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Abstract In current software systems with highly vola-
tile requirements, traceability plays a key role to main-
tain the consistency between requirements and code. 
Traceability between artifacts involved in the develop-
ment of Software Product Lines (SPL) is still more crit-
ical because it is necessary to guarantee that the se-
lection of variants that realize the different SPL prod-
ucís meet the requirements. Current SPL traceability 
mechanisms trace from variability in features to vari-
ations in the configuration of product-line architecture 
(PLA) in terms of adding and removing components. 
However, it is not always possible to materialize the 
variable features of a SPL through adding or remov-
ing components, since sometimes they are materialized 
inside components, i.e. in part of their functionality: a 
class, a service and/or an interface. Additionally, varia-
tions that happen inside components may crosscut sev-
eral components of architecture. These kinds of varia-
tions are still challenging and their traceability is not 
currently well-supported. Therefore, it is not possible to 
guarantee that those SPL producís with íhese kinds of 
variaíions meeí íhe requiremenís. This paper presenís 
a soluíion for íracing variabiliíy from feaíures ío PLA 

by íaking íhese kinds of variaíions inío accouní. This 
soluíion is based on models and íraceabiliíy beíween 
models in order ío auíomaíe SPL configuration by se-
lecíing íhe varianís and realizing íhe producí applica-
íion. The FPLA modeling framework supporís íhis so-
luíion which has been deployed in a software facíory. 
Validaíion has consisíed in puííing íhe soluíion inío 
pracíice ío develop a producí line of power meíering 
managemení applicaíions for Smarí Grids. 

Keywords Traceabiliíy Modeling • Software Producí 
Line Engineering • Producí-Line Archiíecíure • 
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1 Introduction 

Traceabiliíy defines and mainíains relaíionships beíween 
aríifacís involved in íhe software life cycle [19,2] in 
boíh forward and backward direcíions, e.g. from re-
quiremenís ío code and from code ío requiremenís, re-
specíively. Curreníly, software sysíems are coníinuously 
undergoing changes due ío íhe compeíiíiveness of íhe 
software markeí and íheir changing íechnologies. In soft-
ware sysíems wiíh highly volaíile requiremenís, írace-
abiliíy has become a criíical issue. Numerous researchers 
have puí íheir work over pasí years on íraceabiliíy from 
problem space ío soluíion space in íradiíional software 
developmení and evoluíion [13,47-49]. In íhis regard, 
íoday íhere are síill several challenges ío be dealí wiíh. 
Specifically íhe Center ofExcellence for Software Trace-

ability ideníified eighí challenges relaíed ío íhe purpose, 
cosí, configuration, confidence, scalabiliíy, poríabiliíy, 
valué, and ubiquiíy of íraceabiliíy [20]. This íraceabil-
iíy is even more challenging in recení software develop-
mení paradigms such as Software Producí Line Engi-
neering (SPLE [14,46]). In fací, íhe capabiliíy of írac-



ing variability in a family of the producís is still a 

challenge [37], as well as important: "the traceability 

work tha t is emerging from product line engineering 

contexts may have wider applicability to broader trace-

ability reuse" [20]. 

This paper focuses on the traceability between the 
artifacts resulting from the SPLE phases domaín anal-

ysis [26] and product-line architecting [35]. During the 
domain analysis phase, feature models [25] are usually 
used to describing requirements in terms of common 
and variable features of the set of producís tha í make 
up a SPL. Then, íhese feaíures are realized and de-
scribed ai architectural level in product-line architec-
ture (PLA) models. Our approach is somewhat based on 
the work by Ramesh & Jarke [49] and Pohl et al. [47], 
but particularizes the traceability definition between 
requirements and architecture in features and PLA by 
taking into account the traceability of variability. This 
traceability of variability is critical to configure the PLA 
and realize the producís while ensuring tha í íhey meeí 
íhe requiremenís, i.e. ío check íha í íhe variabiliíy bind-
ing performed during íhe configuraíion of producís saí-
isfies íhe producí requiremenís. 

How variabiliíy is specified in feaíure and PLA mod-
els largely deíermines how variabiliíy can be íraced. 
There has been an exíensive research on supporíing 
íhe represeníaíion of variabiliíy in feaíure models [25, 
5,9], PLA models [23,43,6,16,60,1], as well as íhose ap-
proaches íha í propose dedicated variability models [46, 
7,30]. Based on íhis síaíe-of-íhe-arí, currení SPL írace-
abiliíy mechanisms írace íhe exisíing variabiliíy in fea-
íure models ío variaíions in íhe PLA. This íraceabiliíy 
is usually relaíed ío variaíions in íhe configuraíion of 
archiíecíures as well as in íhe configuraíion of compos-

ite components [31], aka. subsystems [24]. These varia-
íions are realized íhrough adding or removing compo-
nenís and/or connecíors. This means, íhe configuraíion 
of archiíecíure is cusíomized by selecíing opíional, al-
íernaíive, or múltiple componenís and íheir respecíive 
connecíors. We refer ío íhese kinds of variaíions as es-

ternal variability. 

However, exíernal variabiliíy is noí enough ío com-
pleíely define all kinds of variaíions [6] and ío írace 
íhem from feaíures ío PLA [60]. This happens when 
variaíions have a lower-granulariíy íhan íhe granular-
iíy of componenís (e.g. classes, services, or iníerfaces 
íha í implemení funcíionaliíies such as logging, daía-
base connecíions, lisíeners of an evení-based archiíec-
íure, graphical conírollers, etc.), so tha í íhey are maíe-
rialized inside simple components - or non-composite 

components. In íhese componenís, in which variabil-
iíy occurs inside, par í of íheir funcíionaliíy is common 
ío íhe SPL and par í of íheir funcíionaliíy changes de-

pending on íhe producí ío be realized. As a resulí, in 
order ío supporí íhis iníernal variabiliíy, ií is neces-
sary ío specify variaíions íha í are iníernal ío compo-
nenís. We refer ío íhis kind of variaíions as internal 

variability. In addiíion, íhis iníernal variabiliíy is es-
pecially relevaní, buí no specific, when describing vari-
abiliíy íha í refers ío non-funcíional feaíures or qualiíy 
aí í r ibuíes [32], since íhey may crosscuí several compo-
nenís of íhe PLA. For example: Suppose an illusíraíive 
example of a SPL for banking sysíems íha í consisís of a 
seí of core componenís íha í offer íheir funcíionaliíy ío 
Auíomaíic Teller Machines (ATM) and bank web ap-
plicaíions (WebApp). Boíh ATM and WebApp aim ío 
provide a cosí-effecíive service ío bank cusíomers íha í 
is conveniení, safe, and secure 24-hour access for realiz-
ing a common seí of banking íransacíions. A few lines of 
code implemeníing íhe funcíionaliíy regarding qualiíy 
aí ír ibuíes, such as availability or data encryption, are 
necessary. This code is scaííered across íhe componenís 
WebApp and ATM and ií has variaíions in iís behavior 
depending on íhe specific banking sysíem producí by 
selecíing síricí or non-síricí availabiliíy or differení en-
crypíing algoriíhms. Therefore, íhis iníernal variabiliíy 
could affecí many differení producís or íhere could even 
be conflicíing qualiíy aí ír ibuíes (e.g. írade-offs beíween 
availabiliíy and performance) in differení producís of 
íhe same family. As a resulí, íhe absence of íraceabil-
iíy íha í considers iníernal variabiliíy implies íha í ií is 
noí possible ío check if íhe SPL producís wiíh iníernal 
variabiliíy meeí íhe requiremenís. Therefore, íhe capa-
biliíy of íracing iníernal variabiliíy is as imporíaní as 
íhe capabiliíy of íracing exíernal variabiliíy. 

This paper presenís a soluíion ío írace variabiliíy 
from feaíures ío boíh exíernal and iníernal archiíec-
íural variabiliíy. This soluíion has been consírucíed 
using íhe meíamodeling approach, since models auío-
maíe developmení íasks and síimulaíe learning and rea-
soning capabiliíies, which is esseníial for íracing aríi-
facís. Therefore, our soluíion is consíi íuíed by a seí 
of models for describing and íracing PLAs from fea-
íures. The descripíion of feaíures is supporíed by íhe 
Feature Model [25,15]. The descripíion of PLAs is sup-
poríed by a previous work íha í presenís íhe Flexible-

PLA Model [45] as a soluíion for specifying boíh (i) ex-
íernal variabiliíy of íhe archiíecíure configuraíion and 
composiíe componenís, and (ii) iníernal variabiliíy of 
simple componenís. Specifically, in íhis paper we presení 
a model íha í supporís íraceabiliíy beíween feaíures 
and PLA, called Feature-PLA Traceability Model. The 
Feaíure-PLA Traceabiliíy Model defines íhe principies 
íha í govern íhe íraceabiliíy links beíween íhe Feaíure 
model and íhe Flexible-PLA model, i.e. íhe rules íha í 
musí be meí ío creaíe links beíween íhe íwo mod-



els. These rules assist software engineers in defining 
both coarse-grained and fine-grained links which trace 
external and internal variability between features and 
PLA. The goal of also tracing internal variability— 
i.e. at fine-grained level—is to reduce error-prone de-
cisions at the time of configuring variability to derive 
producís—from a SPL platform—according to product-
specific requirements. The usage of the Feature-PLA 
Traceability Model is possible due to the FPLA mod-
eling framework1. 

We have put the Feature-PLA Traceability Model 
into practice in a software factory, in a project for de-
veloping a product line of power metering management 
applications for Smart Grids. Validation is performed 
using the case study technique following the guidelines 
of Runeson and Hóst for describing case studies [51]. 
This case study allowed us to obtain evidence of that 
the Feature-PLA Traceability Model was effective and 
helped engineers in the development and configuration 
of a successful product line in an industry project. 

The structure of the paper is as follows: Section 2 
describes background in which our solution is based 
on. Section 3 describes the Feature-PLA Traceability 
Model. Section 4 presents the case study used to valí-
date the Feature-PLA Traceability Model, i.e. its viabil-
ity, effectiveness, and helpfulness in an industry project. 
This section also discusses about limitations of our so-
lution. Section 5 analyzes related work. Finally, conclu-
sions and further work are presented in Section 6. 

2 Background 

This section describes the required background to detail 
the contribution of this paper, i.e. the models that the 
Feature-PLA Traceability Model traces. 

2.1 The Feature Model 

Numerous methods for domain analysis can be found 
in literature, although one of the most widely used is 
the Feature-Oriented Domain Analysis (FODA) [25,5] 
in which our work is based on. The FODA method in-
troduces the feature modelíng technique for capturing 
commonality and variability of SPL in terms of features. 
This method defines a feature as "a prominent or dis-
tinctive user-visible aspect, quality, or characteristic of 
a software system or system" [25]. Feature modeling is 
graphically described through the feature diagram no-
tation, which specifies all producís of a family through 
a hierarchical íree-like sírucíure. We use íhe exíended 

1 It is available on: https://syst.eui.upm.es/FPLA/home 

feaíure meíamodel definiíion proposed by Czarnecki eí 
al. [15] which includes íhe following concepís: 

— A root feature modularizes íhe model in a íree-like 
sírucíure, in which íhere is a main rooí. 

— Solitary features represen! mandatory or optional 

characíerisíics of a software sysíem which can be 
composed of zero or more soliíary feaíures and by 
zero or more feature groups. 

— A feature group consisís of a seí of grouped features 

which in íurn can be composed of zero or more soli-
íary feaíures and by zero or more feaíure groups. 
Feaíure groups can be OR or XOR. The firsí one 
forces ío choose m grouped feaíures (being m < to-
tal number of grouped features). The second one 
forces ío choose only one grouped feaíure. 

Figure 1 exemplifies íhese concepís íhrough a simple 
feaíure model of a family of e-readers. The rooí feaíure 
of íhe íree is called e-readers family. A seí of soliíary 
feaíures are hooked ío íhe rooí, such as interface and 
connectivity. The soliíary feaíure interface is composed 
of a XOR feaíure group íhaí supporís cusíomized in-
íerfaces, such as keyboard or multi-touch, whereas íhe 
soliíary feaíure connectivity is composed of íhe soliíary 
feaíures Wi-Fi and 3G. The soliíary feaíure Wi-Fi is 
a mandaíory feaíure for all producís of íhe e-readers 
family while 3G is opíional. 
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Fig. 1 E-readers SPL: Feature Model 

2.2 The Flexible-PLA Model 

The Flexible-PLA Model [45] is a precise represenía-
íion for capíuring variabiliíy as parí of PLAs. The main 
concepí underlying Flexible-PLA Model is íhe concepí 
oí Plástic Partial Component (PPC [45]). The concepí 
of PPC is a soluíion ío compleíely supporí íhe iníer-
nal variaíion of archiíecíural componenís. Therefore, ií 

https://syst.eui.upm.es/FPLA/home


is a component that part of its behavior corresponds 
to the core of a SPL and part of its behavior is spe-
cific of a product or set of producís from that SPL. 
The other concepts that are common to PLAs, such 
as components, connector, ports, etc., are specified as 
it is usually done in common Architecture Descríptíon 

Languages [36]. 
The variability mechanism underlying PPCs is based 

on the principies of invasive software composition and 
the combination of two approaches to define software 
architectures: the Component-Based Software Develop-

ment [58] and the Aspect-Oriented Software Develop-

raent [27]. The variability of a PPC is specified using 
variability points which hook fragments of code to the 
PPC known as variants, and weavings which specify 
where and when extending the PPCs using the variants. 
Weavings are defined outside from PPCs and variants 
so that these PPCs and variants are independent of the 
weaving or linking context. As a result, variants can 
be reused and crosscut several PPCs of the PLA. Ad-
ditionally, PPCs reduce dependences and coupling be-
tween components and their variants, and enable easy 
and cheap (un-)weaving of variants. These advantages 
have been successfully applied to SPLs [45,44,17]. 

The concepts of the Flexible-PLA model are exem-
plified by the graphical representation of a PPC called 
interface (see Figure 2). The PPC interface defines a 
variability point which hooks the code that implements 
the variants keyboard and multi-touch. 
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Fig. 2 E-readers SPL: Flexible-PLA Model 

3 Feature-PLA Traceability Model 

This section presents the Feature-PLA Traceability Model 
as a solution for tracing features to PLA. Tracing ar-
tifacts aims to automate development tasks, as well as 
to stimulate learning and reasoning. Models, traceabil-

ity between models, and model transformations are the 
basis to automate development tasks, which is known 
as model-driven development (MDD [11]). Additionally, 
models help us understand complex problems and their 
potential solutions through abstraction [55], and could 
stimulate learning and reasoning [56]. For this reason, 
the proposed solution is based on models, specifically 
the Feature and Flexible-PLA Models, as well as the 
Flexible-PLA Traceability Model that defines traceabil-
ity between the two first models. 

The Feature-PLA Traceability Model provides mod-
eling primitives to define traceability links, i.e. rela-
tionships, between elements belonging to the Feature 
Model (see Section 2.1) and elements belonging to the 
Flexible-PLA Model (see Section 2.2). These relation-
ships are established between the set of feature elements 
and a set of architecture elements that satisfy them 
(aka. Satisfaction Links [49]). Henee, a feature element 
may define some kind of constraint or goal which may 
be satisfied by one or more architecture elements, while 
an architecture element may satisfy one or more feature 
elements. In this regard, the Feature-PLA Traceability 
Model defines the rules that govern the creation of these 
relationships. These rules are called linkage rules. 

To be able to use these modeling primitives, it is nec-
essary to define a domain-specific (modeling) language 

(DSL [59]). The next subsections describe (i) a DSL ab-
stract syntax through the definition of the Feature-PLA 
Traceability metamodel, its domain concepts, relation-
ships and rules, (ii) a DSL concrete syntax by defining a 
graphical language representation, and (iii) how putting 
these modeling primitives in practice. 

3.1 Abstract syntax: metamodel description 

Metamodels describe how models can be specified and 
establish the properties of models in a precise way. In 
addition, a metamodel is characterized because it allows 
the verification of those models that are constructed 
and conformed to it [12]. The realization of MDD prin-
cipies is made around a set of OMG standards like 
MOF [40] which is a metametamodel. Specifically, our 
solution is based on MOF 2.0 and uses UML 2.0 to 
specify a metamodel which we refer to as Feature-PLA 
Traceability metamodel. 

The Feature-PLA Traceability metamodel (see Fig-
ure 3) is composed of a set of inter-related metaclasses. 
These metaclasses define a set of properties and services 
for each concept considered in the model. On the one 
hand, metaclasses, their properties and their relation-
ships describe the structure and the information that 
is necessary to define traceability links and their link-
age rules. On the other hand, the services of metaclasses 
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Fig. 3 Feature-PLA Traceability metamodel 

offer the primitives to develop instances by creating, de-
stroying, adding or removing elements which are com-
pliant with the constructors of the metamodel2. Those 
constraints that cannot be defined through the use of 
relationships and their cardinality are specified by us-
ing the Object Constraint Language (OCL [41]), such 
those described as textual information in UML notes 
(see Figure 3). 

The Feature-PLA Traceability metamodel is cre-
ated with the aim of facilitating its integration with 
general-purpose traceability metamodels, such as the 
Metamodel for Requirements Traceability [29], or the 
EML Trace [28]. These models define the concept of 
traceability link through a metaclass that supports the 
traceability between any two models. We have re-used 

2 Most services are omitted to gain readability. 

this metaclass, henee traceability links are described 
by the metaclass TraceabilityLink (see Figure 3). It of-
fers the primitives to instantiate traceability links. The 
metaclass TraceabilityLink has five attributes (see Fig-
ure 3). Additionally, in order for the user to set the 
traces between the right elements, it is necessary to de-
fine a set of linkage rules that establish the constraints 
that govern the creation of these traces. To that end, 
the metaclass TraceabilityLink defines five linkage rules 
(see dashed rectangles labeled from A to E in Figure 3). 
Attributes and linkage rules as described below. 

The metaclass TraceabilityLink has the attributes 
Description, Why, Who, When and Satisfacing. These 
properties store semantic knowledge about the trace-
ability links. The attribute description keeps a brief 
description of the link. The attribute why stores the 



traceability link's rationale. The attributes who and 
when keep who creates the traceability link and when it 
is created, respectively. The definition of the attribute 
satisfacing is based on the work by Ramesh & Jarke [49] 
who defined a scheme for assigning qualitative degree 
of satisfaction to links, i.e. a measure of the extent of 
how long one element affects another. Hauser & Claus-
ing [21] use four categories to relate how design affects 
quality requirements: strong positive, médium positive, 

médium negative, and strong negative. Positive valúes 
measure the degree to which features are satisfied, e.g. 
a recovery feature to provide response of 100 millisec-
ond may be considered to be well satisfied, so that 
90 millisecond and 110 millisecond response time may 
be considered to satisfy the feature with different de-
grees. Negative valúes may capture trade-offs between 
features, e.g. a component that satisfies an availability 
feature may have a strong negative impact on a per-
formance feature. This scheme is incorporated in our 
traceability model as follows: an element belonging to 
the Flexible-PLA Model may contribute toward satis-

ficing an element belonging to the Feature Model along 
these four categories. Thereby, it is possible to assign 
the valúes strong positive, médium positive, médium 
negative, and strong negative to the attribute satisfic-
ing of a traceability link. 

The metaclass TraceabilityLink defines five linkage 
rules (see the association relationships between the meta-
class TraceabilityLink and the metaclasses LinkageRule. 
{A-E} in Figure 3). The linkage rules define how rela-
tionships can be established, i.e. the rules that restrict 
which elements belonging to the Feature Model can be 
traced to which elements belonging to the Flexible-PLA 
Model. These linkage rules act as constraints that must 
take variability into account. Variability in the Feature 
Model is specified by means of optional solitary fea-
tures, feature groups, and grouped features. Variabil-
ity in the Flexible-PLA Model is specified by means 
of optional components and optional connectors, which 
describe external variability of architecture configura-
tion, as well as variability points and variants, which 
describe the infernal variability of PPCs. These forms 
of variability constrain the traces that can be defined 
in such a way that the linkage rules define the following 
constraints: 

Linkage Rule A: A mandatory solitary feature can trace 
to a component or a PPC. 

Linkage Rule B: An optional solitary feature can trace 
to an optional connector. A feature group can trace 
to an optional connector. 

Linkage Rule C: A feature group can trace to a vari-
ability point. 

Linkage Rule D: A grouped feature can trace to an op-
tional component or an optional PPC. 

Linkage Rule E: An optional solitary feature can trace 
to a variant. A grouped feature can trace with a 
variant. 

These constraints of the traces are implemented in 
the Feature-PLA Traceability metamodel through five 
metaclasses to which we refer to as LinkageRule.{A-E} 

(see Figure 3). These metaclasses define associations 
with the metaclasses from Feature and Flexible-PLA 
metamodels3. As a result, any link between an element 
from a Feature model and an element from a Flexible-
PLA model must be compliant with one of these linkage 
rules. As the linkage rules support external and infernal 
variability, both fine-grained and coarse-grained trace-
ability links can be defined. 

In this regard, it is necessary to highlight that we 
decided not to add a new attribute (with the types of 
linkage rules and define the corresponding OCL con-
straints) into the metaclass TraceabilityLink in order 
to preserve the metaclass TraceabilityLink of general-
purpose traceability models. In order to realize this 
typing we defined five linkage rules through five meta-
classes. In this way, we guarantee that the Feature-PLA 
Traceability Model can be reused by and integrated in 
other traceability models. 

Finally, it is necessary to highlight that this meta-
model conforms to a general-purpose Traceability model 
(see [18]) which is located in an upper layer of the MOF 
Architecture [40] (meta-metamodel layer). In this way, 
the metaclasses TraceabilityLink and LinkageRule.{A-

E] conform to two meta-metaclasses (TraceLink and 
LinkageRule) of this meta-metamodel. The definition 
of the metaclasses LinkageRule.{A-E} allowed us to ex-
tend the rationale of the linkage rules. 

3.2 Concrete Syntax: Graphical language description 

A graphical modeling language has been defined as this 
kind of languages is usually more intuitive. 

Figure 4 illustrates the Feature-PLA Traceability 
graphical language through an example of a SPL of e-
readers. Figure 4 shows six traceability links and their 
properties—satisfacing, who, and when (see ID_001 to 
ID_006). The traceability link ID_003 defines a relation-
ship between the optional solitary feature 3G and the 
optional component that implements it (e.g. see the 
properties: strong positive, J.Smith and 03/09/2012). 
This link traces a variation that is materialized by adding 

3 The Feature metamodel is described in [15] while the 
Flexible-PLA metamodel is described in [45] 
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Fig. 4 E-readers SPL: Feature-PLA Traceability Model 

or removing the component 3G to/from the configura-
tion of the PLA. Therefore, this link traces external 
variability. The traceability link ID_005 defines a re-
lationship between a point of variability related to the 
types of interfaces —a feature group— and the variabil-
ity point that implements it. Finally, the traceability 
link ID_006 defines a relationship between the grouped 
feature 2-poínt multítouch and the variant that imple-
ments it. This link traces a variation that is not ma-
terialized by adding or removing a component because 
of its small size —it is a service called MstenTouch (see 
Figure 5). This variation is materialized by weaving or 
unweaving the variant multí-touch to/from the PPC in-

terface, i.e. by injecting (or not) the service MstenTouch 

instead, before, or after the execution of the service 
UstenActíon of the PPC ínterface. Therefore, this link 
traces internal variability. 
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3.3 Feature-PLA Traceability Model in Practice 

The solution presented in this paper for tracing vari-
ability from features to PLA is supported by the FPLA 
modeling framework. FPLA is an open-source graphical 
tool that is available for the community as an Eclipse 
plug-in4. The use of the FPLA modeling framework to 
put this solution into practice is described through a 
set of activities as follows. 

4 https://syst.eui.upni.es/FPLA/home 

https://syst.eui.upni.es/FPLA/home


1. SPL domain analysts model the problem space, i.e. 
specify common and variable features through a Fea-
ture model. 

2. SPL architects model the solution space (PLA), i.e. 
specify the PLA structural configuration through a 
Flexible-PLA model. 

3. Both domain analysts and architects define the trace-
ability links between a Feature model and a Flexible-
PLA model, i.e. establish the relationships between 
elements from these two models through a Feature-
PLA Traceability model. 

4. SPL developers implement and test the components 
and services of the SPL. The resulting source code is 
linked to the components specified in the Flexible-
PLA model. To do this, Flexible-PLA models pro-
vide links to external sources. 

5. Product engineers configure specific products through 
the binding of the variability according to the prod-
uct needs - product-specific requirements. The FPLA 
modeling framework allows product engineers to spec-
ify this binding (see the •/mark in Figure 5 that 
selects the multi-touch feature). 

6. Product engineers examine the Feature-PLA Trace-
ability model to ensure that the variability binding 
was correctly performed. This means, to check that 
the binding performed in the PLA meets and satis-
fies the product-specific requirements. 

7. Finally, the FPLA modeling framework automati-
cally binds the variability from PLA to code in or-
der to configure components and genérate code for 
specific products. This means, FPLA automatically 
generates code skeletons from Flexible-PLA mod-
els and composes the code from external sources by 
using model-to-text transformations. 

4 Case Study 

This section aims to provide empirical evidence that 
validates that the use of the Feature-PLA Traceability 
Model is viable in an industry project, as well as effec-
tive and helpful for developing and configuring software 
product lines. Since the goals to be validated are quali-
tative, we use the case study technique. Case study re-
search is a technique that consists of the investigation of 
contemporary phenomena in their natural context [61] 
to search for evidence, gain understanding, or test the-
ories by primarily using qualitative analysis [50]. 

The case study was conducted in an experimental i-
smart software factory (iSSF [33]) which is deployed in 
the Technical University of Madrid (UPM5) and Indra 

Software Labs6. Specifically, the case study was per-
formed within an industrial project on Smart Grids [34] 
to develop a SPL of a family of power metering man-

agement systems. The authors of this paper have been 
involved since 2011 with this particular investigation. 

The iSSF is a software engineering research and ed-
ucation setting in cióse cooperation with the top indus-
trial and research collaborators in Europe. It is a global 
and distributed software development initiative set up 
at the end of 2011. Indra Software Labs leads this ini-
tiative at the corporate level in Spain, in conjunction 
with UPM, although it is framed into a broader-scope 
that includes other software factories such as that lo-
cated at the Univ. of Helsinki, Univ. of Eastern Finland 
and Univ. of Bolzano and companies such as Tieto, and 
Indra in Spain. This initiative aims to put in practice 
models and tools that will contribute both toward the 
implement ation of the new processes and methodolo-
gies, and the monitoring and tracking of the results. 

The iSSF in which the case study has been run, com-
prises laboratories in two different geographical loca-
tions in Madrid (UPM and Indra's factories), equipped 
with sophisticated computer and monitoring equipment. 
This equipment facilitates tracking of the project's pro-
gress using real-time data from development tools. The 
iSSF facility continuously runs projects in sixteen week 
cycles. Therefore, it is a suitable setting to deploy, track 
and evalúate the applicability of the Feature-PLA Trace-
ability Model. 

Next, the case study is reported according to the 
guidelines for conducting and reporting case study re-
search in software engineering by Runeson and Hóst [51]. 
The goal of reporting el CclSG study is twofold: to commu-
nicate the findings of a study, and to work as a source of 
information for judging the quality of the study. With 
this twofold goal, the reporting of the case study is de-
scribed as follows. 

4.1 Case study design 

This section describes the case study, the research ob-
jective and questions, the data collection procedure, 
analysis and validation procedures, and the subjects 
participating in the case study. 

4-1-1 Research objective and questions 

Evidence of the viability of the Feature-PLA Trace-
ability Model can be obtained by putting the model 
into practice in a real life setting. Therefore, the re-
search objective focuses on evaluating the effectiveness 

5 http://www.upm.es/internacional http://www.indraconipany.com/en 
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of the Feature-PLA Traceability Model as well as the 
helpfulness tha t it could provide SPL engineers. The 
criterion to validate the achievement of the objective 
is defined as the capabilities to (i) trace both coarse-
grained and fine-grained variability in order to satisfy 
the traceability of most common kinds of variations, 
and (ii) provide knowledge to help SPL engineers at the 
t ime of configuring the different products tha t make up 
a SPL, i.e. when variability has to be bound accord-
ing to the product-specific requirements. Henee, the re-
search questions to be answered through the case s tudy 
analysis can be formulated as follows: 

RQ\. Are Feature-PLA Traceability modeling primi-

tives effective in providing SPL engineers the means 

for specifying traceability for most common kinds of 

variations tha t they define on their product family? 

RQ2'- Do Feature-PLA Traceability models assist and 

guide SPL engineers at the time of configuring prod-

ucts of their product family? 

Research question RQ\ aims to find out if the Feature-
PLA Traceability Model effectively provides SPL engi-
neers with mechanisms to trace all types of variations 
tha t they commonly define, which includes the capabil-
ity of tracing those features tha t are realized through 
external variations of the PLA configuration (i.e. trace-
ability of external variability) as well as the traceability 
of those features tha t are realized through internal vari-
ations of the components (i.e. traceability of internal 
variability). The lev el of effectiveness is a dependent 
variable, i.e. a variable of interest for being analyzed 
and evaluated. It is measured in terms of the percentage 
of variations existing in the domain of the SPL under 
s tudy (i.e. variations in the Feature model) tha t can 
be traced by using the modeling primitives provided 
by the Feature-PLA Traceability Model. The potential 
independent variables tha t might have an influence on 
the dependent variable are the project size, the SPL do-

main, the complexity of Feature and PLA models, and 
the total number of variations identified in the product 
family. 

Research question RQ2 aims to find out if the knowl-
edge stored in Feature-PLA Traceability models is re-
ally helpful for SPL engineers at the time of configur-
ing the products of their product family. In this regard, 
helpfulness is defined in this paper as the facilities pro-
vided for engineers to enable product configuration (i.e. 
selection of variants and construction of product appli-
cations). As a dependent variable, the lev el of helpful-

ness to configure products is qualitatively estimated by 
analyzing questions asked to the SPL engineers involved 
in the cases s tudy through a set of interviews. These 
questions asked the SPL engineers about specific situa-

tions in which the assistance of Feature-PLA Traceabil-
ity models to configure products was analyzed. Henee, 
the SPL engineers were asked if Feature-PLA Traceabil-
ity models helped them when trying to bind variability 
to configure specific products from the product family, 
while ensuring the product requirements compliance. 
The potential independent variables which might have 
an influence on the dependent variable are the engineers 

experience, the project size, the PLA complexity, the 
misinterpretation of interview questions and the total 
number of variations identified in the product family. 

It is necessary to mention tha t it is in the nature of 
case studies tha t independent variables cannot be con-
trolled [50]. This and other potential threats to validity 
are discussed in subsection 4.2.3. 

4-1-2 Data collection procedure 

In the case study, we have gathered both quantita-

tive and qualitative data . The collection methods which 

have been used are the following: 

— Observation. Two observers at tended project meet-
ings and visited the team twice a week. They took 
notes from these meetings and, thanks to the iSSF 
technologies, meetings were video recorded, tran-
scribed, and analyzed using the constant comparison 

method as described in [22]. 

— Questionnaire and Interview. Stakeholders were in-
terviewed following a questionnaire7 open to the dis-
cussion. These interviews were video recorded, tran-
scribed, and analyzed using the constant compari-
son method. 

— Archival data . In addition to the storage of the video 
recordings, the information about the project was 
collected in Redmine8 . 

— Analysis of work artifaets. Feature-PLA Traceabil-
ity models generated with the FPLA modeling frame-
work were gathered. 

4-1.3 Analysis & Validity procedure 

In this case study, both quanti tat ive and qualitative 

analysis were used to examine the da ta gathered. For 

quanti tat ive data, this case study uses analysis of de-

scriptive statistics. For qualitative data, the procedure 

to explore the chain of evidence [50] from collected da ta 

is described as follows: Interviews and meetings are 

recorded, transcribed, grouped by quotes and coded. 

Coding means that parts of the text are given a code 

7 The script of the interviews is available on 
https://www.surveymonkey.eom/s/TSYCCN6 

8 Redmine is web-based project management and bug-
tracking tool http://www.redmine.org/ 

https://www.surveymonkey.eom/s/TSYCCN6
http://www.redmine.org/


representing a certain topic of interest —one code is 
usually assigned to many pieces of text, and one piece 
of text can be assigned more than one code and codes 
can form a hierarchy of codes and sub-codes [50]. The 
coded material is enriched with comments and reflec-
tions (i.e. memos). Prom this material it is possible to 
identify evidence tha t answers the research questions. 

As da ta gathered in case studies is mainly quali-
tative [50], and it is typically less precise than quan-
titative data, it is important to use tríangulatíon to 
increase the precisión of the study. There are several 
types of triangulation [57]: (i) methodologícal tríangu-

latíon, i.e. the use of different methods to measure the 
same concern; (ii) data source triangulation, i.e. the use 
of múltiple da ta sources at potentially different occa-
sions; and (iii) observer triangulation, i.e. the use of 
more than one observer in the case study [22]. In or-
der to increase the precisión of the qualitative analysis 
and its obtained results, the three types of triangulation 
were used in this case study. Methodological triangula-
tion was performed through interviews, observations, 
and the analysis of archival data. Data source triangu-
lation was performed by interviewing the SPL engineers 
bo th separately and together. Finally, observer triangu-
lation was applied by replicating specific da ta collection 
sessions by two different observers. 

4-1-4 Case study description 
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F i g . 6 Modules of the power quality monitoring and the re-
mote control and smart metering platform 

operating as a single system providing both power and 
heat [34]. Smart Grids promote the integration of re-
newable energy resources and their distributed, open, 
and self-controlled nature. 

The power quality monitoring and the remote con-
trol and smart metering platform is a software inten-
sive software composed of a set of coarse-grained mod-
ules: Communication Platform, Power Quality Moni-
toring, Meter Data Management, End-user Access Plat-
form, Head End, Smart Metering, and Data Exchange 
(see Figure 6). At this coarse-grained level, the plat-
form presents variability related to the optionality of 
the module Power Quality Monitoring which depends 
on the grid, i.e. if the grid requires guarantee only the 
power supply or also power quality. Each one of these 
modules has múltiple levéis of decomposition and vari-
ability with different levéis of detail tha t are briefly de-
scribed below. This is why this project was envisioned 
as a SPL tha t allows configuring the platform depend-
ing on the Smart Grid requirements. 

A representative example of the múltiple levéis of 
variability is the End-user Access Platform. This mod-
ule is configurable by considering the following variants: 
type of GUI, end-user, and data . Regarding the type 
of GUI, the End-user Access Platform was designed to 
support Web application, Desktop application, Android 
application, as well as specific in-home device's appli-
cation. Regarding the end-user, the functionalities and 
the information tha t are provided by the access plat-
form to the end-users vary in the case of a distributor, 
a retailer, or a customer. This means tha t the infor-
mation provided by the End-user Access Platform is 
variable depending on the end-user and the end-user 
requirements. Finally, the information tha t is shown in 
the GUI and the technologies used to display tha t in-
formation are variable depending on whether the da ta 
are provided in real-time or using historical data . 

Other examples of múltiple levéis of variability are 
the Smart Metering and the Power Quality Monitoring 

modules. The first one implements a set of forecast-

The case s tudy consists of a project to model, design, 
and implement a "power quality monitoring and a re-
mote control and smart metering" platform. It is part 
of two larger ITEA2 projects called I M P O N E T 9 (127 
man-years) and NEMO&CODED 1 0 (112 man-years), 
and a third national project called E N E R G O S 1 1 (24,3 
million Euros). These three projects focused on sup-
porting complex and advanced requirements in energy 
management, specifically in electric power networks tha t 
are conceptualized as Smart Grids [34]. Smart Grids 
are composed of an aggregation of a broad range of 
energy resources, from large generating systems (tradi-
tional sources, e.g., nuclear power plants, hydro power 
plants) to smaller generating systems (called microsources, 
e.g., small solar farms, distributed wind generators), 

http://www.itea2.org/project/index/view7project=10032
http://www.itea2.org/project/index/view7project=1131
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
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ing algorithms that vary depending on the energy data 
used, for the next 24 or 48 hours, or whether it is cal-
culated using real time energy data, historical energy 
data from the datábase, or both of them. The second 
one implements a set of power quality algorithms that 
can be configured in order to provide a variety of infor-
mation, such as events, disturbances, alarms control, 
etc. Finally, the Communícatíon Platform implements 
a Data Distribution Service (DDS [39]) based on the 
publication-subscription paradigm. This module is in 
turn a source of internal variability that crosscuts the 
other modules. Henee, DDS defines domains, partitions, 
and topics in order to specify different data space and 
organize the flow of data. The subscription to the top-
ics is variable depending on, for example, the events or 
alarms to be controlled. 

In order to illustrate the complexity of the system, 
and in particular the level of variability, the platform 
has more than 600 variants (see Figure 7). In this paper, 
we specifically report the part of the SPL that develops 
a family of power metering management systems for 
Smart Grids, i.e. the Meter Data Management module. 
This is due to space and understandability reasons. We 
refer to this part of the SPL as OPTIMETER SPL. 

OPTIMETER SPL focuses on the development of 
a family of power metering management systems for 
Smart Grids (see the central box of Figure 8). A power 
metering management system captures and manages 
meter data from a large number of distributed energy 

resources. It validates, stores and processes these data, 
and provides them to external systems. Figure 8 shows 
an overview of a metering management system and its 
interaction with external systems to capture and pro-
vide meter data. The overview of the system function-
ality is as follows: 

1. Meter capturing. This involves integrating all me-
ter capturing processes (see Meter Capturer in Fig-
ure 8) which are currently being supported by teleme-
tering systems and batch processes that collect mea-
surements at substations (see box Input in Figure 8). 
The purpose is to have a single datábase with the 
energy metering data. 

2. Meter processing. This includes three operations: 
the validation of meter data according to an estab-
lished validation formula, the calculation of the op-
timal vector for a measuring point for a type and 
period of energy data, and the estimation of energy 
data according to a established estimation formula 
(see Meter Processor in Figure 8). 

3. Meter providing. This involves defining the inter-
face (see Meter Províder in Figure 8) with client in-
formation systems, such as billing and settlements, 
energy demand forecast, and energy purchases, to 
exchange data with them (see box Output in Fig-
ure 8). 

Data processing should be done in real time. To do 
this, it is necessary to account for performance when 
loading the large amounts of energy data coming from 
the meter capturing processes as well as performance 
when querying these data. The OPTIMETER SPL aims 
to provide a family of systems, each of which is intended 
to support the different data storing technologies shown 
in Figure 9. The objective is to carry out various proof 

of concept of large data storing technologies to evalúate 
their performance. Therefore, the data storing technol-
ogy is a variability point. 

Meter providing should be available 24/7. Metering 
management systems should guarantee availability 24 
hours 7 days per week of their core functionality to the 
external systems. Several applications require to have 
strict 24/7 availability, while others permit a weaker, 
non-strict availability. Strict availability must provide 
recovery and repair in milliseconds, whereas non-strict 
availability is less available and cheaper. Therefore, the 
strietness of availability is another variability point. 

The OPTIMETER SPL is being iteratively and in-
crementally developed in the iSSF in Serum subpro-
jeets [53] of 8 iterations, aka. sprints (lsprint = 2 weeks). 
This case study focuses on two of these Serum sub-
projeets which we refer to as Optimeter I and Opti-

meter II Optimeter I consisted of the development of 
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the OPTIMETER SPL platform from which a set of 
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-

ing [46]). Optimeter II consisted of the development 
of two of these product applications (Application Engi-

neering [46]): a metering management application run-
ning over the Berkeley datábase 12 and Hadoop clus-
tering13 with strict availability, and a metering man-
agement application running over the Oracle llg data-

12 Oracle Berkeley DB is a high-performance 
embeddable datábase providing Java Ob-
ject and Key/Valué storage (NoSQL). 
http://www.oracle.com/technetwork/products/berkeleydb/ 
13 Apache Hadoop is a framework for running appli-

cations on large cluster built of commodity hardware. 
http://hadoop.apache.org/ 

base14 and Oracle Real Application Clusters (RAC)
15 

with non-strict availability (see Figure 9). 

4-1-5 Subject description 

In total, 10 people participated in Optimeter I and 
II: four analysts/developers, two product owners, one 
serum master (who performs both the tasks of the Serum 
master and of a part-time architect), and one full-time 
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred 
in this case study as SPL engineers, while during the 
application engineering—i.e. Optimeter II—, the peo-
pled are referred as product engineers. It is necessary 

14 Object-relational datábase management system. 
http://www.oracle.com/technetwork/database/ 
15 Software 

availability 
for clustering and high 

in Oracle db environments. 
http://www.oracle.com/technetwork/products/clustering/ 

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/
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to highlight that the engineers involved in Optimeter I 
and II are not the same. Finally, two observers had ac-
cess to all project information and collaborated directly 
with product owners and fellow team members. 

4.2 Results 

This section describes the execution, analysis and inter-
pretation of the results from the case study execution, 
as well as the evaluation of its validity. 

4-2.1 Case study execution 

This section describes the execution of Optimeter I first, 
and then the execution of Optimeter II. These execu-
tions has been performed following the activities pre-
sented in subsection 3.3. The models resulting from 
these activities have been captured through snapshots 
from the FPLA modeling framework. 

The first activity was feature domain analysis. Fig-
ure 10 shows the feature model that represents the fea-
tures that OPTIMETER SPL must meet. The feature 
model has three points of variability—feature groups— 
that implement different data storing technologies (data-
base and clustering) and different degrees of availability. 
The feature model is described in detail as follows: 

Fl_Meter Reading (see Figure 10) consists of read-
ing metering data associated with different energy 
resources, periods (quarterly, hourly, daily, and monthly) 
and Ínter vals. 
F2_Meter Storing (see Figure 10) consists of a large 
data store. There are two mutually exclusive alter-
native variations: one variant is Berkeley DB and 
the other variant is Oracle 1 lg (see the grouped fea-
tures BerkelyDB and Oracle!lg in Figure 10). 
F3_Meter Data Accessing (see Figure 10) consists 
of initial data loading of historical metering data of 
one month and querying of these data. Both loading 
and querying require to leverage high performance 
through the use of clustering technologies. There are 
two mutually exclusive alternative variations: one 
variant is Hadoop clustering over Berkeley DB and 
the other variant is RAC over Oracle l lg (see the 
grouped features Hadoop and RAC in Figure 10). 
F4_Meter Data Processing (see Figure 10) consists 
of the algorithms for validating raw and optimal 
data, as well as calculating the optimal vector (inte-
grated processing) of raw and optimal data. Namely, 
the energy data for a specific origin, period, and date 
is retrieved and the system adds data to obtain the 
energy data of the next period. 

— F5_Meter Data Providing (see Figure 10) consists 
of an interface that provides metering data query to 
external systems. 

— F6_Availability (see Figure 10). It ensures availabil-
ity of metering data 24 hours 7 days per week. There 
are two mutually exclusive alternative variations: 
one variant implements strict availability and the 
other variant implements non-strict availability (see 
the grouped features strict and non-strict in Fig-
ure 10). 

The second activity was product-line architecting. 
Regarding availability, various architectural tactics are 
proposed in the literature [8,54]. The SPL engineers se-
lected active redundancy and passive redundancy tac-
tics to implement strict and non-strict availability, re-
spectively. These tactics are briefly described as follows. 

— The tactic active redundancy is based on a "config-
uration wherein all of the nodes (active or redun-
dant spare) in a protection group receive and pro-
cess identical inputs in parallel, allowing the redun-
dant spare (s) to maintain synchronous state with 
the active node(s)" [54]. Therefore, from the archi-
tectural view, this tactic requires: (i) a load balancer 

for all nodes —active and redundant nodes— to pro-
cess identical inputs, and (ii) a synchronizer in or-
der for the active and redundant nodes to maintain 
an identical state. If there is a failure, the repair 
occurs on time as the redundant spare has an iden-
tical state to the active node. The cost of this tactic 
is high due to the cost of synchronization between 
redundant spare and active node(s). 
The tactic passive redundancy is based on a "config-
uration wherein only the active members of the pro-
tection group process input trafiic, with the redun-
dant spare(s) receiving periodic state updates" [54]. 
Therefore, from the architectural point of view, this 
tactic requires: (i) a router to ensure that only the 
active node process all the inputs, as well as to 
change the route to the redundant node(s) when 
there is a failure, and (ii) a periodic data controller 

in order for active and redundant node(s) to main-
tain periodic state updates. If there is a failure, the 
router selects a redundant spare after checking the 
state update. This tactic achieves a balance between 
the more highly available but more complex active 
redundancy tactic and the less available but signif-
icantly less complex spare tactic. 

The PLA resulting is shown in Figure 11 and de-
scribed as follows. The feature F l is implemented by 
the component MeterCapturer, which reads text files of 
metering data associated to different energy resources, 
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Fig. 10 Optimeter I - Feature model 

Fig. 11 Optimeter I - Flexible-PLA model 

periods (quarterly, hourly, daily and monthly), and in-
tervals, and processes the previously read data to form 
key/value pairs. The variability of the feature F2 is im-
plemented by the optional components BerkeleyDB and 
Oraclellg. The feature F3, and specifically the subfea-
tures DataLoading and DataQuerying are implemented 
by the PPCs DataLoader and DataQuery respectively. 
The architects took advantage of the PPC's variabil-
ity mechanism to specify the variability of the feature 
hígh-performance as internal variability. This variabil-
ity is internal to the PPCs DataLoader and DataQuery, 

i.e. the variability crosscut these two PPCs. Henee, both 
PPCs implement the variability of performance through 
the variability point clustering and the variants Hadoop-

Clustering and RealApplicationClusters (see Figure 11). 
These variants implement the operations for clustering 
and distributing work around a cluster to improve the 
data accessing performance (for loading and querying). 
Figure 13 shows an extract of the PPC DataLoader 

code and how internal variability works. Specifically, 
the figure shows how the code of the variant Hadoop-

Clusteríng is linked to the code of the PPC DataLoader 

through the weavings. The feature F4 is implemented 
by the component MeterProcessor, which implements 
the algorithms for validating metering data and calcu-
lating optimal vectors. Finally, the feature F5 is imple-
mented by the PPC MeterProvíder. Again, the archi-
tects took advantage of the PPC's variability mecha-



nism to specify the variability of the feature F6 as in-

ternal variability to the P P C MeterProvíder. This P P C 

implements the variability of availability through the 

variability points Updating and RequestManaging, and 

the variants DataMonitoring, Synchronization, Load-

Balancing, and Routing. 

The third activity of the case s tudy execution was 
the definition of traceability links between the Opti-
meter feature model (see Figure 10) and the Optime-
ter Flexible-PLA model (see Figure 11). The result-
ing Feature-PLA Traceability model is described as fol-
lows (see Figure 12): The links ID.001 and ID.002 

trace the grouped features BerkelyDB and Oraclellg to 
the optional component BerkeleyDB and OraclellgDB, 

respectively. The links IDJ)0í and ID-002 trace the 
features DataQueriying and DataLoading to the P P C s 
DataLoader and DataQuery, respectively. The feature 
group tha t implements the variability of performance 
is traced to the variability point clustering through 
the link ID.005. The links ID.006 and ID.007 trace 
the grouped features Hadoop and RAC to the variants 
HadoopClustering and RealApplicationClusters, respec-
tively. The feature group tha t implements the variabil-
ity of availability is traced to the variability points Up-

dating and RequestManagíng through the link ID-008. 

The link ID_009 traces the grouped feature stríct to 
the variants Synchronization and LoadBalancing. The 
link IDJ)í 0 traces the grouped feature non-strict to the 
variants DataMonitoring and Routing. All these trace-
ability links store semantic knowledge. To gain readabil-
ity, Figure 12 only shows the at tr ibutes satisfacing, who, 

and when. The valué of the a t t r ibute satisfacing from 
all of these links is strong positive. This means tha t the 
architectural elements—components, PPCs , variants— 
involved in the links fully satisfy the expected func-
tionality of the features also involved in the links. Fi-
nally, the link IDLO 11 traces the variant Synchroniza-

tion to the feature high-performance. This link shows 
the valué médium negative for the a t t r ibute satisfacing, 
which means tha t the synchronization may negatively 
affect to the performance. 

Once the features, the PLA, and the traceability 
links were described and modeled by the SPL engineers, 
the following activities were the implementation and 
the testing (see the fourth activity in subsection 3.3). 
The resulting source code (such as the code shown in 
Figure 13) is also linked to the components specified 
in the Feature-PLA Traceability model. All these ac-
tivities comprise a typical domain engineering process 
in which the commonality and the variability of a SPL 
is defined and realized [46]. The result is a common 
structure—the O P T I M E T E R SPL platform—from which 
a set of derivative products—metering management sys-

tem applications—can be efficiently developed and pro-

duced. 

Next, Optimeter II started. Each one of the two 

product owners involved in the case study selected to 

implement two different products: 

— A metering management system running over Berke-

ley DB and Hadoop, which has to be strictly avail-

able 24/7 (product A). 

— A metering management system running over Ora-
cle l l g DB and RAC, which has to be available 24/7 
but it is possible to relax this restriction (product 

B). 

At this time, the product engineers configured spe-
cific products according to the products specifications 
tha t the owners expected to get (see the fifth activity in 
subsection 3.3). This means tha t the product engineers 
bound the variability. To do this, the product engineers 
examined the Feature-PLA Traceability model to en-
sure tha t the binding was correctly performed accord-
ing to the products specifications. Henee, the product 
engineers, by means of the link ID_009 in Figure 12, 
checked tha t the configuration of the product A re-
quires the binding of the variants Synchronization and 
LoadBalancing in order to meet strict availability. They 
also checked, by means of the link ID-011 in Figure 12 
tha t the variant Synchronization could affect the re-
quired high performance. Finally, the product engineers 
checked, by means of the link ID-Q1Q in Figure 12, tha t 
the configuration of the product B should bind the vari-
ants DataMonitoring and Routing which implement a 
variation less available but tha t does not jeopardize per-
formance. 

After selecting the specific variants for the prod-
ucts A and B, the last activity (see the sixth activity 
in subsection 3.3) was performed as follows. This ac-
tivity consisted of the generation of the code for the 
products A and B, i.e. the binding of the variability at 
the code-level. To do this, the product engineers used 
the FPLA modeling framework to automatically genér-
ate the code for each one of these two products. Henee, 
for the product A the weavings tha t insert the code of 
the variant Hadoop Clustering into the P P C DataLoader 

were automatically generated (see Figure 13). Similarly, 
for the product B the weavings tha t insert the code of 
the variant RealApplicationClusters into the P P C Dat-

aLoader were automatically generated. In this way, the 
P P C DataLoader can be easily configured to support 
Hadoop clustering as shown in Figure 13, or to support 
Real Application Clusters. 

The development of these two projeets provided the 
necessary da ta to conduct the case study analysis and 
interpretation. 
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4-2.2 Analysis and interpretation 

Quanti tat ive and qualitative analysis was used to ex-
amine the da ta gathered during the case study. The 
da ta collected consisted of the models resulting from 
the projects (see Figures 10-12), archival da ta from 
Redmine, as well as the questionnaires and interviews 
performed with the SPL and product engineers. The 
analysis of these da ta has permit ted to find evidence to 
answer each one of the research questions: 

RQ\. Are Feature-PLA Traceability modeling primi-

tives effective in providing SPL engineers the means 

for specifying traceability for most common kinds of 

variations tha t they define on their product family? 

The evidence to answer RQ\ is explored through 
descriptive statistics tha t measures the number of vari-
ations of interest for the SPL engineers tha t they were 
able to trace by using the modeling primitives provided 
by the Feature-PLA Traceability Model. The number of 
points of variability is three—data storage, clustering, 
and availability—with a total of six variants - Berke-
leyDB and Orac le l lg for da ta storing, Hadoop and 
RAC for clustering, and finally strict and non-strict 
availability. 

The traceability of the variability for da ta storing 
was well-supported through links between grouped fea-
tures and optional components (see the links ID_001 
and ID_002 in Figure 12). As the architects took advan-
tage of the P P C ' s variability mechanism to specify in-
ternal variability of components—specifically to specify 
the variability of clustering and availability—, they re-
quired the capability of tracing this variability which is 
internal to one or more components. Henee, the SPL en-
gineers were able to trace the variants Hadoop and RAC 
to the architectural elements tha t implement these two 
different clustering technologies through links between 
grouped features and variants (see the links ID_006 and 
ID_007 in Figure 12). The SPL engineers were also able 
to trace the variants strict and non-strict availability 
to the architectural elements tha t implement two dif-
ferent availability tactics with different repair t ime— 
active and passive redundaney— through links between 
grouped features and variants (see the links ID_006 and 
ID_007 in Figure 12). 

Therefore, as it can be verified in Figure 12, the 
SPL engineers were able to effectively trace all kinds of 
variations they required. 

RQ2'- Do Feature-PLA Traceability models assist and 
guide SPL engineer at the time of configuring the 
producís of their product family? 

The evidence to answer RQ2 is assessed by analyz-
ing the interviews given to the SPL and product engi-

neers. From these interviews, the following excerpts can 

be highlighted: 

< < I t could have been very difficult for us—the prod-
uct engineers— to be able to determine a valid config-
uration for a metering management system application 
requiring strict or non-strict availability without the 
use of the Feature-PLA Traceability model (see Fig-
ure 12 )>> . 

This means tha t the use of the Feature-PLA Trace-

ability model of Figure 12 was particularly useful for 

the product engineers to understand the system as they 

hadn ' t been developed the O P T I M E T E R SPL plat-

form. 

< < T o configure the producís A and B we needed 
knowledge tha í helped us ío perform íhe binding ac-
cording ío íheir respecíive requiremenís. Wiíhouí íhe 
knowledge provided by íhe Feaíure-PLA Traceabiliíy 
model (see Figure 12), ií may had been difiieulí ío 
know (i) if a meíering managemení sysíem applicaíion 
requiring síricí availabiliíy had ío implemení íhe ser-
vices for synchronizaíion and load balancing, or (ii) if 
a meíering managemení sysíem applicaíion requiring 
non-síricí availabiliíy had ío implemení íhe services 
for rouíing and da ía moniíoring. This means, wiíhouí 
íhe íraceabiliíy model, we hadn ' í feel confidení abouí 
wheíher íhe varianís we bound implemeníed all íhe ser-
vices ío saíisfy íhe requiremenís of íhe producís A and 
B. So, íhe íraces beíween (i) íhe feaíure síricí availabil-
iíy ío íhe varianís Synchronization and LoadBalancing, 

and (ii) íhe feaíure non-síricí availabiliíy ío íhe vari-
anís Routing and DataMonitoring, were really useful 
ío ensure íha í íhe ginding of variabiliíy was realized 
correc í ly>>. 

<<Fea íu re -PLA Traceabiliíy models may be use-
ful ío ideníify where a feaíure is implemeníed in íhe 
PLA. As a resulí, ií may also be useful ío ideníify, 
given a change in a feaíure, where íhe change impacís 
íhe PLA. From íhe Feaíure-PLA Traceabiliíy model of 
Figure 12 ií is easy ío observe íha í a change in íhe 
íacíic ío implemení síricí availabiliíy may impací íhe 
varianís Synchronization and LoadBalancing. Perhaps 
íhis is noí easy ío locaíe in íhe code, buí by making ií 
available ai íhe archiíecíure-level, Feaíure-PLA Trace-
abiliíy models faciliíaíe íhis íask. This impací knowl-
edge may help us ío correcíly implemení a change while 
mainíaining íhe iníegriíy of íhe a rch i íec íure>>. 

These excerpís from íhe SPL and producí engineers 
puf in evidence íha í our soluíion for íracing variabiliíy 
assisíed and helped íhem ai íhe íime of configuring íhe 
íwo meíering managemení sysíems (producís A and B) 
from íhe O P T I M E T E R PLA. 
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4-2.3 Evaluation of validity 

Case studies are qualitative in nature. For this reason, 
collected data from case studies are usually very diffi-
cult to be objectively judged [61]. To improve the in-
ternal validity of the results presented, the independent 
variables that could influence this case study have been 
identified as follows: The engineer's experience has a 
great influence. Its influence has been reduced as the 
expertise of the engineers who participated in the case 
study were very different (1 year vs. 7 years). However, 
the influence of project's size and architecture's com-
plexity cannot be reduced due to the inherent nature of 
case studies, which normally focus on one project. Also 
to improve the internal validity of the results, triangu-
lation of source data has been used to increase the relia-
bility of the results. In this regard, interviews were indi-
vidually conducted with the engineers, although several 
questions were asked in a group setting to encourage 
discussion. 

Construct validity is concerned with the procedure 
to collect data and with obtaining the right measures 
for the concept being studies. It addresses among others 
misinterpretation of interview questions which was mit-
igated by discussing the interpretations of interviews 
with the interviewees to validate them. 

However, the major limitation in case study research 
concerns external validity, i.e. "the generality of the re-
sults with respect to a specific population" [22], as only 
one case is studied. In return, case studies allow one to 

evalúate a phenomenon, a model, or a process in a real 
setting. This is something important in software engi-
neering in which a multitude of external factor may af-
fect to the validation results, and that other techniques 
such as formal experiments, although they permit repli-
cation and generalization, do not consider as they are 
conducting under controlled settings. 

Reliability is concerned with replication, in case stud-
ies with the fact that the same results would be found 
if re-doing the analysis. This is why interviews were 
recorded and interpretations were reviewed by other 
participants in the study in order to avoid researcher 
bias. 

4.3 Case Study Conclusions 

We obtained evidence of the viability of the Feature-
PLA Traceability Model through the execution of el CclSG 

study performed in an experimental laboratory called 
i-Smart Software Factory. It combines both academic 
and industrial efforts in R&D, with remarkable facilities 
for tracking the projeets' progress. The case study puts 
the proposed traceability solution into practice within 
the development of a SPL of power metering manage-
ment systems for Smart Grids. The results show evi-
dence of that (i) the Feature-PLA Traceability model-
ing primitives were effective in providing the capabili-
ties for tracing most common kinds of variations that 
the SPL engineers required define, and (ii) the Feature-



PLA Traceability provided knowledge that helped the 
product engineers to make better decisions at the time 
of configuring the producís A and B during Optime-
ter II as they did not know the OPTIMETER SPL 
platform because they had not participated on its con-
struction during Optimeter I. These promising results 
did not interfere with other practices and did not incur 
a big cost, making traceability possible. However, the 
use of the Feature-PLA Traceability Model requires to 
know and understand the modeling concepts on which 
they are based on, as well as to learn the usage of the 
FPLA modeling framework. The learning curve of these 
concepts as well as the usage of FPLA could slow down 
the process of putting traceability into practice. In fact, 
the SPL engineers expressed reluctance at the time of 
putting traceability into practice, although later, the 
product engineers found this traceability essential to 
do their work during the configuration of variability to 
derive the producís A and B. 

5 Related Work 

Recently, íhere has been a growing recogniíion of íhe 
imporíance of íraceabiliíy in SPLE, which has resulíed 
in more and more research in íhis Henee, Moon eí 
al. [38] defined a Variabiliíy Trace Meíamodel íhaí con-
necís íwo meíamodels: a meíamodel for requiremenís 
and a meíamodel for archiíecíure. Ajila eí al. [3] pre-
seníed an evoluíion model íhaí defines a dependeney re-
laíionship sírucíure of various SPL aríifacís. Saíyananda 
eí al. [52] preseníed a framework for formally ideníify-
ing íraceabiliíy beíween feaíure and archiíecíure mod-
els using Formal Concept Analysis, funcíional decompo-
siíion, and a seí of mapping analysis rules. Finally, Berg 
eí al. [10] also defined a concepíual variabiliíy model 
íhaí capíures variabiliíy informaíion across íhe various 
aríifacís involved in íhe SPLE developmení. All íhese 
approaches16 offer supporí for íracing SPL, including 
íraceabiliíy of variabiliíy. The granulariíy of íraceabil-
iíy links relies largely on íhe granulariíy of elemenís 
ío be íraced, wheíher requiremenís, archiíecíural el-
emenís, or classes. The approaches before meníioned 
supporí archiíecíural variabiliíy by adding or removing 
componenís or connecíions. However, íhese approaches 
do noí have íhe capabiliíies for íracing íhe variabiliíy 
íhaí is iníernal ío componenís, i.e. variaíions íhaí have 
fine granulariíy and cannoí be designed as componenís. 
In íhis sense, our íraceabiliíy model íakes an síep for-
ward due ío íhe fací íhaí ií is based on íhe Flexible-
PLA Model which allows SPL engineers ío specify boíh 

1 6 Although other papers propose other traceability ap-
proaches [49,47,42], we did not include them here as they 
do not consider SPLE. 

exíernal and iníernal variabiliíy íhanks ío íhe PPC's 
variabiliíy mechanism. The fací íhaí iníernal variabil-
iíy can crosscuí several componenís, and íhaí is modu-
larized and reused by PPCs (i.e. íhis variabiliíy is noí 
scaííered íhrough íhese componenís), makes ií easier 
iís íraceabiliíy. Therefore, our approach makes boíh 
coarse-grained and fine-grained íraceabiliíy possible. 

Addiíionally, Saíyananda eí al. [52] defined a seí 
of mapping analysis rules similar ío íhe linkage rules 
we propose. These rules are íexíually described while 
íhe linkage rules we propose are formally síaíed by 
íhe Feaíure-PLA Traceabiliíy Model. Models are com-
pleíely subjecí ío auíomaíion, which (i) makes ií eas-
ier ío define íraceabiliíy links while íheir correcíness is 
guaraníeed by model-conformaíion, (ii) promoíes learn-
ing and reasoning over íhe knowledge íhey coníain, and 
(iii) provides íhe capabiliíies ío (semi-)auíomaíically 
generaíe oíher aríifacís, such as code, íhrough model 
íransformaíions. 

Finally, ií is imporíaní ío meníion íhe work of An-
queíil eí al. [4] íhaí defined a common íraceabiliíy frame-
work across íhe various acíiviíies of SPL developmení 
and specified a meíamodel for a reposiíory of írace-
abiliíy links. This framework provides a big picíure of 
íraceabiliíy for SPL by offering modeling primiíives for 
íracing any aríifací involved in íhe SPL developmení. 
This compleíe framework does noí embed all íhese ar-
íifacís buí embed references ío íhem in order ío make 
manageable íhe high number of aríifacís íhaí a com-
pleíe SPL consírucíion requires ío írace. As a resulí, 
sources and íargeís of íraceabiliíy links are paíhs where 
íhe aríifacís are síored or can be found (documenís, 
diagrams or classes). The fací íhaí íhese aríifacís are 
exíernal ío íhe íraceabiliíy model makes ií difficulí ío 
guaraníee íhaí a change in an aríifací is also updaíed 
in íhe íraceabiliíy model. Addiíionally, íhis artifaets 

outsourcíng makes ií difficulí ío undersíand íhe írace-
abiliíy models and íheir usage as a guidance during 
íhe configuraíion of íhe producís of a SPL while en-
suring íhaí íhe variabiliíy binding meéis íhe producí 
requiremenís. This is due ío íhe fací íhaí íhe relaíion-
ships inside aríifacís (e.g. a feaíure has a XOR feaíure 
group) are noí included in íhe íraceabiliíy framework 
and íraceabiliíy links do noí coníain raíionale and in-
formaíion abouí íhe íraceabiliíy-making process. The 
Flexible-PLA Traceabiliíy Model reduces iís scope by 
focusing on íhe íraceabiliíy beíween feaíure and PLA 
models and prioriíizes íhe knowledge and guidance íhaí 
íraceabiliíy models can provide during SPL producí 
configuraíion ío ensure íhe requiremenís compliance. 
This is supporíed by including íhe source and íargeí 
aríifacís—íhe Feaíure and PLA models—inío íhe írace-
abiliíy model, as well as íheir relaíionships, and en-



riching traceability links with rationale and information 
about the traceability-making process. 

6 Conclusions and Further Work 

SPLE is facing new challenges, being one of the most 
important the traceability of variability. To deal with 
this challenge, this paper presents a solution for tracing 
Feature and PLA models called Feature-PLA Traceabil-
ity Model, as well as the modeling framework that sup-
port it. The Feature-PLA Traceability Model defines 
a set of linkage rules to trace variable features to both 
the coarse-grained variability of complex components— 
external variability—and the fine-grained variability of 
simple components - internal variability. 

The description and the traceability of the variabil-
ity that is internal to one or many components is as 
important as the description and the traceability of the 
external variability. It is essential to cope with most 
kinds of variation that SPL engineers could define on 
their product families. Supporting both coarse-grained 
and fine-grained traceability of variability helps prod-
uct engineers at the time of configuring this variability 
to derive producís. This means that product engineers 
can examine Feature-PLA Traceability models to en-
sure that variability bindings satisfy the product re-
quirements. 

As future work, the knowledge stored in Feature-
PLA Traceability models could be used to analyze the 
impact of changing requirements, i.e. to analyze how 
a change in features may affect the architecture by 
traversing the traces that link them. this was suggested 
by the engineers involved in the case study during the 
interviews. Additionally, the knowledge currently stored 
could be extended to capture more types of knowledge, 
such as domain knowledge, design decisions, assump-
tions, etc. 

The Feature-PLA Traceability model and its usage 
still have several limitations that should be addressed 
in the near future. The main one is scalability, such as a 
scalable visualization. However this limitation is more 
related to the algorithms to leverage and visualize the 
traceability knowledge than the expressiveness of the 
traceability model. 
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