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A thermodynamic model describing relative stability of different shapes for nanoparticles as a
function of their size was developed for arbitrary crystalline solids and applied to group IV
semiconductors. The model makes use of various surface, edge and corner energies, and takes into
account surface tension. Approximations and importance of each term of the model were analyzed.
The predictions for clean and hydrogenated diamond nanoparticles are compared to explicitly
calculated density functional results. It is shown that diamond nanocrystal morphology is markedly
different from silicon and germanium. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1775770#

I. INTRODUCTION

Nanoparticle shape can be a factor responsible for their
chemical, optical and electronic properties. For instance,
nanodiamond morphology has been found to affect its phase
stability ~e.g., nanocarbon1,2!, and silicon nanoparticle shape
is found to affect its luminescence spectrum.3,4 Recently
quantum confinement in semiconductor nanoparticles has
been shown to be shape dependent.5 The systematic descrip-
tion of shape evolution with the particle size is extremely
difficult, both experimentally and theoretically. Therefore,
more often than not, nanoparticles are described as being
spherical. Accurate explicit computational studies of nano-
particles, such as recent studies of diamond nanocrystals and
nanowires,1,2 Si ~Ref. 6! and Ge~Ref. 7! nanoparticles, are
very demanding and difficult to extend to sizes above 1–3
nm. It is desirable to compare stability of all nanoparticle
morphologies from a limited set of experimental or theoret-
ical data containing bulk, surface, and edge properties. This
paper describes a thermodynamic model based on the Gibbs
free energy of an arbitrary nanoparticle that may be in prin-
ciple applied to any system to make a prediction of the en-
ergetically preferred shape as a function of the particle size.

The goal of this study is to determine if the relative
stability of different morphologies can be quantitatively de-
scribed using this thermodynamic treatment, by comparing
the model predictions with available density functional re-
sults for Si, Ge, and diamond nanoparticles. The surface en-
ergies for these three examples are taken from previous den-
sity functional calculations in local density approximation
~LDA ! with ultrasoft pseudopotentials of Stekolnikovet al.8

We begin by estimating the size regimes in which corner and
edge effects will be expected to be significant. Then we

evaluate the influence of the accuracy of surface energies on
the results. We also compare two different approaches to
evaluation of bulk strain energy, to see which method is valid
in the present context. The first approach by Stoneham9 ex-
plicitly incorporates particle shape, whereas the second~and
widely used! Laplace-Young approach assumes a spherical
shape.

The evolution of previous work relating to crystal mor-
phology began with approaches independent on crystal size,
which are valid at the macroscale. Relative stability of dif-
ferent crystal shapes was first addressed in the classical work
of Wulff,10 based on the minimization of the total surface
energy. Detailed criteria of thermodynamic stability of fac-
eted and ‘‘rounded’’ shapes were further developed by
Herring.11 There is extensive literature dedicated to the de-
scription of macroscopic crystal shapes under different con-
ditions ~for example, Refs. 12 and 13!. However, to properly
describe nanocrystal shape for metals and semiconductors in
thermodynamic equilibrium as a function of crystal size,
volume-dependent elastic terms should be included in the
free energy expressions. The properties were addressed by
Cleveland and Landman,14 who considered the total energy
of different shapes as a sum of bulk and surface energies and
a uniform bulk strain, and predicted stable shapes of nickel
in agreement with atomistic simulations. Further, a review by
José-Yacamán et al.15 of shape and stability for metal nano-
particles in the size range of 1–100 nm discusses both theo-
retical and experimental results as well as mechanisms of
stress release in larger nanoparticles. They concluded that
truncation leads to the preferred shapes of small nanopar-
ticles ~up to 5 nm! but for larger sizes internal stresses and
consequent defect formation dominate nanoparticle struc-
tures. Moll, Scheffler, and Pehlke16 studied the influence of
GaAs surface tension on the equilibrium shape of InAs quan-
tum dots, using density functional calculations of edge ener-
gies, surface energies and surface tensions combined with
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finite element calculations of elastic energy. As a result of
different scaling behavior of surface energies and elastic en-
ergy, the InAs island shape was found to be dependent on the
volume of the particles.

Experimental difficulties in determining the most stable
nanocrystal shape include size and isomer distributions,
chemical environment and presence of thermodynamically
nonequilibrium shapes. For example, a tetrakaidecahedron
~or truncated octahedron! shape with rounded corners was
obtained for Si voids smaller than 50 nm by Eaglesham
et al.17 However, despite the fact that different shapes have
been observed for semiconductor nanocrystals,18 such as the
faceted nanodiamond crystals shown in Fig. 1~obtained us-
ing a JEOL 2010F transmission electron microscope!,19 a
systematic interpretation of experimental results remains elu-
sive.

II. THEORETICAL FORMALISM

A. Gibbs free energy for arbitrary nanoparticles

A complete treatment of the free energy of a nanoparticle
should include contributions not just from the bulk and sur-
face of the particle, but also from the edges and the corners.
In general, when determining the comparative stability of
various shapes the latter contributions will be significant
only for small clusters.

As mentioned above, the model proposed here is based
on the Gibbs free energy. For a given nanoparticle of mate-
rial in a phasex, the free energy may be expressed as a sum
of contributions from the particle bulk, surfaces, edges, and
corners, such that,

Gx
o5Gx

bulk1Gx
sur f ace1Gx

edge1Gx
corner . ~1!

The first term,Gx
bulk is defined as the standard free en-

ergy of formation,

Gx
bulk5D fGx

o~T!, ~2!

which is dependent on the temperatureT. The second term
Gx

sur f ace may be expressed in terms of the surface free en-
ergy gx and the total molar surface areaA ~which in turn
may be written in terms of the molar massM and densityrx

of the material in a phasex), and the surface to volume ratio
q:

Gx
sur f ace5Agx~T!5

M

rx
q(

i
f igxi~T!, ~3!

wheregxi(T) is the surface free energy of faceti and f i is a
weighting factor defined so that,

(
i

f i51. ~4!

The surface free energy explicitly depends on the crys-
tallographic orientation of the surface, and on the properties
of x. Using the same approach, the energy associated with an
edgeGx

edge may be expressed in terms of the edge free en-
ergy lx and the total lengthL of the edgesj ,

Gx
edge5Llx~T!5L(

j
gjlx j~T!, ~5!

with gj as the weighting factor,

(
j

gj5(
j

l j

L
51. ~6!

The length of each edgel j may be determined geometrically,
and the edge to volume ratiop defined so that, once again,

Gx
edge5

M

rx
p(

j
gjlx j~T!. ~7!

Similarly, the energy associated with a corner,Gx
corner ,

may be expressed in terms of the corner free energy«x and
the total numberW of cornersk, such that

Gx
corner5W«x~T!5W(

k
hk«xk~T!, ~8!

⇒Gx
corner5

M

rx
w(

k
hk«xk~T!, ~9!

with w the corner to volume ratio andhk the weighting fac-
tor. The energies of the edgeslx j and the corners«xk will, of
course, depend on the crystallographic orientation of the in-
tersecting surfaces, and on the properties of phasex.

Therefore, Eq.~1! becomes

Gx
o5D fGx

o~T!1
M

rx
Fq(

i
f igxi~T!1p(

j
gjlx j~T!

1w(
k

hk«xk~T!G . ~10!

FIG. 1. Pointed metal needle~formed by electrochemically etching 125mm
diameter molybdenum wire! with electrophoretically deposited nanodia-
mond particles; faceted shape of particles is apparent. Courtesy T. Tyler
~Ref. 19! and J. Hren, Materials Science and Engineering, North Carolina
State University.
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B. Effective pressure and surface tension

However, this does not account for the effects of surface
tension on the particle, which are significant at the nanoscale
and may not be ignored. The surface tension produces an
effective pressurePeff on the particle, which may be ad-
dressed by introducing the resulting~usually compressive!
volume dilatione,

DV

V
5e5Peffb, ~11!

which is dependent on the surface tensions and the material
compressibilityb. The effect of this dilation will be to reduce
the molar volume. Therefore the model, including the effec-
tive pressure becomes

Gx
o5D fGx

o~T!1
M

rx
~12e!Fq(

i
f igxi~T!

1p(
j

gjlx j~T!1w(
k

hk«xk~T!G . ~12!

In general, the volume dilation due tos may be approxi-
mated using such expressions as the Laplace-Young equa-
tion,

Peff5
2s

R
, ~13!

whereR is the mean radius of the particle, so that

e5
2bs

R
. ~14!

This approach assumes that the particles are spherical, and
that the surface tension is independent of orientation. The
pressure induced at any point of the surface is directed to the
center of curvature and is proportional to the curvature at that
point. Although widely used, the applicability of this ap-
proach to realistic crystalline nanoparticles may not be ideal,
especially within a model designed to examine equilibrium
shapes, which might be far from spherical.

A more general expression derived by Stoneham9 for
facetted crystals, suggests that the surface tension be repre-
sented by a forcesndl exerted~normal to a facet edge! on an
element dl of a facet edge. If the force is constant along a
given edge, then this may be replaced by the contribution of
the total force acting at the center of the edge, in the direc-
tion of the direction cosines. For isometric systems, Stone-
ham showed that the volume dilation reduces to

e5
b

V
G, ~15!

whereG is the virial, defined in the directiona by the center
RcJa

I of edge J of facet I , with length LJ
I and direction

cosineQa
IJ ,

G5G a
IJ5RcJa

I LJ
I Qa

IJs I . ~16!

For example, in the case of a cube of side length 2a, e
52bs/a, for an octahedron of length 2b between opposite
verticese53A3bs/2b, and for a sphere this was shown to
reduce to the Laplace-Young equation@Eq. ~14!#.

Although it is known thats5g1A( ]g/]A) often, for
the case where the change ofg with A is small, the approxi-
mations5g is made. Rigorous treatments of surface tension
should include anisotropy, resulting in replacement of sur-
face tension by a stress tensor. This can be calculated in a
straightforward manner using first-principles methods. An-
isotropy of volume expansion may also be included in the
expressions. In the following application of our proposed
method, we explore the common approximation described
above (s5g) for Si.

It should also be noted that the set of surface energies
used here8 has been calculated atT50, so that the Gibbs free
energy obtained from Eq.~12! is ~in this case! equivalent to
the enthalpy of formation.

III. RESULTS AND DISCUSSION

A. Edge and corner energies

The importance oflx j and«xk in the total free energy of
the system is largely unknown. To examine the significance
these terms in Eq.~12!, we first consider the fraction of at-
oms within a nanoparticle that reside on edges. For a cubic
diamond, Si or Ge nanocrystal of approximately;200 at-
oms, the fraction of the total atoms on the edges is;9%.
For a cubic crystal of;103 atoms, the fraction of atoms on
the edges decreases to;4%, to;1% when for a crystal of
;104 atoms, and still further to;0.3% when for a crystal of
;105 atoms. For the latter sizes this is significantly less than
the fraction of atoms residing on the facet surface (;5% for
a ;104 atom and;3% for a;105 atom nanocrystal!, indi-
cating that the contribution from the surfaces will dominate
at sizes when the total edge energy is small compared to the
total surface energy.

Literature data on edge energies are very scarce~note
that we differentiate edge energies as defined in Eq.~7! from
the step energies, also called step-edge energies, which
have been addressed quite extensively!. Experimental esti-
mates for Si edge energies in@110# direction vary from
1.0310211 J/m for ~100! facets to 5.7310211 J/m for ~111!
facets.17

Experimental information on diamond and germanium
edge energies is not available, however we can make ap-
proximate estimates of their importance using available step
energies. The estimate is purely qualitative since a single
step energy represents edge energy if only nearest neighbor
interactions are taken into account. In the case of diamond,
for steps parallel to@110# on ~111! surface, step energies
were calculated20 using LDA to be 1.631029 J/m for clean
surface and 21.731029 J/m for hydrogenated surface
~‘‘ledge energies’’ in Ref. 20!. For single steps parallel to
@110# on ~100! diamond surface, the step energies were
calculated21 using non-self-consistent Harris functional to be
8310211 J/m for SA step and 7310210 J/m for SB step. It
must be noted here that these step energies vary significantly
with step height21 and the energy of the exposed minifacet
normal to the surface is not taken into account. For germa-
nium ~001!, the step energies for SA and SB steps were ex-
perimentally determined by Zandvliet22 ~see also
Zandvliet23!. The zero-temperature values from Fig. 3 of this
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work are 7.2310210 J/m for SA step and 1.931029 J/m for
SB step. In general however, the Si edge energies for~100!
facets and the single steps on diamond and germanium~100!
surfaces would produce total edge energies~for crystals con-
taining 103– 106 atoms! that are one to three orders of mag-
nitude smaller than the total energies for the adjacent sur-
faces as listed in Ref. 8.

Since the contribution from the edges and corners is
therefore expected to be considerably smaller than that of the
surfaces for the sizes larger than;104 atoms, it is assumed
that edge and corner energies will have limited significance
when considering diamond~silicon, germanium! nanocrys-
tals larger than;1.2 ~1.6, 1.7! nm, and can be neglected
over;5.6 ~7.3, 7.6! nm. For crystals smaller than 3 nm it is
more appropriate to perform explicit calculations of isolated
structures using density functional theory~DFT! or even
tight-binding methods. However, our future efforts include a
rigorous investigation of the edge and corner energies of dia-
mond, and the effects these contributions have upon the equi-
librium shape.

B. Accuracy of surface energies

The influence of method used to calculate surface ener-
gies on the resulting relative shape stability will now be ex-
amined for Si nanocrystals using several available sets of
surface energies for comparison. Here we assumes5g and
use Laplace-Young model@Eq. ~14!#, both approximations
are to be examined in the following section. In addition to a

set of LDA surface energies from Ref. 8, we have employed
LDA energies from Ref. 24 as well as a set of experimental
data17 and a set of energies obtained with classical many-
body potentials.25 Free energies as a function of nanoparticle
size for cube, octahedron, truncated octahedron and cubocta-
hedron are plotted in Fig. 2. The order of these shapes re-
mains the same for all four sets, truncated octahedron and
cuboctahedron being the most stable and nearly degenerate
in energy, and the cube being the least stable. The relative
energy difference between the shapes is somewhat smaller
for the classical potentials set as compared to the other sets.
To investigate further the consistency of results for relative
energy differences, the difference between energies of the
most stable shape, truncated octahedron, and the least stable
shape, cube, are plotted in Fig. 3. The results based on LDA
~Ref. 8! calculations show the best agreement with results
derived from experimental set. Both LDA results have
proven applicable for determining relative shape stability if
the total free energies of nanoparticles differ by more than
5 kJ/mol.

C. Contribution from surface tension

The choice of technique used to calculate volume dila-
tion e will now be examined in detail, to determine whether
Laplace-Young model is applicable in describing elastic en-
ergy for non-spherical particles by comparing it to the Stone-
ham model for cubic and octahedral nanodiamonds. Volume
dilations are calculated from expressions~14! and~15! using

FIG. 2. Comparison of free energies for Si nanoparticles of cube, octahedron, truncated octahedron and cuboctahedron shapes as a function of size using
surface energies from~a! LDA ~Ref. 24!, ~b! LDA ~Ref. 8! ~c! many-body classical potentials~Ref. 25!, and~d! experiment~Ref. 17!.
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experimental values of compressibilityb ~Ref. 26! and the
common approximations5g. Using these values in Eq.
~12! ~ignoring the edge and corner terms! the total free en-
ergy was calculated for both models, in addition to results
using Eq.~10! for the case where the dilation due to com-
pressive strain is ignored entirely. These results are plotted in
Fig. 4 for cubic dehydrogenated~a! and hydrogenated~b!
nanodiamonds, and for octahedral dehydrogenated~c! and
hydrogenated~d! nanodiamonds. Corresponding energies of
diamond nanocrystals explicitly calculated using generalized

gradient approximation~GGA! from Ref. 1 are shown in
both figures for purposes of comparison. In most cases, both
Laplace-Young and Stoneham models are in a close agree-
ment, indicating that for practical purposes the more simple
Laplace-Young approach is sufficiently accurate to evaluate
the contribution of compressive strain. In the cases when the
shape is far from a sphere, with large aspect ratio, for ex-
ample, one has to consider the Stoneham model for calcula-
tion of effective pressure and corresponding volume dilation.
The differences between results of explicit DFT GGA
calculations1 and the present model are small~less than 0.1
kJ/mol per atom for the dehydrogenated nanodiamonds, and
0.3 kJ/mol per carbon atom for the hydrogenated nanodia-
monds! for several different nanocrystal sizes and shapes,
therefore validating the model for comparison of stability for
different shapes.

The applicability of thes5g approximation was inves-
tigated by comparing the results for dehydrogenated Si with
those calculated using more realistic surface tension values.
The ratios/g for Si ~111! was taken from Vanderbilt’s LDA
calculations27 to be 0.87 for@231# Pandey-chain recon-
struction~average over both directions! and 0.58 for@737#
reconstructed analog of dimer adatom stacking fault model.
The stress on Si~100! @231# was found to be slighly com-
pressive in one direction and slightly tensile in the other
direction.28 This anisotropy leads to stress domains on mac-
roscopic~100! facets,28 however, the typical size of the do-
mains is about 50 nm, which is larger than the nanoparticle

FIG. 3. Comparison of free energy differences between truncated octahe-
dron and cubic shapes of Si nanoparticles as a function of size calculated
using surface energies from~a! experiment~Ref. 17!, ~b! LDA ~Ref. 24!,
~c! LDA ~Ref. 8!, and~d! many-body classical potentials~Ref. 25!.

FIG. 4. Influence of compressive strain on total free energy for the~a! dehydrogenated and~b! hydrogenated cubic diamond nanocrystals, and the~c!
dehydrogenated and~d! hydrogenated octahedral diamond nanocrystals, as a function of size. The logarithmicx-axis spans the sizes approximately 1.2–5.6
nm. The crosses denote the free energy of calculated explicitly using DFT GGA~Ref. 1! for diamond nanocrystals of the corresponding morphology.
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size. Thus, the anisotropy was ignored in our consideration
The value for Si~100! surface tension, (sxx1syy)/2, was
taken from LDA calculations29 on c@231# reconstructed sur-
face (s/g51.4). The results are shown in Fig. 5 for several
Si nanocrystal shapes. As compared to Fig. 6~b!, there are
significant differences in the size range of 100 to 1000 at-
oms, because the cubic shape is stabilized by a significantly
smaller surface tension for~100! surface in this set of data.
Several crossovers in stability from shape to shape are ob-
served in this range, the cube going from being the most
stable to the least stable as size increases. As expected, no
significant changes are exhibited at larger sizes. These results
indicate that it is very important to accurately evaluate sur-
face stress for small nanoparticles, since it can be drastically
different from the surface energies and have an important
contribution to the overall free energy balance.

D. Predicting morphologies

The Eq. ~12! ~ignoring edge and corner effects! with
volume dilation calculated from the Laplace-Young model
and the surface energies in Ref. 8 for the diamond phase of
C, Si and Ge were used to predict the energetically preferred
morphology for each species as a function of their size. The
surface energy for Si~111! was changed from@231# to
@737# value once a facet had sufficient size. The results are
shown in Fig. 6 for dehydrogenated nanocrystals and in Fig.
7 for hydrogenated nanocrystals as a function of the number
of atoms. For dehydrogenated diamond, the most stable mor-
phology at low sizes is predicted to be a sphere, but as size
increases cuboctahedron and truncated octahedron become
the energetically preferred shapes. Both cubes and octahe-
drons are significantly higher in energy at sizes up to;106

atoms making them unlikely shapes in this size range.
This situation changes drastically upon hydrogenation.

Cubic shape is by far the most stable in hydrogenated nano-
particles of all three species. It is followed by sphere in Si
and Ge, in contrast to diamond, which has octahedron as the
next stable shape. This major change in shape behavior upon
surface hydrogenation is explained by the large change in
surface energies. Thus, the shape of nanoparticles that can be
observed experimentally critically depends on adsorbed sur-

face species. It is also possible that the observed shape can
indicate which species are adsorbed at the surface and per-
haps even the degree of surface coverage, since the surface
energies are extremely sensitive to such a modification. In
general, the energy difference between different shapes de-
creases with increasing atomic number.

We note here that we have not taken into account high-
index surfaces, since there is no consistent set of calculated
surface energies for C, Si, and Ge available. However, we
recognize their importance in determining the shape of nano-
particles, as can be seen, for instance, from numerous obser-
vations of ~311! facets in Si.13,30 A complete treatment of
nanoparticle shape has to take high-index surfaces into con-

FIG. 5. Comparison of energies of different shapes of dehydrogenated
diamond-structured Si nanoparticles as a function of size using LDA values
of both surface energies and surface tensions.

FIG. 6. Comparison of energies of different shapes of dehydrogenated
diamond-structured~a! C, ~b! Si, and~c! Ge nanoparticles as a function of
size. The logarithmicx-axis spans the sizes approximately 1.2–5.6 nm for
carbon, 1.6–7.3 nm for silicon and 1.7–7.6 nm for germanium nanocrystals.

4281J. Chem. Phys., Vol. 121, No. 9, 1 September 2004 Phase stability of arbitrary nanoparticles

Downloaded 12 Jun 2007 to 163.1.203.205. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



sideration, which can be done in a straightforward manner
using computational methods.

The order of preferred morphologies is shown in Fig. 8
for the size of>10 000 atoms for all three semiconductors,
for both hydrogenated and dehydrogenated nanocrystals. It is
important to note that in the case of dehydrogenated nano-
diamond, the thermodynamically most stable phase of car-
bon for particles smaller than;1.9 nm is fullerenes,31 ad
bucky diamonds may be expected up to;2.2 nm,32 both of
which our model is not designed to describe. For dehydro-
genated Si and Ge, octahedron, truncated octahedron and
sphere are very close energetically in all size ranges, making
appearance of these shapes quite likely. For example, the
‘‘rounded’’ tetrakaidecahedron shape of the nanoscale voids
in Si observed by Eagleshamet al.17 is virtually the same as
the truncated octahedron that we predict to be the preferred
shape for Si nanocrystals in this size range. It should be
noted that comparison of our results to the experimental data
is meaningful only if the experimental shapes are the ther-
modynamically most stable shapes. It is often the case that
kinetic processes of nanoparticle synthesis result in nonequi-
librium structures, which should be described using kinetic
models rather than purely thermodynamic stability argu-
ments.

IV. CONCLUSION

Summarizing, a thermodynamic model was developed to
describe the transformation of nanocrystal shape as a func-
tion of its size. It takes into consideration surface energies
and stresses, as well as edge and corner energies, which can
be calculated by nonempirical methods. This model can be
used for any type of material, any crystallographic system
and can be used to predict phase transitions as a function of
shape and size by equating free energies for the most stable
shapes of opposing phases. The model has been applied to
the diamond phase of group IV semiconductors, namely, C,
Si, and Ge. We have shown that Laplace-Young model is
satisfactory to describe volume dilation caused by surface
tension, and predict that edge and corner contributions to the
total energy rapidly diminish with increase in nanocrystal
size, becoming unimportant at sizes above;10 000 atoms. It
was shown that accurate evaluation of surface stress is im-
portant at sizes below;1000 atoms to properly account for
elastic energies, and was demonstrated that predictions based

FIG. 7. Comparison of energies of different shapes of hydrogenated
diamond-structured~a! C, ~b! Si, and~c! Ge nanoparticles as a function of
size. The logarithmicx-axis spans the sizes approximately 1.2–5.6 nm for
carbon, 1.6–7.3 nm for silicon, and 1.7–7.6 nm for germanium nanocrys-
tals.

FIG. 8. Predicted sequence of the preferred shapes~left to right! for dehydrogenated diamond~a!, silicon ~b! and germanium~c!, and hydrogenated diamond
~d!, silicon ~e! and germanium~f! nanoparticles of>10 000 atoms. Energetically undistinguishable shapes are not separated by a line.
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on density functional results are in agreement with predic-
tions based on experimental surface energies.

Thermodynamically favored morphology of diamond
nanoparticles was predicted. These predicted results have
been compared with those obtained from explicit DFT GGA
calculations of various nanoparticles,1 and contrasted with
the predicted morphologies of Si and Ge nanoparticles. Fi-
nally, by comparing energetics of hydrogenated and dehydro-
genated nanocrystals it was shown that adsorbed species are
a dominant factor in determining their shape. Thus, this
model can be useful in comparing stability of different nano-
particles as a function of their phase, size, shape, and surface
coverage by various adsorbates.
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