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A Model for the  Static  Properties of DH Lasers 

Abstract-The  various  subproblems  for DH lasers  such as field  dis- 
tribution,  carrier  profile,  and  temperature  distribution are investigated. 
Solutions to these  problems  are  obtained  either  analytically  or  by 
precise  numerical  methods. 

By combining  the  subproblems,  a  detailed  model  for  the  static 
properties is obtained.  The  model is applicable  as  well  below  as  above 
threshold  and  properties of interest  in  the  application of DH lasers 
such as threshold  current, field distribution  at  a given current,  and 
light  current  characteristics  can  be  found. 

Nonlinear  characteristics  are  found  even  for  ideal  symmetrical lasers. 
These  “kinks”  are  associated with higher  order  modes  and  appear a t  
relatively  high  values of the  optical power. 

T 
I. INTRODUCTION 

HE DH lasers under consideration are described by  the 
structure shown in Fig. 1. 

The hatched area in Fig. 1 is the  proton  bombarded  zone.  In 
case of oxide insulation the thickness of the spreading layer 
t, is equal to t4 ( p  layer) plus t 6  (cap). 

For a given current I ,  the problem consists in finding the 
current density distribution J ,  the temperature T ,  the carrier 
density profile N ,  the  intensity  distributions I p ,  and ampli- 
tudes sp .  The lateral modes are denoted  by  the  mode  number 
p .  J ,  T, N ,  and I p  are functions of the position y in  the 
junction plane. 

We start  by  treating  the various problems independently. 
The method used for solving the field problem is an  extension 
of the results from [l]   -[4].  By coupling the problems a 
model for  the laser  is obtained. This model is discussed in 
connection  with [6], [7] and some results are presented. 

11. SUBPROBLEMS 
A.  Formulation of Field Problem 

When variations of the field distribution  with  length (z 
direction in Fig. 1) are neglected the field problem is two 
dimensional. The complex permittivity is a  function of the 
x and y positions and is approximately given by 

n, g, and k are the refractive index, gain, and free space propa- 
gation constant, respectively. Index 1 refers to the active layer 
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Fig. 1. Structure of DH stripe  laser. 

and  index 2 refers to the  confinement layers. In all practical 
cases n >> I g Ilk and  the  approximation leading to (1) consists 
of neglecting ( g / 2 I ~ ) ~  compared to the  other terms. 

The difference between the refractive indexes n1 and nz is 
due to different aluminum content inside the active layer and 
in the n and p layers. This difference is several orders of 
magnitude larger than  the y variation of n1 and n,  . 

With E given by (1) we cannot solve the field problem directly 
by separating the x variation and they  variation. Using the 
“effective dielectric constant,” e.g., [l] , however, we obtain 
the following equation  for they variation of TE modes [2] : 

+ (0; + (feffO/> - Eeff (0)) k2 1 y = 0 
dY 

(2) 

where 0; = A p ,  p = 0, 1, . . are eigenvalues  and 

Eeff(Y) = be1 01) + (1 - b )  EZ(Y). (3) 

b is the normalized propagation constant. 
We only consider the  fundamental mode in the x direction 

and it can be shown that  b can  be interpreted as a field fdling 
factor [2]. 

According to  Schlosser [3] the difference between the 
imaginary parts of e ,  and e2 gives  rise to a small imaginary 
part of b but leaves the real part unchanged. Hence, b = bo + 
jbi where bo i s  determined from n l ,  n2 and  the thickness of 
the active layer. 

Since n1 >> lgl I lk, n2 >> lg, Ilk, and (n ,  - nz> >> 
lgl - g2 I lk we get 
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where [3] an exponentially varying gain described by  the characteristic 
temperature To to  the first order. The thermal variation of 

(5) the gain  given by (10) is consistent with the light current 
characteristics at various temperatures  reported  in [SI.  

uo is the normalized frequency which is considered constant The net gain in the active layer g1 is found  by  subtracting 
because of  the small variations of n, and n2 withy. Hence, a loss term 

1 g1b’)-g20.’) (1 - bo)uod%-  
n l b ) -  n 2 @ )  1 + u 0 6  . 

uo = k t  (0)2 - n2 (0)2. (6)  gib’) =gb’) - az Nb) - b2 (11) 

The intensity filling factor r, which is the  fraction  of the where a2 and bz are constants. 
intensity  propagation in the active layer, can be written [ 2 ] ,  With (9)- (1 1) the field equation ( 2 )  is specified when N 
[3 1 and Tare known functions of y. It is assumed that  the  tem- 

perature is independent of x within  the region of  interest. 

B. Solution of the Field Problem 
(7) The method used for  solution of (2) is described in detail 

in  [2] and only the  important  points will  be stated here. The 
method is a  matrix  method where the coefficients for  an 

where I ( x )  is the  intensity  distribution  in  the x direction. 
When (5)  and ( 7 )  are introduced in (4) we  get 

expansion of the  solution  in Hermite-Gauss functions  are 
found  from  the eigenvectors and  the eigenvalues Ap are the 
eigenvalues of the  matrix. 

n 

Threshold currents are almost exponentially depending on  the 
temperature due to  the  temperature dependence of the gain. 
We write the gain for  the  stimulated emission as a  function of 
temperature  and  electron  density: 

gCY) = a ( T )  .ND) - bl (1 Oa) 

a(T) = al - a’(Tb)  - T’)  (1 Ob) 

a’ = 2, a 
TO 

al =a(T‘) 

where a l ,  a’, and bl are constants  and T‘ the  heat sink tem- 
per-ture.  Equations (lOb)-(lOc) are obtained  by expanding 

The expansion is possible if 

fory + m (14) 

since this  function can then be expanded in Hermite-tiauss 
functions. The matrix elements can be expressed by an and the 
garmlla function  [2]. With this  solution also, mode spacings 
and far fields are easily found 121. 

For  the  solution  of  the field problem, EO.’) is often  approxi- 
mated by a parabolic variation, e.g., [SI, [ 6 ] .  This gives 
directly an analytical solution but  it is not possible to obtain  a 
detailed description of E. 
In [7]  a power series ~ ( 0 )  - a2y2 +higher order terms is 

used; the first two terms give a Hermite-Gauss solution  and 
the higher order  terms give perturbations. This theory will  be 
discussed in Section V. 

Also, some special profiles where ( 2 )  can be solved analyti- 
cally have been investigated, e.g., [8]. These profiles, how- 
ever,  are probably of limited interest for detailed calculations. 
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C. Electron Density 
The electron density N is found  from the diffusion equation 

where sp is the  amplitude  and Z p ( y )  is the normalized intensity 
distribution  for mode p given by 

Y,Cv)  is the  solution of (2) for mode p .  If the lifetime r, is 
independent of N (but  not necessarily of y), (1 5) can be 
written as a linear equation using (10) to give 

d2N = N . A ’ b )  - B ’ b )  
dY2 

A ’ b )  = - t - (al - a’(T(y) - 300K)) s p J p ( y )  1 r  
Or, D P 

edD P 

A numerical method for solution  of this equation is presented 
in the Appendix. 

The current density J ( y )  is calculated according to [9] 

1 

IY I GS 

J 1  and lo are found  from  the  total  current 1 

L!U 

Ia 
K .  l o  =- (19) 

The constant I, depends on  the thickness t,, the resistivity R, 
of the spreading layer,  and  the  exponent nkT/e, n x 2, from 
the Z- V characteristic. Thus, 

z,= J2- nkT -. t, 
e Rs 

D. Temperature 
The temperature variation is found  by solving the heat flow 

equation. In [lo] a series expansion for T ( y )  is  given. This 
result contains  the Fourier coefficients for the heat source 
distribution 

2 
nn 

a, =-sin (b,S), b, = -, n = 1 , 2 , .  . . (21) 
2nn 
A 

when a  box shaped distribution is assumed. The local thermal 
resistance becomes 

where u is the  heat  conductivity in the layers, and r l , ,  and 
r2, ,  are found  from  the  boundary  conditions [. 101 . The 
temperature is found  by multiplying (22)  by  the dissiuated 
power  per area 1/2SE (ho/eZ-  2POut) where Ro is the  photon 
energy and Pdut is the stimulated power emitted  at each mir- 
ror.  In case of pulsed operation  this expression is multiplied 
by  a  duty cycle factor. This factor can also  be  used to scale 
the influence of thermal  effects.  In  this  treatment only a 
heat source in the active layer is considered. 

Other  heat source distributions  can  be  taken into account 
by using other Fourier coefficients in (22), but due to the 
heat flow the  exact  distribution is not  important. 

Taking the distribution as a  constant  for I y I < S followed 
by a tail for ( y  I>S we have a position dependence of the 
same type as the  current density (18). Since the  current 
density falls off slowly we can  assume the carrier density and 
dissipated power to be proportional t o   J ( Y )  for Iy I >>S, 
and  a convenient description of the  thermal resistance is then 
obtained by replacing a, in (22)  with  the Fourier coefficients 
for  the  current density (18) so that 

a, = - 
Jo nn 

cos (b, S) 

t b, cos ( b u s )  (cos &lo)  si (b,Zo) - sin (b,lo) 

. Cj(b,ZO)) t b, sin (bas) (cos ( & l o )  Ci(bnl0) 

+ sin (b,Zo) si (b,Zo)) 

Z 
J -- 
O - 2SL 

where we have  used integral sine and cosine 

sint 
- d t = - - t s ~ ( x )  

71 

2 

Cf(X) = -J- y dt.  

E.  Easing Condition 
Spontaneous emission into  the lasing modes is neglected; 

hence, modes at or above the threshold  must have  gain equal 
to loss. When the normalized intensity  distribution  for mode 
p is 

I p  (x, Y )  = I@) I p  (Y), ( 2 5 )  

the lasing condition becomes 

The  gain g is given  by 
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Using the fdling factor I' (7) we get from  (26)  and (27) 

where the average net gain in the active region for mode p is 

I-- 

The threshold  current  is defined as the  current  for which (28) 
is satisfied for  one  mode when all amplitude  factors sp are 
zero. 

The lasing condition can be written in terms  of propagation 
constants,  noting that  the propagation in the  z-direction is 
described by we Start from 

PX(0, 0l2 i- 0; i- P," = €1 @)k2 (30) 

where 

P A O ,  0l2 =7 (1 - bo - jbi(0)) 
U2  

U' = k 2  t 2  (el (0) - €2 (0)). (31) 

Using (l), ( S ) ,  (7), (8b), (27), and (31) we get from (30), 
when Re a;} and high order terms are neglected, 

where 

The  two last terms in (32) represent diffraction losses. From 
the lasing condition 

2 Im { P z )  = &end (34) 

we finally get for mode p 

(35) 

where Ap is the eigenvalue for (2). 

111. COUPLINGS AMONG PROPERTIES 
For  a given total current I below threshold, we can find  the 

current density [(18)-(20)], the  temperature variation, solve 
the diffusion equation  and  then  the field equation. 

Under lasing conditions  the  unknowns N Q ) ,  I p Q ) ,  and sp 
must be found  from (2), (15)  and (28), or (35).  These equa- 
tions are coupled via (9)-(I l)  and (16). This is shown sche- 
matically in Fig. 2. 

In the model we have not taken into account  that  the  cur- 
rent density may depend on  the electron  density  and  tempera- 
ture variation. 

IV. APPLICATION OF THE MODEL 
Below threshold (G < gth for all p )  the  amplitude  factors 

sp are zero so the last term  in (15) vanishes, and  the  electron 
density can be calculated. From  the  electron density and 

[ t o t a l   c u r r e n t  I 

1 (cur ren t   spreading)  

Icurrent   densi ty1 

(d i f fus ion )   ] t empera tu re   p ro f i l e  I 

1 1 -1 (radiatesd  power) 

Fig. 2. Graphical  representation of the laser model  showing  properties 
and  couplings  taken  into  account. 

1-1 

temperature  the  intensity  distributions are found. By in- 
creasing the  current  until  (28) [or (35)] is satisfied and 
keeping Sp = 0, we find the threshold  current. Examples are 
given in [2]. 

For  currents above threshold simultaneous solutions to (2), 
(15) and (28), or ( 3 5 )  are found iteratively. We start  by  set- 
ting sp = 0 and  then find N ( y )  and I P b ) .  For  currents above 
threshold we use IpQ)  from  the previous current value,  guess 
sp ,  and calculate N D ) .  Keeping I p Q )  constant, sp are varied 
until N Q )  found  from (15) satisfies (28) for all modes with 
si > 0. Use of  (35) during this  iteration would require a new 
calculation of lpQ)  for  each new set of sp values. The result- 
ing  values of NO) are compared with  the original and  the 
calculations are  repeated  until stable solutions  for N Q ) ,  
Ip(y) ,  and sp are found. The  routines  for  the subproblems 
have all been tested separately on problems with known 
solutions. 

The amplitudes sp are related to the  stimulated power per 
mirror by 

2 

From  the calculated amplitudes as a  function  of  the  current 
we get the light current characteristic. 

Examples of calculated characteristics are shown in Fig. 3. 
The various laser parameters used are discussed in [2]. In 
these examples the power in  the  fundamental mode saturates 
at  the  current value where the  next mode starts lasing. 

The characteristics have the shape shown in Fig. 4. Ith is 
the  threshold  current  and I l  is the  current where the next 
mode becomes lasing. Between Ith and I ,  the differential 
efficiency decreases if improved guiding (e.g., due to  tempera- 
ture) decreases the width of the  mode. 

From various calculations performed we  have obtained  the 
following results. 
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Fig. 3. Light current  characteristics: (a) S = 6 pm, d = 0.15 um. (b) 
S = 8 pm, d = 0.15 pm.  (c) S = 6 pm, d = 0.30 pm. 

1) Increasing stripe  width decreases P1.  
2) For short diffusion lengths the spatial hole burning is 

stronger and  this decreases PI  . 
3) When the length is changed the quantity ( I ,  - I tk) / I tk  

remains almost constant. Since 1, decreases faster with 
decreasing length  than  the differential efficiency increases, 
P1 will decrease. 

4) For  thick active layers the  thermal guiding is relatively 
weaker and  the carriers give a larger negative real part of E,ff. 

This reduced guiding will give a higher P1. 
5) A large number of simulations have been performed using 

various values of the  input parameters. No cases of critical 
dependence of the result on  the  input parameters were found. 

V. DISCUSSION 
In contrast to other  theoretical  treatments of laser properties 

the present model offers detailed analytical or numerical 

t 

I 
t h  I,  

Fig. 4. Typical light current  characteristic (exaggerated). 

solutions to the subproblems. Particularly, the permittivity 
and field problems are carefully considered. Multimode opera- 
tion  and thermal effects are also included. 

In [7] pure gain guiding is assumed. The gain proffie is 
expanded  in  a power series and  a Hermite-Gauss solution is 
found  from  the  quadratic  term. This solution is perturbed by 
the higher order terms. The present model has been applied 
to the parameters used in [7]. The calculated characteristic 
is almost linear, but with the interesting result that d2gl (y)/ 
dy2 I y=o  becomes zero at  the power where the kink  in [7]  
is found. This fact indicates that power expansion combined 
with  perturbation  theory is not adequate,  and  that  the  kink 
found in [7]  can  be explained mathematically: a low value of 
the  quadratic  term in the gain expression gives a  too  broad 
Hermite-Gauss solution  and results in high values of the 
perturbation  terms. This gives “ears”  on  the  intensity dis- 
tribution which reduce the differential efficiency. 

The theory presented in [6] is based on  the parabolic ap- 
proximation. The permittivity is assumed to be  a combination 
of a  constant  part  and  a  current  dependent  part. In case of 
an offset between these two  parts the  theory predicts both 
kinks and near-field shifts, as observed experimentally. 
Furthermore,  the  theory has the advantage that  the calcula- 
tions can be carried out without  a large computer. 

In  the present paper we have taken advantage of the (ideal) 
symmetry of the laser structure in order to simplify the 
calculations; consequently, all calculated near fields are sym- 
metrical. The near fields are always found to be stable and  the 
kinks are associated with higher order modes. Very good 
agreement with  the results for the (slightly asymmetrical) 
“well behaved” laser reported in [6]  is obtained. 

The  type of kink described in [6]  only involves the  funda- 
mental mode. For relatively narrow lasers (25’ 5 15 pm),  this 
may be the dominating mechanism, since the kinks tend to 
appear at lower power  levels than  the kinks calculated by  the 
present model. 

VI. CONCLUSION 
The present model describes the  static behavior of DH 

lasers in detail. Very few assumptions have been necessary 
and precise methods  are used. By this model it is  possible to 
predict the  properties of lasers directly from  the technological 
parameters when the material parameters are known.  It will 
also be possible to optimize the lasers with respect to thresh- 
old current, efficiency, linearity,  etc. 

It is shown that kinks may appear in ideal lasers. 
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APPENDIX Since ?? is a tridiagonal matrix, 8 is easily found using the 
NUMERICAL SOLUTION OF THE DIFFUSION EQUATION folkwing procedure: 
From  (17) we  see that A ’ Q )  is constant  and B‘O) is zero 

for large y values. For  an ideal symmetrical laser the  bound- 
ary  conditions are 

~ = ( ~ O , ~ l , ” ‘ , c N I ) = ( ~ 0 0 , ~ 1 1 , “ ‘ , ~ M M )  
- 
c’=(c;,c‘l,..*,Cjl,f) 

Y O  = 0, AY =Yi+l - Y i  N ( Y M )  = d h  

A r b )  =A’OM) ,  B’(y)= 0 fory >yM. (A21 

We expand the second derivative and use the  boundary 
conditions 

N b i ) = d i + c { N b j + l )  i = M -  1 ; * * , 0 .  

By this method precise results are obtained very quickly. 
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