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A model for the dynamics of gas bubbles in soft tissue
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Understanding the behavior of cavitation bubbles driven by ultrasonic fields is an important problem

in biomedical acoustics. Keller-Miksis equation, which can account for the large amplitude

oscillations of bubbles, is rederived in this paper and combined with a viscoelastic model to account

for the strain-stress relation. The viscoelastic model used in this study is the Voigt model. It is shown

that only the viscous damping term in the original equation needs to be modified to account for the

effect of elasticity. With experiment determined viscoelastic properties, the effects of elasticity on

bubble oscillations are studied. Specifically, the inertial cavitation thresholds are determined using

Rmax /R0, and subharmonic signals from the emission of an oscillating bubble are estimated. The

results show that the presence of the elasticity increases the threshold pressure for a bubble to

oscillate inertially, and subharmonic signals may only be detectable in certain ranges of radius and

pressure amplitude. These results should be easy to verify experimentally, and they may also be

useful in cavitation detection and bubble-enhanced imaging. © 2005 Acoustical Society of

America. �DOI: 10.1121/1.2118307�

PACS number�s�: 43.35.Wa, 43.80.Sh, 43.35.Ei �FD� Pages: 3595–3606

I. INTRODUCTION

Cavitation phenomena are very complicated due to the

nonlinear oscillations of small bubbles and the interactions

between these bubbles. In most cases, cavitation occurs in

water, which is the most familiar fluid to us, and as a result,

studies of bubble dynamics in water have been undertaken

for over 80 years. Bubble dynamic models are well estab-

lished for bubbles in water or simple Newtonian fluids. With

the development of new materials and new techniques, the

study of bubble dynamics in viscoelastic media becomes

necessary. The increasing interest in cavitation is partly re-

lated to the application of medical ultrasound. For example,

the use of bubble-based contrast agents in diagnostic ultra-

sound has significantly increased the quality of imaging. Re-

cently, this issue has become more important due to the de-

velopment of the high intensity focused ultrasound �HIFU�
for therapeutic medicine. High intensity ultrasound will in-

duce cavitation in soft tissue, and these microbubbles have a

huge impact on the distribution of the ultrasound energy. In

these situations, the surrounding media, i.e., biological tis-

sues, often exhibit non-Newtonian behavior. Understanding

the behavior of cavitation in vivo may provide a powerful

tool to improve the quality of medical ultrasound.

The study of these microbubbles involves bubble oscil-

lations in viscoelastic media. Many researchers have ex-

tended the analysis of bubble dynamics in Newtonian fluids

to non-Newtonian fluids. Fogler and Goddard
1

combined the

linear Maxwell model with the Rayleigh-Plesset equation

and examined the collapse of a spherical cavity in a large

body of an incompressible viscoelastic liquid. The bubble

was modeled as a void, and the effect of elasticity was in-

vestigated. Their results showed that the elasticity in the liq-

uid can significantly retard the collapse of a bubble. A three

parameter linear Oldroyd model was employed by Tanasawa

and Yang
2

to study the free oscillation of a gas bubble in

viscoelastic fluids. They investigated the effects of the vis-

cous damping in the presence of elasticity, and found that in

the presence of elasticity, the effect of viscous damping on

bubble collapse is less than that in the pure fluid. Later,

Shima, Tsujina, and Nanjo
3

investigated the nonlinear oscil-

lations of gas bubbles in viscoelastic fluids using the model

first derived by Tanasawa and Yang,
2

and the effects of re-

laxation time and retardation time were clarified. A fully nu-

merical scheme was developed by Kim
4

to investigate col-

lapse of a spherical bubble in a large body of Upper-

Convective Maxwell fluid. He observed that fluid elasticity

accelerated the collapse in the early stage of collapse while

in the later stages it retarded the collapse. His approach was

very computationally intensive. Alekseev and Rybak
5

pre-

sented the resonance frequency of gas bubbles in elastic me-

dia. The dispersion equation in a viscoelastic medium was

also derived for bubble clouds in their study. Allen and Roy
6

chose the linear Maxwell and Jeffreys models as the liquid

constitutive equation to study bubble oscillations in linear

viscoelastic fluids. After linearization of the original nonlin-

ear differential equation �a Rayleigh-Plesset type equation�,
analytical solutions were obtained and compared with the

Newtonian results. In a later study of nonlinear viscoelastic-

ity, they
7

employed the Upper-Convective Maxwell model as

the constitutive equation with the Rayleigh-Plesset equation.

A fully numerical study was conducted to solve the govern-

ing system of equations. The results of the linear and non-

linear viscoelastic approaches were compared. Their results

showed that tissue viscoelasticity may be important for the

potential cavitation bioeffects.

For diagnostic ultrasound examinations, the acoustic in-

tensity is usually insufficient to induce inertial cavitation in

soft tissue directly.
8

The only source of microbubbles in soft

tissue would be direct injection of a bubble-based contrasta�
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agent, an uncommon procedure. However, the use of higher

intensity ultrasound, e.g., HIFU therapy, will cause cavitation

in soft tissue directly. Different from contrast agent bubbles,

this cavitation involves free bubbles oscillating nonlinearly

because of the high intensity of the sound field. Previous

models for viscoelastic media are all based on the Rayleigh-

Plesset equation, which is not very appropriate for large am-

plitude oscillations. In this work, we seek a model that is

capable of accounting for the potentially large-amplitude os-

cillations of bubbles exposed to HIFU fields. In addition, the

bubble model must incorporate a viscoelastic model consis-

tent with measured tissue properties. Although the data on

viscoelastic properties of soft tissue at megahertz frequencies

are very limited, the linear Voigt model has proven appropri-

ate for the tissues studied;
9,10

none of the above-mentioned

models incorporates these experimental results. The Keller-

Miksis equation
11

has been shown to be suitable for large

amplitude bubble oscillations.
12

In this study, we combine

the general form of the Keller-Miksis equation with the lin-

ear Voigt model for viscoelastic solids to study the dynamics

of bubbles in soft tissue.

The importance of the inertial cavitation threshold has

been addressed by many authors. In a medical context, se-

vere bioeffects, including both thermal and nonthermal ef-

fects, may be induced or exacerbated by inertial cavitation

during high intensity ultrasound insonations. When inertial

cavitation occurs, strong nonlinear acoustic emissions can be

detected. A sudden change in the emission signals from a

bubble is often used to monitor the occurrence of inertial

cavitation in experiments.
13,14

In addition to the familiar sec-

ond, third, and higher harmonics, bubbles may also generate

subharmonic signals when they oscillate nonlinearly. There-

fore, monitoring the generation of subharmonics can be used

to detect inertial cavitation. Higher frequency emissions are

very easily attenuated, and the signal that needs to be de-

tected may become very weak. At the same time, the nonlin-

ear propagation of ultrasound will also generate higher har-

monics, and this can be a noise source for higher harmonic

detection. Compared to harmonic detectors, subharmonic de-

tectors have the advantages that the low frequency signal is

less attenuated in soft tissue, and bubbles are the only

sources generating subharmonics in soft tissue.

Subharmonic signals have been seen in experiments dur-

ing cavitation events, but mechanisms for the generation of

subharmonics are still not entirely clear. Possible explana-

tions include that a single bubble will emit subharmonics

when it breaks up, or interactions inside a bubble cloud can

emit subharmonics, or chaotic oscillations of a single bubble

will generate subharmonics. In this study, we focus on single

bubble dynamics, and simply predict subharmonic signals

from the chaotic oscillation of a single bubble. The effect of

elasticity on inertial cavitation thresholds and subharmonic

emissions will be investigated, providing data that may be

useful for cavitation detection and bubble imaging.

II. THEORY AND METHOD

Consider a spherical bubble in an unbounded viscoelas-

tic medium. The equation of continuity has the following

form in a spherical coordinate system,

��

�t
+

���vr�

�r
+

2�vr

r
= 0, �1�

where � is the density, vr is the radial velocity, t is time, and

r is the radial axis. Conservation of radial momentum for a

spherically symmetric radial flow yields,
15,16

�� �vr

�t
+ vr

�vr

�r
� = −

�p

�r
+

��rr

�r
+

2

r
��rr − ���� , �2�

where p is the pressure in the surrounding medium, and �rr

and ��� are the stresses in the r and � directions, respectively.

The boundary and initial conditions are:

p = pg −
2�

R
+ �rr at r = R ,

p = p� at r = � ,

R = R0, Ṙ = 0 at t = 0,

where pg is the gas pressure inside the bubble, R is the po-

sition of the gas-tissue interface, the dot indicates the time

derivative, R0 is the bubble equilibrium radius, and � is the

surface tension.

To derive the Keller-Miksis equation, which can account

for the compressibility of the surrounding medium to first

order, an asymptotic solution is employed in the near field

and far field.

A. Near field approximation

In the near field �r=O�R��, the effects of compression

and expansion of the bubble are dominant, and the surround-

ing medium may be considered incompressible. From the

Bernoulli integral �momentum equation�, one can find the

solution for the pressure distribution in the internal zone

�near field�,

vr = −
ṘR2

r2
, �3�

pin = pa − �0�RR̈ +
3

2
Ṙ2� +

�0

r
�R2Ṙ�� −

�0

2

R4Ṙ2

r4
+ ��rr�R

r

+ 3�
R

r �rr

r
dr , �4�

where pa is the pressure at the bubble surface, R̈ is the

bubble wall acceleration, and
�

indicates the time derivative.

B. Far field approximation

In the far field �r�R�, the pressure fluctuations and the

density fluctuations are small, and the stress components be-

come negligible, as do the nonlinear convection terms. Ignor-

ing these terms, the governing equation in the far field is

essentially the linear acoustic equation. The solutions for the

linear acoustic equation are

�ex =
1

r
	�1�t −

r

c
� + �2�t +

r

c
�
 , �5�
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pex = p0 − �0

��ex

�t
, �6�

where p0 is the static pressure, �0 is density at equilibrium, �

is the velocity potential, �1 and �2 characterize the outgoing

and incident acoustic waves, respectively, and c is the sound

speed in the medium.

C. Matching of the solutions

To obtain the equation of the radial motion of bubbles

for a given driving pressure and to take account of compress-

ibility of the surrounding medium, we need to match the

asymptotic solutions in the internal and external zones in the

intermediate zone. For the internal solution, the intermediate

zone is at r→�, and for the external solution, the interme-

diate zone is at r→0. The matching conditions in the inter-

mediate zone are the equality of the volumetric flow and of

the pressure,

4	r2�vr�in��r→� = 4	r2�vr�ex��r→0 �pin�r→� = �pex�r→0. �7�

For the internal solution, shear stresses vanish as r→�.

By matching the solutions we finally get

RR̈ +
3

2
R2 =

pa − p0

�
+

1

c
�2�2� + f�� −

�rr��R,t�

�

+
3

�
�

R

�
�rr

r
dr , �8�

where f =R2Ṙ, and �2 is the incident wave. Note that the

above equation includes f�, which will cause a third deriva-

tive of R. This was first noticed by Prosperetti et al.
12

This

third derivative can be eliminated by assuming that f� /c is

small, and evaluating the f from the above-mentioned equa-

tion. Then the equation becomes

RR̈ +
3

2
R2 =

pa − pI

�
, �9�

where pI is the pressure at infinity, pI= p0−2� /c�2�

+�rr�R , t�−3�R
��rr /rdr. This is the form of classic Rayleigh

equation, indicating that the evaluation of f from this equa-

tion is accurate to leading order. Equation �9� may be rewrit-

ten as

f�

R
−

1

2

f2

R4
=

pa − pI

�
, �10�

then f� is evaluated as

f� = R	 Ṙ2

2
+

pa − pI

�

 , �11�

Substitution of Eq. �11� into Eq. �8� results in the final equa-

tion,

�1 −
Ṙ

c
�RR̈ +

3

2
�1 −

Ṙ

3c
�Ṙ2

= �1 +
Ṙ

c
� pa − pI

�
+

R

�c

d

dt
�pa − pI� , �12�

where �2� /c��2�= PAg�t� is the driving pressure,

pa = pg −
2�

R
+ �rr�R,t� , �13�

and

pa − pI = pg −
2�

R
− p0 +

2�

c
�2� + 3�

R

� �rr

r
dr . �14�

D. Evaluating stress components

Since stress components will vanish in the far field, we

then only evaluate �rr in the near field, i.e., in an incompress-

ible material. Because soft tissue is viscoelastic, we need to

choose a proper viscoelastic model to determine stresses. We

choose the linear Voigt model for this study because it is a

simple linear model and previous studies have shown that it

is appropriate in the low megahertz frequency range.
9,10

More important, some experimental data for soft tissues are

also available for this model.
9,10

This also creates the poten-

tial for comparing the resulting predictions with the experi-

mental measurements in vivo.

Because the material is incompressible, �rr=2�G
rr

+�
̇rr�, where 
rr is the strain, 
̇rr is the strain rate with


̇rr=�u /�r, u is the velocity, and G is the shear modulus

�or rigidity�.17
In the near field �near the bubble

surface�, u= �R2 /r2�Ṙ, therefore, 
rr=−�2/3r3��R3−R0
3� and


̇rr=−�2R2 /r3�Ṙ.

Then, we have

3�
R

� �rr

r
dr = − 	 4G

3R3
�R3 − R0

3� +
4�Ṙ

R

 , �15�

and

d

dt
�3�

R

� �rr

r
dr� = − 4G

R0
3Ṙ

R4
− 4��−

Ṙ2

R2
+

R̈

R
� . �16�

Expanding �pa− pI�, finally we have

pa − pI = pg −
2�

R
− p0 + PAg�t�

− 	 4G

3R3
�R3 − R0

3� +
4�Ṙ

R

 , �17�

and
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d

dt
�pa − pI�

=
d

dt
�pg −

2�

R
− p0 + PAg�t�� +

d

dt
	3�

R

� �rr

r
dr


=
dpg

dt
+

2�Ṙ

R2
+ PA

dg�t�

dt
− 4G

R0
3Ṙ

R4
− 4��−

Ṙ2

R2
+

R̈

R
� .

�18a�

Equations �12�, �17�, and �18a� provide the desired formula-

tion describing the dynamics of gas bubbles in soft �i.e.,

viscoelastic� tissue. We note that this equation is actually just

the Keller-Miksis equation with extra terms to account for

the elasticity of soft tissue. The equation accounts for the

compressibility of the surrounding medium to first order, and

thus it is better suited than the Rayleigh-Plesset equation to

simulate large amplitude bubble oscillations. The validity of

this equation is limited to small Mach numbers.
12

For the results presented here, the gas inside the bubble

is assumed ideal, allowing the pressure to be estimated by

use of a polytropic relation, pg= pg0�R0 /R�3�, where � is the

polytropic index. In this case, Eq. �18a� may be written as:

d

dt
�pa − pI� = �2�

R
− 3�pg� Ṙ

R
+ PA

dg�t�

dt
− 4G

R0
3Ṙ

R4

− 4��−
Ṙ2

R2
+

R̈

R
� . �18b�

E. Analytical solutions

Although Eq. �12� was specifically to investigate nonlin-

ear bubble activity in tissue, it is instructive to consider the

effects of the various physical parameters on bubble dynam-

ics at low pressure amplitudes. An analytical solution to Eq.

�12� may be obtained by assuming that the pulsation ampli-

tude R0x�t�, is small, making the usual substitutions of Eq.

�19� into Eq. �12�:18

R = R0�1 + x�, U = R0ẋ, U̇ = R0ẍ ,

�19�
R−3� = R0

−3��1 − 3��, etc. ,

and recognizing that the term i
R0PAei
t /c is to first order

equivalent to the linear expression for the radiated pressure

wave:
15,18

Psac =
�R̈R0

�1 −
i
R0

c
�

, �20�

The resulting equation has the form:

mẍ + bẋ + kx = − PAei
t, �21�

where the effective mass, m, total damping, btot, and stiff-

ness, k, are given by

m = �R0
2 +

4�R0

c
,

btot = �3�Pg0 −
2�

R0

+ 4G�R0

c
+ 4�

+

R0/c

1 + �
R0/c�2

��R0

2� ,

k = 3�pg0 −
2�

R0

+ 4G +

2

1 + �
R0/c�2
��R0

2� .

Notice that each term is greater than would be found from a

purely linear analysis of a gas bubble in water.
18

The effec-

tive mass contains a small additional increment due to the

effect of viscosity. There are two additional damping terms,

one arising from variation in the surface energy of the bubble

�and directed opposite to the other damping terms�, the other

from the rigidity of the surrounding tissue, respectively. The

rigidity of the tissue also contributes to the total stiffness of

the system, as has been noted previously.
1–6

Comparison of Eq. �21� with that of a damped harmonic

oscillator:

ẍ + 2�totẋ + 
0
2x =

− PA

m
ei
t, �22�

in which �tot is the total damping constant and 
0 is the

natural frequency, allows identification of five compo-

nents �viscous, thermal, acoustic, interfacial, and elastic�
to the total damping, given by

�vis = bvis/2m = 2�� ��R0
2 +

4�R0

c
� , �23a�

�th = bth/2m = 3�pg0R0� 	2c��R0
2 +

4�R0

c
�


= 3�pg0/�2�cR0 + 8�� , �23b�

�ac = bac/2m =

R0/c

1 + �
R0/c�2




2
��R0

2�� ��R0
2 +

4�R0

c
� ,

�23c�

�int = bint/2m = − �� 	c��R0
2 +

4�R0

c
�


= − �/��cR0
2 + 4�R0� , �23d�

�el = bel/2m = 2GR0� 	c��R0
2 +

4�R0

c
�


= 2G/��cR0 + 4�� , �23e�

and the expression for the natural frequency:


0
2 = k/m = 	3�pg0 −

2�

R0

+ 4G

+

2

1 + �
R0/c�2
��R0

2�
� ��R0
2 +

4�R0

c
� .

�24�

In this last expression, the contributions of the acoustic and

viscous terms are important only for large bubbles, while the
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elastic term either dominates or is of the same order as the

pressure term except for very small bubbles. Note that if the

acoustic, viscous, and elastic terms are neglected, the well-

known expression for the resonance frequency of a gas

bubble in liquid is recovered.

The scattering cross section may be defined as the ratio

of the total acoustic power scattered by an object at a given

frequency to the incoming acoustic intensity.
17

For a spheri-

cal bubble oscillating at low amplitude, the expression for

the scattering cross section is

�S =
4	R0

2
4

�
0
2 − 
2�2 + �tot

2 
2
. �25�

F. Numerical solutions

To obtain predictions for the nonlinear oscillation of a

bubble in soft tissue, Eq. �12� must be solved numerically.

Results for individual R�t� curves, inertial cavitation thresh-

olds, and subharmonic emissions are presented in the follow-

ing. Determination of the cavitation thresholds requires se-

lection of a threshold criterion. Several criteria for the

inertial cavitation threshold have appeared in literature, e.g.,

Rmax /R0=2,
19,20

Tmax=5000 K,
21

etc. In this study, we use

Rmax /R0=2 as the threshold criterion. This choice is consis-

tent with the assumption that the air in the bubble expands

and contracts adiabatically since the amplitude R�t� /R0 is

fairly insensitive to the thermodynamic processes within the

bubble.
22

For subharmonics, the relative strength of the emis-

sion with respect to that of the strongest frequency compo-

nent emitted by a single bubble is shown. The reason to

choose this relative strength is from consideration of experi-

mental detection. After passing a preamp, whether a fre-

quency component is detectable by a spectral analyzer or not

depends on its strength relative to the strongest component.

A frequency component is only detectable when this relative

number is within the vertical resolution of the instrument.

Otherwise, it will be suppressed as noise. The relative num-

ber is obtained by the following method: first the R-t curve is

obtained, next the radiation pressure is determined by

psac�r,t� =
�R

r
�2Ṙ2 + RR̈� , �26�

where r is assumed to be a unit constant, and then frequency

components are determined by FFT. The amplitude of the

subharmonic is expressed in decibels relative to the maxi-

mum amplitude over all frequency components.

The following material properties are used in the current

simulations: p0=1.01�105 Pa, �=1060 kg/m3, c

=1540 m/s, and �=0.056 N/m �the value for blood as-

sumed by Apfel and Holland
19�. These parameters are chosen

to be close to values appropriate to soft tissue. The actual

properties of specific soft tissues may be slightly different

from these values �except for surface tension, which is un-

known�, but the differences will generally be small. The

polytropic index �=1.4, a value appropriate for adiabatic

oscillations of air bubbles. The rigidity and the viscosity of

tissue are assumed to be G=0, 0.5, 1.0, and 1.5 MPa and

�=0.015 Pa s. These values span the range obtained by pre-

vious measurements,
9,10

with the exception of G=0, which is

included for comparison. The effect of viscosity has been

investigated previously for a Newtonian medium. We will

focus on the effects of elasticity on bubble motion in this

study, but to allow easy comparison with previous work, re-

sults for water �G=0, �=0.001� and blood �G=0, �=0.005�
are also presented. The driving frequencies studied are 1 and

3.5 MHz, which are frequently used in HIFU. All the bubble

oscillations are solved for 30 cycles.

III. RESULTS

A. Analytical results

The following results were obtained for the case of air-

filled bubbles in tissues having a modulus of rigidity equal to

0.5, 1.0, or 1.5 MPa �as discussed earlier�. In addition, re-

sults for either water or blood or both are presented for com-

parison. The effects of the surrounding tissue on resonance

frequency, damping, and the scattering cross section for in-

dividual single bubbles will be illustrated in the following.

1. Resonance frequency

The undamped linear resonance frequency for bubbles

larger than 1–2 �m and surrounded by viscoelastic tissue is

dominated by the shear modulus G. For these bubbles, as

shown in Fig. 1, 
0, increases approximately as the square

root of G. The bottom curve in Fig. 1, labeled “Water,”

shows the resonance frequency for a free bubble with G=0.

The three curves above it, for tissues with increasing values

of G, demonstrate that the increase in stiffness provided by

the tissue can increase the resonance frequency considerably.

The effect of rigidity is much greater than the effect of sur-

face tension, meaning that a larger bubble will exhibit a

much greater stiffness than a free bubble of equivalent size.

For example, the value of 
0, for a 5-�m bubble is about

0.63 MHz, while replacing the water with tissue increases

this value by a factor of 2.4, 3.3, and 4.0 times for the three

rigidities studied here. Because these larger bubbles resonate

at higher frequencies than free bubbles of equivalent size,

they will tend to appear acoustically smaller than they actu-

ally are.

FIG. 1. Calculated values of linear resonance frequency for free air bubbles

in water �¯� and air bubbles surrounded by tissue having values of

G=1.5 �upper—�, 1.0 �– – –�, and 0.5 MPa �lower—�.
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2. Linear damping coefficients

Five sources of damping for bubbles surrounding by vis-

coelastic tissue were identified earlier and quantified by Eq.

�23�. Two of these expressions, for viscous and acoustic

damping, are identical to those given by Prosperetti
18

for a

gas bubble in liquid, see Eqs. �23a� and �23c�, respectively.

The expression for thermal damping, Eq. �23b�, differs mark-

edly from those given by either Prosperetti
18

or Eller,
23

which is not surprising given the assumption of a polytropic

pressure-volume relation for the gas. However, the numerical

values obtained for bubbles smaller than the linear resonance

radius are remarkably similar, often to within a few percent,

of those obtained using more exact theories.
18,23

The two

additional damping terms, due to the surface energy of the

bubble and the rigidity of the surrounding tissue, see Eqs.

�23d� and �23e�, respectively, have a form similar to that for

thermal damping, Eq. �23b�. It is worth noting that a combi-

nation of four of the damping terms, Eqs. �23b�–�23e�, is

proportional to the stiffness, and thus also to the resonance

frequency, of the system.

The results of calculations for the damping constants as

a function of radial frequency are shown in Fig. 2 for bubble

radii of 1 and 10 �m, assuming G=1.0 MPa and �

=0.015 Pa s. Because the term for interfacial tension is nega-

tive, only its magnitude has been plotted here. In any case,

the contribution of �int to �tot is quite modest. The figures

have been drawn in such a way as to allow easy comparison

with previous results for free
18,23

and encapsulated bubbles.
17

Due to the high value of �, the total damping is dominated

by �vis for frequencies less than 
0 and R0�10 �m, while

the acoustic term �ac dominates at higher frequencies. The

elastic term becomes increasingly important as R0 increases,

with �el
�vis at R0=30 �m. As noted earlier, the expression

for �th differs from those obtained using more exact ap-

proaches. This is reflected in both the shape and the magni-

tude of the curves labeled “Thermal” in Fig. 2, as may be

seen by comparison with the dotted curves labeled “P-Th,”

obtained using the theory of Prosperetti.
18

Thus, while �th

��el for all values of R0 when employing the polytropic

assumption �as is done here�, �th would come to dominate

other sources of damping for R0�30 �m and 
�
0 in a

more rigorous treatment of thermal effects.

The results of calculations for damping constants as a

function of radius are given in Fig. 3 for frequencies of 1 and

10 MHz, again assuming G=1.0 MPa and �=0.015 Pa s.

The total damping is dominated by �vis for bubbles smaller

than the linear resonance radius, while �ac dominates at

larger sizes. The contribution of �el is never more than about

20% of �tot, which occurs near the resonance radius at

1 MHz, see Fig. 3�a�. For frequencies above about 1 MHz

and radii less than the resonance size, the values for �th

FIG. 2. Dimensional linear damping constants vs radial frequency for equi-

librium bubble radii of �a� 10 �m and �b� 1 �m, surrounded by tissue with

G=1.0 MPa and �=0.015 Pa s; resonance radius ���, thermal damping

constant given by Prosperetti—Ref. 25 �¯�.

FIG. 3. Dimensional linear damping constants vs equilibrium bubble radius

for radial frequencies of �a� 1 MHz and �b� 10 MHz, for air bubbles sur-

rounded by tissue with G=1.0 MPa and �=0.015 Pa s; resonance radius

���, thermal damping constant given by Prosperetti—Ref. 25 �¯�.
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calculated using Eq. �23b� and the theory of Prosperetti,
18

�dotted curves labeled “P-Th”� agree rather closely, although

the contribution of �th to �tot is not significant. The contri-

bution of �int to �tot is also trivial.

3. Scattering cross section

Calculated values of the linear scattering cross sections

of individual air bubbles, normalized to their respective geo-

metrical cross sections, are given in Fig. 4 for driving fre-

quencies of 1 and 10 MHz. The strong effect of tissue elas-

ticity �i.e., G� is apparent in these results, causing the

resonance peaks to shift to bubble radii two to four times

larger than for the resonance peak in water. Even though they

are larger, the cross sections for bubbles surrounded by tissue

are less, and sometimes much less, than for resonant bubbles

in water. It is also seen that the curves broaden and diminish

as either the rigidity G decreases or the frequency f in-

creases, indicating that bubbles in tissue may be more diffi-

cult to detect acoustically than are bubbles in water at the

same frequency. The cross sections for blood exhibit maxima

at about the same radii as for water, but their magnitudes are

less due to the higher viscosity of that fluid.

B. Numerical results

In this part of the paper, simulation results will be given

for numerical solutions of Eq. �12�. The effects of elasticity

on R-t curves will be examined first. Next, initial cavitation

thresholds will be presented for different elasticities and

compared to the result in water. Finally, maps of the strength

of subharmonic signals emitted by oscillating bubbles will

highlight a common way to detect cavitation and will illus-

trate the ranges of bubble radii that may be easily detected

using this method.

1. The effect of elasticity on R„t… curves

Examples of R�t� curves for a 1-�m bubble oscillating

under 1-MHz driving pressures of 1 and 3 MPa are shown in

Figs. 5�a� and 5�b�, respectively. The viscosity is fixed at

0.015 Pa s and the rigidity is chosen as 0 and 1.0 MPa. The

effect of the elasticity is very obvious that it greatly reduces

the amplitude, and hence the nonlinearity, of the oscillation.

At 1 MPa, the amplitude of the oscillation is much smaller

when elasticity is included. When the driving pressure in-

creases to 3 MPa, the amplitude of the oscillation with non-

zero elasticity is still smaller than that with zero elasticity,

but the difference between the two cases is less. This indi-

cates that the effect of elasticity will be less when the driving

pressure is strong. Another feature which is worthy of com-

ment is that for the zero-elasticity case, the bubble oscillation

approaches a steady-state resonance
22,24

of order 2 /2, an ex-

ample of period doubling and an indication of the start of

FIG. 4. Linear scattering cross sections vs equilibrium bubble radius for

frequencies of �a� 1 MHz and �b� 10 MHz, for air bubbles surrounded by

tissue having values of G=1.5 �right—�, 1.0 �– – –�, and 0.5 MPa �left—�
with �=0.015 Pa s, and for water �¯� and blood �– – –�. FIG. 5. A comparison of radial responses for 1-�m bubbles driven by a

1-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and

G=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.
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chaotic oscillation and very strong nonlinearity. For the

nonzero-elasticity case, no period doubling is observed under

this driving pressure, although the inertial collapses are still

very strong. Clearly, the presence of the elasticity has re-

duced or eliminated some nonlinear components of the

bubble oscillation.

Figure 6 shows examples of R�t� curves for a 1-�m

bubble driven by �a� 1 MPa and �b� 3 MPa at 3.5 MHz.

Similar conclusions as those at 1 MHz can be drawn from

these results. For the same driving pressure and the same size

bubble, the nonlinearity appears to be weaker at the higher

frequency because no period doubling is observed. Figure 7

shows the results for a 5-�m bubble at 1 MHz driven by �a�
1 MPa and �b� 3 MPa. For zero elasticity, bubbles oscillate

with larger amplitudes during the first few cycles than that

for the nonzero-elasticity case. Interestingly, after the initial

state, the presence of the elasticity increases the amplitude of

oscillation in both cases. In Fig. 7�a�, at zero-elasticity, the

bubble oscillation exhibits strong nonlinear behavior by a

decrease at the average radius, and the presence of elasticity

recovers the linear oscillation around the bubble equilibrium

radius. In Fig. 7�b�, although the oscillation amplitude is

smaller at zero-elasticity case, the oscillation itself becomes

chaotic, while it is periodic when elasticity is included. Com-

pared to bubbles of smaller size, a stronger nonlinearity is

observed, which is indicated by the approach to chaotic os-

cillations. Certainly, the nonlinearity does not always in-

crease when the bubble size increases.

2. The effect of elasticity on the inertial cavitation
threshold

In Fig. 8, predicted inertial cavitation thresholds are

shown for a driving frequency of 1 MHz, G=0, 0.5, 1.0, and

1.5 MPa, and �=0.015 Pa s. The thresholds in water and

FIG. 6. A comparison of radial responses for 1-�m bubbles driven by a

3.5-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and G

=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.

FIG. 7. A comparison of radial responses for 5-�m bubbles driven by a

3.5-MHz pulse at �a� 1 MPa and �b� 3 MPa, for G=0 �thin line�, and G

=1.0 MPa �thick line�; the viscosity was fixed at 0.015 Pa s.

FIG. 8. Predicted thresholds for inertial cavitation at 1 MHz.
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blood are also shown in the plot for reference. The effect of

elasticity on the threshold is obvious. Threshold values in-

crease as the elasticity increases, as expected based on the

results for the R�t� curves given earlier. For nonzero elastic-

ity, the thresholds have significant structure that deserves

comment. For example, at G=1.5 MPa, for small bubble

sizes, the threshold value is consistent with the Blake thresh-

old. As the bubble size increases, the threshold value reaches

a minimum value and then slowly rises. At around 4 �m, the

threshold value suddenly drops and then comes back. The

same shape occurs at around 6 �m, and another drop in

threshold occurs around 8 �m. The lowest threshold attained

following each drop is less than the preceding minimum at a

smaller bubble size. Similar structures are observed for the

lower elasticity cases, the only difference being that these

drops occur at different positions. This resonant structure ap-

pears to be related to the fractional-order subharmonic reso-

nance minima described previously.
22

The positions of the

minima are determined by the elasticity of the surrounding

medium, shifting to larger radii as G increases.

Figure 9 shows the same thresholds but at a driving

frequency of 3.5 MHz. At this higher frequency, the thresh-

old values are greater than at 1 MHz, and the increase in

thresholds for larger bubble sizes is much faster than that at

1 MHz. The resonant structures appearing in the nonzero-

elasticity cases at 1 MHz are also observed on these thresh-

old curves. The resonance structure differs significantly how-

ever in that the minimum values attained following the drops

in the curves at 3.5 MHz are not less than the immediately

preceding minima.

The effect of viscosity on the threshold can be observed

by comparing the threshold for G=0 MPa and those of blood

and water �the only difference among the three is the value

of viscosity, �=0.015, 0.005, and 0.001 Pa s, respectively�.
In comparing, we conclude that thresholds increase and have

less structure as viscosity increases.

3. The map of the strength of subharmonics

Figure 10 shows subharmonic emissions at a driving fre-

quency of 1 MHz as a function of driving pressure and

bubble equilibrium radius. Results for tissues with G=0, 0.5,

and 1.0 MPa and �=0.015 Pa s are shown, with the result

for blood also shown for reference �G=0 MPa, �

=0.005 Pa s�. We will define a subharmonic signal as

“strong” when it is greater than −30 dB because above this

level, the subharmonic signal can be easily detected by an

instrument with an 8-bit dynamic range. From Figs.

10�a�–10�c�, it is seen that as the elasticity increases, the

strong subharmonic signal region moves toward larger

bubble sizes and higher driving pressures. The strong subhar-

monic signal region generally lies above the corresponding

inertial cavitation threshold. For small values of elasticity,

the inertial threshold coincides with the lower boundary of

the strong subharmonic emission region better than does that

for higher elasticity cases. This result is expected because the

subharmonic signal investigated here arises from chaotic

bubble oscillations, and chaotic oscillations usually occur af-

ter the bubble motion becomes strongly nonlinear. In com-

paring the map for blood and that for tissue with G

=0 MPa, we find that the strong subharmonic signal region

becomes smaller when the viscosity increases. The contour

lines on these plots indicate the boundaries between regions

in which the maximum emission occurs at a particular fre-

quency. The results show that all strong subharmonic emis-

sions occur only when the fundamental frequency compo-

nent has the maximum emission level.

Figure 11 shows results for the same cases as in Fig. 10,

but at a driving frequency of 3.5 MHz. As the elasticity in-

creases, the strong subharmonic emission region shrinks and

moves toward higher pressure amplitudes. Significantly per-

haps, the relative signal also seems stronger. Compared to

results at 1 MHz, the strong subharmonic emission region at

3.5 MHz is much smaller and is limited to the small bubble

region. This limitation to the small bubble region probably is

related to the resonance structure of these bubble responses.

At 3.5 MHz, the linear bubble resonance size is smaller than

that at 1 MHz �3.07 vs 10.67 �m�. Again, all strong-

emission regions are above the inertial cavitation thresholds

for the corresponding elasticity, and strong subharmonic

emissions occur only when the fundamental frequency com-

ponent has the maximum emission level.

IV. DISCUSSION AND CONCLUSIONS

In this study, we developed a theoretical model for the

pulsations of gas bubbles in simple linear viscoelastic solids

and presented some potentially useful results for the case of

soft tissues. As pointed out in the text, although the model is

simple, it is consistent with experimental data taken for some

soft tissues. However, at high intensity, bubble oscillations

are strongly nonlinear. Although strong nonlinear oscillations

do not automatically imply that a nonlinear viscoelastic

model is necessary to describe the bubble motion, the suit-

ability of this linear model also remains unclear. As a matter

of fact, there is little evidence that the strain-stress relation in

tissue is not linear. Even though the change in bubble radius

is significant compared to its initial dimension, the overall

strain in the tissue could still be considered small if this

change were compared to the dimension of the soft tissue.

Use of a different viscoelastic model certainly would result

in different predictions, but the sparse measurement data at

FIG. 9. Predicted thresholds for inertial cavitation at 3.5 MHz.
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megahertz frequencies limits the study of verified viscoelas-

tic models for soft tissue. Also, the present study provides

predictions that can be examined experimentally. Verification

of this model will be pursued in the future.

Linear analysis of this inherently nonlinear formulation

provided analytical predictions of bubble responses to in-

sonation at low pressure amplitudes. The result for resonance

frequency increases as the modulus of rigidity increases, as

was expected based on previous work.
17

The results for

damping constants showed that the viscosity of the tissue

tends to dominate either thermal or elastic damping for

bubbles smaller than 
30 �m for frequencies smaller than

the linear resonance size, while acoustic damping predomi-

nates at higher frequencies. It is also expected that thermal

damping would dominate other sources of damping for R0

�30 �m and 
�
0 in a more rigorous treatment of thermal

effects than is given by the polytropic assumption used here.

The peaks in the curves for scattering cross section shift to

larger radii as the rigidity increases due to the increase in

resonance frequency, although their magnitudes are less, and

sometimes much less, than is the case for resonant bubbles in

water. This is consistent with the numerical results used in

producing Figs. 10 and 11.

The effect of elasticity on bubble dynamics was investi-

gated in some detail. Overall, the presence of the elasticity in

a bubble dynamics equation will reduce, sometimes greatly,

the nonlinearity of bubble oscillations. As might be expected,

the inertial cavitation threshold was shown to be greater in

tissue than in liquids such as water or blood, in contrast to

the assumptions underlying the mechanical index.
19,25

This

result should prove useful for understanding the prevalence

of potentially damaging inertial cavitation in vivo. This will

be the subject of a later study.

Subharmonic emissions from an oscillating viscoelastic

bubble were also studied. Since soft tissue generally is not

transparent, detecting acoustic emissions is often the best

way to gain information about a bubble. A passive or active

cavitation detector system can easily provide information

about bubbles inside soft tissues. When interpreting such re-

FIG. 10. Subharmonic emissions in dB relative to the peak emission at a driving frequency of 1 MHz as a function of driving pressure and bubble equilibrium

radius for three “tissues:” �a� G=0 MPa and �=0.015 Pa s; �b� G=0.5, �=0.015; �c� G=1.0, �=0.015; and for �d� blood, G=0, �=0.005. The contour lines

indicate the boundaries between regions in which maximum emissions occur only at one frequency component: fundamental �right-most region� and second

harmonic �solid line�; second harmonic and third harmonic �dashed line�; third harmonic and fourth harmonic �dotted line�; fourth harmonic and fifth harmonic

�dash-dot line�.
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sults however, it will be important to keep in mind that the

sizes of the bubbles detected will be greater than estimated

using linear theory for water.

Shape oscillations and rectified diffusion are not consid-

ered in this study, although they are very important to pre-

dicting the stability and equilibrium size of a bubble.
26

Shape

oscillations could also generate larger stresses that could

cause severe mechanical damage to soft tissue. Rectified dif-

fusion will change the equilibrium size of a bubble, and the

bubble motion can thereby be greatly affected. These effects

will be the focus of future studies.
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