A model for the infrared continuum spectrum of NGC 1068
 A. Efstathiou, J. H. Hough and S. Young
 Accepted 1995 July 17. Received 1995 July 17; in original form 1995 March 8

WBSTRACT model for the nuclear infrared (IR) continuum spectrum of the Seyfert galaxy NGC 1068. The torus emission is modelled in terms of the tapered disc models of Efstathiou \& Rowan-Robinson, which give a good fit to the global infrared properties of active galactic nuclei. The models

Our analysis is constrained by the inclination of the torus predicted by optical spectropolarimetry. We assume in particular that our line of sight is inclined to the find that the torus emission alone cannot account for the whole of the IR continuum spectrum. While this is in agreement with recent mid-IR imaging observations, which show that up to 60 per cent of the flux is not originating from the torus, our model
suggests that the difference between the observed and predicted torus emission is actually much greater at near-IR wavelengths. We attribute this excess IR emission to a component of optically thin dust $\left(A_{V}=0.1-0.5 \mathrm{mag}\right)$ located in the ionization cone between the BLR and the NLR. This dust must be distributed as r^{-2} in order to
 wavelengths and also produce a strong emission feature at $10 \mu \mathrm{~m}$, contrary to observaied in order to suppress further the silicate emission feature. We suggest that this may be due to either destruction of silicate grains by shocks or the clumping of NLR dust. In addition, our model requires that the flux radiated by the central source towards the cone is at least a factor of 6 higher than that directed towards the bulk of the torus,
 rather insensitive to other geometrical parameters.

[^0]ช әәидме () јр

 Most discussion on active galactic nuclei (AGN) in recent years has centred around the idea of a geometrically and optically thick dusty disc or torus surrounding the nucleus. The presence of such a torus and the inclination of our the observed properties of AGN, and largely determine their lassification. Type 1 (broad-lined) AGN are assumed in this picture to be seen along the polar axis of the torus, while type

The infrared continuum spectrum of NGC 1068, 1135 \qquad

 is found by PK (see their fig. 4) for cylinders of the same
opening angle as the one assumed here. In fact, any axisym-
 the $10-\mu \mathrm{m}$ feature from face-on directions is expected to show a similar property.
Assuming that dust in the ionization cone intercepts all of
he radiation from the central engine directed towards it, because it is optically thin, it should radiate it more or less
 $S_{c} \leq \frac{\left(1-\cos \Theta_{c}\right)}{2} \frac{L}{4 \pi}$
 flux from dust in the ionization cone. We can therefore
deduce that $S_{\mathrm{c}} / S_{\mathrm{t}}<0.066$. Since there is already evidence for extended near- and mid-IR emission, it is very unlikely that

 wavelength part of the spectrum.
This argument, of course, breaks down if a significant part
f the observed extended IR emission is not due to reproof the observed extended IR emission is not due to reprotion in the ionization cone. Also, if the viewing angle is more edge-on or Θ_{c} is greater than $30, S_{c} / S_{t}$ can be higher. On the
other hand, not all of the radiation directed towards the cones could be absorbed and reradiated by dust, because that would mean that the nucleus is obscured from all solid
Because the torus and the cones have a density contrast of

 observations.

 one whose thickness increases with distance from the central its outer part). Flared discs (ER90; GD) block the view to the

 narrow range in temperature over which the torus is emitting
most of its energy, in order to suppress the $10-\mu \mathrm{m}$ features
mple except in the inner part where some species may be
The dust content of a model cloud is determined by the 응 The dust content of a model cloud is determined by the
form of the density distribution and the ultraviolet $(1000-\AA)$ equatorial optical depth to the centre of the cloud, ${ }^{\mathrm{e}} \tau_{\mathrm{uv}}$. The pectral energy distribution of the central source is assumed to follow a broken power law that approximates the average
spectrum of PG quasars derived by Rowan-Robinson 1995).

The solution of the equation of radiative transfer is carried out by the ray tracing method, i.e. by defining a grid of rays,
and for each one following the interaction of radiation with and for each one following the interaction of radiation with
dust both in the form of absorption and scattering. The intensity in a given direction is given by the superposition of radiation directly from the central source (where appropriate), thermal emission from grains and scattered light from grains. As in ER90, the solution proceeds iteratively until the
radiative balance equation is satisfied to within 1 per cent for radiative balance equation is satisfied to within 1 per cent for
every grain species and at every point in the cloud. The flux constancy condition provides an additional test for the accuracy of the solution.
The tapered disc mode

The tapered disc models of ER95 assume five parameters:
(1) the opening angle of the disc, $\Theta_{1},(2)$ the ratio of inner to outer radii, $r_{1} / r_{2},(3)$ the ratio of the maximum half-thickness of the disc to the outer radius, h / r_{2},
melting temperature of the grains, T_{1}.

3.2 The best-fitting torus model

 the inferred intrinsic degree of polarization allow us to
constrain the opening angle of the disc $\left(\Theta_{1}=60^{\circ}\right)$ and the viewing angle $\left(\theta_{v} \approx 55^{\circ}\right)$. A characteristic of tori with large opening angles, such as the one inferred for NGC 1068, is
that they are very weak in the near-IR. This is because the that they are very weak in the near-IR. This is because the
near-IR-emitting region of the torus is very close to its inner radius, and therefore its emission suffers considerable self-

 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 near-IR flux increases with decreasing h / r_{2} as more of the inner core of the torus is revealed.

We find that we cannot fit simultaneously the entire
pectrum, including a good fit to the $10-\mu \mathrm{m}$ feature, with any pectrum, Rowan-Robinson (1994) and GD presented models for NGC 1068 that fit the whole spectrum but have a low ${ }^{\text {e }} \tau_{\text {ur }}$. Such a torus viewed face-on would show an emission feature at $10-\mu \mathrm{m}$ which has never been observed in a type 1 object. Also, the ${ }^{\mathrm{e}} \tau_{\text {uv }}$ (about 150) predicted by these models is

 70 (i.e. an ${ }^{\mathrm{e}} \tau_{\mathrm{uv}}$ of about 350). Optically thicker tapered disc models that approximately fit the overall spectrum either

Downloaded from https://academic.oup.com/mnras/article/277/3/1134/1081412 by guest on 21 August 2022
The infrared continuum spectrum of NGC 10681137 as close to the illuminating source as possible. This is also the
dust distribution needed to produce a spectrum peaking at dust distribution needed to produce a spectrum peaking at
about $3-5 \mu \mathrm{~m}$. We find that an r^{-2} density distribution produces the required overall spectrum, but still produces a
 source is isotropic, then the conical dust does not produce
enough near-IR flux. In view of the discussion in Section 2,
 5) needed to boost the near-IR output of the cones to the

 up to a factor of 10 .
If the dust is concentrated in clouds, then the shape of the
$10-\mu \mathrm{m}$ spectrum will depend on the details of radiative $10-\mu \mathrm{m}$ spectrum will depend on the details of radiative
transfer, with the optical depth across the cloud probably being the most crucial parameter. Rowan-Robinson (1995)
approximated these clouds with shells and found that the 10-
 therefore likely that the emission feature predicted by conical

Unfortunately, it is very difficult at present to calculate the emission of these clouds in a self-consistent manner, as they
involve the solution of a three-dimensional radiative transfer
 these clouds with our present model under some simplifying

5 COMPOSITE MODEL

Having discussed the required characteristics of the best-
fitting torus model and the most desirable distribution for the
 and compare the emission of the whole system with that of
NGC 1068 .
The model is shown schematically in Fig. 1. As discussed
Section 4, in order to produce enough near-IR flux, the in Section 4 , in order to produce enough near-IR flux, the
radiation intensity emitted by the continuum source towards the optically thin conical dust should be a factor of a few higher than that directed towards the torus. If the anisotropy disc, then there could be a smooth variation of the intensity 'Кџ! we parametrize the anisotropy of the central source with the
beaming factor f_{b}, defined by ${ }^{6} \frac{\left({ }^{\mathrm{I}} \Theta>\Theta\right)^{n} S}{\left({ }^{\mathrm{t}} \Theta<\Theta\right)^{n} S}={ }^{\mathrm{q}} f$ and which is assumed to be constant with wavelength. ${ }^{1}$
There are essentially three free parameters in the model that determine the luminosity of the near-IR component

 related to the narrow-line region (NLR). We will refer to this

4 THE CONICAL DUST MODEL
4 THE CONICAL DUST MODEL
There are a number of arguments supporting the idea that
the ionization cones are not completely dust-free First, the the ionization cones are not completely dust-free. First, the
NLR clouds themselves may contain dust (Rowan-Robinson 1995). It has also been suggested (Braatz et al. 1993; Cameron et al. 1993) that the extended mid-IR emission is It is also well known that the emission lines of type 1 AGN
and quasars are reddened by an A_{V} which ranges from and quasars are reddened by an A_{V} which ranges from
fractions of a magnitude to 2-3 mag (Ferland \& Osterbrock
1986; Netzer 1990; Rowan-Robinson 1995). Ward et al. 1986; Netzer 1990; Rowan-Robinson 1995). Ward et al.
(1987) also find that there is evidence for the A_{V} to the broad lines being higher than that to the narrow tines,
suggesting the presence of optically thin dust well down to suggesting the presence of optically thin dust well down to the sublimation radius. Further evidence for obscuration in
the NLR comes from imaging of the ionization cone (Unger et al. 1992).

The distribution of conical dust, i.e. whether it is concentrated in clouds or distributed more uniformly, has profound
effects on the shape of the spectrum at around $10 \mu \mathrm{~m}$. If the effects on the shape of the spectrum at around $10 \mu \mathrm{~m}$. If the conical dust is optically thin and its composition is similar to
that of interstellar dust in the Milky Way (and that assumed for the torus), then it will produce an emission feature that
A point worth noting is that because the conical dust

 the torus and our viewing angle. The viewing angle through to see a very deep absorption feature at $10 \mu \mathrm{~m}$. The reason for this is that the $10-\mu \mathrm{m}$ radiation is coming from the curved surface of the other side of the disc and is therefore viewed
directly. The $10-\mu \mathrm{m}$ feature is the result of the absorption of radiation, emitted by the bulk of the torus, by overlaying material which has only a slightly different temperature. This
situation contrasts strongly with that for edge-on views, situation contrasts strongly with that for edge-on views,
where emission by the hotter inner part of the torus is absorbed by the much colder outer part. The feature does not become appreciably deeper by increasing the overall
density of the torus while, as argued by ER95, this has an The torus that best fits the constraints we have imposed on it assumes the following parameters: $r_{1} / r_{2}=0.01, h /$
$r_{2}=0.1,{ }^{\mathrm{e}} \tau_{\mathrm{uy}}=1200$, and $T_{1}=950 \mathrm{~K}$. The predicted viewing $r_{2}=0.1,{ }^{\mathrm{e}} \tau_{\mathrm{uv}}=1200$, and $T_{1}=950 \mathrm{~K}$. The predicted viewing
angle is 45°, which is consistent with the value found by Young et al. (1995a). Also, the predicted diameter of the

 torus SED from the observed spectrum, we can infer the that this is approximately a blackbody peaking at about 3-5
will dilute the absorption feature produced by the torus. The
only way to minimize this dilution is to concentrate the dust

1138 A. Efstathiou, J. H. Hough and S. Young
 corresponding to an A_{V} of about 0.5). Fortunately, the
shape of the near-IR spectrum does not depend very much
 К
 assume for simplicity that f_{c} takes its maximum value. Note, however, that a partly filled cone will allow illumination of
dust to larger radii and may explain why a significant fraction of the near- and mid-IR emission is extended over arcsec scales (see Section 6). The inferred value of f_{b} will therefore
 composition and size distribution as dust in the torus, then a explore the possibility that the NLR dust mixture is different
One possibility is that the silicate grains are preferentially destroyed by shocks by the mechanism proposed by Seab \&
Shull (1983). GD suggested that this mechanism is responsible for destroying the silicates in the torus and therefore eliminating the silicate emission features for face-on views of the torus. This is not necessary for our torus model (whose bulk in any case could be self-shielded for shocks to change
 the ionization cone. There is also evidence (for example, the absence of PAH features in the spectra of AGN) that the
smaller grains are destroyed by the high UV-X-ray intensities expected in the vicinity of the AGN. the present paper. We instead attempt to model them by increasing the abundance of the $30-\mu \mathrm{m}$ grains in the mixture of Rowan-Robinson (1992). These grains are assumed to where α is the grain radius, but being independent of λ for shorter wavelengths. We also note that these large grams can clouds. Proper treatment of the latter will again require clouds. Proper treatment of the latter will again require
further work, but to a first approximation each cloud will emit as a blackbody at a constant temperature (the side of the cloud facing the central source would obviously be hotter
than the bulk of the cloud, but the amount of dust at this higher temperature is likely to be very small). However, calculation of even the average temperature of these clouds is not trivial, as we have to include contributions in the
energy balance equation from the central source, the torus and other clouds.
We find that a reasonable fit to the $10-\mu \mathrm{m}$ feature (see Fig. 2) is obtaimed if the abundance of the $30-\mu \mathrm{m}$ grains is
increased so that the extinction due to these large grains is increased so that the extinction due to these large grains is
just 2.5 per cent of that due to the whole mixture. The model assumes ${ }^{\mathrm{p}} \tau_{\mathrm{uv}}=2.5$ and $f_{\mathrm{b}}=6$. As noted earlier, the inferred
value of f_{b} is only a lower limit, and will have to be higher if value of f_{b} is only a lower limit, and will have to be higher if
${ }^{\mathrm{p}} \tau_{\mathrm{uv}}$ or f_{c} are lower than 2.5 and 0.134 respectively. Unger et al. (1992) presented $[\mathrm{O}$ II] images of NGC 1068 which show
limb-brightening along the edges of the cone. While the scale limb-brightening along the edges of the cone. While the scale
of these observations is of the order of tens of arcseconds, they are consistent with our model if the conical dust is concentrated on the axis of the cone.

1140

рапиииот - ع ว.пвㄴ

๔

that it is centrally concentrated．The conical dust could be responsible，however，for the polarization of type 1 objects，
which is both at a lower level and at a different position angle to that seen in type 2 objects． to that seen in type 2 objects．
It is not yet clear what mec in the near－IR．If electron scattering were responsible，then one would expect the polarization（after starlight subtraction） to remain constant with wavelength，but instead a rise in polarization is observed（Young et al．1995a，b）．Evidence that another polarization mechanism is at work is also
provided by the change in position angle between the optical （where it is perpendicular to the parsec－scale radio jet）and

It is now well established that the polarization of the broad
 as in other AGN that exhibit the same phenomenon，is due to
 along the polar axis of the torus（Antonucci \＆Miller 1985；
Miller，Goodrich \＆Mathews 1991；Young et al．1995a，b）．

the low optical depth and

Throughout this paper we have assumed that the primary source of radiation is a point source at the centre of the system．Our calculation of the temperature distribution in the cones could significantly underestimate the temperature in shocks for example，is important．Agam this would have the effect of producing a more extended distribution of mid－IR
emission．

6．2 SEDs for other viewing angles

 conical dust is essential for explaining the spectrum of NGC 1068，it is interesting to examine its effect on the predicted with those obeserved in other AGN．In Fig．4，we compare the SEDs predicted for different viewing angles for the torus only＇model and the best－fitting composite model for NGC
1068 ．There are two problems with the＇torus only＇model
 face－on SEDs predicted by the torus model do not produce
the near－IR bump seen in type 1 objects（Edelson \＆Malkan 1986；Robson et al．1986）．This result is again a feature of all

 large opening angles．

6．3 Polarization

The infrared continuum spectrum of NGC 10681143
15°, emission by cold ($133-\mathrm{K}$), optically thin dust, and 'pole-
ward' torus emission which is reflected in our line of sight by ward' torus emission which is reflected in our line of sight by
the same electron cloud that scatters the broad lines. It is also
the near-IR (where it is perpendicular to the large scale [O III] assumes that the near-IR polarization is produced by the
ichroic absorption of nuclear light through the torus. In dichroic absorption of nuclear light through the torus. In

assumed that hot clouds orbiting in the plane of the torus, but closer to the central engine than the bulk of the torus, are
also contributing in the near-IR, but their emission is
 The torus in the Pier \& Krolik model contributes about 90 per cent of the flux in the near-IR (the rest is due to the
scattered component), whereas the 133-K component domiscattered component), whereas the 133-K component domi-
nates in the far-IR. This is in contrast to our model in which the torus dominates in the far-IR. Although the Pier \& Krolik model assumes that the optically thin dust is too cold
(to avoid too much dilution of the $10-\mu \mathrm{m}$ absorption feature (to avoid too much dilution of the $10-\mu \mathrm{m}$ absorption feature
produced by the torus), it predicts a very strong $18-\mu \mathrm{m}$ silicate feature. By contrast, our model predicts a rather flat 18 - $\mu \mathrm{m}$ spectrum (the torus actually produces a slight absorption feature which is filled in by emission by the NLR dust).
We strongly encourage high-resolution spectroscopy of the $18-\mu \mathrm{m}$ wavelength range as a possible test of the two alterna-

7 CONCLUSIONS

> Our main conclusions can be summarized as follows

 thin $\left(A_{\nu}=0.1-0.5\right)$ dust in the ionization cone distributed as (2) The radiation of the central source must be 'beamed'

 in the near- and mid-IR. It is important to test these ideas
with detailed polarization calculations in future work.

ACKNOWLEDGMENTS

 Axon, Martin Ward, Andy Robinson and Andy Lawrence
for stimulating discussions. We also thank Alex Lazarian for explaining to us the intricacies of grain alignment by stream-
ing. AE and SY acknowledge support by PPARC

Pier \& Krolik (1993) proposed a three-component model
for NGC 1068: torus emission viewed at an angle of about

6.4 Comparison with other models of NGC 1068

 GD presented a flared disc model that fits the SED of NGC1068. The ${ }^{\mathrm{e}} \tau_{\mathrm{wy}}$ assumed by the model is about 150 . As already remarked, models with such low ${ }^{\circ} \tau_{\text {uv }}$ produce strong emission features at $10 \mu \mathrm{~m}$ from face-on views. Such features
have not yet been detected in type 1 objects. This model is therefore inconsistent with unified schemes, as it suggests 1068 . 1068. The ${ }^{\text {e }} \tau_{\mathrm{uv}}$ assumed by the model is about
already remarked, models with such low ${ }^{\boldsymbol{c}} \tau_{\mathrm{uv}}$ produ
© 1995 RAS, MNRAS 277, 1134-1144

 Thitting regions are different.
Therpretation of the

This interpretation of the rise in near-IR polarization is in our model comes from the cone which suffers much less extinction than radiation emitted by the BLR or by the inner
walls of the torus. In fact, one of the reasons we have introduced the optically thin, near-IR component is because the hot walls of the torus are too heavily obscured to produce the
required near-IR flux. Our model predicts that the A_{V} to the near-IR-emitting region of the conical dust is 20 mag . This

 mplies an A_{V} of 22 mag also explain the observed 90° swing in polarization position angle that is seen for NGC 1068 at a wavelength between 4 change from absorption to emission polarization. If the
 $10-\mu \mathrm{m}$ polarization has a position angle almost perpendicu-
 optically thin emission by aligned grains. This is again optically thin emission by aligned grains. This is again
consistent with our model as a large fraction of the 10 -um flux is due to optically thin conical dust emission. Since polarization is seen in emission from the conical dust grains,
these grains must be aligned. The direction of polarization requires the long axis of the grains to be parallel to the cone axis. For Davis-Greenstein-type alignment processes, this perpendicular to the cone axis. However, in the physical environment of the NLR the most likely alignment
 (Lazarian 1995). It would be very interesting to test these
ideas with detailed polarization calculations in future work.
McCarthy D. W., Low F. J., Kleinmann S. G., Gillett F. C., 1982,
ApJ, 257, L7
Miller J. S., Goodrich R. W., Mathews W. G., 1991, ApJ, 378, 47
Netzer H., 1990 , in Courvoisier T. J., Mayor M., eds, Active
Galactic Nuclei. Springer-Verlag, p. 57
Pier E., Krolik J., 1992, ApJ, 401, 99 (PK)
Pier E., Krolik J., 1993, ApJ, 418, 673
Pogge R., 1989, ApJ, 345, 730
Rieke G. H., Low F. J., 1975, ApJ, 199, L13
Robinson A. et al., 1994, A\&A, 291, 351
Robson E. I., Gear W. K., Brown L. M. J., Courvoisier T. J.-L., Smith
M. G., Griffin M. J., Blecha A., 1986, Nat, 323, 134
Roche P. F., Aitken D. K., Smith C. H., Ward M. J., 1991, MNRAS,
248, 606
Rowan-Robinson M., 1992, MNRAS, 258, 787
Rowan-Robinson M., 1995, MNRAS, 272, 737
Seab C. G., Shull J. M., 1983, ApJ, 275, 652
Serkowski K., 1973, in Greenberg J. M., Van de Hulst H. C., eds,
Proc. LAU Symp. 52, Interstellar Dust and Related Topics.
Reidel, Dordrecht, p. 145
Telesco C. M., Becklin E. E., Wynn-Williams C. G., Harper D. A.,
1984, ApJ, 282, 427
Unger S. W., Lewis J. R., Pedlar A., Axon D. J., 1992, MNRAS, 258,
371
Young S., Hough J. H., Axon D. J., Bailey J. A., Ward M. J., 1995a,
MNRAS, 272, 513
Young S., Hough J. H., Efstathiou A., Axon D. J., Bailey J. A., Ward
M. J., 1995b, MNRAS, submitted
1144 A. Efstathiou, J. H. Hough and S. Young
Bridger A., Wright G. S., Geballe T. R., 1994, in McLean I., ed.,
Infrared Astronomy with Arrays. Kluwer Academic Publishers, Dordrecht, p. 537 . W. V., Rotaciuc V., Genzel R., Verstraete L.,
Cameron M., Storey J. Chelli A., Perrier C., Cruz-Gonzalez I., Carrasco L., 1987, A\&A, 177,52
Draine B. T.
Edelson T. A
Efstathiou A

[^0]: Key words: polarization - galaxies: active - galaxies: individual: NGC 1068 - galaxies: nuclei - galaxies: Seyfert - infrared: galaxies.

