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ABSTRACT 
 A model is described for the development of anisotropic grain boundary character 
distributions from initially random distributions.  The model is based on biased topological 
changes in the grain boundary network that eliminate and create boundaries during grain growth.  
The grain boundary energy influences the rates of these topological changes by altering the 
relative areas of the interfaces.  The model predicts grain boundary character distributions that 
are inversely related to the grain boundary energy and are consistent with experimental 
observations. 
 
INTRODUCTION 
 
 The grain boundary character distribution (GBCD) is defined as the relative areas of 
grain boundaries as a function of lattice misorientation and grain boundary orientation.  It can be 
considered as an expansion to higher dimension space of the misorientation distribution function 
(MDF) and is typically normalized to give units of multiples of a random distribution (MRD).  It 
has recently been observed in experiments and in simulations that the GBCD, even in an 
otherwise untextured polycrystal, is anisotropic [1].  The results indicate that the most common 
boundaries in anisotropic distributions have greater average areas than the less common 
boundaries and that there is a higher incidence of these boundaries [2].  Peaks in anisotropic 
distributions commonly reach values of 5 to 10 MRD and, even in a relatively isotropic material 
(Al), peaks in excess of 3 MRD are commonly observed [3].  Furthermore, based on the results 
of experiments [4,5] and computer simulations in two and three dimensions [6-10], the GBCD is 
inversely correlated to the grain boundary energy.  The only available comprehensive 
experimental data indicates that the logarithm of the population is approximately linear with the 
energy, which is consistent with the results of a three-dimensional computer simulation [6, 10, 
11].  These results are compared in Fig. 1. 
 Holm et al. [6] were the first to propose a mechanism for the enhanced areas of low 
energy grain boundaries.  Assuming the grain boundaries in Fig. 2a have the same lengths 
(L1=L2) and energies (γ1 and γ2), then the dihedral angle, Ψ, is 2π/3.  If the energies change so 
that γ1 < γ2, then the dihedral angle will increase, L1 will increase by the amount ∆L1, and L2 will 
decrease.  This lengthening and shortening of boundaries enhances the relative areas of low 
energy grain boundaries.  The alteration of grain boundary lengths in a two-dimensional network 
was also recently used as the basis for a model to study the spatial correlation among high energy 
grain boundaries [12].  However, this mechanism does not, by itself, explain why low energy 
grain boundaries occur in greater numbers. 
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Figure 1.  Correlation between the logarithm of the grain boundary population, measured in MRD units, 
and the grain boundary energy. (a) experimental results from measurements of polycrystalline MgO [5].  
At each energy, the square is the mean population and the error bars show the standard deviation.  (b) 
Simulated results from Grain 3D [10]. 
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Figure 2.  Triple junctions for the case of (a) three equal energy grain boundaries and (b) when 
the horizontal grain boundary has a lower energy.  It is assumed that the grain boundary line 
segments are fixed at the circles at edges of the box. 
 
 The purpose of this paper is to describe a model for the formation of anisotropic GBCDs 
from initially random GBCDs during normal grain growth.  Using the observation that a grain 
boundary's energy is inversely related to its area, the model for the evolution of the distribution 
assumes that the rates at which grain boundaries are eliminated are inversely proportional to the 
grain boundary areas, and, therefore, directly proportional to the grain boundary energies.  It is 
shown that the model reproduces the main characteristics of the experimental results, including 
the observation that low energy boundaries occur in greater numbers than expected in a random 
distribution; based on these results, it is concluded that the assumed mechanisms are a plausible 
explanation for the development of anisotropic grain boundary character distributions.   



   

 
THE MODEL 
Overview 
 
 We begin by considering how the grain boundary energy influences the grain boundary 
area.  With reference to the triple junctions illustrated in Fig. 2, we begin by assuming that the 
three grain boundaries are fixed at their endpoints and the triple junction geometry obeys 
Young's law for interfacial equilibrium.  Under these conditions, the additional length is given by 
the following equation: 
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Note that for the case of γ1= γ2, ∆L1=0.  As γ1<< γ2, ∆L1 approaches L1/2. 
 Using Eq. 1, we can estimate the influence of the boundary lengthening mechanism on 
the GBCD.  First, assume there are just a few boundaries (say 2%) with γ1<< γ2 so that we can 
assume that the low energy boundary is always attached to two higher energy boundaries.  All 
the low energy boundaries will have a length of 3L1/2, the high energy boundaries attached to it 
(4% of the total) will have lengths √3L2/2, and the remaining 94% of boundaries in the system 
will have length L1.  Using these estimates, and assuming that boundary area is equal to the 
square of the length, the population of the low energy grain boundaries is 2.22 MRD and the 
population of high energy boundaries is 0.98 MRD. 
 Note that the estimates above are maximal, assuming a vanishingly small grain boundary 
energy and configurations in which the low energy boundary is always connected to two high 
energy boundaries.  Therefore, this mechanism does not provide a plausible explanation for 
peaks in the GBCD that commonly exceed 3 MRD and it provides no explanation for the higher 
incidence of low energy boundaries.  It can be concluded that boundary area changes associated 
with adjustments of the triple junction positions do not have a large enough effect on the areas to 
explain the observed anisotropies.  Furthermore, this mechanism can not account for the 
observed anisotropic number fractions [2].  However, the lengthening mechanism should be 
viewed as an essential factor that contributes to the anisotropy of the GBCD.  In fact, in what 
follows, we assume that boundary area changes are the mechanism that biases topological 
changes and alters the number fractions of grain boundary types. 
 There are several physical processes that occur during grain growth that can alter the 
GBCD.  One process involves incremental changes in area as boundaries move.  Another process 
is the critical events that change the topology of the network.  Grain faces lose edges (and area) 
until they are triangular and eventually collapse.  Two grains can also join and create a new 
triangular face.  Faces are also destroyed when four-sided tetrahedral grains collapse.  Note that 
these topological changes represent the end points of incremental motion and in what follows, 
we will take the topological events as proxies for positive and negative incremental area changes. 
 



   

Assumptions 
 
 The model for the development of the anisotropic GBCD is based on the following 
assumptions:  
 1. The topological structure during grain growth is scale invariant.  In other words, the 
average number of faces per grain is independent of the mean grain size.  This assumption allows 
us to focus on the changes in the distribution of grain boundary types, without considering the 
dissipative loss of interfacial area. In the case of isotropic materials, three dimensional computer 
simulations have been used to demonstrate the scale invariance of the network topology [13].  
These simulations compare favorably to results from Al, where boundary properties are naturally 
anisotropic [14].  Recent three dimensional grain growth simulations have verified that 
microstructures with anisotropic grain boundary properties remain scale invariant during grain 
growth [15]. 
 2. All incremental changes in grain boundary area are represented by the appearance or 
disappearance of grain faces.  Note that in a real situation, all grain faces are constrained to the 
same sequence of events: they are created, they grow, they shrink, and then they are eliminated.  
The present model is based on average probabilities for the events at the endpoints, without 
consideration of individual grain faces or the intermediate incremental changes. 
 3. The distribution of grain boundary types that arises from grains growing into one 
another is determined by the grain orientation distribution.  This assumes that the pair-wise 
spatial configuration of orientations is random.  It has been shown previously that for a fixed 
orientation distribution, the crystals can be positioned to exhibit non-random misorientation 
distributions [16].  So, while the assumption is certainly a plausible condition, there may be cases 
where it does not hold. 
 4. The probability that a grain face is eliminated is inversely proportional to its area.  In 
other words, the smallest faces are eliminated with the highest probability.  This assumption is 
based on observations of soap froths reported by Smith [17]. 
 5. There is a functional relationship between grain boundary energy and grain boundary 
area.  Recent three dimensional grain growth simulations with anisotropic properties has shown 
that this is the case [15].  As an approximate model for this relationship, we modify Eq. 1 and 
assume that the length, Li, of the ith GB, when connected to two boundaries of average length, L , 
depends on the ratio between its own energy, γi, and the average energy,γ , in the following way: 
 

 Li

L 
=1+

1
2

1−
3

tan cos−1 γ i

2γ 
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

      (2) 

 
This expression for Li has the property that for γi = γ , Li = L  and as γi goes to 0, Li goes to 
3 L /2.  The area of the face is then given by the square of its length.  Here, the average length is 
fixed at 1. 
 It should be noted that an alternate approach to determining the relationship between the 
energy and the area is to extract it from the results of three dimensional grain growth 
simulations.  This approach will be discussed briefly in the results section. 



   

 With these assumptions, we can quantify the probability that, for a single critical event 
(e), a GB of the ith type is created or destroyed.  The probability that it is created is equal to 
fractional number of boundaries of the ith type expected from the grain orientation texture.  For 
this analysis, we assume a random grain orientation distribution.  Therefore, the probability that 
a boundary is created is equal to its expected population in a random distribution, (ρi).  The 
probability that it is destroyed is equal to the normalized product of the fractional number of 
boundaries of the ith type and the inverse of their area (ni/Li

2 = αini).  Therefore, the probability 
that during a critical event the population of the ith type of GB is changed is, 
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Note that when summed over all grain boundaries types, the creation and annihilation terms are 
both equal to 1.  Therefore, as critical events occur, the total number of grain boundaries under 
consideration is unchanged.  This reflects the assumption of scale invariance. 
 
Details of the calculations 
 
 To determine how the GBCD changes as critical events occur, we begin by assuming an 
initial random distribution and a functional form for the anisotropy of the grain boundary energy.  
Here, we consider only energy anisotropies that vary with a single crystallographic parameter.  
We initially consider energy functions that have a Read-Shockley like variation in the energy as 
a function of misorientation. 
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In Eq. 4, θi is the angle that characterizes the disorientation, and θc is the cut-off angle beyond 
which the energy is constant.  The energy and GBCD are discretized in 0.5° intervals and, thus, 
there are 125 discrete boundary types.   
 To test a situation that is more characteristic of variations that occur as a function of the 
grain boundary plane orientation at a fixed lattice misorientation, we assume the following 
energy anisotropy: 
 
 γ i =1+ ε(sin2ω i)

4         (5) 
 
where ω parameterizes the inclination of the grain boundary in the bicrystal reference frame.  For 
calculations with this energy function, the misorientation is not accounted for and it is assumed 
that all boundaries have this energy dependence in the domain of possible inclinations. 
 To begin the calculation, the initial populations of grain boundaries are defined so that 
each occurs with a population of 1 MRD.  The average energy (weighted by the population) is 
determined according to the following equation: 
 



   

 γ = 1
N

λi∑ γ i          (6) 

 
where N is the number of distinct boundary type2 (125) and λi is the population of grain 
boundaries of that type, measured in MRD.  Using this average energy, the initial grain boundary 
lengths are computed according to Eq. 2.  These lengths are then used to determine the weighting 
factors, αi, in Eq. 3, such that αi = 1/Li

2.  With these initial conditions, all ∆ni are computed 
according to Eq. 3 and the populations, ni, are adjusted.  With the new populations, a new 
average energy is computed according to Eq. 6 and this value is used to calculate new values for 
the lengths Li and the weighting factors αi.  The process of changing the population then repeats 
iteratively. After a sufficient number of iterations, a steady state is reached where all ∆ni become 
negligible. 
 
RESULTS 
 
 The number fractions of grain boundaries with the minimum energy and the maximum 
energy are plotted as a function of the number of critical events in Fig. 3.  The results show that 
the GBCD reaches a steady state after approximately 2x106 critical events.  Note that these 
changes in the numbers of boundaries do not account for the relative areas. 
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Figure 3. The number MRD values for grain boundaries number fractions in a low energy bin at 
0.5° and a high energy bin at 50° as a function of the number of critical events. 
 
 The final area distributions of grain boundary types are shown in Fig. 4.  The lowest 
energy grain boundaries have populations that are four to six times that expected in a random 



   

distribution and the highest energy (angle) grain boundaries have populations slightly less than 
would be expected.  The fractional area distribution that results from the energy function with a 
15° cutoff overlaps with the initial random distribution throughout most of the domain. 
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Figure 4. Steady state grain boundary character distributions resulting from two different energy 
functions, specified by Eq. 4.  The area MRD is the area of a given grain boundary type, divided 
by the average area of all types.  The fractional area is the area of a given grain boundary type, 
divided by the total grain boundary area. 
 
 As mentioned briefly in the previous section, the calculation can also be done using a 
fixed energy-area relationship derived from grain growth simulations.  Three-dimensional Monte 
Carlo grain growth simulations using the same grain boundary energy anisotropy assumed in Eq. 
4 have been reported [15].  The area distributions derived from the simulations are similar to 
those depicted in Fig. 4.  The results of these simulations were used to find a relationship 
between the relative grain boundary areas and the relative grain boundary energies.  When the 
coefficients of a quadratic function were fit to the simulation results, the following equation was 
found to be a good fit to the results: 
 
 Ai = 3.61− 4.369γ i +1.729γ i

2        (7) 
 
Where Ai is the relative area of the ith type of boundary.  The weighting factors, αi, in Eq. 3 are 
then 1/Ai.  The initially random population was then evolved as before, except that the weighting 
factors (αi) used in Eq. 3 were constant as the population evolved.  The results were qualitatively 
the same, yet differed in the quantitative details.  Examples of distributions derived from this 
method are shown in Fig. 5.  
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Figure 5. Steady state grain boundary character distributions resulting from two different energy 
functions, specified by Eq. 4.  In this case, Eq. 7 was assumed to represent the relationship 
between the area and the energy. 
 
 Results for other energy functions led to similar results.  For example, the energy 
function specified by Eq. 5 is plotted in Fig. 6, together with the initial and final area distribution 
for the case of ε = 0.4. As before, the steady state population is inversely related to the assumed 
grain boundary energy. 
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Figure 6.  The initial and steady state GBCDs assuming the energy function specified in Eq. 5, 
for ε = 0.4.  The energy function is also plotted. 
 



   

 As mentioned earlier, experiments and simulations show that the logarithm of the grain 
boundary population has an approximately inverse linear correlation with the grain boundary 
energy.  As illustrated in Fig. 7, the relationship between the logarithm of the population 
determined by the critical event model and the energy is nearly linear over small ranges of 
energy anisotropy.  However, for more realistic anisotropies, the slope of the ln(λ) v γ line 
decreases with γ.    
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Figure 7.  The logarithm of the steady state GBCD predicted by the critical event model for the 
energy function specified in Eq. 5, for three values of the amplitude, ε. 
 
DISCUSSION 
 
 The model described here reproduces, qualitatively, the principal features observed in 
anisotropic grain boundary character distributions.  First, it produces distributions in which both 
the numbers of low energy grain boundaries and the areas of these grain boundaries are 
enhanced.  Second, it can produce MRD values greater than 3, as observed in real distributions.  
Finally, the logarithms of the areas of grain boundaries show an approximate inverse linear 
dependence on the grain boundary energy.  The consistency between the observed distributions 
and those produced by the model indicates that the assumed mechanisms for the evolution of the 
distribution are plausible. 
 Additional work is required to make more quantitative comparisons to experiment.  For 
example, the energy anisotropies have to have realistic ranges and exhibit variations over all 
crystallographic degrees of freedom.  Of the energy anisotropies assumed in the present work, 
only the Read-Shockley energy the 15° cut-off is expected to be a reasonable approximation for 
the grain boundary energy anisotropy of cubic metals.  However, the distribution that developed 
in response to this function is quite similar to the random distribution (see Fig. 3).  While this 
difference might not be noticed in a typical experiment, it should be detectable.  As part of our 



   

future work, we plan careful experimental examinations of this part of the misorientation 
distribution. 
 While the model described here is successful in producing GBCDs that depend on the 
grain boundary energy anisotropy in a way that is consistent with experiment, the current form 
has limitations that will be addressed in future work.  For example, the overall dissipation of 
grain boundary area is not addressed and the collapse of tetrahedral grains is not differentiated 
from the normal loss of faces.  Furthermore, the energy anisotropies investigated to date depend 
on only a single crystallographic parameter.  Also, in cases where there is an especially 
frequently occurring boundary type (for example, a twin), the GBCD will be influenced by the 
crystallographic constraints at the triple junctions and this in not accounted for in the current 
model [17].  Finally, the key to predictive accuracy for the model is the relationship between 
grain boundary energy and grain boundary area.  While we believe that the relationship given by 
Eq. 2 is a reasonable approximation, it is assumed that the relationship derived from simulation 
(Eq. 7) is more accurate.  At the current time, it is not known if this relationship will hold 
generally or if it will vary with the assumed energy anisotropy. 
 
CONCLUSION 
 
 In conclusion, because of the constraint of interfacial equilibrium at triple lines, the 
average area of a given type of grain boundary is inversely related to its grain boundary energy.  
This area anisotropy affects the probabilities with which different grain boundary types are 
eliminated during grain growth, and this leads to anisotropy in the numbers of boundaries of 
different types.  A simple model based on these principles predicts a relationship between grain 
boundary energy and the GBCD that is consistent with experimental observations. 
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