A Model for Tracing Variability from Features to Product-Line
Architectures: A Case Study in Smart Grids

Jessica Diaz - Jennifer Pérez - Juan Garbajosa

Abstract In current software systems with highly vola-
tile requirements, traceability plays a key role to main-
tain the consistency between requirements and code.
Traceability between artifacts involved in the develop-
ment of Software Product Lines (SPL) is still more crit-
ical because it is necessary to guarantee that the se-
lection of variants that realize the different SPL prod-
ucts meet the requirements. Current SPL traceability
mechanisms trace from variability in features to vari-
ations in the configuration of product-line architecture
(PLA) in terms of adding and removing components.
However, it is not always possible to materialize the
variable features of a SPL through adding or remov-
ing components, since sometimes they are materialized
inside components, i.e. in part of their functionality: a
class, a service and/or an interface. Additionally, varia-
tions that happen inside components may crosscut sev-
eral components of architecture. These kinds of varia-
tions are still challenging and their traceability is not
currently well-supported. Therefore, it is not possible to
guarantee that those SPL products with these kinds of
variations meet the requirements. This paper presents
a solution for tracing variability from features to PLA

by taking these kinds of variations into account. This
solution is based on models and traceability between
models in order to automate SPL configuration by se-
lecting the variants and realizing the product applica-
tion. The FPLA modeling framework supports this so-
lution which has been deployed in a software factory.
Validation has consisted in putting the solution into
practice to develop a product line of power metering
management applications for Smart Grids.

Keywords Traceability Modeling - Software Product
Line Engineering - Product-Line Architecture -
Variability

1 Introduction

Traceability defines and maintains relationships between
artifacts involved in the software life cycle [19,2] in
both forward and backward directions, e.g. from re-
quirements to code and from code to requirements, re-
spectively. Currently, software systems are continuously
undergoing changes due to the competitiveness of the
software market and their changing technologies. In soft-
ware systems with highly volatile requirements, trace-
ability has become a critical issue. Numerous researchers
have put their work over past years on traceability from
problem space to solution space in traditional software
development and evolution [13,47—49]. In this regard,
today there are still several challenges to be dealt with.
Specifically the Center of Fxcellence for Software Trace-
ability identified eight challenges related to the purpose,
cost, configuration, confidence, scalability, portability,
value, and ubiquity of traceability [20]. This traceabil-
ity is even more challenging in recent software develop-
ment paradigms such as Software Product Line Engi-
neering (SPLE [14,46]). In fact, the capability of trac-

ing variability in a family of the products is still a
challenge [37], as well as important: “the traceability
work that is emerging from product line engineering
contexts may have wider applicability to broader trace-
ability reuse” [20].

This paper focuses on the traceability between the
artifacts resulting from the SPLE phases domain anal-
ysis [26] and product-line architecting [35]. During the
domain analysis phase, feature models [25] are usually
used to describing requirements in terms of common
and variable features of the set of products that make
up a SPL. Then, these features are realized and de-
scribed at architectural level in product-line architec-
ture (PLA) models. Our approach is somewhat based on
the work by Ramesh & Jarke [49] and Pohl et al. [47],
but particularizes the traceability definition between
requirements and architecture in features and PLA by
taking into account the traceability of variability. This
traceability of variability is critical to configure the PLA
and realize the products while ensuring that they meet
the requirements, i.e. to check that the variability bind-
ing performed during the configuration of products sat-
isfies the product requirements.

How variability is specified in feature and PLA mod-
els largely determines how variability can be traced.
There has been an extensive research on supporting
the representation of variability in feature models [25,
5,9], PLA models [23,43,6,16,60,1], as well as those ap-
proaches that propose dedicated variability models [46,
7,30]. Based on this state-of-the-art, current SPL trace-
ability mechanisms trace the existing variability in fea-
ture models to variations in the PLA. This traceability
is usually related to variations in the configuration of
architectures as well as in the configuration of compos-
ite components [31], aka. subsystems [24]. These varia-
tions are realized through adding or removing compo-
nents and/or connectors. This means, the configuration
of architecture is customized by selecting optional, al-
ternative, or multiple components and their respective
connectors. We refer to these kinds of variations as ez-
ternal variability.

However, external variability is not enough to com-
pletely define all kinds of variations [6] and to trace
them from features to PLA [60]. This happens when
variations have a lower-granularity than the granular-
ity of components (e.g. classes, services, or interfaces
that implement functionalities such as logging, data-
base connections, listeners of an event-based architec-
ture, graphical controllers, ete.), so that they are mate-
rialized inside simple components — or non-composite
components. In these components, in which variabil-
ity occurs inside, part of their functionality is common
to the SPL and part of their functionality changes de-

pending on the product to be realized. As a result, in
order to support this internal variability, it is neces-
sary to specify variations that are internal to compo-
nents. We refer to this kind of variations as internal
variability. In addition, this internal variability is es-
pecially relevant, but no specific, when describing vari-
ability that refers to non-functional features or quality
attributes [32], since they may crosscut several compo-
nents of the PLA. For example: Suppose an illustrative
example of a SPL for banking systems that consists of a
set of core components that offer their functionality to
Automatic Teller Machines (ATM) and bank web ap-
plications (WebApp). Both ATM and WebApp aim to
provide a cost-effective service to bank customers that
is convenient, safe, and secure 24-hour access for realiz-
ing a common set of banking transactions. A few lines of
code implementing the functionality regarding quality
attributes, such as awvailability or data encryption, are
necessary. This code is scattered across the components
WebApp and ATM and it has variations in its behavior
depending on the specific banking system product by
selecting strict or non-strict availability or different en-
crypting algorithms. Therefore, this internal variability
could affect many different products or there could even
be conflicting quality attributes (e.g. trade-offs between
availability and performance) in different products of
the same family. As a result, the absence of traceabil-
ity that considers internal variability implies that it is
not possible to check if the SPL products with internal
variability meet the requirements. Therefore, the capa-
bility of tracing internal variability is as important as
the capability of tracing external variability.

This paper presents a solution to trace variability
from features to both external and internal architec-
tural variability. This solution has been constructed
using the metamodeling approach, since models auto-
mate development tasks and stimulate learning and rea-
soning capabilities, which is essential for tracing arti-
facts. Therefore, our solution is constituted by a set
of models for describing and tracing PLAs from fea-
tures. The description of features is supported by the
Feature Model [25,15]. The description of PLAs is sup-
ported by a previous work that presents the Flerible-
PLA Model [45] as a solution for specifying both (i) ex-
ternal variability of the architecture configuration and
composite components, and (ii) internal variability of
simple components. Specifically, in this paper we present
a model that supports traceability between features
and PLA, called Feature-PLA Traceability Model. The
Feature-PLA Traceability Model defines the principles
that govern the traceability links between the Feature
model and the Flexible-PLA model, i.e. the rules that
must be met to create links between the two mod-

els. These rules assist software engineers in defining
both coarse-grained and fine-grained links which trace
external and internal variability between features and
PLA. The goal of also tracing internal variability—
i.e. at fine-grained level—is to reduce error-prone de-
cisions at the time of configuring variability to derive
products—from a SPL platform—according to product-
specific requirements. The usage of the Feature-PLA
Traceability Model is possible due to the FPLA mod-
eling framework®.

We have put the Feature-PLA Traceability Model
into practice in a software factory, in a project for de-
veloping a product line of power metering management
applications for Smart Grids. Validation is performed
using the case study technique following the guidelines
of Runeson and Hast for deseribing case studies [51].
This case study allowed us to obtain evidence of that
the Feature-PLA Traceability Model was effective and
helped engineers in the development and configuration
of a successful product line in an industry project.

The structure of the paper is as follows: Section 2
describes background in which our solution is based
on. Section 3 describes the Feature-PLA Traceability
Model. Section 4 presents the case study used to vali-
date the Feature-PLA Traceability Model, i.e. its viabil-
ity, effectiveness, and helpfulness in an industry project.
This section also discusses about limitations of our so-
lution. Section 5 analyzes related work. Finally, conclu-
sions and further work are presented in Section 6.

2 Background

This section describes the required background to detail
the contribution of this paper, i.e. the models that the
Feature-PLA Traceability Model traces.

2.1 The Feature Model

Numerous methods for domain analysis can be found
in literature, although one of the most widely used is
the Feature-Oriented Domain Analysis (FODA) [25,5]
in which our work is based on. The FODA method in-
troduces the feature modeling technique for capturing
commonality and variability of SPL in terms of features.
This method defines a feature as “a prominent or dis-
tinctive user-visible aspect, quality, or characteristic of
a software system or system” [25]. Feature modeling is
graphically deseribed through the feature diagram no-
tation, which specifies all products of a family through
a hierarchical tree-like structure. We use the extended

L Tt is available on: https://syst.eui.upm.es/FPLA /home

feature metamodel definition proposed by Czarnecki et
al. [15] which includes the following concepts:

— A root feature modularizes the model in a tree-like
structure, in which there is a main root.

— Solitary features represent mandatory or optional
characteristics of a software system which can be
composed of zero or more solitary features and by
zero or more feature groups.

— A feature group consists of a set of grouped features
which in turn can be composed of zero or more soli-
tary features and by zero or more feature groups.
Feature groups can be OR or XOR. The first one
forces to choose m grouped features (being m < to-
tal number of grouped features). The second one
forces to choose only one grouped feature.

Figure 1 exemplifies these concepts through a simple
feature model of a family of e-readers. The root feature
of the tree is called e-readers family. A set of solitary
features are hooked to the root, such as interface and
connectivity. The solitary feature interface is composed
of a XOR feature group that supports customized in-
terfaces, such as keyboard or multi-touch, whereas the
solitary feature connectivity is composed of the solitary
features Wi-Fi and 3G. The solitary feature Wi-Fi is
a mandatory feature for all products of the e-readers
family while 3G is optional.

i ""-’ .'A ——
== = & — -8
reading] I bookmarks & annotations | | interface] L= _E'E""‘w‘!.ilx._l
~ _____,_—-: - Y

il F. ! e f

keyboard 3 ~ (Y
T \i S*way contraller | | \
..Zpointmulitouch i\ [\

10-pointmulti touch !
Legend

|

| SofitaryFeataure

M ORFeatureGroup
M XORFaatureGroup
« Mandatory Feature

-Gloupeu.l.eatu.rf..- ; o Optional Feature

Fig. 1 E-readers SPL: Feature Model

2.2 The Flexible-PLA Model

The Flexible-PLA Model [45] is a precise representa-
tion for capturing variability as part of PL.As. The main
concept underlying Flexible-PLA Model is the concept
of Plastic Partial Component (PPC [45]). The concept
of PPC is a solution to completely support the inter-
nal variation of architectural components. Therefore, it

https://syst.eui.upm.es/FPLA/home

is a component that part of its behavior corresponds
to the core of a SPL and part of its behavior is spe-
cific of a product or set of products from that SPL.
The other coneepts that are common to PLAs, such
as components, connector, ports, ete., are specified as
it is usually done in common Architecture Desecription
Languages [36].

The variability mechanism underlying PPCs is based
on the principles of invasive software composition and
the combination of two approaches to define software
architectures: the Component-Based Software Develop-
ment [58] and the Aspect-Oriented Software Develop-
ment [27|. The variability of a PPC is specified using
variability points which hook fragments of code to the
PPC known as wvariants, and weavings which specify
where and when extending the PPCs using the variants.
Weavings are defined outside from PPCs and variants
so that these PPCs and variants are independent, of the
weaving or linking context. As a result, variants can
be reused and crosscut several PPCs of the PLA. Ad-
ditionally, PPCs reduce dependences and coupling be-
tween components and their variants, and enable easy
and cheap (un-)weaving of variants. These advantages
have been successfully applied to SPLs [45,44, 17].

The concepts of the Flexible-PLA model are exem-
plified by the graphical representation of a PPC called
interface (see Figure 2). The PPC interface defines a
variability point which hooks the code that implements
the variants keyboard and multi-touch.

—| 1=

I3 weavingMulti-Touch
T et

h/ s
- -6 A E I wemingKeyboard
. = yarignditypant i3 after
~

s / 0\

Plastic Partial Component Variability Point \\
- 7 multi-touch

Port [keytoard

COmMPONENt sesachmant

= R Variant
i Connettar i___l
|

[

Fig. 2 E-readers SPL: Flexible-PLA Maodel

3 Feature-PLA Traceability Model

This section presents the Feature-PLA Traceability Model

as a solution for tracing features to PLA. Tracing ar-
tifacts aims to automate development tasks, as well as
to stimulate learning and reasoning. Models, traceabil-

ity between models, and model transformations are the
basis to automate development tasks, which is known
as model-driven development (MDD [11]). Additionally,
models help us understand complex problems and their
potential solutions through abstraction [55], and could
stimulate learning and reasoning [56]. For this reason,
the proposed solution is based on models, specifically
the Feature and Flexible-PLA Models, as well as the
Flexible-PLA Traceability Model that defines traceabil-
ity between the two first models.

The Feature-PLA Traceability Model provides mod-
eling primitives to define traceability links, i.e. rela-
tionships, between elements belonging to the Feature
Model (see Section 2.1) and elements belonging to the
Flexible-PLA Model (see Section 2.2). These relation-
ships are established between the set of feature elements
and a set of architecture elements that satisfy them
(aka. Satisfaction Links [49]). Hence, a feature element
may define some kind of constraint or goal which may
be satisfied by one or more architecture elements, while
an architecture element may satisfy one or more feature
elements. In this regard, the Feature-PLA Traceability
Model defines the rules that govern the creation of these
relationships. These rules are called linkage rules.

To be able to use these modeling primitives, it is nec-
essary to define a domain-specific (modeling) language
(DSL [59]). The next subsections describe (i) a DSL ab-
stract syntax through the definition of the Feature-PLA
Traceability metamodel, its domain concepts, relation-
ships and rules, (i} a DSL concrete syntax by defining a
graphical language representation, and (iii) how putting
these modeling primitives in practice.

3.1 Abstract syntax: metamodel description

Metamodels describe how models can be specified and
establish the properties of models in a precise way. In
addition, a metamodel is characterized because it allows
the verification of those models that are constructed
and conformed to it [12]. The realization of MDD prin-
ciples is made around a set of OMG standards like
MOF [40] which is a metametamodel. Specifically, our
solution is based on MOF 2.0 and uses UML 2.0 to
specify a metamodel which we refer to as Feature-PLA
Traceability metamodel.

The Feature-PLA Traceability metamodel (see Fig-
ure 3) is composed of a set of inter-related metaclasses.
These metaclasses define a set of properties and services
for each concept considered in the model. On the one
hand, metaclasses, their properties and their relation-
ships describe the structure and the information that
is necessary to define traceability links and their link-
age rules. On the other hand, the services of metaclasses

TraceabilityLink defines_lin
_Deserpgen - Stna defines_linkageruleD
i ang' definzs_linlagerulec
-Wha ; String defines_linkagended
-When | date defines_inl A
-Satsfacing - [strong_postive, medium_posirve, medium_negative, strang alr, =
*nawi)
+iHastow)
+HafnElinakeRuled R B,
I
FaatureM, el cature_source_provies | SOltanyFeature | — — teaturecardinaliy s 1.1 i
! -teature Cardinaliy Teature_interlink |
| 1
(from Featurs Metamadel) | I Ting RuleA 1 t
|
companant target_providel IE |]|
component terink ‘ {
| !
|
ppe_target prowdes || Plastick ppe_Kterink I
- | -.
]
" i R \
Flexible-PLAMetamadel | | SelitaryFeature e L featurecardinalty is 0.0 l
| HeatureCardinalitg feature_interink y = false
(from Flexible-PLA Metamodel) | |
. o i |
[e———
| [LinkageRule B 1'
| 11
| Fihanetor connectar_interiink I
| |
I |
e e e e e B 0 e i
TS A
Teaturegraup_inerlinic
Teafieqroun source pravides :
i [Li ule.C 13
t
| | [
vp target providss | aint | APTIES. T i |
| |
| J
|'.,—,E__________:____]nt;lﬁk ______________ '
L _source_provices! pedFeature | | |
| | LinkageRule.D |
| I
components_target_provides : P campaniznd_Eterink :
: e _|Optianal cemponants o :
AT, R N, —|Dptonal PPCS (e all /|
Pec tare’ progdes | astick P — — = — ~ PP intednk thelr ports are optional) ;
[
e e ey |
el o e e e e s g
|]
soMmyledture suirce provices | [Seltayrasturs] ‘{fealuetardlnalll&' 50 'nl |
| [fetursC ¥ solitaryfeature_interiink i
|
| : groupedreature_internk | :
grapedteatures_saurce_pravides | |uuup.mum| | 1 I
LinkageRule.E I
| | T It
| ? I
vanant_target_provides | [vamam | Sl | [
i
|

Fig. 3 Feature-PLA Traceability metamodel

offer the primitives to develop instances by creating, de-
stroying, adding or removing elements which are com-
pliant with the constructors of the metamodel?. Those
constraints that cannot be defined through the use of
relationships and their cardinality are specified by us-
ing the Object Constraint Language (OCL [41]), such
those described as textual information in UML notes
(see Figure 3).

The Feature-PLA Traceability metamodel is cre-
ated with the aim of facilitating its integration with
general-purpose traceability metamodels, such as the
Metamodel for Requirements Traceability [29], or the
EML Trace [28]. These models define the concept of
traceability link through a metaclass that supports the
traceability between any two models. We have re-used

2 Most services are omitted to gain readability.

this metaclass, hence traceability links are described
by the metaclass TraceabilityLink (see Figure 3). It of-
fers the primitives to instantiate traceability links. The
metaclass TraceabilityLink has five attributes (see Fig-
ure 3). Additionally, in order for the user to set the
traces between the right elements, it is necessary to de-
fine a set of linkage rules that establish the constraints
that govern the creation of these traces. To that end,
the metaclass TraceabilityLink defines five linkage rules
(see dashed rectangles labeled from A to E in Figure 3).
Attributes and linkage rules as described below.

The metaclass TraceabilityLink has the attributes
Description, Why, Who, When and Satisfacing. These
properties store semantic knowledge about the trace-
ability links. The attribute description keeps a brief
description of the link. The attribute why stores the

traceability link’s rationale. The attributes who and
when keep who creates the traceability link and when it
is created, respectively. The definition of the attribute
satisfacing is based on the work by Ramesh & Jarke [49]
who defined a scheme for assigning qualitative degree
of satisfaction to links, i.e. a measure of the extent of
how long one element affects another. Hauser & Claus-
ing [21] use four categories to relate how design affects
quality requirements: strong positive, medium positive,
medium negative, and strong negative. Positive values
measure the degree to which features are satisfied, e.g.
a recovery feature to provide response of 100 millisec-
ond may be considered to be well satisfied, so that
90 millisecond and 110 millisecond response time may
be considered to satisfy the feature with different de-
grees. Negative values may capture trade-offs between
features, e.g. a component that satisfies an availability
feature may have a strong negative impact on a per-
formance feature. This scheme is incorporated in our
traceability model as follows: an element belonging to
the Flexible-PLA Model may contribute toward satis-
ficing an element belonging to the Feature Model along
these four categories. Thereby, it is possible to assign
the values strong positive, medium positive, medium
negative, and strong negative to the attribute satisfic-
ing of a traceability link.

The metaclass TraceabilityLink defines five linkage
rules (see the association relationships between the meta-
class TraceabilityLink and the metaclasses LinkageRule.
{A-E} in Figure 3). The linkage rules define how rela-
tionships can be established, i.e. the rules that restrict
which elements belonging to the Feature Model can be
traced to which elements belonging to the Flexible-PLA
Model. These linkage rules act as constraints that must
take variability into account. Variability in the Feature
Model is specified by means of optional solitary fea-
tures, feature groups, and grouped features. Variabil-
ity in the Flexible-PLA Model is specified by means
of optional components and optional connectors, which
describe external variability of architecture configura-
tion, as well as variability points and variants, which
describe the internal variability of PPCs. These forms
of variability constrain the traces that can be defined
in such a way that the linkage rules define the following
constraints:

Linkage Rule A: A mandatory solitary feature can trace
to a component or a PPC.

Linkage Rule B: An optional solitary feature can trace
to an optional connector. A feature group can trace
to an optional connector.

Linkage Rule C: A feature group can trace to a vari-
ability point.

Linkage Rule D: A grouped feature can trace to an op-
tional component or an optional PPC.

Linkage Rule E: An optional solitary feature can trace
to a variant. A grouped feature can trace with a
variant.

These constraints of the traces are implemented in
the Feature-PLA Traceability metamodel through five
metaclasses to which we refer to as LinkageRule.{ A-E}
(see Figure 3). These metaclasses define associations
with the metaclasses from Feature and Flexible-PLA
metamodels®. As a result, any link between an element
from a Feature model and an element from a Flexible-
PLA model must be compliant with one of these linkage
rules. As the linkage rules support external and internal
variability, both fine-grained and coarse-grained trace-
ability links can be defined.

In this regard, it is necessary to highlight that we
decided not to add a new attribute (with the types of
linkage rules and define the corresponding OCL con-
straints) into the metaclass TraceabilityLink in order
to preserve the metaclass TraceabilityLink of general-
purpose traceability models. In order to realize this
typing we defined five linkage rules through five meta-
classes. In this way, we guarantee that the Feature-PLA
Traceability Model can be reused by and integrated in
other traceability models.

Finally, it is necessary to highlight that this meta-
model conforms to a general-purpose Traceability model
(see [18]) which is located in an upper layer of the MOF
Architecture [40] (meta-metamodel layer). In this way,
the metaclasses TraceabilityLink and LinkageRule. { A—
E} conform to two meta-metaclasses (Tracelink and
LinkageRule) of this meta-metamodel. The definition
of the metaclasses LinkageRule.{ A-E} allowed us to ex-
tend the rationale of the linkage rules.

3.2 Concrete Syntax: Graphical language description

A graphical modeling language has been defined as this
kind of languages is usually more intuitive.

Figure 4 illustrates the Feature-PLA Traceability
graphical language through an example of a SPL of e-
readers. Figure 4 shows six traceability links and their
properties—satisfacing, who, and when (see ID_001 to
ID_006). The traceability link ID_003 defines a relation-
ship between the optional solitary feature 3G and the
optional component that implements it (e.g. see the
properties: strong positive, J.Smith and 03/09/2012).
This link traces a variation that is materialized by adding

3 The Feature metamodel is described in [15] while the
Flexible-PLA metamodel is described in [45]

[0 1p_oo1

o strong positive
(Y J, Smith (architect)
i
- -
| @10 002
v stronq positive
| 1. Smith =WiH el _1_
l B 05/042012 e
fi310_003
k9 v strong positive
(i 1.Smith L
| ﬁ 03/09/2012 - intarface
. i strong positive .
(s P. Brown (analyst] |
ﬁ -
Do
T8 —_ .
v strong positive
L% P.Brown
W 06/04/2012
“ . variabilitypoint
A~ [1.1]
\
P e v - g
o il e =, (Ul 5-way_controller | —
(@ 10pont malttouch) '======== = = mult-touch El et
{i& Zport mutttouch 1 70 10 006
li%;;r:) v strong positive
= P. Brown
1) 09/04/2012
Fig. 4 E-readers SPL: Feature-PLA Traceability Model
or removing the component 2G to/from the configura- [pe—
tion of the PLA. Therefore, this link traces external f}f“’:a“"g"““’““’ lstenKey
- 1 arer
o interface k!

variability. The traceability link ID_005 defines a re-
lationship between a point of variability related to the
types of interfaces —a feature group— and the variabil-
ity point that implements it. Finally, the traceability
link ID_006 defines a relationship between the grouped
feature Z-point multitouch and the variant that imple-
ments it. This link traces a variation that is not ma-
terialized by adding or removing a component because
of its small size —it is a service called listenTouch (see
Figure 5). This variation is materialized by weaving or
unweaving the variant multi-touch to/from the PPC in-
terface, i.e. by injecting (or not) the service listenTouch
instead, before, or after the execution of the service
listenAction of the PPC interface. Therefore, this link
traces internal variability.

listenAction

- O multi-touch

e {21 weavingMutt-Touch
{20 after w

listenTouch

Fig. 5 E-readers SPL: weaving definition

3.3 Feature-PLA Traceability Model in Practice

The solution presented in this paper for tracing vari-
ability from features to PLA is supported by the FPLA
modeling framework. FPLA is an open-source graphical
tool that is available for the community as an Eclipse
plug-in*. The use of the FPLA modeling framework to
put this solution into practice is described through a
set of activities as follows.

4 https://syst.eui.upm.es/FPLA /home

https://syst.eui.upni.es/FPLA/home

1. SPL domain analysts model the problem space, i.e.
specify common and variable features through a Fea-
ture model.

2. SPL architects model the solution space (PLA), i.e.
specify the PLA structural configuration through a
Flexible-PLA model.

3. Both domain analysts and architects define the trace-
ability links between a Feature model and a Flexible-
PLA model, i.e. establish the relationships between
elements from these two models through a Feature-
PLA Traceability model.

4. SPL developers implement and test the components
and services of the SPL. The resulting source code is
linked to the components specified in the Flexible-
PLA model. To do this, Flexible-PLA models pro-
vide links to external sources.

5. Product engineers configure specific products through
the binding of the variability according to the prod-
uct needs — product-specific requirements. The FPLA
modeling framework allows product engineers to spec-
ify this binding (see the v'mark in Figure 5 that
selects the multi-touch feature).

6. Product engineers examine the Feature-PLA Trace-
ability model to ensure that the variability binding
was correctly performed. This means, to check that
the binding performed in the PLA meets and satis-
fies the product-specific requirements.

7. Finally, the FPLA modeling framework automati-
cally binds the variability from PLA to code in or-
der to configure components and generate code for
specific products. This means, FPLA automatically
generates code skeletons from Flexible-PLA mod-
els and composes the code from external sources by
using model-to-text transformations.

4 Case Study

This section aims to provide empirical evidence that
validates that the use of the Feature-PLA Traceability
Model is viable in an industry project, as well as effec-
tive and helpful for developing and configuring software
product lines. Since the goals to be validated are quali-
tative, we use the case study technique. Case study re-
search is a technique that consists of the investigation of
contemporary phenomena in their natural context [61]
to search for evidence, gain understanding, or test the-
ories by primarily using qualitative analysis [50].

The case study was conducted in an experimental i-
smart software factory (iSSF' [33]) which is deployed in
the Technical University of Madrid (UPM®) and Indra

Software Labs®. Specifically, the case study was per-
formed within an industrial project on Smart Grids [34]
to develop a SPL of a family of power metering man-
agement systems. The authors of this paper have been
involved since 2011 with this particular investigation.

The iSSF is a software engineering research and ed-
ucation setting in close cooperation with the top indus-
trial and research collaborators in Europe. It is a global
and distributed software development initiative set up
at the end of 2011. Indra Software Labs leads this ini-
tiative at the corporate level in Spain, in conjunction
with UPM, although it is framed into a broader-scope
that includes other software factories such as that lo-
cated at the Univ. of Helsinki, Univ. of Eastern Finland
and Univ. of Bolzano and companies such as Tieto, and
Indra in Spain. This initiative aims to put in practice
models and tools that will contribute both toward the
implementation of the new processes and methodolo-
gies, and the monitoring and tracking of the results.

The iSSF in which the case study has been run, com-
prises laboratories in two different geographical loca-
tions in Madrid (UPM and Indra’s factories), equipped
with sophisticated computer and monitoring equipment.
This equipment facilitates tracking of the project’s pro-
gress using real-time data from development tools. The
iSSF facility continuously runs projects in sixteen week
cycles. Therefore, it is a suitable setting to deploy, track
and evaluate the applicability of the Feature-PLA Trace-
ability Model.

Next, the case study is reported according to the
guidelines for conducting and reporting case study re-
search in software engineering by Runeson and Hést [51].
The goal of reporting a case study is twofold: to commu-
nicate the findings of a study, and to work as a source of
information for judging the quality of the study. With
this twofold goal, the reporting of the case study is de-
scribed as follows.

4.1 Case study design

This section describes the case study, the research ob-
jective and questions, the data collection procedure,
analysis and validation procedures, and the subjects
participating in the case study.

4.1.1 Research objective and questions

Evidence of the viability of the Feature-PLA Trace-
ability Model can be obtained by putting the model
into practice in a real life setting. Therefore, the re-
search objective focuses on evaluating the effectiveness

5 http://www.upm.es/internacional

6 http://www.indracompany.com /en

http://www.upm.es/internacional
http://www.indraconipany.com/en

of the Feature-PLA Traceability Model as well as the
helpfulness that it could provide SPL engineers. The
criterion to validate the achievement of the objective
is defined as the capabilities to (i) trace both coarse-
grained and fine-grained variability in order to satisfy
the traceability of most common kinds of variations,
and (ii) provide knowledge to help SPL engineers at the
time of configuring the different products that make up
a SPL, i.e. when variability has to be bound accord-
ing to the product-specific requirements. Hence, the re-
search questions to be answered through the case study
analysis can be formulated as follows:

RQ: Are Feature-PLA Traceability modeling primi-
tives effective in providing SPL engineers the means
for specifying traceability for most common kinds of
variations that they define on their product family?

RQ,: Do Feature-PLA Traceability models assist and
guide SPL engineers at the time of configuring prod-
ucts of their product family?

Research question R()1 aims to find out if the Feature-
PLA Traceability Model effectively provides SPL engi-
neers with mechanisms to trace all types of variations
that they commonly define, which includes the capabil-
ity of tracing those features that are realized through
external variations of the PLA configuration (i.e. trace-
ability of external variability) as well as the traceability
of those features that are realized through internal vari-
ations of the components (i.e. traceability of internal
variability). The level of effectiveness is a dependent
variable, i.e. a variable of interest for being analyzed
and evaluated. It is measured in terms of the percentage
of variations existing in the domain of the SPL under
study (i.e. variations in the Feature model) that can
be traced by using the modeling primitives provided
by the Feature-PLA Traceability Model. The potential
independent variables that might have an influence on
the dependent variable are the project size, the SPL do-
main, the complexily of Feature and PLA models, and
the total number of variations identified in the product
family.

Research question RQ)» aims to find out if the knowl-
edge stored in Feature-PLA Traceability models is re-
ally helpful for SPL engineers at the time of configur-
ing the products of their product family. In this regard,
helpfulness is defined in this paper as the facilities pro-
vided for engineers to enable product configuration (i.e.
selection of variants and construction of product appli-
cations). As a dependent variable, the level of helpful-
ness to configure products is qualitatively estimated by
analyzing questions asked to the SPL engineers involved
in the cases study through a set of interviews. These
questions asked the SPL engineers about specific situa-

tions in which the assistance of Feature-PL A Traceabil-
ity models to configure products was analyzed. Hence,
the SPL engineers were asked if Feature-PLA Traceabil-
ity models helped them when trying to bind variability
to configure specific products from the product family,
while ensuring the product requirements compliance.
The potential independent variables which might have
an influence on the dependent variable are the engineers
experience, the project size, the PLA complerity, the
misinterpretation of interview questions and the total
number of variations identified in the product family.

It is necessary to mention that it is in the nature of
case studies that independent variables cannot be con-
trolled [50]. This and other potential threats to validity
are discussed in subsection 4.2.3.

4.1.2 Data collection procedure

In the case study, we have gathered both quantita-
tive and qualitative data. The collection methods which
have been used are the following:

— Observation. Two observers attended project meet-
ings and visited the team twice a week. They took
notes from these meetings and, thanks to the iSSF
technologies, meetings were video recorded, tran-
scribed, and analyzed using the constant comparison
method as described in [22].

— Questionnaire and Interview. Stakeholders were in-
terviewed following a questionnaire” open to the dis-
cussion. These interviews were video recorded, tran-
scribed, and analyzed using the constant compari-
son method.

— Archival data. In addition to the storage of the video
recordings, the information about the project was
collected in Redmine®.

— Analysis of work artifacts. Feature-PLA Traceabil-
ity models generated with the FPLA modeling frame-
work were gathered.

4.1.8 Analysis & Validity procedure

In this case study, both quantitative and qualitative
analysis were used to examine the data gathered. For
quantitative data, this case study uses analysis of de-
scriptive statistics. For qualitative data, the procedure
to explore the chain of evidence [50] from collected data
is described as follows: Interviews and meetings are
recorded, transcribed, grouped by quotes and coded.
Coding means that parts of the text are given a code

7 The script of the interviews is available on
https://www.surveymonkey.com/s/TSYCCN6
8 Redmine is web-based project management and bug-

tracking tool http://www.redmine.org/

https://www.surveymonkey.eom/s/TSYCCN6
http://www.redmine.org/

representing a certain topic of interest —one code is
usually assigned to many pieces of text, and one piece
of text can be assigned more than one code and codes
can form a hierarchy of codes and sub-codes [50]. The
coded material is enriched with comments and reflec-
tions (i.e. memos). From this material it is possible to
identify evidence that answers the research questions.

As data gathered in case studies is mainly quali-
tative [50], and it is typically less precise than quan-
titative data, it is important to use triangulation to
increase the precision of the study. There are several
types of triangulation [57]: (i) methodological triangu-
lation, i.e. the use of different methods to measure the
same concern; (ii) data source triangulation, i.e. the use
of multiple data sources at potentially different occa-
sions; and (iii) observer triangulation, i.e. the use of
more than one observer in the case study [22]. In or-
der to increase the precision of the qualitative analysis
and its obtained results, the three types of triangulation
were used in this case study. Methodological triangula-
tion was performed through interviews, observations,
and the analysis of archival data. Data source triangu-
lation was performed by interviewing the SPL engineers
both separately and together. Finally, observer triangu-
lation was applied by replicating specific data collection
sessions by two different observers.

4.1.4 Case study description

The case study consists of a project to maodel, design,
and implement a “power quality monitoring and a re-
mote control and smart metering” platform. It is part
of two larger ITEA2 projects called IMPONET® (127
man-years) and NEMO&CODED!? (112 man-years),
and a third national project called ENERGOS!! (24,3
million Euros). These three projects focused on sup-
porting complex and advanced requirements in energy
management, specifically in electric power networks that
are conceptualized as Smart Grids [34]. Smart Grids
are composed of an aggregation of a broad range of
energy resources, from large generating systems (tradi-
tional sources, e.g., nuclear power plants, hydro power

plants) to smaller generating systems (called microsources,

e.g.. small solar farms, distributed wind generators),

9 TIntelligent Monitoring of Power NETworks

http://www.itea2.org/project /index/view?project=10032

10 NEtworked M Onitoring & COn-
trol, Diagnostic for Electrical Dastribution
http://www.itea2.org/project /index /view?project=1131

1 Technologies for automated and intelligent man-
agement of power distribution networks of the fu-
ture http://www.indracompany.com /sostenibilidad-e-
innovacion/proyectos-innovacion fenergos-technologies-for-
automated-and-intelligent-

Remote control & Smart Metering Platform

Meter Data Management | End-user Access Platform

Head End Data Exchange

Power Quality Monitoring
Communication Platform

Fig. 6 Modules of the power quality monitoring and the re-
mote control and smart metering platform

operating as a single system providing both power and
heat [34]. Smart Grids promote the integration of re-
newable energy resources and their distributed, open,
and self-controlled nature.

The power quality monitoring and the remote con-
trol and smart metering platform is a software inten-
sive software composed of a set of coarse-grained mod-
ules: Communication Platform, Power Quality Moni-
toring, Meter Data Management, End-user Access Plat-
form, Head End, Smart Metering, and Data Exchange
(see Figure 6). At this coarse-grained level, the plat-
form presents variability related to the optionality of
the module Power Quality Monitoring which depends
on the grid, i.e. if the grid requires guarantee only the
power supply or also power quality. Each one of these
modules has multiple levels of decomposition and vari-
ability with different levels of detail that are briefly de-
scribed below. This is why this project was envisioned
as a SPL that allows configuring the platform depend-
ing on the Smart Grid requirements.

A representative example of the multiple levels of
variability is the Fnd-user Access Platform. This mod-
ule is configurable by considering the following variants:
type of GUI, end-user, and data. Regarding the type
of GUI, the Fnd-user Access Platform was designed to
support Web application, Desktop application, Android
application, as well as specific in-home device’s appli-
cation. Regarding the end-user, the functionalities and
the information that are provided by the access plat-
form to the end-users vary in the case of a distributor,
a retailer, or a customer. This means that the infor-
mation provided by the FEnd-user Access Platform is
variable depending on the end-user and the end-user
requirements. Finally, the information that is shown in
the GUI and the technologies used to display that in-
formation are variable depending on whether the data
are provided in real-time or using historical data.

Other examples of multiple levels of variability are
the Smart Metering and the Power Quality Monitoring
modules. The first one implements a set of forecast-

http://www.itea2.org/project/index/view7project=10032
http://www.itea2.org/project/index/view7project=1131
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut

Variability Analysis

gnafnal

| |

=B Y

ER &5 %-.:

Fig. 7 The power quality monitoring and the remote control
and smart metering platform Variability Analysis

ing algorithms that vary depending on the energy data
used, for the next 24 or 48 hours, or whether it is cal-
culated using real time energy data, historical energy
data from the database, or both of them. The second
one implements a set of power quality algorithms that
can be configured in order to provide a variety of infor-
mation, such as events, disturbances, alarms control,
ete. Finally, the Communication Platform implements
a Data Distribution Service (DDS [39]) based on the
publication-subscription paradigm. This module is in
turn a source of internal variability that crosscuts the
other modules. Hence, DDS defines domains, partitions,
and topics in order to specify different data space and
organize the flow of data. The subscription to the top-
ics is variable depending on, for example, the events or
alarms to be controlled.

In order to illustrate the complexity of the systemn,
and in particular the level of variability, the platform
has more than 600 variants (see Figure 7). In this paper,
we specifically report the part of the SPL that develops
a family of power metering management systems for
Smart Grids, i.e. the Meter Data Management module.
This is due to space and understandability reasons. We
refer to this part of the SPL as OPTIMETER SPL.

OPTIMETER SPL focuses on the development of
a family of power metering management systems for
Smart Grids (see the central box of Figure 8). A power
metering management system captures and manages
meter data from a large number of distributed energy

resources. It validates, stores and processes these data,
and provides them to external systems. Figure 8 shows
an overview of a metering management system and its
interaction with external systems to capture and pro-
vide meter data. The overview of the system function-
ality is as follows:

1. Meter capturing. This involves integrating all me-
ter capturing processes (see Meter Capturer in Fig-
ure 8) which are currently being supported by teleme-
tering systems and batch processes that collect mea-
surements at substations (see box Input in Figure 8).
The purpose is to have a single database with the
energy metering data.

Meter processing. This includes three operations:

the validation of meter data according to an estab-

lished validation formula, the calculation of the op-
timal vector for a measuring point for a type and
period of energy data, and the estimation of energy
data according to a established estimation formula

(see Meter Processor in Figure 8).

3. Meter providing. This involves defining the inter-
face (see Meter Provider in Figure 8) with client in-
formation systems, such as billing and settlements,
energy demand forecast, and energy purchases, to
exchange data with them (see box Ouiput in Fig-
ure 8).

o

Data processing should be done in real time. To do
this, it is necessary to account for performance when
loading the large amounts of energy data coming from
the meter capturing processes as well as performance
when querying these data. The OPTIMETER SPL aims
to provide a family of systems, each of which is intended
to support the different data storing technologies shown
in Figure 9. The objective is to carry out various proof
of concept of large data storing technologies to evaluate
their performance. Therefore, the data storing technol-
ogy is a variability point.

Meter providing should be available 24 /7. Metering
management systems should guarantee availability 24
hours 7 days per week of their core functionality to the
external systems. Several applications require to have
strict. 24/7 availability, while others permit a weaker,
non-strict availability. Strict availability must provide
recovery and repair in milliseconds, whereas non-strict
availability is less available and cheaper. Therefore, the
strictness of availability is another variability point.

The OPTIMETER SPL is being iteratively and in-
crementally developed in the iSSF in Serum subpro-
jeets [53] of 8 iterations, aka. sprints (Isprint = 2 weeks).
This case study focuses on two of these Scrum sub-
projects which we refer to as Optimeter I and Opti-
meter II. Optimeter [consisted of the development of

Input Metering Management System Output
L i Billingand
= s Settlements
v (] . R et =
Telemetering systems or 3 'g
batch processes) = D o [Energy demand
-‘ = i DLer: & » fo st k-d d
@id | Al gl
- - 0] anager _
= ke
= e
Meter Processor | Energypurchases |

Fig. 8 Metering management system - An overview and interfaces with external systems

Application

Query
Processing

Execution

Storage

00/sQL

OO/NoSQL

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-
ing [46]). Optimeter Il consisted of the development
of two of these product applications (Application Engi-
neering [46]): a metering management application run-
ning over the Berkeley database '* and Hadoop clus-
tering!'® with strict availability, and a metering man-
agement application running over the Oracle 11y data-

12 Oracle Berkeley DB is a high-performance
embeddable database providing Java Oh-
ject and Key /Value storage (NoSQL).

http://www.oracle.com /technetwork/products /berkeleydb/

13 Apache Hadoop is a framework for runming appli-
cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base'* and Oracle Real Application Clusters (RAC)'®
with non-strict availability (see Figure 9).

4.1.5 Subject description

In total, 10 people participated in Optimeter [and
II: four analysts/developers, two produet owners, one
serum master (who performs both the tasks of the Secrum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter II—, the peo-
pled are referred as product engineers. It is necessary

14 Object-relational database management system.
http://www.oracle.com/technetwork /database/

15 Software for clustering and high
availability in Oracle dhb environments.

http://www.oracle.com/technetwork /products/clustering/

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

Input Metering Management System Output
L i Billingand
= s Settlements
v (] . R et =
Telemetering systems or 3 'g
batch processes) = D o [Energy demand
-‘ = i DLer: & » fo st k-d d
@id | Al gl
- - 0] anager _
= N
= e
Meter Processor | Energypurchases |

Fig. 8 Metering management system - An overview and interfaces with external systems

Application

Query
Processing

Storage

00/sQL

OO/NoSQL

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-
ing [46]). Optimeter Il consisted of the development
of two of these product applications (Application Engi-
neering [46]): a metering management application run-
ning over the Berkeley database '* and Hadoop clus-
tering!® with strict availability, and a metering man-
agement application running over the Oracle 11y data-

12 Oracle Berkeley DB is a high-performance
embeddable database providing Java Oh-
ject and Key /Value storage (NeSQL).

http://www.oracle.com/technetwork/products/berkeleydb/

13 Apache Hadoop is a framework for runming appli-
cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base'* and Oracle Real Application Clusters (RAC)'®
with non-strict availability (see Figure 9).

4.1.5 Subject description

In total, 10 people participated in Optimeter [and
II: four analysts/developers, two produet owners, one
serum master (who performs both the tasks of the Serum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter 11—, the peo-
pled are referred as product engineers. It is necessary

1% Object-relational database management system.
http://www.oracle.com/technetwork /database/

15 Software for clustering and high
availability in Oracle dhb environments.

http://www.oracle.com/technetwork /products/clustering /

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

Input Metering Management System Output
L i Billingand
= s Settlements
v (] . R et =
Telemetering systems or 3 'g
batch processes) = D o [Energy demand
-‘ = i DLer: & » fo st k-d d
@id | Al gl
- - 0] anager _
= N
= e
Meter Processor | Energypurchases |

Fig. 8 Metering management system - An overview and interfaces with external systems

Application

Query
Processing

Storage

00/sQL

OO/NoSQL

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-
ing [46]). Optimeter Il consisted of the development
of two of these product applications (Application Engi-
neering [46]): a metering management application run-
ning over the Berkeley database '* and Hadoop clus-
tering!® with strict availability, and a metering man-
agement application running over the Oracle 11y data-

12 Oracle Berkeley DB is a high-performance
embeddable database providing Java Oh-
ject and Key /Value storage (NeSQL).

http://www.oracle.com/technetwork/products/berkeleydb/

13 Apache Hadoop is a framework for runming appli-
cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base'* and Oracle Real Application Clusters (RAC)'®
with non-strict availability (see Figure 9).

4.1.5 Subject description

In total, 10 people participated in Optimeter [and
II: four analysts/developers, two produet owners, one
serum master (who performs both the tasks of the Serum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter 11—, the peo-
pled are referred as product engineers. It is necessary

1% Object-relational database management system.
http://www.oracle.com/technetwork /database/

15 Software for clustering and high
availability in Oracle dhb environments.

http://www.oracle.com/technetwork /products/clustering /

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

to highlight that the engineers involved in Optimeter I — F5_Meter Data Providing (see Figure 10) consists

and II are not the same. Finally, two observers had ac- of an interface that provides metering data query to
cess to all project information and collaborated directly external systems.
with product owners and fellow team members. — F6_Availability (see Figure 10). It ensures availabil-

ity of metering data 24 hours 7 days per week. There
are two mutually exclusive alternative variations:

4.9 Results one variant implements strict availability and the

other variant implements non-strict availability (see
This section describes the execution, analysis and inter- the grouped features strict and non-strict in Fig-
pretation of the results from the case study execution, ure 10).

as well as the evaluation of its validity. o) o
The second activity was product-line architecting.

Regarding availability, various architectural tactics are

4.2.1 Case study execution proposed in the literature [8,54]. The SPL engineers se-
lected active redundancy and passive redundancy tac-
This section describes the execution of Optimeter Ifirst, tjcs to implement strict and non-strict availability, re-
and then the execution of Optimeter II. These execu- gpectively. These tactics are briefly described as follows.
tions has been performed following the activities pre-
sented in subsection 3.3. The models resulting from — The tactic active redundancy is based on a “config-
these activities have been captured through snapshots uration wherein all of the nodes (active or redun-
from the FPLA modeling framework. dant spare) in a protection group receive and pro-
The first activity was feature domain analysis. Fig- cess identical inputs in parallel, allowing the redun-
ure 10 shows the feature model that represents the fea- dant spare(s) to maintain synchronous state with
tures that OPTIMETER SPL must meet. The feature the active node(s)” [54]. Therefore, from the archi-
model has three points of variability—feature groups— tectural view, this tactic requires: (i) a load balancer
that implement different data storing technologies (data- for all nodes —active and redundant nodes— to pro-
base and clustering) and different degrees of availability. cess identical inputs, and (ii) a synchronizer in or-
The feature model is described in detail as follows: der for the active and redundant nodes to maintain
an identical state. If there is a failure, the repair
— F1_Meter Reading (see Figure 10) consists of read- occurs on time as the redundant spare has an iden-
ing metering data associated with different energy tical state to the active node. The cost of this tactic
resources, periods (quarterly, hourly, daily, and monthly), s high due to the cost of synchronization between
and intervals. redundant spare and active node(s).

— F2_Meter Storing (see Figure 10) consists of a large

data store. There are two mutually exclusive alter-
native variations: one variant is Berkeley DB and
the other variant is Oracle 11g (see the grouped fea-
tures BerkelyDB and Oraclel1g in Figure 10).
F3_Meter Data Accessing (see Figure 10) consists
of initial data loading of historical metering data of
one month and querying of these data. Both loading
and querying require to leverage high performance
through the use of clustering technologies. There are
two mutually exclusive alternative variations: one
variant is Hadoop clustering over Berkeley DB and
the other variant is RAC over Oracle 11g (see the
grouped features Hadoop and RAC in Figure 10).
F4_Meter Data Processing (see Figure 10) consists
of the algorithms for validating raw and optimal
data, as well as calculating the optimal vector (inte-
grated processing) of raw and optimal data. Namely,
the energy data for a specific origin, period, and date
is retrieved and the system adds data to obtain the
energy data of the next period.

— The tactic passive redundancy is based on a “config-
uration wherein only the active members of the pro-
tection group process input traffic, with the redun-
dant spare(s) receiving periodic state updates” [54].
Therefore, from the architectural point of view, this
tactic requires: (i) a router to ensure that only the
active node process all the inputs, as well as to
change the route to the redundant node(s) when
there is a failure, and (ii) a periodic data controller
in order for active and redundant node(s) to main-
tain periodic state updates. If there is a failure, the
router selects a redundant spare after checking the
state update. This tactic achieves a balance between
the more highly available but more complex active
redundancy tactic and the less available but signif-
icantly less complex spare tactic.

The PLA resulting is shown in Figure 11 and de-
scribed as follows. The feature F'1 is implemented by
the component MeterCapturer, which reads text files of
metering data associated to different energy resources,

P — |

B F1_Mete«n.ead.ng| | % £2 MeterStoning r

e
IU F4_MsterflataProcessing I W F5_MeterProviding

[L.1] .

@eskdsne) (@00l)

B F3_MeterDataAccessing

8-
I F6_Awvailabiliy
] i

G D)

I@ Datalosding I rzDataQueriying I I‘l high-peﬂ'otmantel

iy)

Fig. 10 Optimeter | - Feature model

| L)
H i
| A
== MeterCapturer A ehustering
L]

[HadoopClusts [Reald

licationClusters

o

@ec)

A

~. RequestManagir
- [1.1]

A

A Updating
- 1.1

//

I DatsMonitering

I 5ynchronization | | LoadBalancing [Reouting

Fig. 11 Optimeter I - Flexible-PLA model

periods (quarterly, hourly, daily and monthly), and in-
tervals, and processes the previously read data to form
key/value pairs. The variability of the feature F2 is im-
plemented by the optional components BerkeleyDB and
Oraclellg. The feature F'3, and specifically the subfea-
tures DataLoading and DataQuerying are implemented
by the PPCs Dataloader and DataQuery respectively.
The architects took advantage of the PPC’s variabil-
ity mechanism to specify the variability of the feature
high-performance as internal variability. This variabil-
ity is internal to the PPCs DatalLoader and DataQuery,
i.e. the variability crosscut these two PPCs. Hence, both
PPCs implement the variability of performance through
the variability point elustering and the variants Hadoop-

Clustering and RealApplicationClusters (see Figure 11).
These variants implement the operations for clustering
and distributing work around a cluster to improve the
data accessing performance (for loading and querying).
Figure 13 shows an extract of the PPC DatalLoader
code and how internal variability works. Specifically,
the figure shows how the code of the variant Hadoop-
Clustering is linked to the code of the PPC DataLoader
through the weavings. The feature F'4 is implemented
by the component MeterProcessor, which implements
the algorithms for validating metering data and calcu-
lating optimal vectors. Finally, the feature F5 is imple-
mented by the PPC MeterProvider. Again, the archi-
tects took advantage of the PPC’s variability mecha-

nism to specify the variability of the feature F6 as in-
ternal variability to the PPC MeterProvider. This PPC
implements the variability of availability through the
variability points Updating and RequestManaging, and
the variants DataMonitoring, Synchronization, Load-
Balancing, and Routing.

The third activity of the case study execution was
the definition of traceability links between the Opti-
meter feature model (see Figure 10) and the Optime-
ter Flexible-PLA model (see Figure 11). The result-
ing Feature-PLA Traceability model is described as fol-
lows (see Figure 12): The links ID_001 and ID_002
trace the grouped features BerkelyDB and Oraclel1g to
the optional component BerkeleyDB and Oraclel1¢DB,
respectively. The links ID_001 and ID_002 trace the
features DataQueriying and DataLoading to the PPCs
DataLoader and DataQuery, respectively. The feature
group that implements the variability of performance
is traced to the variability point clustering through
the link ID_005. The links ID_006 and ID_007 trace
the grouped features Hadoop and RAC to the variants
HadoopClustering and Real ApplicationClusters, respec-
tively. The feature group that implements the variabil-
ity of availability is traced to the variability points Up-
dating and RequestManaging through the link ID_008.
The link ID_009 traces the grouped feature strict to
the variants Synchronization and LoadBalancing. The
link ID_010 traces the grouped feature non-strict to the
variants DataMonitoring and Routing. All these trace-
ability links store semantic knowledge. To gain readabil-
ity, Figure 12 only shows the attributes satisfacing, who,
and when. The value of the attribute satisfacing from
all of these links is strong positive. This means that the
architectural elements—components, PPCs, variants—
involved in the links fully satisfy the expected func-
tionality of the features also involved in the links. Fi-
nally, the link ID_011 traces the variant Synchroniza-
tion to the feature high-performance. This link shows
the value medium negative for the attribute satisfacing,
which means that the synchronization may negatively
affect to the performance.

Once the features, the PLA, and the traceability
links were described and modeled by the SPL engineers,
the following activities were the implementation and
the testing (see the fourth activity in subsection 3.3).
The resulting source code (such as the code shown in
Figure 13) is also linked to the components specified
in the Feature-PLA Traceability model. All these ac-
tivities comprise a typical domain engineering process
in which the commonality and the variability of a SPL
is defined and realized [46]. The result is a common

structure—the OPTIMETER. SPL platform—from which

a set of derivative products—metering management sys-

tem applications—can be efficiently developed and pro-
duced.

Next, Optimeter II started. Each one of the two
product owners involved in the case study selected to
implement two different products:

— A metering management system running over Berke-
ley DB and Hadoop, which has to be strictly avail-
able 24/7 (product A).

— A metering management system running over Ora-
cle 11g DB and RAC, which has to be available 24/7
but it is possible to relax this restriction (product
B).

At this time, the product engineers configured spe-
cific products according to the products specifications
that the owners expected to get (see the fifth activity in
subsection 3.3). This means that the product engineers
bound the variability. To do this, the product engineers
examined the Feature-PLA Traceability model to en-
sure that the binding was correctly performed accord-
ing to the products specifications. Hence, the product
engineers, by means of the link ID_009 in Figure 12,
checked that the configuration of the product A re-
quires the binding of the variants Synchronization and
LoadBalancing in order to meet strict availability. They
also checked, by means of the link /D_011 in Figure 12
that the variant Synchronization could affect the re-
quired high performance. Finally, the product engineers
checked, by means of the link ID_010 in Figure 12, that
the configuration of the product B should bind the vari-
ants DataMonitoring and Routing which implement a
variation less available but that does not jeopardize per-
formance.

After selecting the specific variants for the prod-
ucts A and B, the last activity (see the sixth activity
in subsection 3.3) was performed as follows. This ac-
tivity consisted of the generation of the code for the
products A and B, i.e. the binding of the variability at
the code-level. To do this, the product engineers used
the FPLA modeling framework to automatically gener-
ate the code for each one of these two products. Hence,
for the product A the weavings that insert the code of
the variant Hadoop Clustering into the PPC DatalLoader
were automatically generated (see Figure 13). Similarly,
for the product B the weavings that insert the code of
the variant RealApplicationClusters into the PPC Dat-
aLoader were automatically generated. In this way, the
PPC DataLoader can be easily configured to support
Hadoop clustering as shown in Figure 13, or to support
Real Application Clusters.

The development of these two projects provided the
necessary data to conduct the case study analysis and
interpretation.

[@10_o01

v strong positive
% R

B 040

racle
@2ty |0 1m_o0z
Mm_o03 :v' strong pesitive
¢ ﬂl:_nnq pasitive |4 AB:
k Dl 8@ nosmme
ﬁ: 18/06/2012
; p-
B 10_oos

v strong positive

% DL

a 1E/D6/2012

I! F3_MeteiDatafcczssing I |= Ditaloading I

hnd

M _o0s

v strong positve

g EL

“ 25/06/2012
[10_006
A strang positive
AB.

B 25/06/2012

| BerkennE -

\loracle1 1008

. clustering

. [1.1)

\

[HadoopClustering | | RealfpplicationClusters

= Updating
AL

L]

. RequestManagir
et ||

[

—-//

B ing | [E= Rowting

@riion res
Spc_ Y
[B10_007)
— M 1p_o08
L4 strong pesitive —_—
L strong positive
[m_om1 g RR 54 o
e |#y 2sweaoz s -
" medium negative L1 030772012
ElL =
- B
[T m_ooa
L strong positive
9 EL
® wora:
i S
[Tyt -

Fig. 12 Optimeter | - Feature-PLA Traceability model

w_ow

v strong positive
)

‘ 16/07/2012

91

‘e)= ZBI(] eolssof

4.2.2 Analysis and interpretation

Quantitative and qualitative analysis was used to ex-
amine the data gathered during the case study. The
data collected consisted of the models resulting from
the projects (see Figures 10-12), archival data from
Redmine, as well as the questionnaires and interviews
performed with the SPL and product engineers. The
analysis of these data has permitted to find evidence to
answer each one of the research questions:

RQ1: Are Feature-PLA Traceability modeling primi-
tives effective in providing SPL engineers the means
for specifying traceability for most common kinds of
variations that they define on their product family?

The evidence to answer R}y is explored through
descriptive statistics that measures the number of vari-
ations of interest for the SPL engineers that they were
able to trace by using the modeling primitives provided
by the Feature-PLA Traceability Model. The number of
points of variability is three—data storage, clustering,
and availability—with a total of six variants — Berke-
leyDB and Oraclellg for data storing, Hadoop and
RAC for clustering, and finally strict and non-strict
availability.

The traceability of the variability for data storing
was well-supported through links between grouped fea-
tures and optional components (see the links ID_001
and ID_002 in Figure 12). As the architects took advan-
tage of the PPC’s variability mechanism to specify in-
ternal variability of components—specifically to specify
the variability of clustering and availability—, they re-
quired the capability of tracing this variability which is
internal to one or more components. Hence, the SPL en-
gineers were able to trace the variants Hadoop and RAC
to the architectural elements that implement these two
different clustering technologies through links between
grouped features and variants (see the links ID_006 and
ID_007 in Figure 12). The SPL engineers were also able
to trace the variants strict and non-strict availability
to the architectural elements that implement two dif-
ferent availability tactics with different repair time—
active and passive redundancy— through links between
grouped features and variants (see the links ID_006 and
ID_007 in Figure 12).

Therefore, as it can be verified in Figure 12, the
SPL engineers were able to effectively trace all kinds of
variations they required.

RQ,: Do Feature-PLA Traceability models assist and
guide SPL engineer at the time of configuring the
products of their product family?

The evidence to answer K@), is assessed by analyz-
ing the interviews given to the SPL and product engi-

neers. From these interviews, the following excerpts can
be highlighted:

< <It could have been very difficult for us—the prod-
uct engineers— to be able to determine a valid config-
uration for a metering management system application
requiring strict or non-strict availability without the
use of the Feature-PLA Traceability model (see Fig-
ure 12)>>.

This means that the use of the Feature-PLA Trace-
ability model of Figure 12 was particularly useful for
the product engineers to understand the system as they
hadn’t been developed the OPTIMETER SPL plat-
form.

<<To configure the products A and B we needed
knowledge that helped us to perform the binding ac-
cording to their respective requirements. Without the
knowledge provided by the Feature-PLA Traceability
model (see Figure 12), it may had been difficult to
know (i) if a metering management system application
requiring strict availability had to implement the ser-
vices for synchronization and load balancing, or (i) if
a metering management system application requiring
non-strict availability had to implement the services
for routing and data monitoring. This means, without
the traceability model, we hadn’t feel confident about
whether the variants we bound implemented all the ser-
vices to satisfy the requirements of the products A and
B. So, the traces between (i) the feature strict availabil-
ity to the variants Synchronization and LoadBalancing,
and (ii) the feature non-strict availability to the vari-
ants Routing and DataMonitoring, were really useful
to ensure that the ginding of variability was realized
correctly>>.

<<Feature-PLA Traceability models may be use-
ful to identify where a feature is implemented in the
PLA. As a result, it may also be useful to identify,
given a change in a feature, where the change impacts
the PLA. From the Feature-PLA Traceability model of
Figure 12 it is easy to observe that a change in the
tactic to implement strict availability may impact the
variants Synchronization and LoadBalancing. Perhaps
this is not easy to locate in the code, but by making it
available at the architecture-level, Feature-PLA Trace-
ability models facilitate this task. This impact knowl-
edge may help us to correctly implement a change while
maintaining the integrity of the architecture>>.

These excerpts from the SPL and product engineers
put in evidence that our solution for tracing variability
assisted and helped them at the time of configuring the
two metering management systems (products A and B)
from the OPTIMETER PLA.

public class Oatoloader implements IDataloader {

public Dataloader(){
initializeCluster();

sttributes

private Cluster cluster;

public Cluster getCluster(){
return cluster;

1

i

public void setCluster(Cluster cluster){
this.cluster = cluster;

}

f/services

private void Toad () {
GrepgorianCalendsr ini t =(GregorianCalendar)GregorisnCglendar.getInftance();
long initial_time=ini_t.getTimeInMillis();
FilelnputForsat . setInputPaths(getCluster(), new Path{frgs[@]));
FileDutputFormat.sevOutputPath(getCluster(), new Paghlargs[1])]4
runlob(getCluster{}};
GregerianCalendar final_t ={GregorianCalendar)GregfrisnCalend
long final_time=final t.getTimeInMiilis();
System.out.printin("Time: "#(final_time-initisl

i

public void loadMeterData () {

pointcut initislizeClusterMathod () :

execution (* Dataloader.initialireCluster(..)]:

void around() : initializeClusterethod () [

}

this.cluster = new JobConf(ProcessMetarDats.class))
this.cluster.setJobiame("ProcessiieterData”™);
this.cluster. setOutputieyClass(Text.class);
this.cluster. setOutputvalueClass|Text.class);
this.cluster.setMapperClass(Map.class);

this.cluster. setReducerClass(Reduce.class);
this,cluster. setInputForsat(TextInputFormat.class);
this.cluster.s Format(T tFormat.class);

pointcut runjobMethod () : execution (* Dataloader.runlob{..)):
void around() : rualobMethod (} {

.getInstance();

JobClient .runlabic);)

eavingC hﬂlemg:

[HadoopClustering

! i Weaving: where and when fo
lizeCluster extend the code of the PPC

?;l:ﬁa-vzi-d‘-h&‘-h-—i;%l-g-'U-L--_ """""""""" 1 Data Loader using the code of

L <<partialdefinition>> f a the variant Hadoop

pervate wedd wunod (0 e e -

;L«parﬁa!deﬁm’ﬁon» 1

!
Fig. 13 Optimeter I - PPC DataLoader

4.2.3 Fvaluation of validity

Case studies are qualitative in nature. For this reason,
collected data from case studies are usually very diffi-
cult to be objectively judged [61]. To improve the in-
ternal validity of the results presented, the independent
variables that could influence this case study have been
identified as follows: The engineer’s experience has a
great influence. Its influence has been reduced as the
expertise of the engineers who participated in the case
study were very different (1 year vs. T years). However,
the influence of project’s size and architecture’s com-
plexity cannot be reduced due to the inherent nature of
case studies, which normally focus on one project. Also
to improve the internal validity of the results, triangu-
lation of source data has been used to increase the relia-
bility of the results. In this regard, interviews were indi-
vidually conducted with the engineers, although several
questions were asked in a group setting to encourage
discussion.

Construct validity is concerned with the procedure
to collect data and with obtaining the right measures
for the concept being studies. It addresses among others
misinterpretation of interview questions which was mit-
igated by discussing the interpretations of interviews
with the interviewees to validate them.

However, the major limitation in case study research
concerns external validity, i.e. “the generality of the re-
sults with respect to a specific population” [22], as only
one case is studied. In return. case studies allow one to

evaluate a phenomenon, a model, or a process in a real
setting. This is something important in software engi-
neering in which a multitude of external factor may af-
fect to the validation results, and that other techniques
such as formal experiments, although they permit repli-
cation and generalization, do not consider as they are
conducting under controlled settings.

Reliability is concerned with replication, in case stud-
ies with the fact that the same results would be found
if re-doing the analysis. This is why interviews were
recorded and interpretations were reviewed by other
participants in the study in order to avoid researcher
hias.

4.3 Case Study Conclusions

We obtained evidence of the viability of the Feature-
PLA Traceability Model through the execution of a case
study performed in an experimental laboratory called
i-Smart Software Factory. It combines both academic
and industrial efforts in R&D, with remarkable facilities
for tracking the projects’ progress. The case study puts
the proposed traceability solution into practice within
the development of a SPL of power metering manage-
ment systems for Smart Grids. The results show evi-
dence of that (i) the Feature-PLA Traceability model-
ing primitives were effective in providing the capabili-
ties for tracing most common kinds of variations that
the SPL engineers required define, and (ii) the Feature-

PLA Traceability provided knowledge that helped the
product engineers to make better decisions at the time
of configuring the products A and B during Optime-
ter II as they did not know the OPTIMETER SPL
platform because they had not participated on its con-
struction during Optimeter I. These promising results
did not interfere with other practices and did not incur
a big cost, making traceability possible. However, the
use of the Feature-PLA Traceability Model requires to
know and understand the modeling concepts on which
they are based on, as well as to learn the usage of the
FPLA modeling framework. The learning curve of these
concepts as well as the usage of FPLA could slow down
the process of putting traceability into practice. In fact,
the SPL engineers expressed reluctance at the time of
putting traceability into practice, although later, the
product engineers found this traceability essential to
do their work during the configuration of variability to
derive the products A and B.

5 Related Work

Recently, there has been a growing recognition of the
importance of traceability in SPLE, which has resulted
in more and more research in this area. Hence, Moon et
al. [38] defined a Variability Trace Metamodel that con-
nects two metamodels: a metamodel for requirements
and a metamodel for architecture. Ajila et al. [3] pre-
sented an evolution model that defines a dependency re-
lationship structure of various SPL artifacts. Satyananda
et al. [52] presented a framework for formally identify-
ing traceability between feature and architecture mod-
els using Formal Concept Analysis, functional decompo-
sition, and a set of mapping analysis rules. Finally, Berg
et al. [10] also defined a conceptual variability model
that captures variability information across the various
artifacts involved in the SPLE development. All these
approaches'® offer support for tracing SPL, including
traceability of variability. The granularity of traceabil-
ity links relies largely on the granularity of elements
to be traced, whether requirements, architectural el-
ements, or classes. The approaches before mentioned
support architectural variability by adding or removing
components or connections. However, these approaches
do not have the capabilities for tracing the variability
that is internal to components, i.e. variations that have
fine granularity and cannot be designed as components.
In this sense, our traceability model takes an step for-
ward due to the fact that it is based on the Flexible-
PLA Model which allows SPL engineers to specify both

16 Although other papers propose other traceability ap-
proaches [49,47,42], we did not include them here as they
do not consider SPLE.

external and internal variability thanks to the PPC’s
variability mechanism. The fact that internal variabil-
ity can crosscut several components, and that is modu-
larized and reused by PPCs (i.e. this variability is not
scattered through these components), makes it easier
its traceability. Therefore, our approach makes both
coarse-grained and fine-grained traceability possible.

Additionally, Satyananda et al. [52] defined a set
of mapping analysis rules similar to the linkage rules
we propose. These rules are textually described while
the linkage rules we propose are formally stated by
the Feature-PLA Traceability Model. Models are com-
pletely subject to automation, which (i) makes it eas-
ier to define traceability links while their correctness is
guaranteed by model-conformation, (ii) promotes learn-
ing and reasoning over the knowledge they contain, and
(iii) provides the capabilities to (semi-)automatically
generate other artifacts, such as code, through model
transformations.

Finally, it is important to mention the work of An-
quetil et al. [4] that defined a common traceability frame
work across the various activities of SPL development
and specified a metamodel for a repository of trace-
ability links. This framework provides a big picture of
traceability for SPL by offering modeling primitives for
tracing any artifact involved in the SPL development.
This complete framework does not embed all these ar-
tifacts but embed references to them in order to make
manageable the high number of artifacts that a com-
plete SPL construction requires to trace. As a result,
sources and targets of traceability links are paths where
the artifacts are stored or can be found (documents,
diagrams or classes). The fact that these artifacts are
external to the traceability model makes it difficult to
guarantee that a change in an artifact is also updated
in the traceability model. Additionally, this artifacts
outsourcing makes it difficult to understand the trace-
ability models and their usage as a guidance during
the configuration of the products of a SPL while en-
suring that the variability binding meets the product
requirements. This is due to the fact that the relation-
ships inside artifacts (e.g. a feature has a XOR feature
group) are not included in the traceability framework
and traceability links do not contain rationale and in-
formation about the traceability-making process. The
Flexible-PLA Traceability Model reduces its scope by
focusing on the traceability between feature and PLA
models and prioritizes the knowledge and guidance that
traceability models can provide during SPL product
configuration to ensure the requirements compliance.
This is supported by including the source and target
artifacts—the Feature and PL A models—into the trace-
ability model, as well as their relationships, and en-

riching traceability links with rationale and information
about the traceability-making process.

6 Conclusions and Further Work

SPLE is facing new challenges, being one of the most
important the traceability of variability. To deal with
this challenge, this paper presents a solution for tracing
Feature and PLA models called Feature-PL A Traceabil-
ity Model, as well as the modeling framework that sup-
port it. The Feature-PLA Traceability Model defines
a set of linkage rules to trace variable features to both
the coarse-grained variability of complex components—
external variability—and the fine-grained variability of
simple components — internal variability.

The description and the traceability of the variabil-
ity that is internal to one or many components is as
important as the description and the traceability of the
external variability. It is essential to cope with most
kinds of variation that SPL engineers could define on
their product families. Supporting both coarse-grained
and fine-grained traceability of variability helps prod-
uct engineers at the time of configuring this variability
to derive products. This means that product engineers
can examine Feature-PLA Traceability models to en-
sure that variability bindings satisfy the product re-
quirements.

As future work, the knowledge stored in Feature-
PLA Traceability models could be used to analyze the
impact of changing requirements, i.e. to analyze how
a change in features may affect the architecture by
traversing the traces that link them. this was suggested
by the engineers involved in the case study during the
interviews. Additionally, the knowledge currently stored
could be extended to capture more types of knowledge,
such as domain knowledge, design decisions, assump-
tions, etc.

The Feature-PLA Traceability model and its usage
still have several limitations that should be addressed
in the near future. The main one is scalability, such as a
scalable visualization. However this limitation is more
related to the algorithms to leverage and visualize the
traceability knowledge than the expressiveness of the
traceability model.

Acknowledgements The work reported in here has been
partially sponsored by the Spanish fund: INNOSEP (TIN2009-
13849), IMPONET (ITEA 2 09030, TSI-02400-2010-103), i-
SSF (IPT-430000-2010-038), NEMO&CODED (ITEA2 08022,
IDI-20110864) and ENERGOS (CEN-20091048). Finally, it
is also funded by the UPM (Technical University of Madrid)
under their Researcher Training program.

References

10.

11.

12.

13.

14.

15.

16.

Adachi Barbosa, E., Batista, T., Garcia, A., Silva, E.: PI-
aspectualacme: An aspect-oriented architectural descrip-
tion language for software product lines. In: I. Crnkovic,
V. Gruhn, M. Book (eds.) Software Architecture, Lec-
ture Notes in Computer Science, vol. 6903, pp. 139-146.
Springer Berlin / Heidelberg (2011)

Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-
Gafni, Y.: Model traceability. IBM Systems Journal
45(3), 515 —526 (2006). DOI 10.1147/sj.453.0515

Ajila, S., Kaba, A.: Using traceability mechanisms to sup-
port software product line evolution. In: Information
Reuse and Integration, 2004. TRI 2004. Proceedings of
the 2004 TEEE International Conference on, pp. 157-162
(2004). DOI 10.1109/TRI1.2004.1431453

Anquetil, N., Kulesza, U., Mitschke, R., Moreira,
A., Royer, J.C., Rummler, A., Sousa, A.: A model-
driven traceability framework for software prod-
uct lines. Software and Systems Modeling p. 25
(June 2009). DOI 10.1007/s10270-009-0120-9. URL
http://www.springerlink.com/content /wvm4hv8r78117785
Antkiewicz, M., Czarnecki, K.: Featureplugin: feature
modeling plug-in for eclipse. In: eclipse '04: Proceedings
of the 2004 OOPSLA workshop on eclipse technology eX-
change, pp. 67-72. ACM, New York, NY, USA (2004).
DOIT 10.1145/1066129.1066143

Bachmann, F., Bass, L.: Managing variability in software
architectures. In: SSR ’01: Proceedings of the 2001 sym-
posium on Software reusability, pp. 126—132. ACM, New
York, NY, USA (2001). DOI 10.1145/375212.375274
Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl,
K., Ramesh, B., Vilbig, A.: A meta-model for repre-
senting variability in product family development. In:
F. van der Linden (ed.) Software Product-Family Engi-
neering, Lecture Notes in Computer Science, vol. 3014,
pp. 66-80. Springer Berlin / Heidelberg (2004)

Bass, L., Clements, P., Kazman, R.: Software Architec-
ture in Practice, 2nd edition. Addison-Wesley Pearson
Education (2003)

Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated
analysis of feature models 20 years later: A literature re-
view. Inf. Syst. 35(6), 615-636 (2010)

Berg, K., Bishop, J., Muthig, D.: Tracing software prod-
uct line variability: from problem to solution space. In:
SAICSIT ’05: Proceedings of the 2005 annual research
conference of the South African institute of computer
scientists and information technologists on IT research
in developing countries, pp. 182-191. South African In-
stitute for Computer Scientists and Information Technol-
ogists, , Republic of South Africa (2005)

Beydeda, S., Book, M., Gruhn, V.: Model-Driven Soft-
ware Development. Springer (2005)

Bezivin, J.: On the unification power of models. Software
and Systems Modeling 4(2), 171-188 (2005)
Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): The
Grand Challenge of Traceability (v1.0). Springer-Verlag
London Limited (2012)

Clements, P., Northrop, L.: Software Product Lines:
Practices and Patterns. Addison-Wesley (2002)
Czarnecki, K.: Mapping features to models: A tem-
plate approach based on superimposed variants. In:
GPCE 2005 - Generative Programming and Component
Enginering. 4th International Conference, pp. 422-437.
Springer (2005)

Dashofy, E.M., Hoek, A.v.d.: Representing product fam-
ily architectures in an extensible architecture description

http://www.springerlink.com/content/wvm4hv8r78117785

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

language. In: PFE ’01: Revised Papers from the 4th In-
ternational Workshop on Software Product-Family Engi-
neering, pp. 330-341. Springer-Verlag (2002)

Diaz, J., Pérez, J., Garbajosa, J., Yagilie, A.: Change-
impact driven agile architecting. In: Proceedings of the
46th Hawaii International Conference on System Sciences
(HICSS ’13), Hawaii, USA, January 7-10, 2013, pp. 4780—
4789. IEEE Computer Society Press (2013)

Espinoza, A., Garbajosa, J.: A proposal for defining a set
of basic items for project-specific traceability methodolo-
gies. In: Software Engineering Workshop, 2008. SEW ’08.
32nd Annual IEEE, pp. 175-184 (2008)

Gotel, O., Finkelstein, C.: An analysis of the require-
ments traceability problem. In: Proceedings of the First
International Conference on Requirements Engineering,
pp. 94 —101 (1994). DOI 10.1109/ICRE.1994.292398
Gotel, Orlena et al.: The grand challenge of traceability
(v1.0). In: J. Cleland-Huang, O. Gotel, A. Zisman (eds.)
Software and Systems Traceability, pp. 343—409. Springer
London (2012)

Hauser, J.R., Clausing, D.: The house of quality. Harvard
Business Review 66(3), 63—73 (1988). Available through
Harvard Business School Publishing.

van Heesch, U., Avgeriou, P., Hilliard, R.: A documen-
tation framework for architecture decisions. Journal of
Systems and Software 85(4), 795 — 820 (2012). DOI
10.1016/j.jss.2011.10.017

van der Hoek, A., Heimbigner, D., Wolf, A.L.: Capturing
architectural configurability: Variants, options, and evo-
lution. Tech. rep., Technical Report CU-CS-895-99, De-
partment of Computer Science, University of Colorado,
Boulder, Colorado (1999)

Jacobson, 1., Griss, M., Jonsson, P.: Software Reuse. Ar-
chitecture, Process and Organization for Business Suc-
cess. Addison-Wesley (1997)

Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Pe-
terson, A.S.: Feature-oriented domain analysis (foda) fea-
sibility study. Tech. rep., Carnegie-Mellon University,
Pittsburgh, PA, USA, CMU/SEI-90-TR-21 ESD-90-TR-
222 (1990)

Khurum, M., Gorschek, T.: A systematic review of do-
main analysis solutions for product lines. J. Syst. Softw.
82(12), 1982-2003 (2009)

Kizcales, G., Lamping, J., Mendhekar, A., Maeda, C.:
Aspect-oriented programming. In: Proceedings of the
11th European Conference on Object-Oriented Program-
ming (ECOOP), Lecture Notes in Computer Science, vol.
1241. Springer-Verlag (1997)

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On-demand
merging of traceability links with models. In: In Proc. of
3 rd ECMDA Traceability Workshop (2006)

Letelier, P.: A framework for requirements traceability in
uml-based projects. In: In Proc. of 1st Intl. Workshop on
Traceability in Emerging Forms of Softw. Eng, pp. 32—41
(2002)

Loughran, N., Sanchez, P., Garcia, A., Fuentes, L.: Lan-
guage support for managing variability in architectural
models. In: SC’08: Proceedings of Software Composition,
7th International Symposium, Lecture Notes in Com-
puter Science, vol. 4954, pp. 36-51. Springer (2008)
Magee, J., Kramer, J.: Dynamic structure in software ar-
chitectures. In: Proceedings of the 4th ACM SIGSOFT
symposium on Foundations of software engineering, SIG-
SOFT 96, pp. 3-14. ACM, New York, NY, USA (1996)
Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Vari-
ability in quality attributes of service-based software sys-
tems: A systematic literature review. Information and
Software Technology 55(2), 320-343 (2013)

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Martin, J.L., Yague, A., Gonzalez, E., Garba-
josa, J.. Making software factory truly global:
the smart software factory project. In: F. Fager-

holm (ed.) Software Factory Magazine. Available on
http://www.softwarefactory.cc/magazine, p. 19 (2010)
Massoud Amin, S., Wollenberg, B.: Toward a smart
grid: power delivery for the 21st century. Power and
Energy Magazine, IEEE 3(5), 34-41 (2005). DOI
10.1109/MPAE.2005.1507024

Matinlassi, M.: Comparison of software product line ar-
chitecture design methods: Copa, fast, form, kobra and
gada. In: ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pp. 127-136. IEEE
Computer Society, Washington, DC, USA (2004)
Medvidovic, N., Taylor, R.N.: A classification and com-
parison framework for software architecture description
languages. IEEE Trans. Softw. Eng. 26(1), 70-93 (2000).
DOI http://dx.doi.org/10.1109/32.825767

Mens, T.: Future Research Challenges in Software Evolu-
tion and Maintenance - Report from EC Expert Meeting.
ERCIM News 81 (2010)

Moon, M., Chae, H.S., Nam, T., Yeom, K.: A metamodel-
ing approach to tracing variability between requirements
and architecture in software product lines. In: CIT ’07:
Proceedings of the 7th TEEE International Conference
on Computer and Information Technology, pp. 927-933.
IEEE Computer Society, Washington, DC, USA (2007)
Object Management Group: Data distribution service for
real-time systems, v1.2 (2006)

Object Management Group: Meta-Object Facil-
ity (MOF) Specification 2.0 TR formal-06-01-01.
http://www.omg.org/spec/MOF /2.0/PDF/ (2006)
Object Management Group: OCL Specification Version
2.2. http://www.omg.org/spec/OCL/2.2/ (2011)

Olsen, G., Oldevik, J.: Scenarios of traceability in model
to text transformations. In: D. Akehurst, R. Vogel,
R. Paige (eds.) Model Driven Architecture- Foundations
and Applications, Lecture Notes in Computer Science,
vol. 4530, pp. 144-156. Springer Berlin / Heidelberg
(2007)

van Ommering, R., van der Linden, F., Kramer, J.,
Magee, J.: The koala component model for consumer elec-
tronics software. Computer 33(3), 78-85 (2000). DOI
10.1109/2.825699

Pérez, J., Diaz, J., Garbajosa, J., Alarcén, P.P.: Flexi-
ble working architectures: Agile architecting using ppcs.
In: Proceedings of the 4th European Conference on Soft-
ware Architecture (ECSA 2010), LNCS, pp. 102-117.
Springer-Verlag, Berlin, Heidelberg (2010)

Pérez, J., Diaz, J., Soria, C.C., Garbajosa, J.: Plastic par-
tial components: A solution to support variability in ar-
chitectural components. In: Proceedings of Joint Working
IEEE/IFIP Conference on Software Architecture 2009
and European Conference on Software Architecture 2009,
WICSA/ECSA 2009, Cambridge, UK, 14-17 September
2009, pp. 221-230. IEEE (2009)

Pohl, K., Béckle, G., Linden, F.: Software Product Line
Engineering: Foundations, Principles and Techniques.
Springer, Germany (2005)

Pohl, K., Brandenburg, M., Giilich, A.: Integrating re-
quirement and architecture information: A scenario and
meta-model approach. In: REFSQ’01: Proceedings of
The Seventh International Workshop on Requirements
Engineering: Foundation for Software Quality, pp. 68—84
(2001)

Poshyvanyk, D., Di Penta, M., Kagdi, H.: Sixth inter-
national workshop on traceability in emerging forms of

http://www.softwarefactory.cc/magazine
http://dx.doi.org/10.1109/32.825767
http://www.omg.Org/spec/MOF/2.0/PDF/
http://www.omg.Org/spec/OCL/2.2/

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

software engineering: (tefse 2011). In: 33rd International
Conference on Software Engineering (ICSE 2011), pp.
1214 1215 (2011). DOI 10.1145/1985793.1986052
Ramesh, B., Jarke, M.: Toward reference models for re-
quirements traceability. IEEE Trans. Softw. Eng. 27(1),
58-93 (2001). DOIT http://dx.doi.org/10.1109/32.895989
Runeson, P., Hést, M.: Guidelines for conducting and re-
porting case study research in software engineering. Em-
pirical Software Engineering 14, 131-164 (2009)
Runeson, P., Host, M., Rainer, A., Regnell, B.: Case
Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons (2012)

Satyananda, T.K., Lee, D., Kang, S., Hashmi, S.I.: Iden-
tifying traceability between feature model and software
architecture in software product line using formal con-
cept analysis. In: Proceedings of the International Con-
ference Computational Science and its Applications, pp.
380-388. IEEE Computer Society, Washington, DC, USA
(2007)

Schwaber, K., Beedle, M.: Agile Software Development
with Scrum. Prentice-Hall (2002)

Scott, J., Kazman, R.: Realizing and refining architec-
tural tactics: Availability. Tech. rep., CMU/SEI-2009-
TR-006 ESC-TR-2009-006 (2009)

Selic, B.: The pragmatics of model-driven develop-
ment. IEEE Softw. 20(5), 19-25 (2003). DOI
http://dx.doi.org/10.1109/MS.2003.1231146

Staab, S., Walter, T., Grner, G., Parreiras, F.: Model
driven engineering with ontology technologies. In:
U. Amann, A. Bartho, C. Wende (eds.) Reasoning Web.
Semantic Technologies for Software Engineering, Lec-
ture Notes in Computer Science, vol. 6325, pp. 62-98.
Springer Berlin Heidelberg (2010)

Stake, R.E.: The Art of Case Study Research. SAGE
Publications Inc (1995)

Szyperski, C.: Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

Taha, W.M.: Domain-Specific Languages IFIP TC 2
Working Conference, DSL, Lecture Notes in Computer
Science, vol. 5658. Springer Berlin / Heidelberg (2009)
Weiler, T.: Modelling architectural variability for soft-
ware product lines. In: SVM’03: Proceedings of the
Software Variability Management Workshop, pp. 53—61
(2003)

Yin, R.: Case study research. Design and methods. 4th
ed. London, Sage (2008)

http://dx.doi.org/10.1109/32.895989
http://dx.doi.org/10.1109/MS.2003.1231146

