochastic counter.

2 Stochastic Hybrid Systems

A stochastic hybrid system (SHS) is defined by a differential equation

ẋ =f(q,x, t), f : Q× R
n × [0,∞) → R

n, (1)

a family of m discrete transition/reset maps

(q,x) =φ`(q
−,x−, t), φ` : Q× R

n × [0,∞) → Q× R
n, ` ∈ {1, . . . ,m}, (2)

and a family of m transition intensities

λ`(q,x, t), λ` : Q× R
n × [0,∞) → [0,∞), ` ∈ {1, . . . ,m}, (3)

where Q denotes a (typically finite) set with no particular topological structure. A SHS characterizes a jump
process q : Ω× [0,∞) → Q called the discrete state; a stochastic process x : Ω× [0,∞) → R

n with piecewise
continuous sample paths called the continuous state; and m stochastic counters N` : Ω × [0,∞) → N called
the transition counters.

In essence, between transition counter increments the discrete state remains constant whereas the con-
tinuous state flows according to (1); and at transition times the continuous and discrete states are reset
according to (2). Each transition counter N` counts the number of times that the corresponding discrete
transition/reset map φ` is “activated.” The frequency at which this occurs is determined by the transition
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intensities (3). In particular, the probability that the counter N` will increment and therefore that the
corresponding transition takes place in an “elementary interval” (t, t + dt] is given by λ`(q(t),x(t), t)dt. In
practice, one can think of the intensity of a transition as the instantaneous rate at which that transition
occurs. We will shortly make these statements mathematically precise.

It is often convenient to represent SHSs by a directed graph as in Figure 1, where each vertex corresponds
to a discrete mode and each edge to a transition between discrete modes. The vertices are labeled with the
corresponding discrete mode and the vector fields that determines the evolution of the continuous state in
that particular mode. The source of each edge is labeled with the probability that the transition will take
place in an elementary interval (t, t+ dt] and the destination is labeled with the corresponding reset-map.

PSfrag replacements

q = q1

ẋ = f(q1,x, t)

q = q2

ẋ = f(q2,x, t)

q = q3

ẋ = f(q3,x, t)

λ(q3,x, t)dt

λ(q1,x, t)dt

(q3,x) 7→ φ(q3,x, t)

(q1,x) 7→ φ(q1,x, t)

Fig. 1. Graphical representation of a stochastic hybrid system

2.1 Construction of the stochastic processes

We now provide the formal procedure to construct the sample paths of the discrete state, continuous state,
and transition counters and show that it is indeed consistent with the intuition given above. Aside from
its theoretical interest, this construction is useful to run Monte Carlo simulations of SHSs. It is inspired by
the one used in [14, Chapter 2] to define Piecewise-Deterministic Markov Processes (PDPs). The following
regularity assumption on the vector field f is required for the SHS to be well defined:

Assumption 1. For every (q0, x0, t0) ∈ Q×R
n× [0,∞) there exists a unique global solution ϕ(·; t0, q0, x0) :

[t0,∞) → R
n to (1) with initial condition x(t0) = x0 and q(t0) = q0. �

In what follows, the µ`k, ` ∈ {1, . . . ,m}, k ∈ N denote independent random variables all uniformly distributed
in the interval [0, 1]. We will call these transition triggers. Consider an initial condition (q0, x0, t0) ∈ Q ×
R
n× [0,∞). For a given ω ∈ Ω, the sample paths of q(ω, ·) : [t0,∞) → Q, x(ω, ·) : [t0,∞) → R

n, and all the
N`(ω, ·) : [t0,∞) → N can be constructed as follows:

1. Set t0(ω) = t0, q(ω, 0) = q0, x(ω, 0) = x0, N`(ω, 0) = 0, ∀`.
2. Let t1(ω) be the largest time on (t0(ω),∞] for which

e
−

R

t

t0(ω)
λ`(q(ω,t0(ω)),ϕ(s;t0(ω),q(ω,t0(ω)),x(ω,t0(ω))),s)ds

> µ`0(ω), (4)

∀t ∈ [t0(ω), t1(ω)), ` ∈ {1, . . . ,m}.
3. On the interval [t0(ω), t1(ω)), the sample paths of q(ω, ·) and all the counters N`(ω, ·) remain constant,

whereas the sample path of x(ω, ·) equals ϕ(· ; t0(ω),q(ω, t0(ω)),x(ω, t0(ω))).
4. Denoting by `1(ω) ∈ {1, 2, . . . ,m} the index for which (4) is violated1 at time t = t1(ω), the counter

N`1(ω)(ω) is incremented by one and

(

q(ω, t1(ω)),x(ω, t1(ω))
)

= φ`1(ω)

(

q−(ω, t1(ω)),x−(ω, t1), t1(ω)
)

.

1 In principle (4) could be violated simultaneously for more than one ` ∈ {1, . . . ,m}, but since this event has zero
probability we can ignore it.
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5. In case t1(ω) <∞, repeat the construction from the step 2 above with t0(ω), µ`0(ω), t1(ω), `1(ω) replaced
by tk(ω), µ`k(ω), tk+1(ω), `k+1(ω), respectively, for k = 1, 2, . . .

The random variables tk defined by (4) are called transition times.

The stochastic processes so defined depend on the initial condition for the SHS. To emphasize this dependence
we sometimes use Pz0 and Ez0 to denote the probability measure and expected value corresponding to the
initial condition z0 := (q0, x0, t0) ∈ Q× R

n × [0,∞).

Step 1 provides the initialization for all the stochastic processes. Step 3 guarantees that the discrete state
remains constant and the continuous state flows according to (1) between transitions. Step 4 enforces that
the continuous and discrete states are reset according to (2) at transition times. The frequency at which
these occur is determined by Step 2. In fact, one can derive from (4) (cf. Appendix) that

lim
dt↓0

P
(

N`(t+ dt) > N`(t)
)

dt
= lim
dt↓0

E
[ 1

dt

∫ t+dt

t

λ`(q(t), ϕ(s; t,q(t),x(t)), s)ds
]

, (5)

which shows that the probability P
(

N`(t+ dt) > N`(t)
)

that the transition φ` will occur in an (arbitrarily)
small interval (t, t+ dt] is proportional to the length of the interval with the proportionality constant given
by the right-hand-side of (5). This equation specifies the precise meaning of the observation made above to
the extent that “the probability that the counter N` will increment in an elementary interval (t, t + dt] is
given by λ`(q(t),x(t), t)dt.” Note that when λ` is continuous, the right-hand-side of (5) is precisely equal to
E[λ`(q(t),x(t), t)].

The above construction guarantees that the sample-paths are indeed right-continuous and have left-limits
at every point with probability one. However, without further assumptions there is no guarantee that the
sample path are defined globally on [0,∞). We will return to this issue later.

2.2 Generalizations

The model for stochastic hybrid systems presented above is more general than it may appear at first. We
discuss next some of the generalizations possible. We will return to these in Sect. 3.1 to study their implication
on the results in Sect. 3.

The model allows for transitions where the next state is chosen according to a given distribution. For
example, suppose one would like the intensity λ(q,x, t) to trigger transitions to the discrete-states q1 or
q2 with probabilities p1 or 1 − p1, respectively. This could be achieved by considering two transitions with
intensities p1λ(q,x, t) and (1 − p1)λ(q,x, t), respectively, and reset maps φ1(q, x, t) = (q1, ϕ1(x, t), t) and
φ2(q, x, t) = (q2, ϕ2(x, t), t), respectively, where the ϕi denote (possibly distinct) continuous-state resets.

The above model does not directly consider differential equations driven by stochastic processes. However,
many important classes of stochastic processes can be obtained as the limit of jump processes that can be
modeled by SHSs. For example, the stochastic differential equation

ẋ = ax + bẇ (6)

where w denotes Brownian motion, can be regarded as the limit as ε ↓ 0 of the jump system with continuous
dynamics ẋ = ax and resets x 7→ x + b

√
ε and x 7→ x − b

√
ε both triggered with fixed intensity 1

2ε . We can
therefore model continuous evolutions of the form (6) as limits to a sequences of SHSs.

The basic model also does not directly consider discrete transitions triggered by deterministic conditions
of the state, e.g., a guard being crossed. However, this behavior can also be obtained as the limiting solution
to a sequence of SHSs. Consider for example the well known bouncing-ball single-mode deterministic hybrid
system with dynamics ẍ = −g, g > 0 and state reset (x, ẋ) 7→ (0,−cẋ), c ∈ (0, 1) triggered by the condition
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ẋ < 0 and x ≤ 0. We could approximate this system by a sequence of SHSs for which the resets are triggered
with intensities given by a “barrier function” of the form

λε(x, ẋ) :=

{

ε e−x/ε ẋ < 0

0 ẋ > 0,
, ε > 0. (7)

As ε ↓ 0, transitions will occur in a small neighborhood of x = 0 with increasingly higher probability. Figure 2
shows confidence intervals for the sample-paths of three SHSs that approximate with increased accuracy the
deterministic bouncing-ball. It is important to emphasize that, for any ε > 0, the sample paths of the SHSs
are globally defined with probability one. This approach may in fact be a promising technique to overcome
difficulties posed by the Zeno phenomena that occur for the deterministic bouncing-ball system [24, 46].

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. 95% confidence intervals for the x sample paths of three SHS that approximate the bouncing-ball deterministic
system with Zeno time equal to 10. The transition intensities of the SHSs are given by (7) with ε = 10−2, 10−3, 10−4

from left to right. These results were obtained via Monte Carlo simulations.

3 Generator for SHSs

In this section we provide a result to compute expectations on the state of a SHS. The following assumptions
are needed:

Assumption 2. (i) The transition intensities λ` : Q × R
n × [0,∞) → [0,∞), ` ∈ {1, . . . ,m} are mea-

surable functions (e.g., continuous).
(ii) For every initial condition z0 := (q0, x0, t0) ∈ Q × R

n there exists a continuous functions αz0 :
[0,∞) → [0,∞) such that the sample-paths are defined globally and ‖x(t)‖ ≤ αz0(t), ∀t ≥ t0 with
probability one with respect to Pz0 . �

Assumption 2(ii) may be difficult to check, but we will shortly provide conditions that are more friendly to
verify. We are now ready to state the main result of this section:

Theorem 1. Suppose that Assumptions 1 and 2 hold. For every initial condition z0 := (q0, x0, t0) ∈ Q ×
R
n × [0,∞) and every function ψ : Q × R

n × [0,∞) → R that is continuously differentiable with respect to
its second and third arguments, we have that

Ez0 [ψ(q(t),x(t), t)] = ψ(q0, x0, t0) + Ez0

[

∫ t

t0

(Lψ)(q(s),x(s), s)ds
]

, (8)

where ∀(q, x, t) ∈ Q× R
n × [0,∞)

(Lψ)(q, x, t) :=
∂ψ(q, x, t)

∂x
f(q, x, t) +

∂ψ(q, x, t)

∂t
+

m
∑

`=1

(

ψ
(

φ`(q, x, t), t
)

− ψ(q, x, t)
)

λ`(q, x, t), (9)
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and ∂ψ(q,x,t)
∂x and ∂ψ(q,x,t)

∂t denote the gradient of ψ(q, x, t) with respect to x and the partial derivative of
ψ(q, x, t) with respect to t, respectively. �

Following [14], we call the operator ψ 7→ Lψ defined by (9) the extended generator of the SHS. It is often
convenient to write (8) in the following differential form2

d E[ψ(q(t),x(t), t)]

dt
= E[(Lψ)(q(t),x(t), t)]. (10)

We leave the proof of Theorem 1 to Sect. 3.3 and proceed to contrast it with Itô calculus [22]. Consider the
following jump-diffusion process

dx = f(x, t)dt+
m

∑

`=1

(φ`(x, t) − x)dN`, (11)

where the N` are Poisson counters independent of each other and of the process’ state x. Each counter N`

has constant intensity λ` and induces a state jump x 7→ φ`(x, t) at increment-times. The Itô rule for (11)
can be written as

dψ(x, t) =
∂ψ(x, t)

∂x
f(x, t)dt+

∂ψ(x, t)

∂t
dt+

m
∑

`=1

(ψ(φ`(x, t), t) − ψ(x, t))dN`. (12)

where ψ denotes a scalar-valued smooth function of x and t (cf., e.g., [11]). The equation for the expectation of
ψ(x, t) can be “derived” from (12) by replacing dN` with λ`dt, dividing the result by dt and take expectations,
which leads to

d E[ψ(x)]

dt
= E

[∂ψ(x, t)

∂x
f(x, t) +

∂ψ(x, t)

∂t
+

m
∑

`=1

(ψ(φ`(x, t), t) − ψ(x, t))λ`

]

.

Theorem 1, thus suggests the following Itô rule for SHSs:

dψ(q,x, t) =
∂ψ(q,x, t)

∂x
f(q,x, t)dt+

∂ψ(q,x, t)

∂t
dt+

m
∑

`=1

(

ψ
(

φ`(q,x, t), t
)

− ψ(q,x, t)
)

dN`(q,x),

from which one would “derive” (10) using a procedure similar to the one described above for jump-diffusion
processes. It is interesting to note that the existence of a discrete component q in the state does not signifi-
cantly change the Itô rule.

Assumption 2(ii) rules out finite escape time almost surely. Although this is a mild requirement, it may
be difficult to verify directly. The following lemma (proved in the Appendix) provides a condition that is
more restrictive but easily checkable:

Lemma 1. Let φx` : Q × R
n × [0,∞) → R

n, ` ∈ {1, . . . ,m} denote the projection of φ` into R
n [i.e.,

φx` (q, x, t) = x̄ where (q̄, x̄) = φ`(q, x, t)]. Assumptions 2(ii) holds, if there exists a continuous function
γf : [0,∞) → [0,∞) and constants cf , cφ such that

‖f(q, x, t)‖ ≤ max{γf (t)‖x‖, cf}, ‖φx` (q, x, t)‖ ≤ max{‖x‖, cφ},

∀q ∈ Q, x ∈ R
n, t ≥ 0, ` ∈ {1, . . . ,m}. �

This lemma essentially requires f and the φ` to have linear growth in x over R
n. Moreover, the growth

constant of the φ` must not be larger than one. This is a strong requirement and one might be tempted
to think that it could be replaced by a local condition if one would restrict one’s attention to a finite time
interval [0, T ], T < ∞. It turns out that in general this is not true. Consider for example a SHS with a

2 Recall that all signals are right-continuous with probability one and derivatives should be understood as right-limits.
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single discrete mode and scalar state x ∈ R that evolves according to ẋ = 0, between transitions, and that
undergoes a nonlocally Lipschitz reset x 7→ xp, p > 1 at transition times. For simplicity, we consider a
constant intensity µ for the transition. Given two time instants t ≥ τ > 0, it is straightforward to conclude

that x(t) = xp
N`(t)

0 and therefore

Ex0

[

x(t)
]

=
∞
∑

n=0

xp
n

0 µntn

n!
e−µt.

It turns out that when x0 > 1 the above series does not converge for any t > 0 and a “solution” to the SHS
is not defined on any interval of positive length. Problems may still arise when the reset maps have linear
growth but with a growth constant larger than one. For example, considering instead the globally Lipschitz
reset map x 7→ px, p > 1 and transition intensity λ(x, t) = x, it is possible to show that Ex0

[

x(t)
]

would
explode in finite time.

3.1 Generalizations

We now return to the generalizations of the basic SHS model mentioned in Sect. 2.2 and discuss their impact
on Theorem 1. Suppose that we would like every intensity λ` to triggers a transition for which the next state
is chosen according to a given distribution ν` over Q × R

n. Conceptually this can be viewed as expanding
each original intensity λ` into a family of intensities, each one reseting to one particular next-state in Q×R

n,
and with intensity proportional to the value of the distribution ν`. In this case, the extended generator of
the SHS becomes

(Lψ)(q, x, t) :=
∂ψ(q, x, t)

∂x
f(q, x, t) +

∂ψ(q, x, t)

∂t

+

m
∑

`=1

∫

Q×Rn

(

ψ(q̄, x̄, t) − ψ(q, x, t)
)

λ`(q, x, t)ν`(q, x, t, dq̄, dx̄).

Needless to say that appropriate assumptions on the reset distributions ν` are required to make sure that
Assumption 2 holds.

Suppose now that one would like to drive the differential equation on each discrete mode by Gaussian
white noise. In particular, suppose that one would like to replace (1) by

ẋ = f(q,x, t) +

k
∑

i=1

gi(q,x, t)ẇi, (13)

where each wi denotes an independent Brownian motion process. The stochastic differential equation (13)
can be regarded as the limit as ε ↓ 0 of the jump system with continuous dynamics ẋ = f(q,x, t) and resets
(q, x) 7→

(

q, x+
√
ε gi(q, x, t)

)

, (q, x) 7→
(

q, x−√
ε gi(q, x, t)

)

both triggered with fixed intensities ε
2 (cf., e.g.,

[11]). As ε ↓ 0, the extended generator of the SHS converges to

(Lψ)(q, x, t) :=
∂ψ(q, x, t)

∂x
f(q, x, t) +

∂ψ(q, x, t)

∂t
+

m
∑

`=1

(

ψ
(

φ`(q, x, t), t
)

− ψ(q, x, t)
)

λ`(q, x, t)+

+
1

2

k
∑

i=1

gi(q, x, t)
′ ∂

2ψ(q, x, t)

∂x2
gi(q, x, t), (14)

where ∂2ψ(q,x)
∂x2 denotes the Hessian matrix of ψ with respect to x (cf. Appendix). Although, for each ε > 0, the

assumptions of Lemma 1 are not satisfied for the reset maps above, the less strict assumptions of Lemma 2
are satisfied (at least for “well-behaved” ψ, e.g., bounded) and therefore the conclusions of Theorem 1 still
hold (cf. Sect. 3.3 below).
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3.2 Probability density

Theorem 1 also allows one to compute the probability density function of the SHS’s continuous state (as-
suming that one exists). The procedure is standard and is only included here for completeness.

Assume that there exists a joint probability density function ρ(x, q; t) such that, given any function
ψ : Q× R

n × [0,∞) → R for which Theorem 1 holds, we have

E[ψ(q(t),x(t), t)] =
∑

q∈Q

∫

Rn

ψ(q, x, t)ρ(q, x; t)dx.

Then for a continuously differentiable function ψ with bounded support, we conclude from Theorem 1 that

∑

q∈Q

∫

Rn

(

ψ(q, x, t)
∂ρ(q, x; t)

∂t
− ∂ψ(q, x, t)

∂x
f(q, x, t)ρ(q, x; t)

−
m

∑

`=1

(

ψ(φ`(q, x, t), t) − ψ(q, x, t)
)

λ`(q, x, t)ρ(q, x; t)

)

dx = 0.

Assuming that f(q, x, t)ρ(q, x; t) is differentiable with respect to x on the support of ψ(q, ·, t), by integration
by parts we obtain

∑

q∈Q

∫

Rn

ψ(q, x, t)

(

∂ρ(q, x; t)

∂t
+
∂
(

f(q, x, t)ρ(q, x; t)
)

∂x
+

m
∑

`=1

λ`(q, x, t)ρ(q, x; t)

)

dx

=
∑

q∈Q

∫

Rn

m
∑

`=1

ψ(φ`(q, x, t), t)λ`(q, x, t)ρ(q, x; t)dx.

In case x 7→ φx` (q, x, t) is invertible on R
n with inverse φ−x` : Q×R

n× [0,∞) → R
n,i.e., φ−x` (q, φx` (q, x, t), t) =

x, ∀q, x, t, we can make the change of integration variable z = φx` (q, x, t) on the right-hand-side and obtain

∑

q∈Q

∫

Rn

ψ(q, x, t)

(

∂ρ(q, x; t)

∂t
+
∂
(

f(q, x, t)ρ(q, x; t)
)

∂x
+

m
∑

`=1

λ`(q, x, t)ρ(q, x; t)

)

dx

=
∑

q∈Q

∫

Rn

m
∑

`=1

ψ(φq`(q, φ
−x
` (q, z, t), t), z)λ`(q, φ

−x
` (q, z, t), t)ρ(q, φ−x` (q, z, t); t)

∣

∣

∣

∂φ−x` (q, z, t)

∂z

∣

∣

∣
dz.

Choosing ψ(q, x, t) to be zero for every q other than q0 and a delta-distribution around x0, we obtain

∂ρ(q0, x0; t)

∂t
= −∂

(

f(q0, x0, t)ρ(q0, x0; t)
)

∂x
+

m
∑

`=1

(

− λ`(q0, x0, t)ρ(q0, x0; t)+

+
∑

q∈Q`[x0,t]

λ`(q, φ
−x
` (q, x0, t), t)ρ(q, φ

−x
` (q, x0); t)

∣

∣

∣

∂φ−x` (q, x0, t)

∂z

∣

∣

∣

)

,

where Q`[x0, t] denotes the set of values q ∈ Q for which φq`(q, φ
−x
` (q, x0, t)) = q0. When the previous system

of partial differential equations (one for each q0) has a unique solution, it defines the probability density of
the SHS’s state.

A similar derivation could have been done to obtain a Fokker-Planck-like equation for a SHS with a
differential equation on each discrete mode driven by Brownian motion as in (13). In this case, using (14)
instead of (9) we would eventually obtain
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∂ρ(q0, x0; t)

∂t
= −∂

(

f(q0, x0, t)ρ(q0, x0; t)
)

∂x
+

1

2

k
∑

i=1

∑

j

∑

l

∂2
(

gji (q0, x0, t)g
l
i(q0, x0, t)ρ(q, x; t)

)

∂xl∂xj

+
m

∑

`=1

(

− λ`(q0, x0, t)ρ(q0, x0; t) +
∑

q∈Q`[x0,t]

λ`(q, φ
−x
` (q, x0), t)ρ(q, φ

−x
` (q, x0); t)

∣

∣

∣

∂φ−x` (q, x0)

∂z

∣

∣

∣

)

,

where gji denotes the jth entry of the vector gi.

3.3 Proving Theorem 1

Let q,x,N1,N2, . . . ,Nm be the stochastic processes characterized by a SHS using the construction in
Sect. 2.1 with initial condition (q0, x0, t0) ∈ Q × R

n. The process w := {t,q,x,N1,N2, . . . ,Nm} is then
a Piecewise-Deterministic Markov Processes (PDPs) as defined in [14, Chapter 2] with initial condition
w(0) = {t0, q0, x0, 0, . . . , 0}. This stems directly from the fact that the construction in Sect. 2.1 mimics the
one in [14, Chapter 2] to define PDPs. By collecting results from [14] and adapting them to our setting the
following is straightforward to prove.

Theorem 2. Suppose that Assumptions 1 and 2(i) hold and that, for every z0 := (q0, x0, t0) ∈ Q× R
n,

Ez0
[

∑

`

N`(t)
]

<∞, ∀t ≥ t0. (15)

Then (8) holds for every z0 := (q0, x0, t0) ∈ Q × R
n and every function ψ : Q × R

n × [0,∞) → R that is
continuously differentiable with respect to its second argument and

Ez0

[

∑

tk≤t

∣

∣ψ(q(tk),x(tk), tk) − ψ(q(t−k ),x(t−k ), tk)
]

<∞, ∀t ∈ N. (16)

Proof of Theorem 2. Assumptions 1, 2(i), and (15) guarantee that the standard conditions required by [14,
Theorem 26.14] hold for the PDP defined by w := {t,q,x,N1, . . . ,Nm} 3. Moreover, (16) guarantees that
ψ̄(t, q, x, n1, . . . , nm) := ψ(q, x, t) belongs to the domain of the extended generator of w and also that

Cψ(t) := ψ(q(t),x(t), t) − ψ(q0, x0, t0) −
∫ t

t0

(Lψ)(q(s),x(s))ds

is actually a Martingale rather than just a local Martingale (cf., [14, Remark 26.14]). Therefore

Ez0 [C
ψ(t)] = Cψ(t0) = 0,

from which (8) follows. �

In view of Theorem 2, to prove Theorem 1 it suffices to show that Assumption 2(ii) implies that both (15)
and (16) hold. Actually, as shown in the following Lemma, something slightly weaker than Assumption 2(ii)
suffices.

Lemma 2. For a given z0 := (q0, x0, t0) ∈ Q × R
n and function ψ : Q × R

n → R, assume that there exist
continuous functions α, β : [0,∞) → [0,∞) such that

λ`(q(t),x(t), t) ≤ α(t), |ψ(q(t),x(t), t)| ≤ β(t), ∀`, t ≥ 0, (17)

with probability one with respect to Pz0 . Then (15) and (16) hold.

3 At every switching time at least one of the counters N` increases by one so assumption 24.8, 3. of [14] holds trivially.
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Before proving Lemma 2 note that Assumption 2(ii) does guarantee the existence of the functions α and
β for which (17) holds and therefore Theorem 1 follows directly from Theorem 2 and Lemma 2.

Proof of Lemma 2. From the definition of the transition times tk, we have that

P(
∑

`N`(t) ≥ k) = P(tk ≤ t) = P
(

e
−

R

t

tk−1
λ`k

(q(s),x(s),s)ds ≤ µ`k

k−1

)

=

= P
(

e
−

R

t

tk−1
λ`k

(q(s),x(s),s)ds ≤ µ
`k

k−1, e
−

R ti
ti−1

λ`i
(q(s),x(s),s)ds ≤ µ`i

i−1, ∀i < k
)

.

Note that all the events added in the last equality occur with probability one (actually with equality) so
they do not change the overall probability. Because of (17),

e−
R

b

a
λ`k

(q(s),x(s),s)ds ≥ e−
R

b

a
α(s)ds, ∀b > a ≥ 0,

with probability one, therefore

P(
∑

`N`(t) ≥ k) ≤ P
(

e
−

R

t

tk−1
α(s)ds ≤ µ

`k

k−1, e
−

R ti
ti−1

α(s)ds ≤ µ`i

i−1, ∀ 1 ≤ i < k
)

= P
(

∫ t

tk−1

α(s)ds ≥ − log µ`k

k−1,

∫ ti

ti−1

α(s)ds ≥ − logµ`i

i−1, ∀ 1 ≤ i < k
)

≤ P
(

∫ t

tk−1

α(s)ds +
k−1
∑

i=1

∫ ti

ti−1

α(s)ds ≥ −
k

∑

i=1

log µ`i

i−1

)

= P
(

∫ t

t0

α(s)ds ≥ −
k

∑

i=1

log µ`i

i−1

)

.

Since all the µ`i

i−1 are independent and uniformly distributed in the interval [0, 1], the − logµ`i

i−1 are inde-

pendent random variables exponentially distributed with unit mean. Therefore −
∑k
i=1 log µ`i

i−1 is Erlang
distributed and

P
(

−
k

∑

i=1

log µ`i

i−1 ≤ η
)

= 1 −
k−1
∑

i=0

e−η
ηi

i!
≤ ηk

k!
, ∀η ≥ 0

where the right-inequality can be proved by showing that

ϕ(η) := 1 −
k−1
∑

i=0

e−η
ηi

i
− ηk

k

is zero at zero and ∂ϕ(η)
∂η = ηk−1

(k−1)(e
−η − 1) < 0, ∀η > 0. We therefore conclude that

P(
∑

`N`(t) ≥ k) ≤
( ∫ t

t0
α(s)ds

)k

k!
.

Finally,

E
[

∑

`

N`(t)
]

≤
∞
∑

k=0

kP(
∑

`N`(t) ≥ k) ≤
∞
∑

k=0

k

( ∫ t

t0
α(s)ds

)k

k!
=

(

∫ t

t0

α(s)ds
)

e
R

t

t0
α(s)ds

<∞,

from which (15) follows. On the other hand,

E
[

∑

tk≤t

∣

∣ψ(q(tk),x(tk), tk) − ψ(q(t−k ),x(t−k ), tk)
∣

∣

]

≤ E
[

∑

tk≤t
2β(t)

]

= E
[

2β(t)
∑

`

N`(t)
]

,

where, without loss of generality, we assumed that β is monotone increasing. Inequality (16) follows from
this and (15).
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4 A stochastic model for TCP flows

In this section we present a SHSs model for a single-user on-off TCP flow based on the hybrid modeling
framework proposed by Bohacek et al. [9]. The model is represented graphically in Figure 3. It has two con-

PSfrag replacements

q = ss

ẇ =
(log 2)w

nack RTT

ṡ =
w

RTT

q = ca

ẇ =
1

nack RTT

ṡ =
w

RTT

q = off

ẇ = 0

ṡ = 0

wF ′

s∗
(s) dt

RTT (1−Fs∗ (s))
wF ′

s∗
(s) dt

RTT (1−Fs∗ (s))

dt

τoff

pdropw dt

RTT

pdropw dt

RTT

w 7→ w0, s 7→ 0

w 7→ 0, s 7→ 0

w 7→ 0, s 7→ 0

w 7→ w

2
w 7→ w

2

Fig. 3. Stochastic hybrid model for a TCP flow, where nack denotes the number of data packets acknowledged per
each ACK packet received and w0 := .693 when nack = 1 or w0 := 1.428 when nack = 2.

tinuous states—TCP’s congestion window size w and the cumulative number of packets sent in a particular
connection s—and three discrete states {off, ss, ca}.

1. During the off mode the flow is inactive and we simply have w = s = 0.
2. The ss mode corresponds to TCP’s slow-start. In this mode, the congestion window size w increases

by one for each ACK packet received and w packets are sent each round-trip time RTT . This can be
modeled by

ẇ =
(log 2)r

nack
=

(log 2)w

nackRTT
, ṡ = r =

w

RTT
(18)

where r = w

RTT denotes the instantaneous average sending rate and nack the number of data packets
acknowledged per each ACK packet received. The (log 2) term compensates for the error introduced by
approximating the discrete increments by a continuous increase. Indeed, without delayed ACKs we have
nack = 1 and this model leads to the usual doubling of w every RTT . With delayed ACKs, typically
nack = 2 and this model leads to a multiplication of the w by

√
2 every RTT . This is consistent with

the analysis by Sikdar et al. [43], which shows that for nack = 2 the number of packets sent in the nth

round-trip time of slow-start is approximately equal to (1 +
√

2
2 )

√
2
n
. This formula is matched exactly

by the fluid model in (18) when one sets w = 1.428 at the beginning of ss. On the other hand, for
nack = 1, the number of packets sent in the nth round-trip time of slow-start should be equal to 2n−1.
This matches the fluid model by making w = .693 at the beginning of ss.

3. The ca mode corresponds to TCP’s congestion-avoidance. In this mode w increases by 1/w for each
ACK packet received and, as in slow-start, w packets are sent each round-trip time RTT . This can be
modeled by

ẇ =
1

w

r

nack
=

1

nackRTT
, ṡ = r =

w

RTT

The transitions between modes occur as follows:

1. Drops occurrences—which correspond to transitions from the ss or the ca modes to the ca mode—occur
at a rate pdropr, where pdrop denotes the per-packet drop probability and r := w

RTT the packet sending
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rate. The corresponding intensity and reset maps are given by

λdrop(q, w, s, t) :=

{

pdrop(t)w
RTT q ∈ {ss, ca}

0 otherwise

φdrop(q, w, s, t) :=

{

(

ca, w2 , s
)

q ∈ {ss, ca}
(q, w, s) otherwise.

2. The start of new flows—which correspond to the transitions from the off to the ss mode—occur at a rate
1
τoff

. This is consistent with an exponentially distributed duration of the off periods with average τoff .
The corresponding intensity and reset maps are given by

λstart(q, w, s, t) :=

{

1
τoff

q = off

0 otherwise

φstart(q, w, s, t) :=

{

(ss, w0, 0) q = off

(q, w, s) otherwise,

where

w0 :=

{

.693 nack = 1

1.428 nack = 2,

3. The termination of flows—which correspond to transitions from the ss and ca modes to the off mode—
occur at a rate

rF ′
s∗(s)

1 − Fs∗(s)
, r :=

w

RTT
. (19)

This is consistent with a distribution Fs∗ : [0,∞) → [0, 1] for the number s∗ of packets sent in each TCP
session (cf. Appendix). The corresponding intensity and reset maps are given by

λend(q, w, s, t) :=

{

wF ′

s∗
(s)

RTT (1−Fs∗ (s)) q ∈ {ss, ca}
0 otherwise

φend(q, w, s, t) :=

{

(off, 0, 0) q ∈ {ss, ca}
(q, w, s) otherwise.

Three main simplifications were considered: we ignored fast-recovery after a drop is detected by three dupli-
cate ACKs, we ignored the delay between the time a drop takes place and the time it is detected, and we
ignored timeouts. Fast-recovery takes relatively little time and has little impact on the overall throughput
unless the number of drops is very high [8]. Timeouts can have a severe impact on the throughput when
drops are highly correlated. Here, we are mostly interested in RED for which high correlations are unlikely.
The drop detection delay is mostly important for the stability analysis of congestion control protocols, which
will not be pursued here. We focus our attention on two specific instances of the general model in Figure 3:

Exponential sizes This model is obtained by assuming that the number of packets to transmit is expo-
nentially distributed with mean k, i.e., Fs∗(s) = 1 − e−

s
k , ∀s ≥ 0. In this case, the intensity of the counter

Nend is given by

λend(q, w, s, t) :=

{

k−1w
RTT q ∈ {ss, ca}
0 otherwise.
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Mixed-exponential sizes It has been observed that modeling the distribution of transfer-sizes as an
exponential is an over-simplification. For example, it has been observed that heavy-tail models are more
fitting to experimental data (cf., e.g., [2, 4]). An alternative that turns out to be computationally attractive
and still fits reasonably well with experimental data is a mixture of exponentials. According to this model,
transfer-sizes are sampled from a family of M exponential random variables si, i ∈ {1, 2, . . . ,M} by selecting
a sample from the ith random variable si with probability pi. Each si corresponds to a distinct mean
transfer-size ki. To model this as a SHS, we consider M alternative {ssi, cai : i = 1, 2, . . . ,M} modes, each
corresponding to a specific exponential distribution for the transfer-sizes. The transition from the inactive
mode off to the slow-start mode ssi corresponding to a mean transfer-size of ki occurs with probability pi
and are associated with intensities and reset maps given by

λi(q, w, s, t) :=

{

pi

τoff
q = off

0 otherwise
φi(q, w, s, t) :=

{

(ssi, w0, 0) q = off

(q, w, s) otherwise,

which replace the λstart and φstart in the previous model. To obtained the desired distribution for the transfer-
size, the intensity and reset maps of the transitions to the inactive mode off, should be replaced by

λend(q, w, s, t) :=



























k−1
1 w
RTT q ∈ {ss1, ca1}
...

...
k−1

M
w

RTT q ∈ {ssM , caM}
0 otherwise

φend(q, w, s, t) :=

{

(off, 0, 0) q ∈ {ssi, cai : i = 1, 2, . . . ,M}
(q, w, s) otherwise.

The intensities and reset maps of the transitions to the congestion avoidance modes must be adapted in the
obvious way:

λdrop(q, w, s, t) :=

{

pdrop(t)w
RTT q ∈ {ssi, cai : i = 1, 2, . . . ,M}

0 otherwise

φdrop(q, w, s, t) :=























(

ca1,
w
2 , s

)

q =∈ {ss1, ca1}
...

...
(

caM ,
w
2 , s

)

q =∈ {ssM , caM}
(q, w, s) otherwise

The exponential-sizes model in Sect. 4 is a special case of this for M = 1. A similar technique could be used
to obtain a mixture of exponentials for the distribution of the off periods.

4.1 Analysis of the TCP SHS models

To investigate the dynamics of the moments of the sending rate r(t) = w(t)
RTT (t) for the mixed-exponentials

TCP model, ∀n ≥ 0, q0 ∈ Q we define

µq0,n(t) := E
[

ψq0,n(q(t),w(t), t)
]

, ψq0,n(q, w, t) :=

{

wn

RTT (t)n q = q0

0 otherwise.
(20)

From these definitions we conclude that

E[rn(t)] =
∑

q∈Q
µq,n(t), ∀t ≥ 0
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and that
∑

q∈Q
µq,0(t) = 1, µoff,n = 0, ∀n ≥ 1, t ≥ 0.

The following result can be obtained by directly applying Theorem 1 to the SHS TCP model. Details of the
computations can be found in the Appendix.

Theorem 3 (Full-order models). For the mixed-exponentials model in Sect. 4 we have4

µ̇off,0 = −
µoff,0

τoff
+

M
X

j=1

k
−1
j (µssj ,1 + µcaj ,1) (21)

µ̇ssi,n =
piw

n
0 µoff,0

τoffRTTn
+ n

(log 2) − nack
˙RTT

nackRTT
µssi,n − (pdrop + k

−1
i )µssi,n+1 (22)

µ̇cai,n =
nµcai,n−1

nackRTT
2 −

n ˙RTTµcai,n

RTT
− (pdrop + k

−1
i )µcai,n+1 +

pdrop

2n
(µssi,n+1 + µcai,n+1). (23)

4.2 Reduced-order model

The system of infinitely many differential equations that appear in Theorem 3 describes exactly the evolution
of the moments of the sending rate r but finding the exact solution to these equations does not appear to be
simple. However, as noted by Bohacek [7], Monte Carlo simulations reveal that the steady-state distribution
of the sending rate is often well approximated by a Log-Normal distribution. Assuming that on each mode
the sending rate r approximately obeys a Log-Normal distribution even during transients, we can truncate
the systems of infinitely many differential equations that appear in Theorem 3. We recall that, if the random
variable x has a Log-Normal distribution with parameters µ and σ, then

E[x] = eµ+ σ2

2 , E[x2] = e2µ+2σ2

, E[x3] = e3µ+ 9σ2

2 ,

and therefore E[x3] = E[x2]3

E[x]3 . Therefore if r is approximately Log-Normal distributed in the mode q ∈ Q, we

have that

µq,3 = µq,0 E[r3 | q = q] ≈ µq,0
E[r2 | q = q]3

E[r | q = q]3
=
µq,0 µ

3
q,2

µ3
q,1

, (24)

where we used the fact that

µq,n = P(q = q) E[rn | q = q] = µq,0 E[rn | q = q].

Using (24) in (21)–(23), we can eliminate any terms µq0,n, n ≥ 3 in the equations for µ̇q0,n, n ≤ 2, thus
constructing the following finite-dimensional model to approximately describe the dynamics of the first two
moments of the sending rate:

µ̇ssi,0 =
pi

`

1 −
PM

j=1(µssi,0 + µcai,0)
´

τoff
− (pdrop + k

−1
i )µssi,1 (25)

µ̇cai,0 = pdrop µssi,1 − k
−1
i µcai,1 (26)

µ̇ssi,1 =
w0 pi

`

1 −
PM

j=1(µssi,0 + µcai,0)
´

τoff RTT
+

(log 2) − nack
˙RTT

nack RTT
µssi,1 − (pdrop + k

−1
i )µssi,2 (27)

µ̇cai,1 =
µcai,0

nack RTT 2
−

˙RTT µcai,1

RTT
+
pdropµssi,2

2
−

`pdrop

2
+ k

−1
i

´

µcai,2 (28)

µ̇ssi,2 =
w2

0 pi

`

1 −
PM

j=1(µssi,0 + µcai,0)
´

τoff RTT 2
+

(log 4)µssi,2

nack RTT
−

2 ˙RTT µssi,2

RTT
− (pdrop + k

−1
i )

µssi,0 µ
3
ssi,2

µ3
ssi,1

(29)

4 To simplify the notation, we omit the time-dependence of RTT and pdrop.
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µ̇cai,2 =
2µcai,1

nack RTT 2
−

2 ˙RTT µcai,2

RTT
+
pdrop

4

µssi,0 µ
3
ssi,2

µ3
ssi,1

−
“3 pdrop

4
+ k

−1
i

”µcai,0 µ
3
cai,2

µ3
cai,1

. (30)

We present next simulations of this reduced model for a few representative parameter values.

Figure 4 corresponds to a transfer-size distribution that results from the mixture of two exponentials
(M = 2) with parameters

p1 = 88.87%, k1 = 3.5KB, p2 = 11.13%, k2 = 246KB. (31)

The first exponential corresponds to small “mice” transfers (3.5KB average) and the second to “elephant”
mid-size transfers (246KB average). The small transfers are assumed more common (88.87%). These param-
eters result in a distribution with an average transfer-size of 30.58KB and for which 11.13% of the transfers
account for 89.7% of the total volume transfered. This is consistent with the file distribution observed in
the UNIX file system [21]. However, it does not accurately capture the tail of the distribution (it lacks the
“mammoth” files that will be considered later). The results obtained with the reduced model (25)–(30)
match reasonably well those obtained from Monte Carlo simulations of the full SHS model, especially taking
into account the very large standard deviations. It is worth it to point out that the simulation of (25)–(30)
takes just a few seconds, whereas each Monte Carlo simulation takes several hours of CPU.

Two somewhat surprising conclusions can be drawn from Figure 4 for this distribution of transfer-sizes
and off-times:

1. The average total sending rate varies very little with the drop rate (at least up to the drop rate of 33%
shown in the plots), with most of the packets transmitted belonging to “elephant” mid-size transfers.
This is perhaps not surprising when most packets are transmitted in the slow-start mode (for drop rates
below .8%) but still holds when a significant fraction of packets are sent in the congestion avoidance
mode.

2. The dynamics of TCP are completely dominated by second order moments. In Figure 4, the standard
deviation is 5 to 20 times larger than the average sending rate, which is very accurately predicted by the
reduced model. As the drop rate increases, the standard deviation decreases but even for pdrop = 33%
the standard deviation is still 5 times larger than the average sending rate.

This behavior is completely different from the one observed for TCP flows that are always on, for which it
has been shown that the steady-state average sending rate is approximately given by c

RTT
√
pdrop

, where RTT

denotes the average round-trip time, pdrop the per-packet drop rate, and c a constant ranging from 1.225 to
1.310 depending on the method used to derive the equation [8, 19, 32, 33, 37]. This equation is valid at least
for simple network topologies, small values of pdrop, and one acknowledgment per ACK packet (nack = 1).
Generalizations can be found, e.g., in [38, 42].

We considered next a transfer-size distribution that results from a mixture of three exponentials (M = 3)
with parameters

p1 = 98%, p2 = 1.7%, p3 = .02%,

k1 = 6KB, k2 = 400KB, k3 = 10MB.
(32)

The first exponential corresponds to small “mice” transfers, the second to mid-size “elephant” transfers, and
the third to large “mammoth” transfers. The resulting distribution, shown in Figure 5, approximates the
one reported by Arlitt et al. [2] obtained from monitoring transfers from a world-wide web proxy within an
Internet Service Provider. This distribution has a much heavier tail than the one considered before.

Figure 6 contains results obtained from the reduced model. We do not present Monte Carlo results because
the simulation times needed to capture the tails of the transfer-size distribution are prohibitively large. In
this figure we varied the average off-time τoff from .2 to 5 seconds. This essentially scales the sending rate
but does not significantly change the way it varies with the drop probability. It turns out that the main
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Fig. 4. Steady-state values for the probability of a flow being on each mode (top) and the average (mid) and standard
deviation (bottom) of the sending rate as a function of the drop probability. The solid lines were obtained for the
model (25)–(30) with RTT = 50ms, nack = 1, and a transfer-size distribution that results from the mixture of two
exponentials with the parameters in (31). The mean off time was set to τoff = 5sec. The (larger) symbols were
obtained from Monte Carlo Simulations.
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conclusions drawn before still hold: the average sending rate varies relatively little with the drop rate and
the dynamics of TCP are completely dominated by second order moments. The mid-size “elephants” still
dominate followed by the small “mice.” The large “mammoth” transfers occur at a rate that is not sufficiently
large to have a significant impact on the average sending rate.

5 Conclusions

This paper presents a new model for SHSs where transitions between discrete modes are triggered by stochas-
tic events, which occur at rates that are allowed to depend on both the continuous and the discrete states
of the SHS. Based on results available for Piecewise-Deterministic Markov Process (PDPs), we provide a
formula for the extended generator of the SHS.

As an illustration, we presented a SHS model for on-off TCP flows that considers both slow-start and
congestion avoidance. One important observation that stems from this work is that for realistic transfer-size
distributions high-order statistical moments seem to dominate the dynamics of TCP. Also, the probability
of drop appears to have a much larger effect on the standard deviation of the sending rate than on its mean
value. We are currently investigating the impact of this observation on the stability and performance of
congestion control mechanisms.

This work opens several avenues for future research. We would like to determine conditions under which
Assumption 2(ii) holds, milder than those required by Lemma 1. It is also worth to investigate how solutions
to deterministic hybrid systems that exist only in a finite interval due to Zeno phenomena can be globally
extended using SHSs. Finally, one needs to develop general tools to approximate the dynamics of SHSs by
finite-dimensional systems of ODEs, as was done for the TCP example.
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Fig. 6. Steady-state values for the average (left) and standard deviation (right) of the sending rate as a function
of the drop probability. These results were obtained from the reduced model, with RTT = 50ms, nack = 1, and a
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Appendix

Proof of Equation (5). Consider an interval (t, t+dt], dt > 0 and let tk be the largest transition time smaller
than or equal to t. The probability that the counter N` will be incremented in (t, t+ dt] is given by

P
(

N`(t+ dt) > N`(t)
)

= P
(

e
−

R

t+dt

tk
λ(s)ds ≤ µ`k < e

−
R

t

tk
λ(s)ds)

=

= E
[

P
(

e
−

R

t+dt

tk
λ(s)ds ≤ µ`k < e

−
R

t

tk
λ(s)ds ∣

∣ tk,q(tk),x(tk)
)

]

,

where λ(s) := λ`(q(tk), ϕ(s; tk,q(tk),x(tk)), s) and the expectation is taken with respect to the random
variables tk,q(tk),x(tk). Since µ`k is uniformly distributed in [0, 1], we have that

P
(

e
−

R

t+dt

tk
λ(s)ds ≤ µ`k < e

−
R

t

tk
λ(s)ds ∣

∣ tk,q(tk),x(tk)
)

= e
−

R

t

tk
λ(s)ds − e

−
R

t+dt

tk
λ(s)ds

with probability one, and therefore

P
(

N`(t+ dt) > N`(t)
)

= E
[

e
−

R

t

tk
λ`(q(t),ϕ(s;t,q(t),x(t)),s)ds − e

−
R

t+dt

tk
λ`(q(t),ϕ(s;t,q(t),x(t)),s)ds

]

, (33)

where we used the facts that ϕ(s; tk,q(tk),x(tk)) = ϕ(s; t,q(t),x(t)) and that q(tk) = q(t) with probability
one because there are no resets in (tk, t] due to the definition of tk. Equation (5) follows from dividing both
sides of (33) by dt and taking the limit as dt ↓ 0.

Proof of Lemma 1. Let (q, x) denote a sample path of (q,x) constructed according to the algorithm in
Sect. 2.1 with initial conditions (q0, x0, t0) ∈ Q × R

n × [0,∞) and ti, i ≥ 0 the corresponding transition
times. On each interval [ti, ti+1), x evolves according to (1) and therefore

x(s) = x(ti) +

∫ s

ti

f(q(ti), x(r), r)dr, ∀s ∈ [ti, ti+1).

Taking norms we obtain

‖x(s)‖ ≤ ‖x(ti)‖ +

∫ s

ti

max{γf (r)‖x(r)‖, cf }dr, ∀s ∈ [ti, ti+1).

Since γf (r)‖x(r)‖ is continuous on [ti, ti+1), one of the following three cases must occur:

1. γf (r)‖x(r)‖ > cf , ∀r ∈ [ti, ti+1). In this case,

‖x(s)‖ ≤ ‖x(ti)‖ +

∫ s

ti

γf (r)‖x(r)‖dr, ∀s ∈ [ti, ti+1),

and we conclude using the Bellman-Gronwall Lemma that

‖x(s)‖ ≤ e
R

s

ti
γf (r)dr‖x(ti)‖, ∀s ∈ [ti, ti+1).

2. γf (r
∗)‖x(r∗)‖ = cf for some r∗ ∈ [ti, ti+1) and γf (r)‖x(r)‖ ≥ cf , ∀r ∈ [r∗, ti+1). In this case, we conclude

from applying the Bellman-Gronwall Lemma on [r∗, ti+1) that

‖x(s)‖ ≤ e
R

s

r∗
γf (r)dr‖x(r∗)‖ =

e
R

s

r∗
γf (r)drcf
γf (r∗)

∀s ∈ [r∗, ti+1).

3. γf (r)‖x(r)‖ < cf , ∀r ∈ [ti, ti+1).
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Without loss of generality we assume that the function γf is monotone increasing and γf (t0) > 0. For any
of the cases above, it is then always true that

‖x(s)‖ ≤ e
R

s

ti
γf (r)dr

max
{

‖x(ti)‖,
cf

γf (t0)

}

, ∀s ∈ [ti, ti+1) (34)

and assuming that the discontinuity at time ti+1 is due to the transition φ`, we have that

‖x(ti+1)‖ = ‖φx` (q(ti), x−(ti+1), ti+1)‖ ≤ max
{

e
R ti+1

ti
γf (r)dr‖x(ti)‖,

e
R ti+1

ti
γf (r)drcf

γf (t0)
, cφ

}

.

In the worst case, ‖x0‖ is larger than both
cf

γf (t0) and cφ and the first term always dominates as one iterates

from i = 0 to i = k − 1, which yields

‖x(tk)‖ ≤ e
R tk

t0
γf (r)dr max

{

‖x0‖,
cf

γf (t0)
, cφ

}

. (35)

Take know an arbitrary time t ≥ 0 and let tk, denote the last transition time before or at t. From (35) and
(34) for i = k and s = t, we conclude that

‖x(t)‖ ≤ e
R

t

t0
γf (r)dr

max
{

‖x0‖,
cf

γf (t0)
, cφ

}

,

which finishes the proof.

Proof of Equation (14). For a particular ε > 0, the extended generator of the SHS is given by

(Lψ)(q, x, t) =
∂ψ(q, x, t)

∂x
f
(

q, x, t
)

+
∂ψ(q, x, t)

∂t
+

m
∑

`=1

(

ψ
(

φ`(q, x, t), t
)

− ψ(q, x, t)
)

λ`(q, x, t)+

+

k
∑

i=1

ψ
(

q, x+
√
ε gi(q, x, t), t

)

+ ψ
(

q, x−√
ε gi(q, x, t), t

)

− 2ψ(q, x, t)

2ε
.

To take the limit as ε ↓ 0, we compute the Taylor series around ε = 0 of the numerator of each term in the
last summation, which yields

ψ
(

q, x+
√
ε gi(q, x, t), t

)

+ ψ
(

q, x−
√
ε gi(q, x, t), t

)

− 2ψ(q, x, t)

= ε gi(q, x, t)
′ ∂

2ψ
(

q, x, t
)

∂x2
gi(q, x, t) +O(ε

3
2 ),

where O(ε
3
2 ) a term of order no larger than ε

3
2 . Equation (14) is then obtained by making ε ↓ 0. �

Verification of (19). To verify that (19) is consistent with a distribution Fs∗ : [0,∞) → [0, 1] for the number
s∗ of packets sent in each TCP session, consider a TCP session that started at some transition time tk and
transmits with sending rate r. The probability that the number s∗ of packets sent in this session is larger
than s > 0 is given by

P(s∗ ≥ s | r, tk) = P(Nses(tk) = Nses(t) | r, tk),

where t > 0 is defined such that
∫ t

tk
r(τ)dτ = s. Denoting by tk+m the last transition time before t, we have

that

P(s∗ ≥ s | r, tk) = P
(

e
−

R

t

tk+m

r(τ)F ′

s∗
(s(τ))

1−F
s∗

(s(τ))
dτ
> µses

k+m, e
−

R ti+1
ti

r(τ)F ′

s∗
(s(τ))

1−F
s∗

(s(τ))
dτ
> µses

i , ∀k ≤ i ≤ k +m | r, tk
)
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= P
( 1 − Fs∗

(

s(t)
)

1 − Fs∗

(

s(tk+m)
) > µses

k+m,
1 − Fs∗

(

s(ti+1)
)

1 − Fs∗

(

s(ti)
) > µses

i , ∀k ≤ i ≤ k +m | r, tk
)

, (36)

where we used the fact that

∂

∂τ
log

(

1 − Fs∗

(

s(τ)
)

)

= −r(τ)F ′
s∗(s(τ))

1− Fs∗(s(τ))
. ∀τ ≥ 0.

Since all the events in the right-hand-side of (36) are conditionally independent given r, tk and the random
variables µses

i are uniformly distributed in [0, 1], we conclude that

P(s∗ ≥ s | r, tk) = P
( 1 − Fs∗

(

s(t)
)

1 − Fs∗

(

s(tk+m)
) > µses

k+m | r, tk
)

k+m
∏

i=k

P
(1− Fs∗

(

s(ti+1)
)

1 − Fs∗

(

s(ti)
) > µses

i | r, tk
)

,

= 1 − Fs∗

(

∫ t

tk

r(τ)dτ
)

= 1 − Fs∗(s),

which confirms that Fs∗ is indeed the cumulative distribution of the number of packets sent per TCP
session.

Proof of Theorem 3. Applying the extended generator L for the SHS model defined in Sect. 4 to the functions
ψq0,n defined in (20) yields

(Lψq0,n)(q, w, s, t) =
∂ψq0,n(q, w, t)

∂w
f(q, w, s, t) +

∂ψq0,n(q, w, t)

∂t
+ (ψq0,n(φdrop(q, w, s, t), t) − ψq0,n(q, w, t))λdrop(q, w, s, t)

+ (ψq0,n(φend(q, w, s, t), t) − ψq0,n(q, w, t))λend(q, w, s, t)

+
M
∑

j=1

(ψq0,n(φj(q, w, s, t), t) − ψq0,n(q, w, t))λj (q, w, s, t),

from which we obtain by direct computation that

(Lψoff.0)(q, w, t) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:
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1 w

RTT
q ∈ {ss1, ca1}

...
...

k
−1
M

w

RTT
q ∈ {ssM , caM}

− 1
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q = off

0 otherwise

= −
ψoff,0(q, w, t)

τoff
+

M
X

j=1

k
−1
j

`

ψssj ,1(q, w, t) + ψcaj ,1(q, w, t)
´

(Lψssi,n)(q, w, t) =

8

>

>

<

>

>

:

n

`

(log 2)n−1
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−
˙RTT

´

wn
−(pdrop+k

−1
i

)wn+1

RTT n+1 q = ssi

piwn
0

τoff RTT n q = off

0 otherwise

=
piw

n
0 ψoff,0(q, w, t)

τoffRTTn
+ n

(log 2) − nack
˙RTT

nackRTT
ψssi,n(q, w, t) − (pdrop + k

−1
i )ψssi,n+1(q, w, t)

(Lψcai,n)(q, w, t) =

8

>

>

<
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2−npdropwn+1

RTT n+1 q = ssi

n n
−1
ack

wn−1
−n ˙RTT wn

−(pdrop+k
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RTT n+1 q = cai
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=
nψcai,n−1(q, w, t)

nackRTT 2
−
n ˙RTTψcai,n(q, w, t)

RTT
− (pdrop + k

−1
i )ψcai,n+1(q, w, t)

+
pdrop(ψssi,n+1(q, w, t) + ψcai,n+1(q, w, t))

2n
.

To obtain (21)–(23), we use (10) to conclude that

µ̇q0,n = E[(Lψq0,n)(q,w, t)],

and replace in the right-hand-side of this equation the expectations of the ψq0,n by the corresponding
µq0,n.
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