
A Model for Tracing Variability from Features to Product-Line
Architectures: A Case Study in Smart Grids

Jessica Díaz • Jennifer Pérez • Juan Garbajosa

Abstract In current software systems with highly vola-
tile requirements, traceability plays a key role to main-
tain the consistency between requirements and code.
Traceability between artifacts involved in the develop-
ment of Software Product Lines (SPL) is still more crit-
ical because it is necessary to guarantee that the se-
lection of variants that realize the different SPL prod-
ucís meet the requirements. Current SPL traceability
mechanisms trace from variability in features to vari-
ations in the configuration of product-line architecture
(PLA) in terms of adding and removing components.
However, it is not always possible to materialize the
variable features of a SPL through adding or remov-
ing components, since sometimes they are materialized
inside components, i.e. in part of their functionality: a
class, a service and/or an interface. Additionally, varia-
tions that happen inside components may crosscut sev-
eral components of architecture. These kinds of varia-
tions are still challenging and their traceability is not
currently well-supported. Therefore, it is not possible to
guarantee that those SPL producís with íhese kinds of
variaíions meeí íhe requiremenís. This paper presenís
a soluíion for íracing variabiliíy from feaíures ío PLA

by íaking íhese kinds of variaíions inío accouní. This
soluíion is based on models and íraceabiliíy beíween
models in order ío auíomaíe SPL configuration by se-
lecíing íhe varianís and realizing íhe producí applica-
íion. The FPLA modeling framework supporís íhis so-
luíion which has been deployed in a software facíory.
Validaíion has consisíed in puííing íhe soluíion inío
pracíice ío develop a producí line of power meíering
managemení applicaíions for Smarí Grids.

Keywords Traceabiliíy Modeling • Software Producí
Line Engineering • Producí-Line Archiíecíure •
Variabiliíy

1 Introduction

Traceabiliíy defines and mainíains relaíionships beíween
aríifacís involved in íhe software life cycle [19,2] in
boíh forward and backward direcíions, e.g. from re-
quiremenís ío code and from code ío requiremenís, re-
specíively. Curreníly, software sysíems are coníinuously
undergoing changes due ío íhe compeíiíiveness of íhe
software markeí and íheir changing íechnologies. In soft-
ware sysíems wiíh highly volaíile requiremenís, írace-
abiliíy has become a criíical issue. Numerous researchers
have puí íheir work over pasí years on íraceabiliíy from
problem space ío soluíion space in íradiíional software
developmení and evoluíion [13,47-49]. In íhis regard,
íoday íhere are síill several challenges ío be dealí wiíh.
Specifically íhe Center ofExcellence for Software Trace-

ability ideníified eighí challenges relaíed ío íhe purpose,
cosí, configuration, confidence, scalabiliíy, poríabiliíy,
valué, and ubiquiíy of íraceabiliíy [20]. This íraceabil-
iíy is even more challenging in recení software develop-
mení paradigms such as Software Producí Line Engi-
neering (SPLE [14,46]). In fací, íhe capabiliíy of írac-

ing variability in a family of the producís is still a

challenge [37], as well as important: "the traceability

work tha t is emerging from product line engineering

contexts may have wider applicability to broader trace-

ability reuse" [20].

This paper focuses on the traceability between the
artifacts resulting from the SPLE phases domaín anal-

ysis [26] and product-line architecting [35]. During the
domain analysis phase, feature models [25] are usually
used to describing requirements in terms of common
and variable features of the set of producís tha í make
up a SPL. Then, íhese feaíures are realized and de-
scribed ai architectural level in product-line architec-
ture (PLA) models. Our approach is somewhat based on
the work by Ramesh & Jarke [49] and Pohl et al. [47],
but particularizes the traceability definition between
requirements and architecture in features and PLA by
taking into account the traceability of variability. This
traceability of variability is critical to configure the PLA
and realize the producís while ensuring tha í íhey meeí
íhe requiremenís, i.e. ío check íha í íhe variabiliíy bind-
ing performed during íhe configuraíion of producís saí-
isfies íhe producí requiremenís.

How variabiliíy is specified in feaíure and PLA mod-
els largely deíermines how variabiliíy can be íraced.
There has been an exíensive research on supporíing
íhe represeníaíion of variabiliíy in feaíure models [25,
5,9], PLA models [23,43,6,16,60,1], as well as íhose ap-
proaches íha í propose dedicated variability models [46,
7,30]. Based on íhis síaíe-of-íhe-arí, currení SPL írace-
abiliíy mechanisms írace íhe exisíing variabiliíy in fea-
íure models ío variaíions in íhe PLA. This íraceabiliíy
is usually relaíed ío variaíions in íhe configuraíion of
archiíecíures as well as in íhe configuraíion of compos-

ite components [31], aka. subsystems [24]. These varia-
íions are realized íhrough adding or removing compo-
nenís and/or connecíors. This means, íhe configuraíion
of archiíecíure is cusíomized by selecíing opíional, al-
íernaíive, or múltiple componenís and íheir respecíive
connecíors. We refer ío íhese kinds of variaíions as es-

ternal variability.

However, exíernal variabiliíy is noí enough ío com-
pleíely define all kinds of variaíions [6] and ío írace
íhem from feaíures ío PLA [60]. This happens when
variaíions have a lower-granulariíy íhan íhe granular-
iíy of componenís (e.g. classes, services, or iníerfaces
íha í implemení funcíionaliíies such as logging, daía-
base connecíions, lisíeners of an evení-based archiíec-
íure, graphical conírollers, etc.), so tha í íhey are maíe-
rialized inside simple components - or non-composite

components. In íhese componenís, in which variabil-
iíy occurs inside, par í of íheir funcíionaliíy is common
ío íhe SPL and par í of íheir funcíionaliíy changes de-

pending on íhe producí ío be realized. As a resulí, in
order ío supporí íhis iníernal variabiliíy, ií is neces-
sary ío specify variaíions íha í are iníernal ío compo-
nenís. We refer ío íhis kind of variaíions as internal

variability. In addiíion, íhis iníernal variabiliíy is es-
pecially relevaní, buí no specific, when describing vari-
abiliíy íha í refers ío non-funcíional feaíures or qualiíy
aí í r ibuíes [32], since íhey may crosscuí several compo-
nenís of íhe PLA. For example: Suppose an illusíraíive
example of a SPL for banking sysíems íha í consisís of a
seí of core componenís íha í offer íheir funcíionaliíy ío
Auíomaíic Teller Machines (ATM) and bank web ap-
plicaíions (WebApp). Boíh ATM and WebApp aim ío
provide a cosí-effecíive service ío bank cusíomers íha í
is conveniení, safe, and secure 24-hour access for realiz-
ing a common seí of banking íransacíions. A few lines of
code implemeníing íhe funcíionaliíy regarding qualiíy
aí ír ibuíes, such as availability or data encryption, are
necessary. This code is scaííered across íhe componenís
WebApp and ATM and ií has variaíions in iís behavior
depending on íhe specific banking sysíem producí by
selecíing síricí or non-síricí availabiliíy or differení en-
crypíing algoriíhms. Therefore, íhis iníernal variabiliíy
could affecí many differení producís or íhere could even
be conflicíing qualiíy aí ír ibuíes (e.g. írade-offs beíween
availabiliíy and performance) in differení producís of
íhe same family. As a resulí, íhe absence of íraceabil-
iíy íha í considers iníernal variabiliíy implies íha í ií is
noí possible ío check if íhe SPL producís wiíh iníernal
variabiliíy meeí íhe requiremenís. Therefore, íhe capa-
biliíy of íracing iníernal variabiliíy is as imporíaní as
íhe capabiliíy of íracing exíernal variabiliíy.

This paper presenís a soluíion ío írace variabiliíy
from feaíures ío boíh exíernal and iníernal archiíec-
íural variabiliíy. This soluíion has been consírucíed
using íhe meíamodeling approach, since models auío-
maíe developmení íasks and síimulaíe learning and rea-
soning capabiliíies, which is esseníial for íracing aríi-
facís. Therefore, our soluíion is consíi íuíed by a seí
of models for describing and íracing PLAs from fea-
íures. The descripíion of feaíures is supporíed by íhe
Feature Model [25,15]. The descripíion of PLAs is sup-
poríed by a previous work íha í presenís íhe Flexible-

PLA Model [45] as a soluíion for specifying boíh (i) ex-
íernal variabiliíy of íhe archiíecíure configuraíion and
composiíe componenís, and (ii) iníernal variabiliíy of
simple componenís. Specifically, in íhis paper we presení
a model íha í supporís íraceabiliíy beíween feaíures
and PLA, called Feature-PLA Traceability Model. The
Feaíure-PLA Traceabiliíy Model defines íhe principies
íha í govern íhe íraceabiliíy links beíween íhe Feaíure
model and íhe Flexible-PLA model, i.e. íhe rules íha í
musí be meí ío creaíe links beíween íhe íwo mod-

els. These rules assist software engineers in defining
both coarse-grained and fine-grained links which trace
external and internal variability between features and
PLA. The goal of also tracing internal variability—
i.e. at fine-grained level—is to reduce error-prone de-
cisions at the time of configuring variability to derive
producís—from a SPL platform—according to product-
specific requirements. The usage of the Feature-PLA
Traceability Model is possible due to the FPLA mod-
eling framework1.

We have put the Feature-PLA Traceability Model
into practice in a software factory, in a project for de-
veloping a product line of power metering management
applications for Smart Grids. Validation is performed
using the case study technique following the guidelines
of Runeson and Hóst for describing case studies [51].
This case study allowed us to obtain evidence of that
the Feature-PLA Traceability Model was effective and
helped engineers in the development and configuration
of a successful product line in an industry project.

The structure of the paper is as follows: Section 2
describes background in which our solution is based
on. Section 3 describes the Feature-PLA Traceability
Model. Section 4 presents the case study used to valí-
date the Feature-PLA Traceability Model, i.e. its viabil-
ity, effectiveness, and helpfulness in an industry project.
This section also discusses about limitations of our so-
lution. Section 5 analyzes related work. Finally, conclu-
sions and further work are presented in Section 6.

2 Background

This section describes the required background to detail
the contribution of this paper, i.e. the models that the
Feature-PLA Traceability Model traces.

2.1 The Feature Model

Numerous methods for domain analysis can be found
in literature, although one of the most widely used is
the Feature-Oriented Domain Analysis (FODA) [25,5]
in which our work is based on. The FODA method in-
troduces the feature modelíng technique for capturing
commonality and variability of SPL in terms of features.
This method defines a feature as "a prominent or dis-
tinctive user-visible aspect, quality, or characteristic of
a software system or system" [25]. Feature modeling is
graphically described through the feature diagram no-
tation, which specifies all producís of a family through
a hierarchical íree-like sírucíure. We use íhe exíended

1 It is available on: https://syst.eui.upm.es/FPLA/home

feaíure meíamodel definiíion proposed by Czarnecki eí
al. [15] which includes íhe following concepís:

— A root feature modularizes íhe model in a íree-like
sírucíure, in which íhere is a main rooí.

— Solitary features represen! mandatory or optional

characíerisíics of a software sysíem which can be
composed of zero or more soliíary feaíures and by
zero or more feature groups.

— A feature group consisís of a seí of grouped features

which in íurn can be composed of zero or more soli-
íary feaíures and by zero or more feaíure groups.
Feaíure groups can be OR or XOR. The firsí one
forces ío choose m grouped feaíures (being m < to-
tal number of grouped features). The second one
forces ío choose only one grouped feaíure.

Figure 1 exemplifies íhese concepís íhrough a simple
feaíure model of a family of e-readers. The rooí feaíure
of íhe íree is called e-readers family. A seí of soliíary
feaíures are hooked ío íhe rooí, such as interface and
connectivity. The soliíary feaíure interface is composed
of a XOR feaíure group íhaí supporís cusíomized in-
íerfaces, such as keyboard or multi-touch, whereas íhe
soliíary feaíure connectivity is composed of íhe soliíary
feaíures Wi-Fi and 3G. The soliíary feaíure Wi-Fi is
a mandaíory feaíure for all producís of íhe e-readers
family while 3G is opíional.

iO-pointmullí touoh.._: i 3G I Wi-Fi

^ Legend

RootFeatu ZJ
5olrt¿ryFg¿taijre

GroupedFeature

• ^ ORFeatijreGrüup

-^ XOR FearureGroirp

S Mandatory Feature

tf Opíional Feature

Fig. 1 E-readers SPL: Feature Model

2.2 The Flexible-PLA Model

The Flexible-PLA Model [45] is a precise represenía-
íion for capíuring variabiliíy as parí of PLAs. The main
concepí underlying Flexible-PLA Model is íhe concepí
oí Plástic Partial Component (PPC [45]). The concepí
of PPC is a soluíion ío compleíely supporí íhe iníer-
nal variaíion of archiíecíural componenís. Therefore, ií

https://syst.eui.upm.es/FPLA/home

is a component that part of its behavior corresponds
to the core of a SPL and part of its behavior is spe-
cific of a product or set of producís from that SPL.
The other concepts that are common to PLAs, such
as components, connector, ports, etc., are specified as
it is usually done in common Architecture Descríptíon

Languages [36].
The variability mechanism underlying PPCs is based

on the principies of invasive software composition and
the combination of two approaches to define software
architectures: the Component-Based Software Develop-

ment [58] and the Aspect-Oriented Software Develop-

raent [27]. The variability of a PPC is specified using
variability points which hook fragments of code to the
PPC known as variants, and weavings which specify
where and when extending the PPCs using the variants.
Weavings are defined outside from PPCs and variants
so that these PPCs and variants are independent of the
weaving or linking context. As a result, variants can
be reused and crosscut several PPCs of the PLA. Ad-
ditionally, PPCs reduce dependences and coupling be-
tween components and their variants, and enable easy
and cheap (un-)weaving of variants. These advantages
have been successfully applied to SPLs [45,44,17].

The concepts of the Flexible-PLA model are exem-
plified by the graphical representation of a PPC called
interface (see Figure 2). The PPC interface defines a
variability point which hooks the code that implements
the variants keyboard and multi-touch.

^inlerrace

;~ j weavingMulti-Toiich

A varíablljtypoint - - - a f t e r

Píastic Partial Compon&nt VM ¡abilitv Poinr

^ M Pon

Component A ^ h ^ t

Fig. 2 E-readers SPL: Flexible-PLA Model

3 Feature-PLA Traceability Model

This section presents the Feature-PLA Traceability Model
as a solution for tracing features to PLA. Tracing ar-
tifacts aims to automate development tasks, as well as
to stimulate learning and reasoning. Models, traceabil-

ity between models, and model transformations are the
basis to automate development tasks, which is known
as model-driven development (MDD [11]). Additionally,
models help us understand complex problems and their
potential solutions through abstraction [55], and could
stimulate learning and reasoning [56]. For this reason,
the proposed solution is based on models, specifically
the Feature and Flexible-PLA Models, as well as the
Flexible-PLA Traceability Model that defines traceabil-
ity between the two first models.

The Feature-PLA Traceability Model provides mod-
eling primitives to define traceability links, i.e. rela-
tionships, between elements belonging to the Feature
Model (see Section 2.1) and elements belonging to the
Flexible-PLA Model (see Section 2.2). These relation-
ships are established between the set of feature elements
and a set of architecture elements that satisfy them
(aka. Satisfaction Links [49]). Henee, a feature element
may define some kind of constraint or goal which may
be satisfied by one or more architecture elements, while
an architecture element may satisfy one or more feature
elements. In this regard, the Feature-PLA Traceability
Model defines the rules that govern the creation of these
relationships. These rules are called linkage rules.

To be able to use these modeling primitives, it is nec-
essary to define a domain-specific (modeling) language

(DSL [59]). The next subsections describe (i) a DSL ab-
stract syntax through the definition of the Feature-PLA
Traceability metamodel, its domain concepts, relation-
ships and rules, (ii) a DSL concrete syntax by defining a
graphical language representation, and (iii) how putting
these modeling primitives in practice.

3.1 Abstract syntax: metamodel description

Metamodels describe how models can be specified and
establish the properties of models in a precise way. In
addition, a metamodel is characterized because it allows
the verification of those models that are constructed
and conformed to it [12]. The realization of MDD prin-
cipies is made around a set of OMG standards like
MOF [40] which is a metametamodel. Specifically, our
solution is based on MOF 2.0 and uses UML 2.0 to
specify a metamodel which we refer to as Feature-PLA
Traceability metamodel.

The Feature-PLA Traceability metamodel (see Fig-
ure 3) is composed of a set of inter-related metaclasses.
These metaclasses define a set of properties and services
for each concept considered in the model. On the one
hand, metaclasses, their properties and their relation-
ships describe the structure and the information that
is necessary to define traceability links and their link-
age rules. On the other hand, the services of metaclasses

iJefinesJinkjLierult-E

Fig. 3 Feature-PLA Traceability metamodel

offer the primitives to develop instances by creating, de-
stroying, adding or removing elements which are com-
pliant with the constructors of the metamodel2. Those
constraints that cannot be defined through the use of
relationships and their cardinality are specified by us-
ing the Object Constraint Language (OCL [41]), such
those described as textual information in UML notes
(see Figure 3).

The Feature-PLA Traceability metamodel is cre-
ated with the aim of facilitating its integration with
general-purpose traceability metamodels, such as the
Metamodel for Requirements Traceability [29], or the
EML Trace [28]. These models define the concept of
traceability link through a metaclass that supports the
traceability between any two models. We have re-used

2 Most services are omitted to gain readability.

this metaclass, henee traceability links are described
by the metaclass TraceabilityLink (see Figure 3). It of-
fers the primitives to instantiate traceability links. The
metaclass TraceabilityLink has five attributes (see Fig-
ure 3). Additionally, in order for the user to set the
traces between the right elements, it is necessary to de-
fine a set of linkage rules that establish the constraints
that govern the creation of these traces. To that end,
the metaclass TraceabilityLink defines five linkage rules
(see dashed rectangles labeled from A to E in Figure 3).
Attributes and linkage rules as described below.

The metaclass TraceabilityLink has the attributes
Description, Why, Who, When and Satisfacing. These
properties store semantic knowledge about the trace-
ability links. The attribute description keeps a brief
description of the link. The attribute why stores the

traceability link's rationale. The attributes who and
when keep who creates the traceability link and when it
is created, respectively. The definition of the attribute
satisfacing is based on the work by Ramesh & Jarke [49]
who defined a scheme for assigning qualitative degree
of satisfaction to links, i.e. a measure of the extent of
how long one element affects another. Hauser & Claus-
ing [21] use four categories to relate how design affects
quality requirements: strong positive, médium positive,

médium negative, and strong negative. Positive valúes
measure the degree to which features are satisfied, e.g.
a recovery feature to provide response of 100 millisec-
ond may be considered to be well satisfied, so that
90 millisecond and 110 millisecond response time may
be considered to satisfy the feature with different de-
grees. Negative valúes may capture trade-offs between
features, e.g. a component that satisfies an availability
feature may have a strong negative impact on a per-
formance feature. This scheme is incorporated in our
traceability model as follows: an element belonging to
the Flexible-PLA Model may contribute toward satis-

ficing an element belonging to the Feature Model along
these four categories. Thereby, it is possible to assign
the valúes strong positive, médium positive, médium
negative, and strong negative to the attribute satisfic-
ing of a traceability link.

The metaclass TraceabilityLink defines five linkage
rules (see the association relationships between the meta-
class TraceabilityLink and the metaclasses LinkageRule.
{A-E} in Figure 3). The linkage rules define how rela-
tionships can be established, i.e. the rules that restrict
which elements belonging to the Feature Model can be
traced to which elements belonging to the Flexible-PLA
Model. These linkage rules act as constraints that must
take variability into account. Variability in the Feature
Model is specified by means of optional solitary fea-
tures, feature groups, and grouped features. Variabil-
ity in the Flexible-PLA Model is specified by means
of optional components and optional connectors, which
describe external variability of architecture configura-
tion, as well as variability points and variants, which
describe the infernal variability of PPCs. These forms
of variability constrain the traces that can be defined
in such a way that the linkage rules define the following
constraints:

Linkage Rule A: A mandatory solitary feature can trace
to a component or a PPC.

Linkage Rule B: An optional solitary feature can trace
to an optional connector. A feature group can trace
to an optional connector.

Linkage Rule C: A feature group can trace to a vari-
ability point.

Linkage Rule D: A grouped feature can trace to an op-
tional component or an optional PPC.

Linkage Rule E: An optional solitary feature can trace
to a variant. A grouped feature can trace with a
variant.

These constraints of the traces are implemented in
the Feature-PLA Traceability metamodel through five
metaclasses to which we refer to as LinkageRule.{A-E}

(see Figure 3). These metaclasses define associations
with the metaclasses from Feature and Flexible-PLA
metamodels3. As a result, any link between an element
from a Feature model and an element from a Flexible-
PLA model must be compliant with one of these linkage
rules. As the linkage rules support external and infernal
variability, both fine-grained and coarse-grained trace-
ability links can be defined.

In this regard, it is necessary to highlight that we
decided not to add a new attribute (with the types of
linkage rules and define the corresponding OCL con-
straints) into the metaclass TraceabilityLink in order
to preserve the metaclass TraceabilityLink of general-
purpose traceability models. In order to realize this
typing we defined five linkage rules through five meta-
classes. In this way, we guarantee that the Feature-PLA
Traceability Model can be reused by and integrated in
other traceability models.

Finally, it is necessary to highlight that this meta-
model conforms to a general-purpose Traceability model
(see [18]) which is located in an upper layer of the MOF
Architecture [40] (meta-metamodel layer). In this way,
the metaclasses TraceabilityLink and LinkageRule.{A-

E] conform to two meta-metaclasses (TraceLink and
LinkageRule) of this meta-metamodel. The definition
of the metaclasses LinkageRule.{A-E} allowed us to ex-
tend the rationale of the linkage rules.

3.2 Concrete Syntax: Graphical language description

A graphical modeling language has been defined as this
kind of languages is usually more intuitive.

Figure 4 illustrates the Feature-PLA Traceability
graphical language through an example of a SPL of e-
readers. Figure 4 shows six traceability links and their
properties—satisfacing, who, and when (see ID_001 to
ID_006). The traceability link ID_003 defines a relation-
ship between the optional solitary feature 3G and the
optional component that implements it (e.g. see the
properties: strong positive, J.Smith and 03/09/2012).
This link traces a variation that is materialized by adding

3 The Feature metamodel is described in [15] while the
Flexible-PLA metamodel is described in [45]

I i reaclincí

I ^ J co n n ectivity

E5) IDJOI

V Etronq positive

ft J. Smith (¡jrchitect]

m 02/04/2012

I — • * -
I • •• i-fi

• .'' ID_íi'J2

V stronq positive

* J. Smith

* 05/042012

r̂ ~i ^ 5tronq positive

l U J. Smith

fe 03/09/2012

I1..1]

E$ID_ÜÜ4

Etrcnq positive

L\£ P. Brown (analystj

fe

?ID_0Q5

^ stronq positive

I r£ P. Brown

06/04/2012

.•*\ variabilitypoint

A . [1.1]

_ .^5-»ay_cí>nfror ierJ
^10 -£o in t_mu l t i t ouch J —

V stronq po^itive

I .-j P. Brown

fe 09/04/2012

C multi-touch - keyboard

Fig. 4 E-readers SPL: Feature-PLA Traceability Model

or removing the component 3G to/from the configura-
tion of the PLA. Therefore, this link traces external
variability. The traceability link ID_005 defines a re-
lationship between a point of variability related to the
types of interfaces —a feature group— and the variabil-
ity point that implements it. Finally, the traceability
link ID_006 defines a relationship between the grouped
feature 2-poínt multítouch and the variant that imple-
ments it. This link traces a variation that is not ma-
terialized by adding or removing a component because
of its small size —it is a service called MstenTouch (see
Figure 5). This variation is materialized by weaving or
unweaving the variant multí-touch to/from the PPC in-

terface, i.e. by injecting (or not) the service MstenTouch

instead, before, or after the execution of the service
UstenActíon of the PPC ínterface. Therefore, this link
traces internal variability.

:~j weavingKeyboard

L J keyboard

:~j weavingKeyboard

_J [~_j after

'——*.. [~_2 weavingMulti-Touch

_J [~_j after

'——*.. [~_2 weavingMulti-Touch

i—-
i l¡5tenAction.¡____

_J [~_j after

'——*.. [~_2 weavingMulti-Touch

i—-
i l¡5tenAction.¡____

_J [~_j after

'——*.. [~_2 weavingMulti-Touch
L J rnijltj-touch

_J [~_j after

'——*.. [~_2 weavingMulti-Touch

NttenTciiJch

_J [~_j after

'——*.. [~_2 weavingMulti-Touch

NttenTciiJch l~J2 after NttenTciiJch NttenTciiJch

Fig. 5 E-readers SPL: weaving definition

3.3 Feature-PLA Traceability Model in Practice

The solution presented in this paper for tracing vari-
ability from features to PLA is supported by the FPLA
modeling framework. FPLA is an open-source graphical
tool that is available for the community as an Eclipse
plug-in4. The use of the FPLA modeling framework to
put this solution into practice is described through a
set of activities as follows.

4 https://syst.eui.upni.es/FPLA/home

https://syst.eui.upni.es/FPLA/home

1. SPL domain analysts model the problem space, i.e.
specify common and variable features through a Fea-
ture model.

2. SPL architects model the solution space (PLA), i.e.
specify the PLA structural configuration through a
Flexible-PLA model.

3. Both domain analysts and architects define the trace-
ability links between a Feature model and a Flexible-
PLA model, i.e. establish the relationships between
elements from these two models through a Feature-
PLA Traceability model.

4. SPL developers implement and test the components
and services of the SPL. The resulting source code is
linked to the components specified in the Flexible-
PLA model. To do this, Flexible-PLA models pro-
vide links to external sources.

5. Product engineers configure specific products through
the binding of the variability according to the prod-
uct needs - product-specific requirements. The FPLA
modeling framework allows product engineers to spec-
ify this binding (see the •/mark in Figure 5 that
selects the multi-touch feature).

6. Product engineers examine the Feature-PLA Trace-
ability model to ensure that the variability binding
was correctly performed. This means, to check that
the binding performed in the PLA meets and satis-
fies the product-specific requirements.

7. Finally, the FPLA modeling framework automati-
cally binds the variability from PLA to code in or-
der to configure components and genérate code for
specific products. This means, FPLA automatically
generates code skeletons from Flexible-PLA mod-
els and composes the code from external sources by
using model-to-text transformations.

4 Case Study

This section aims to provide empirical evidence that
validates that the use of the Feature-PLA Traceability
Model is viable in an industry project, as well as effec-
tive and helpful for developing and configuring software
product lines. Since the goals to be validated are quali-
tative, we use the case study technique. Case study re-
search is a technique that consists of the investigation of
contemporary phenomena in their natural context [61]
to search for evidence, gain understanding, or test the-
ories by primarily using qualitative analysis [50].

The case study was conducted in an experimental i-
smart software factory (iSSF [33]) which is deployed in
the Technical University of Madrid (UPM5) and Indra

Software Labs6. Specifically, the case study was per-
formed within an industrial project on Smart Grids [34]
to develop a SPL of a family of power metering man-

agement systems. The authors of this paper have been
involved since 2011 with this particular investigation.

The iSSF is a software engineering research and ed-
ucation setting in cióse cooperation with the top indus-
trial and research collaborators in Europe. It is a global
and distributed software development initiative set up
at the end of 2011. Indra Software Labs leads this ini-
tiative at the corporate level in Spain, in conjunction
with UPM, although it is framed into a broader-scope
that includes other software factories such as that lo-
cated at the Univ. of Helsinki, Univ. of Eastern Finland
and Univ. of Bolzano and companies such as Tieto, and
Indra in Spain. This initiative aims to put in practice
models and tools that will contribute both toward the
implement ation of the new processes and methodolo-
gies, and the monitoring and tracking of the results.

The iSSF in which the case study has been run, com-
prises laboratories in two different geographical loca-
tions in Madrid (UPM and Indra's factories), equipped
with sophisticated computer and monitoring equipment.
This equipment facilitates tracking of the project's pro-
gress using real-time data from development tools. The
iSSF facility continuously runs projects in sixteen week
cycles. Therefore, it is a suitable setting to deploy, track
and evalúate the applicability of the Feature-PLA Trace-
ability Model.

Next, the case study is reported according to the
guidelines for conducting and reporting case study re-
search in software engineering by Runeson and Hóst [51].
The goal of reporting el CclSG study is twofold: to commu-
nicate the findings of a study, and to work as a source of
information for judging the quality of the study. With
this twofold goal, the reporting of the case study is de-
scribed as follows.

4.1 Case study design

This section describes the case study, the research ob-
jective and questions, the data collection procedure,
analysis and validation procedures, and the subjects
participating in the case study.

4-1-1 Research objective and questions

Evidence of the viability of the Feature-PLA Trace-
ability Model can be obtained by putting the model
into practice in a real life setting. Therefore, the re-
search objective focuses on evaluating the effectiveness

5 http://www.upm.es/internacional http://www.indraconipany.com/en

http://www.upm.es/internacional
http://www.indraconipany.com/en

of the Feature-PLA Traceability Model as well as the
helpfulness tha t it could provide SPL engineers. The
criterion to validate the achievement of the objective
is defined as the capabilities to (i) trace both coarse-
grained and fine-grained variability in order to satisfy
the traceability of most common kinds of variations,
and (ii) provide knowledge to help SPL engineers at the
t ime of configuring the different products tha t make up
a SPL, i.e. when variability has to be bound accord-
ing to the product-specific requirements. Henee, the re-
search questions to be answered through the case s tudy
analysis can be formulated as follows:

RQ\. Are Feature-PLA Traceability modeling primi-

tives effective in providing SPL engineers the means

for specifying traceability for most common kinds of

variations tha t they define on their product family?

RQ2'- Do Feature-PLA Traceability models assist and

guide SPL engineers at the time of configuring prod-

ucts of their product family?

Research question RQ\ aims to find out if the Feature-
PLA Traceability Model effectively provides SPL engi-
neers with mechanisms to trace all types of variations
tha t they commonly define, which includes the capabil-
ity of tracing those features tha t are realized through
external variations of the PLA configuration (i.e. trace-
ability of external variability) as well as the traceability
of those features tha t are realized through internal vari-
ations of the components (i.e. traceability of internal
variability). The lev el of effectiveness is a dependent
variable, i.e. a variable of interest for being analyzed
and evaluated. It is measured in terms of the percentage
of variations existing in the domain of the SPL under
s tudy (i.e. variations in the Feature model) tha t can
be traced by using the modeling primitives provided
by the Feature-PLA Traceability Model. The potential
independent variables tha t might have an influence on
the dependent variable are the project size, the SPL do-

main, the complexity of Feature and PLA models, and
the total number of variations identified in the product
family.

Research question RQ2 aims to find out if the knowl-
edge stored in Feature-PLA Traceability models is re-
ally helpful for SPL engineers at the time of configur-
ing the products of their product family. In this regard,
helpfulness is defined in this paper as the facilities pro-
vided for engineers to enable product configuration (i.e.
selection of variants and construction of product appli-
cations). As a dependent variable, the lev el of helpful-

ness to configure products is qualitatively estimated by
analyzing questions asked to the SPL engineers involved
in the cases s tudy through a set of interviews. These
questions asked the SPL engineers about specific situa-

tions in which the assistance of Feature-PLA Traceabil-
ity models to configure products was analyzed. Henee,
the SPL engineers were asked if Feature-PLA Traceabil-
ity models helped them when trying to bind variability
to configure specific products from the product family,
while ensuring the product requirements compliance.
The potential independent variables which might have
an influence on the dependent variable are the engineers

experience, the project size, the PLA complexity, the
misinterpretation of interview questions and the total
number of variations identified in the product family.

It is necessary to mention tha t it is in the nature of
case studies tha t independent variables cannot be con-
trolled [50]. This and other potential threats to validity
are discussed in subsection 4.2.3.

4-1-2 Data collection procedure

In the case study, we have gathered both quantita-

tive and qualitative data . The collection methods which

have been used are the following:

— Observation. Two observers at tended project meet-
ings and visited the team twice a week. They took
notes from these meetings and, thanks to the iSSF
technologies, meetings were video recorded, tran-
scribed, and analyzed using the constant comparison

method as described in [22].

— Questionnaire and Interview. Stakeholders were in-
terviewed following a questionnaire7 open to the dis-
cussion. These interviews were video recorded, tran-
scribed, and analyzed using the constant compari-
son method.

— Archival data . In addition to the storage of the video
recordings, the information about the project was
collected in Redmine8 .

— Analysis of work artifaets. Feature-PLA Traceabil-
ity models generated with the FPLA modeling frame-
work were gathered.

4-1.3 Analysis & Validity procedure

In this case study, both quanti tat ive and qualitative

analysis were used to examine the da ta gathered. For

quanti tat ive data, this case study uses analysis of de-

scriptive statistics. For qualitative data, the procedure

to explore the chain of evidence [50] from collected da ta

is described as follows: Interviews and meetings are

recorded, transcribed, grouped by quotes and coded.

Coding means that parts of the text are given a code

7 The script of the interviews is available on
https://www.surveymonkey.eom/s/TSYCCN6

8 Redmine is web-based project management and bug-
tracking tool http://www.redmine.org/

https://www.surveymonkey.eom/s/TSYCCN6
http://www.redmine.org/

representing a certain topic of interest —one code is
usually assigned to many pieces of text, and one piece
of text can be assigned more than one code and codes
can form a hierarchy of codes and sub-codes [50]. The
coded material is enriched with comments and reflec-
tions (i.e. memos). Prom this material it is possible to
identify evidence tha t answers the research questions.

As da ta gathered in case studies is mainly quali-
tative [50], and it is typically less precise than quan-
titative data, it is important to use tríangulatíon to
increase the precisión of the study. There are several
types of triangulation [57]: (i) methodologícal tríangu-

latíon, i.e. the use of different methods to measure the
same concern; (ii) data source triangulation, i.e. the use
of múltiple da ta sources at potentially different occa-
sions; and (iii) observer triangulation, i.e. the use of
more than one observer in the case study [22]. In or-
der to increase the precisión of the qualitative analysis
and its obtained results, the three types of triangulation
were used in this case study. Methodological triangula-
tion was performed through interviews, observations,
and the analysis of archival data. Data source triangu-
lation was performed by interviewing the SPL engineers
bo th separately and together. Finally, observer triangu-
lation was applied by replicating specific da ta collection
sessions by two different observers.

4-1-4 Case study description

9
 Intelligent Monitoring of Power NETworks

ht tp : / /www.i tea2 .org/projec t / index/view7projec t=10032
1 0

 NEtworked MOnitoring & COn-

trol, Diagnostic for Eléctrica!, Distribution

ht tp : / /www.i tea2 .org /pro jec t / index/v iew7projec t=1131
1 1

 Technologies for automated and intelligent man-

agement of power distribution networks of the fu-

ture h t tp: / /www.indracompany.com/sostenibi l idad-e-
innovacion/proyectos-innovacion/energos-technologies-for-
aut omat ed- and- int elligent-

F i g . 6 Modules of the power quality monitoring and the re-
mote control and smart metering platform

operating as a single system providing both power and
heat [34]. Smart Grids promote the integration of re-
newable energy resources and their distributed, open,
and self-controlled nature.

The power quality monitoring and the remote con-
trol and smart metering platform is a software inten-
sive software composed of a set of coarse-grained mod-
ules: Communication Platform, Power Quality Moni-
toring, Meter Data Management, End-user Access Plat-
form, Head End, Smart Metering, and Data Exchange
(see Figure 6). At this coarse-grained level, the plat-
form presents variability related to the optionality of
the module Power Quality Monitoring which depends
on the grid, i.e. if the grid requires guarantee only the
power supply or also power quality. Each one of these
modules has múltiple levéis of decomposition and vari-
ability with different levéis of detail tha t are briefly de-
scribed below. This is why this project was envisioned
as a SPL tha t allows configuring the platform depend-
ing on the Smart Grid requirements.

A representative example of the múltiple levéis of
variability is the End-user Access Platform. This mod-
ule is configurable by considering the following variants:
type of GUI, end-user, and data . Regarding the type
of GUI, the End-user Access Platform was designed to
support Web application, Desktop application, Android
application, as well as specific in-home device's appli-
cation. Regarding the end-user, the functionalities and
the information tha t are provided by the access plat-
form to the end-users vary in the case of a distributor,
a retailer, or a customer. This means tha t the infor-
mation provided by the End-user Access Platform is
variable depending on the end-user and the end-user
requirements. Finally, the information tha t is shown in
the GUI and the technologies used to display tha t in-
formation are variable depending on whether the da ta
are provided in real-time or using historical data .

Other examples of múltiple levéis of variability are
the Smart Metering and the Power Quality Monitoring

modules. The first one implements a set of forecast-

The case s tudy consists of a project to model, design,
and implement a "power quality monitoring and a re-
mote control and smart metering" platform. It is part
of two larger ITEA2 projects called I M P O N E T 9 (127
man-years) and NEMO&CODED 1 0 (112 man-years),
and a third national project called E N E R G O S 1 1 (24,3
million Euros). These three projects focused on sup-
porting complex and advanced requirements in energy
management, specifically in electric power networks tha t
are conceptualized as Smart Grids [34]. Smart Grids
are composed of an aggregation of a broad range of
energy resources, from large generating systems (tradi-
tional sources, e.g., nuclear power plants, hydro power
plants) to smaller generating systems (called microsources,
e.g., small solar farms, distributed wind generators),

http://www.itea2.org/project/index/view7project=10032
http://www.itea2.org/project/index/view7project=1131
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut
http://www.indracompany.com/sostenibilidad-einnovacion/proyectos-innovacion/energos-technologies-foraut

Meter Data

Management

(MDM)

Erert AvaSabte Energy Data Cakutatton

Raw Energy Data vajjdaeicn;

BejtAvaiable nergy Data Catcufatíon

Aggregated Energy Data

Group Canectian of MeaMiring Pwrrb

Optímum Energy Data Vatidatiom

Cultora er BJH Profie

IPEED_Simiilation

SPE ED_[nf orm ation_Model

Reftf ul web iervicef

EJO

JOSP Web Ser ui;ei

27

Sbort-term load f oreca*f»g

Real Time Farecaitíng Energy

Deihtop Applícationf

Web Portal Application

Androíd ¿ppjiíotion

Specrfk Irritóme Devke Application

POM Web Ser ji¡e;

OLAPPQM

Vortage Alarm Power CuaEty Serjice;

Harmonic Alarm Pouier pualfty Service»

Fig. 7 The power quality monitoring and the remote control
and smart metering platform Variability Analysis

ing algorithms that vary depending on the energy data
used, for the next 24 or 48 hours, or whether it is cal-
culated using real time energy data, historical energy
data from the datábase, or both of them. The second
one implements a set of power quality algorithms that
can be configured in order to provide a variety of infor-
mation, such as events, disturbances, alarms control,
etc. Finally, the Communícatíon Platform implements
a Data Distribution Service (DDS [39]) based on the
publication-subscription paradigm. This module is in
turn a source of internal variability that crosscuts the
other modules. Henee, DDS defines domains, partitions,
and topics in order to specify different data space and
organize the flow of data. The subscription to the top-
ics is variable depending on, for example, the events or
alarms to be controlled.

In order to illustrate the complexity of the system,
and in particular the level of variability, the platform
has more than 600 variants (see Figure 7). In this paper,
we specifically report the part of the SPL that develops
a family of power metering management systems for
Smart Grids, i.e. the Meter Data Management module.
This is due to space and understandability reasons. We
refer to this part of the SPL as OPTIMETER SPL.

OPTIMETER SPL focuses on the development of
a family of power metering management systems for
Smart Grids (see the central box of Figure 8). A power
metering management system captures and manages
meter data from a large number of distributed energy

resources. It validates, stores and processes these data,
and provides them to external systems. Figure 8 shows
an overview of a metering management system and its
interaction with external systems to capture and pro-
vide meter data. The overview of the system function-
ality is as follows:

1. Meter capturing. This involves integrating all me-
ter capturing processes (see Meter Capturer in Fig-
ure 8) which are currently being supported by teleme-
tering systems and batch processes that collect mea-
surements at substations (see box Input in Figure 8).
The purpose is to have a single datábase with the
energy metering data.

2. Meter processing. This includes three operations:
the validation of meter data according to an estab-
lished validation formula, the calculation of the op-
timal vector for a measuring point for a type and
period of energy data, and the estimation of energy
data according to a established estimation formula
(see Meter Processor in Figure 8).

3. Meter providing. This involves defining the inter-
face (see Meter Províder in Figure 8) with client in-
formation systems, such as billing and settlements,
energy demand forecast, and energy purchases, to
exchange data with them (see box Output in Fig-
ure 8).

Data processing should be done in real time. To do
this, it is necessary to account for performance when
loading the large amounts of energy data coming from
the meter capturing processes as well as performance
when querying these data. The OPTIMETER SPL aims
to provide a family of systems, each of which is intended
to support the different data storing technologies shown
in Figure 9. The objective is to carry out various proof

of concept of large data storing technologies to evalúate
their performance. Therefore, the data storing technol-
ogy is a variability point.

Meter providing should be available 24/7. Metering
management systems should guarantee availability 24
hours 7 days per week of their core functionality to the
external systems. Several applications require to have
strict 24/7 availability, while others permit a weaker,
non-strict availability. Strict availability must provide
recovery and repair in milliseconds, whereas non-strict
availability is less available and cheaper. Therefore, the
strietness of availability is another variability point.

The OPTIMETER SPL is being iteratively and in-
crementally developed in the iSSF in Serum subpro-
jeets [53] of 8 iterations, aka. sprints (lsprint = 2 weeks).
This case study focuses on two of these Serum sub-
projeets which we refer to as Optimeter I and Opti-

meter II Optimeter I consisted of the development of

Input

Telemetering systems or
batch processes)

MeteringManagement System

01

1_

+J
O.
a u
1_
•J

+J
01

DataQuery

Manager

Meter Processor

o

^ >

Output

Billingand

Settlements

Energy demand

forecast (peak-demand

management)

Energy purchases

Fig. 8 Metering management system - An overview and interfaces with external systems

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-

ing [46]). Optimeter II consisted of the development
of two of these product applications (Application Engi-

neering [46]): a metering management application run-
ning over the Berkeley datábase 12 and Hadoop clus-
tering13 with strict availability, and a metering man-
agement application running over the Oracle llg data-

12 Oracle Berkeley DB is a high-performance
embeddable datábase providing Java Ob-
ject and Key/Valué storage (NoSQL).
http://www.oracle.com/technetwork/products/berkeleydb/
13 Apache Hadoop is a framework for running appli-

cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base14 and Oracle Real Application Clusters (RAC)
15

with non-strict availability (see Figure 9).

4-1-5 Subject description

In total, 10 people participated in Optimeter I and
II: four analysts/developers, two product owners, one
serum master (who performs both the tasks of the Serum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter II—, the peo-
pled are referred as product engineers. It is necessary

14 Object-relational datábase management system.
http://www.oracle.com/technetwork/database/
15 Software

availability
for clustering and high

in Oracle db environments.
http://www.oracle.com/technetwork/products/clustering/

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

Input

Telemetering systems or
batch processes)

MeteringManagement System

01

1_

+J
O.
a u
1_
•J

+J
01

DataQuery

Manager

Meter Processor

o

^ >

Output

Billingand

Settlements

Energy demand

forecast (peak-demand

management)

Energy purchases

Fig. 8 Metering management system - An overview and interfaces with external systems

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-

ing [46]). Optimeter II consisted of the development
of two of these product applications (Application Engi-

neering [46]): a metering management application run-
ning over the Berkeley datábase 12 and Hadoop clus-
tering13 with strict availability, and a metering man-
agement application running over the Oracle llg data-

12 Oracle Berkeley DB is a high-performance
embeddable datábase providing Java Ob-
ject and Key/Valué storage (NoSQL).
http://www.oracle.com/technetwork/products/berkeleydb/
13 Apache Hadoop is a framework for running appli-

cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base14 and Oracle Real Application Clusters (RAC)
15

with non-strict availability (see Figure 9).

4-1-5 Subject description

In total, 10 people participated in Optimeter I and
II: four analysts/developers, two product owners, one
serum master (who performs both the tasks of the Serum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter II—, the peo-
pled are referred as product engineers. It is necessary

14 Object-relational datábase management system.
http://www.oracle.com/technetwork/database/
15 Software

availability
for clustering and high

in Oracle db environments.
http://www.oracle.com/technetwork/products/clustering/

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

Input

Telemetering systems or
batch processes)

MeteringManagement System

01

1_

+J
O.
a u
1_
•J

+J
01

DataQuery

Manager

Meter Processor

o

^ >

Output

Billingand

Settlements

Energy demand

forecast (peak-demand

management)

Energy purchases

Fig. 8 Metering management system - An overview and interfaces with external systems

Fig. 9 OPTIMETER SPL - Evaluation of large data storing technologies for metering management systems

the OPTIMETER SPL platform from which a set of
metering management system applications can be ef-
ficiently developed and produced (Domain Engineer-

ing [46]). Optimeter II consisted of the development
of two of these product applications (Application Engi-

neering [46]): a metering management application run-
ning over the Berkeley datábase 12 and Hadoop clus-
tering13 with strict availability, and a metering man-
agement application running over the Oracle llg data-

12 Oracle Berkeley DB is a high-performance
embeddable datábase providing Java Ob-
ject and Key/Valué storage (NoSQL).
http://www.oracle.com/technetwork/products/berkeleydb/
13 Apache Hadoop is a framework for running appli-

cations on large cluster built of commodity hardware.
http://hadoop.apache.org/

base14 and Oracle Real Application Clusters (RAC)
15

with non-strict availability (see Figure 9).

4-1-5 Subject description

In total, 10 people participated in Optimeter I and
II: four analysts/developers, two product owners, one
serum master (who performs both the tasks of the Serum
master and of a part-time architect), and one full-time
architect. During the domain engineering—i.e. Optime-
ter I—, the people involved in the project are referred
in this case study as SPL engineers, while during the
application engineering—i.e. Optimeter II—, the peo-
pled are referred as product engineers. It is necessary

14 Object-relational datábase management system.
http://www.oracle.com/technetwork/database/
15 Software

availability
for clustering and high

in Oracle db environments.
http://www.oracle.com/technetwork/products/clustering/

http://www.oracle.com/technetwork/products/berkeleydb/
http://hadoop.apache.org/
http://www.oracle.com/technetwork/database/
http://www.oracle.com/technetwork/products/clustering/

to highlight that the engineers involved in Optimeter I
and II are not the same. Finally, two observers had ac-
cess to all project information and collaborated directly
with product owners and fellow team members.

4.2 Results

This section describes the execution, analysis and inter-
pretation of the results from the case study execution,
as well as the evaluation of its validity.

4-2.1 Case study execution

This section describes the execution of Optimeter I first,
and then the execution of Optimeter II. These execu-
tions has been performed following the activities pre-
sented in subsection 3.3. The models resulting from
these activities have been captured through snapshots
from the FPLA modeling framework.

The first activity was feature domain analysis. Fig-
ure 10 shows the feature model that represents the fea-
tures that OPTIMETER SPL must meet. The feature
model has three points of variability—feature groups—
that implement different data storing technologies (data-
base and clustering) and different degrees of availability.
The feature model is described in detail as follows:

Fl_Meter Reading (see Figure 10) consists of read-
ing metering data associated with different energy
resources, periods (quarterly, hourly, daily, and monthly)
and Ínter vals.
F2_Meter Storing (see Figure 10) consists of a large
data store. There are two mutually exclusive alter-
native variations: one variant is Berkeley DB and
the other variant is Oracle 1 lg (see the grouped fea-
tures BerkelyDB and Oracle!lg in Figure 10).
F3_Meter Data Accessing (see Figure 10) consists
of initial data loading of historical metering data of
one month and querying of these data. Both loading
and querying require to leverage high performance
through the use of clustering technologies. There are
two mutually exclusive alternative variations: one
variant is Hadoop clustering over Berkeley DB and
the other variant is RAC over Oracle l lg (see the
grouped features Hadoop and RAC in Figure 10).
F4_Meter Data Processing (see Figure 10) consists
of the algorithms for validating raw and optimal
data, as well as calculating the optimal vector (inte-
grated processing) of raw and optimal data. Namely,
the energy data for a specific origin, period, and date
is retrieved and the system adds data to obtain the
energy data of the next period.

— F5_Meter Data Providing (see Figure 10) consists
of an interface that provides metering data query to
external systems.

— F6_Availability (see Figure 10). It ensures availabil-
ity of metering data 24 hours 7 days per week. There
are two mutually exclusive alternative variations:
one variant implements strict availability and the
other variant implements non-strict availability (see
the grouped features strict and non-strict in Fig-
ure 10).

The second activity was product-line architecting.
Regarding availability, various architectural tactics are
proposed in the literature [8,54]. The SPL engineers se-
lected active redundancy and passive redundancy tac-
tics to implement strict and non-strict availability, re-
spectively. These tactics are briefly described as follows.

— The tactic active redundancy is based on a "config-
uration wherein all of the nodes (active or redun-
dant spare) in a protection group receive and pro-
cess identical inputs in parallel, allowing the redun-
dant spare (s) to maintain synchronous state with
the active node(s)" [54]. Therefore, from the archi-
tectural view, this tactic requires: (i) a load balancer

for all nodes —active and redundant nodes— to pro-
cess identical inputs, and (ii) a synchronizer in or-
der for the active and redundant nodes to maintain
an identical state. If there is a failure, the repair
occurs on time as the redundant spare has an iden-
tical state to the active node. The cost of this tactic
is high due to the cost of synchronization between
redundant spare and active node(s).
The tactic passive redundancy is based on a "config-
uration wherein only the active members of the pro-
tection group process input trafiic, with the redun-
dant spare(s) receiving periodic state updates" [54].
Therefore, from the architectural point of view, this
tactic requires: (i) a router to ensure that only the
active node process all the inputs, as well as to
change the route to the redundant node(s) when
there is a failure, and (ii) a periodic data controller

in order for active and redundant node(s) to main-
tain periodic state updates. If there is a failure, the
router selects a redundant spare after checking the
state update. This tactic achieves a balance between
the more highly available but more complex active
redundancy tactic and the less available but signif-
icantly less complex spare tactic.

The PLA resulting is shown in Figure 11 and de-
scribed as follows. The feature F l is implemented by
the component MeterCapturer, which reads text files of
metering data associated to different energy resources,

' A I ..M^JL-^ I
[1.1]

]i^JF4_MetérDataProce5sjng | | r"F5_MeterPrcviding | | • Fo_Availability]

[1..1] ^

'AF^ISÍEL' 'A-IÍÍ'SIS-I /
asi:~) « ^ ¿ o

I .J DataLoading I l-^j DataQueriying I I^J high-pErformance I

l
¿01¡ - i i - —' '«¡¿.P¿L _ J

Fig. 10 Optimeter I - Feature model

Fig. 11 Optimeter I - Flexible-PLA model

periods (quarterly, hourly, daily and monthly), and in-
tervals, and processes the previously read data to form
key/value pairs. The variability of the feature F2 is im-
plemented by the optional components BerkeleyDB and
Oraclellg. The feature F3, and specifically the subfea-
tures DataLoading and DataQuerying are implemented
by the PPCs DataLoader and DataQuery respectively.
The architects took advantage of the PPC's variabil-
ity mechanism to specify the variability of the feature
hígh-performance as internal variability. This variabil-
ity is internal to the PPCs DataLoader and DataQuery,

i.e. the variability crosscut these two PPCs. Henee, both
PPCs implement the variability of performance through
the variability point clustering and the variants Hadoop-

Clustering and RealApplicationClusters (see Figure 11).
These variants implement the operations for clustering
and distributing work around a cluster to improve the
data accessing performance (for loading and querying).
Figure 13 shows an extract of the PPC DataLoader

code and how internal variability works. Specifically,
the figure shows how the code of the variant Hadoop-

Clusteríng is linked to the code of the PPC DataLoader

through the weavings. The feature F4 is implemented
by the component MeterProcessor, which implements
the algorithms for validating metering data and calcu-
lating optimal vectors. Finally, the feature F5 is imple-
mented by the PPC MeterProvíder. Again, the archi-
tects took advantage of the PPC's variability mecha-

nism to specify the variability of the feature F6 as in-

ternal variability to the P P C MeterProvíder. This P P C

implements the variability of availability through the

variability points Updating and RequestManaging, and

the variants DataMonitoring, Synchronization, Load-

Balancing, and Routing.

The third activity of the case s tudy execution was
the definition of traceability links between the Opti-
meter feature model (see Figure 10) and the Optime-
ter Flexible-PLA model (see Figure 11). The result-
ing Feature-PLA Traceability model is described as fol-
lows (see Figure 12): The links ID.001 and ID.002

trace the grouped features BerkelyDB and Oraclellg to
the optional component BerkeleyDB and OraclellgDB,

respectively. The links IDJ)0í and ID-002 trace the
features DataQueriying and DataLoading to the P P C s
DataLoader and DataQuery, respectively. The feature
group tha t implements the variability of performance
is traced to the variability point clustering through
the link ID.005. The links ID.006 and ID.007 trace
the grouped features Hadoop and RAC to the variants
HadoopClustering and RealApplicationClusters, respec-
tively. The feature group tha t implements the variabil-
ity of availability is traced to the variability points Up-

dating and RequestManagíng through the link ID-008.

The link ID_009 traces the grouped feature stríct to
the variants Synchronization and LoadBalancing. The
link IDJ)í 0 traces the grouped feature non-strict to the
variants DataMonitoring and Routing. All these trace-
ability links store semantic knowledge. To gain readabil-
ity, Figure 12 only shows the at tr ibutes satisfacing, who,

and when. The valué of the a t t r ibute satisfacing from
all of these links is strong positive. This means tha t the
architectural elements—components, PPCs , variants—
involved in the links fully satisfy the expected func-
tionality of the features also involved in the links. Fi-
nally, the link IDLO 11 traces the variant Synchroniza-

tion to the feature high-performance. This link shows
the valué médium negative for the a t t r ibute satisfacing,
which means tha t the synchronization may negatively
affect to the performance.

Once the features, the PLA, and the traceability
links were described and modeled by the SPL engineers,
the following activities were the implementation and
the testing (see the fourth activity in subsection 3.3).
The resulting source code (such as the code shown in
Figure 13) is also linked to the components specified
in the Feature-PLA Traceability model. All these ac-
tivities comprise a typical domain engineering process
in which the commonality and the variability of a SPL
is defined and realized [46]. The result is a common
structure—the O P T I M E T E R SPL platform—from which
a set of derivative products—metering management sys-

tem applications—can be efficiently developed and pro-

duced.

Next, Optimeter II started. Each one of the two

product owners involved in the case study selected to

implement two different products:

— A metering management system running over Berke-

ley DB and Hadoop, which has to be strictly avail-

able 24/7 (product A).

— A metering management system running over Ora-
cle l l g DB and RAC, which has to be available 24/7
but it is possible to relax this restriction (product

B).

At this time, the product engineers configured spe-
cific products according to the products specifications
tha t the owners expected to get (see the fifth activity in
subsection 3.3). This means tha t the product engineers
bound the variability. To do this, the product engineers
examined the Feature-PLA Traceability model to en-
sure tha t the binding was correctly performed accord-
ing to the products specifications. Henee, the product
engineers, by means of the link ID_009 in Figure 12,
checked tha t the configuration of the product A re-
quires the binding of the variants Synchronization and
LoadBalancing in order to meet strict availability. They
also checked, by means of the link ID-011 in Figure 12
tha t the variant Synchronization could affect the re-
quired high performance. Finally, the product engineers
checked, by means of the link ID-Q1Q in Figure 12, tha t
the configuration of the product B should bind the vari-
ants DataMonitoring and Routing which implement a
variation less available but tha t does not jeopardize per-
formance.

After selecting the specific variants for the prod-
ucts A and B, the last activity (see the sixth activity
in subsection 3.3) was performed as follows. This ac-
tivity consisted of the generation of the code for the
products A and B, i.e. the binding of the variability at
the code-level. To do this, the product engineers used
the FPLA modeling framework to automatically genér-
ate the code for each one of these two products. Henee,
for the product A the weavings tha t insert the code of
the variant Hadoop Clustering into the P P C DataLoader

were automatically generated (see Figure 13). Similarly,
for the product B the weavings tha t insert the code of
the variant RealApplicationClusters into the P P C Dat-

aLoader were automatically generated. In this way, the
P P C DataLoader can be easily configured to support
Hadoop clustering as shown in Figure 13, or to support
Real Application Clusters.

The development of these two projeets provided the
necessary da ta to conduct the case study analysis and
interpretation.

F i g . 12 Optimeter I - Feature-PLA Traceability model

4-2.2 Analysis and interpretation

Quanti tat ive and qualitative analysis was used to ex-
amine the da ta gathered during the case study. The
da ta collected consisted of the models resulting from
the projects (see Figures 10-12), archival da ta from
Redmine, as well as the questionnaires and interviews
performed with the SPL and product engineers. The
analysis of these da ta has permit ted to find evidence to
answer each one of the research questions:

RQ\. Are Feature-PLA Traceability modeling primi-

tives effective in providing SPL engineers the means

for specifying traceability for most common kinds of

variations tha t they define on their product family?

The evidence to answer RQ\ is explored through
descriptive statistics tha t measures the number of vari-
ations of interest for the SPL engineers tha t they were
able to trace by using the modeling primitives provided
by the Feature-PLA Traceability Model. The number of
points of variability is three—data storage, clustering,
and availability—with a total of six variants - Berke-
leyDB and Orac le l lg for da ta storing, Hadoop and
RAC for clustering, and finally strict and non-strict
availability.

The traceability of the variability for da ta storing
was well-supported through links between grouped fea-
tures and optional components (see the links ID_001
and ID_002 in Figure 12). As the architects took advan-
tage of the P P C ' s variability mechanism to specify in-
ternal variability of components—specifically to specify
the variability of clustering and availability—, they re-
quired the capability of tracing this variability which is
internal to one or more components. Henee, the SPL en-
gineers were able to trace the variants Hadoop and RAC
to the architectural elements tha t implement these two
different clustering technologies through links between
grouped features and variants (see the links ID_006 and
ID_007 in Figure 12). The SPL engineers were also able
to trace the variants strict and non-strict availability
to the architectural elements tha t implement two dif-
ferent availability tactics with different repair t ime—
active and passive redundaney— through links between
grouped features and variants (see the links ID_006 and
ID_007 in Figure 12).

Therefore, as it can be verified in Figure 12, the
SPL engineers were able to effectively trace all kinds of
variations they required.

RQ2'- Do Feature-PLA Traceability models assist and
guide SPL engineer at the time of configuring the
producís of their product family?

The evidence to answer RQ2 is assessed by analyz-
ing the interviews given to the SPL and product engi-

neers. From these interviews, the following excerpts can

be highlighted:

< < I t could have been very difficult for us—the prod-
uct engineers— to be able to determine a valid config-
uration for a metering management system application
requiring strict or non-strict availability without the
use of the Feature-PLA Traceability model (see Fig-
ure 12)>> .

This means tha t the use of the Feature-PLA Trace-

ability model of Figure 12 was particularly useful for

the product engineers to understand the system as they

hadn ' t been developed the O P T I M E T E R SPL plat-

form.

< < T o configure the producís A and B we needed
knowledge tha í helped us ío perform íhe binding ac-
cording ío íheir respecíive requiremenís. Wiíhouí íhe
knowledge provided by íhe Feaíure-PLA Traceabiliíy
model (see Figure 12), ií may had been difiieulí ío
know (i) if a meíering managemení sysíem applicaíion
requiring síricí availabiliíy had ío implemení íhe ser-
vices for synchronizaíion and load balancing, or (ii) if
a meíering managemení sysíem applicaíion requiring
non-síricí availabiliíy had ío implemení íhe services
for rouíing and da ía moniíoring. This means, wiíhouí
íhe íraceabiliíy model, we hadn ' í feel confidení abouí
wheíher íhe varianís we bound implemeníed all íhe ser-
vices ío saíisfy íhe requiremenís of íhe producís A and
B. So, íhe íraces beíween (i) íhe feaíure síricí availabil-
iíy ío íhe varianís Synchronization and LoadBalancing,

and (ii) íhe feaíure non-síricí availabiliíy ío íhe vari-
anís Routing and DataMonitoring, were really useful
ío ensure íha í íhe ginding of variabiliíy was realized
correc í ly>>.

<<Fea íu re -PLA Traceabiliíy models may be use-
ful ío ideníify where a feaíure is implemeníed in íhe
PLA. As a resulí, ií may also be useful ío ideníify,
given a change in a feaíure, where íhe change impacís
íhe PLA. From íhe Feaíure-PLA Traceabiliíy model of
Figure 12 ií is easy ío observe íha í a change in íhe
íacíic ío implemení síricí availabiliíy may impací íhe
varianís Synchronization and LoadBalancing. Perhaps
íhis is noí easy ío locaíe in íhe code, buí by making ií
available ai íhe archiíecíure-level, Feaíure-PLA Trace-
abiliíy models faciliíaíe íhis íask. This impací knowl-
edge may help us ío correcíly implemení a change while
mainíaining íhe iníegriíy of íhe a rch i íec íure>>.

These excerpís from íhe SPL and producí engineers
puf in evidence íha í our soluíion for íracing variabiliíy
assisíed and helped íhem ai íhe íime of configuring íhe
íwo meíering managemení sysíems (producís A and B)
from íhe O P T I M E T E R PLA.

p u M i í c i á i s DataLoatfer iaplem«nts lD3tsí.tfader {

/ /const ructor
publ ic DV. a c i d e n .)•;'

in£t¿aliieClust*rO;
>
/ / í t t r ibu tc i

prívate Cluster c l vs te r j
publ ic CLusttr g t tCluster (J{

returíi clusttrj
}
public uüid Eetílust«ríClvist*r clu*teF"){

this-.. clus-ter * clusten;
)

prívate void load (1 {
eregorlaf i tal tndar i n i _ t =(G=*eg6fiartCalindar)Gi-egorl4nCal
larg i n i t i í l _ t jff* - i*l i_t r getTimel rkMi 11 i n) ;
FiLeLnpijtForoiBt.setrfip-jtPathstgetCluitErO> neu Path J r g s [3])) j
í i l tOutpjtPOrii iat.SctOutputPathCgttCli iseÉrOj new P f l *C* rgs [l] > }ü
i-un]ob(gttCluít í r ()) ;
OrígorianCalenílar f i na l_ t *(Greg9ria^Caleno ,ar)Gi'eB#^Í&riCal£ní^ rgeTlnitar.ce().
long f ina l_ t í«s. - f ina l_ t .e#tT im*3n>l í] . l is (J ;
System, out. pr ir t t ln< "T i™ : H+(f in* l_tú»e • in i t£*L^Li i ie>/ l»8Bt" /s ' ') ;

publ ic vüifí loadMeterData .; '< {

>
p." L-.- îi- \ 'oid in i t ia l ízeCi j s t í r f) i

i\ «partía!deñnithn» J \

prívate uoid Munich Q {

}' «partiaidefinition»

in i t i a i i Í«C lu sterílet+wd () ; ejíecuticn (' Da taLoade^ . ins t ia l£ :e t l j £ te r (. .)) j
idr i : in i t iaUísClusterKethcid () {

íLu i t t r * ' titw JobConf (ProtetsHt t í rData.c laí -*) :
£ Lus t er. set lotéame f " P roce s 5 Met erjlata ") j
t Lu a t c r . 5 c tCu í:put Kc yC 1 a s i ^ T ea t r 11.' Ü) ¡
c t u l t er* r se [Outputval ütC l a « (Tsxt. c l a i i) ;
ctuíter.sítríappeF-ClassíMap.class)j
í Lu s t c r. s c t Rcd^ce-C 1 a i i í ¡íídiyc c. c lo ÍS-) i
c l u i t t r ,act InpiitFpraa t(TextTnput Fcr«at ,c la i f) ;
f Luítffr . SÉtOutputForfcatJTíJítOLCtpLJtForfflat:, c lass) ;

po ín te j t cunSflbMethod () : ex tcut iw i (• DataLoader.runíob(. .)) ;
woid ar'cmndí) : r*jtiJo^Method () -[

i ; t ¿. íent . -un : . ; . : • ; ^ _
___ |

}

Weaving where and when to
extend the code of the PPC
Data Load9r using the coda of
the variant Hadoop

Fig. 13 Optimeter I - PPC DataLoader

4-2.3 Evaluation of validity

Case studies are qualitative in nature. For this reason,
collected data from case studies are usually very diffi-
cult to be objectively judged [61]. To improve the in-
ternal validity of the results presented, the independent
variables that could influence this case study have been
identified as follows: The engineer's experience has a
great influence. Its influence has been reduced as the
expertise of the engineers who participated in the case
study were very different (1 year vs. 7 years). However,
the influence of project's size and architecture's com-
plexity cannot be reduced due to the inherent nature of
case studies, which normally focus on one project. Also
to improve the internal validity of the results, triangu-
lation of source data has been used to increase the relia-
bility of the results. In this regard, interviews were indi-
vidually conducted with the engineers, although several
questions were asked in a group setting to encourage
discussion.

Construct validity is concerned with the procedure
to collect data and with obtaining the right measures
for the concept being studies. It addresses among others
misinterpretation of interview questions which was mit-
igated by discussing the interpretations of interviews
with the interviewees to validate them.

However, the major limitation in case study research
concerns external validity, i.e. "the generality of the re-
sults with respect to a specific population" [22], as only
one case is studied. In return, case studies allow one to

evalúate a phenomenon, a model, or a process in a real
setting. This is something important in software engi-
neering in which a multitude of external factor may af-
fect to the validation results, and that other techniques
such as formal experiments, although they permit repli-
cation and generalization, do not consider as they are
conducting under controlled settings.

Reliability is concerned with replication, in case stud-
ies with the fact that the same results would be found
if re-doing the analysis. This is why interviews were
recorded and interpretations were reviewed by other
participants in the study in order to avoid researcher
bias.

4.3 Case Study Conclusions

We obtained evidence of the viability of the Feature-
PLA Traceability Model through the execution of el CclSG

study performed in an experimental laboratory called
i-Smart Software Factory. It combines both academic
and industrial efforts in R&D, with remarkable facilities
for tracking the projeets' progress. The case study puts
the proposed traceability solution into practice within
the development of a SPL of power metering manage-
ment systems for Smart Grids. The results show evi-
dence of that (i) the Feature-PLA Traceability model-
ing primitives were effective in providing the capabili-
ties for tracing most common kinds of variations that
the SPL engineers required define, and (ii) the Feature-

PLA Traceability provided knowledge that helped the
product engineers to make better decisions at the time
of configuring the producís A and B during Optime-
ter II as they did not know the OPTIMETER SPL
platform because they had not participated on its con-
struction during Optimeter I. These promising results
did not interfere with other practices and did not incur
a big cost, making traceability possible. However, the
use of the Feature-PLA Traceability Model requires to
know and understand the modeling concepts on which
they are based on, as well as to learn the usage of the
FPLA modeling framework. The learning curve of these
concepts as well as the usage of FPLA could slow down
the process of putting traceability into practice. In fact,
the SPL engineers expressed reluctance at the time of
putting traceability into practice, although later, the
product engineers found this traceability essential to
do their work during the configuration of variability to
derive the producís A and B.

5 Related Work

Recently, íhere has been a growing recogniíion of íhe
imporíance of íraceabiliíy in SPLE, which has resulíed
in more and more research in íhis Henee, Moon eí
al. [38] defined a Variabiliíy Trace Meíamodel íhaí con-
necís íwo meíamodels: a meíamodel for requiremenís
and a meíamodel for archiíecíure. Ajila eí al. [3] pre-
seníed an evoluíion model íhaí defines a dependeney re-
laíionship sírucíure of various SPL aríifacís. Saíyananda
eí al. [52] preseníed a framework for formally ideníify-
ing íraceabiliíy beíween feaíure and archiíecíure mod-
els using Formal Concept Analysis, funcíional decompo-
siíion, and a seí of mapping analysis rules. Finally, Berg
eí al. [10] also defined a concepíual variabiliíy model
íhaí capíures variabiliíy informaíion across íhe various
aríifacís involved in íhe SPLE developmení. All íhese
approaches16 offer supporí for íracing SPL, including
íraceabiliíy of variabiliíy. The granulariíy of íraceabil-
iíy links relies largely on íhe granulariíy of elemenís
ío be íraced, wheíher requiremenís, archiíecíural el-
emenís, or classes. The approaches before meníioned
supporí archiíecíural variabiliíy by adding or removing
componenís or connecíions. However, íhese approaches
do noí have íhe capabiliíies for íracing íhe variabiliíy
íhaí is iníernal ío componenís, i.e. variaíions íhaí have
fine granulariíy and cannoí be designed as componenís.
In íhis sense, our íraceabiliíy model íakes an síep for-
ward due ío íhe fací íhaí ií is based on íhe Flexible-
PLA Model which allows SPL engineers ío specify boíh

1 6 Although other papers propose other traceability ap-
proaches [49,47,42], we did not include them here as they
do not consider SPLE.

exíernal and iníernal variabiliíy íhanks ío íhe PPC's
variabiliíy mechanism. The fací íhaí iníernal variabil-
iíy can crosscuí several componenís, and íhaí is modu-
larized and reused by PPCs (i.e. íhis variabiliíy is noí
scaííered íhrough íhese componenís), makes ií easier
iís íraceabiliíy. Therefore, our approach makes boíh
coarse-grained and fine-grained íraceabiliíy possible.

Addiíionally, Saíyananda eí al. [52] defined a seí
of mapping analysis rules similar ío íhe linkage rules
we propose. These rules are íexíually described while
íhe linkage rules we propose are formally síaíed by
íhe Feaíure-PLA Traceabiliíy Model. Models are com-
pleíely subjecí ío auíomaíion, which (i) makes ií eas-
ier ío define íraceabiliíy links while íheir correcíness is
guaraníeed by model-conformaíion, (ii) promoíes learn-
ing and reasoning over íhe knowledge íhey coníain, and
(iii) provides íhe capabiliíies ío (semi-)auíomaíically
generaíe oíher aríifacís, such as code, íhrough model
íransformaíions.

Finally, ií is imporíaní ío meníion íhe work of An-
queíil eí al. [4] íhaí defined a common íraceabiliíy frame-
work across íhe various acíiviíies of SPL developmení
and specified a meíamodel for a reposiíory of írace-
abiliíy links. This framework provides a big picíure of
íraceabiliíy for SPL by offering modeling primiíives for
íracing any aríifací involved in íhe SPL developmení.
This compleíe framework does noí embed all íhese ar-
íifacís buí embed references ío íhem in order ío make
manageable íhe high number of aríifacís íhaí a com-
pleíe SPL consírucíion requires ío írace. As a resulí,
sources and íargeís of íraceabiliíy links are paíhs where
íhe aríifacís are síored or can be found (documenís,
diagrams or classes). The fací íhaí íhese aríifacís are
exíernal ío íhe íraceabiliíy model makes ií difficulí ío
guaraníee íhaí a change in an aríifací is also updaíed
in íhe íraceabiliíy model. Addiíionally, íhis artifaets

outsourcíng makes ií difficulí ío undersíand íhe írace-
abiliíy models and íheir usage as a guidance during
íhe configuraíion of íhe producís of a SPL while en-
suring íhaí íhe variabiliíy binding meéis íhe producí
requiremenís. This is due ío íhe fací íhaí íhe relaíion-
ships inside aríifacís (e.g. a feaíure has a XOR feaíure
group) are noí included in íhe íraceabiliíy framework
and íraceabiliíy links do noí coníain raíionale and in-
formaíion abouí íhe íraceabiliíy-making process. The
Flexible-PLA Traceabiliíy Model reduces iís scope by
focusing on íhe íraceabiliíy beíween feaíure and PLA
models and prioriíizes íhe knowledge and guidance íhaí
íraceabiliíy models can provide during SPL producí
configuraíion ío ensure íhe requiremenís compliance.
This is supporíed by including íhe source and íargeí
aríifacís—íhe Feaíure and PLA models—inío íhe írace-
abiliíy model, as well as íheir relaíionships, and en-

riching traceability links with rationale and information
about the traceability-making process.

6 Conclusions and Further Work

SPLE is facing new challenges, being one of the most
important the traceability of variability. To deal with
this challenge, this paper presents a solution for tracing
Feature and PLA models called Feature-PLA Traceabil-
ity Model, as well as the modeling framework that sup-
port it. The Feature-PLA Traceability Model defines
a set of linkage rules to trace variable features to both
the coarse-grained variability of complex components—
external variability—and the fine-grained variability of
simple components - internal variability.

The description and the traceability of the variabil-
ity that is internal to one or many components is as
important as the description and the traceability of the
external variability. It is essential to cope with most
kinds of variation that SPL engineers could define on
their product families. Supporting both coarse-grained
and fine-grained traceability of variability helps prod-
uct engineers at the time of configuring this variability
to derive producís. This means that product engineers
can examine Feature-PLA Traceability models to en-
sure that variability bindings satisfy the product re-
quirements.

As future work, the knowledge stored in Feature-
PLA Traceability models could be used to analyze the
impact of changing requirements, i.e. to analyze how
a change in features may affect the architecture by
traversing the traces that link them. this was suggested
by the engineers involved in the case study during the
interviews. Additionally, the knowledge currently stored
could be extended to capture more types of knowledge,
such as domain knowledge, design decisions, assump-
tions, etc.

The Feature-PLA Traceability model and its usage
still have several limitations that should be addressed
in the near future. The main one is scalability, such as a
scalable visualization. However this limitation is more
related to the algorithms to leverage and visualize the
traceability knowledge than the expressiveness of the
traceability model.

A c k n o w l e d g e m e n t s The work reported in here has been
partially sponsored by the Spanish fund: INNOSEP (TIN2009-
13849), I M P O N E T (ITEA 2 09030, TSI-02400-2010-103), i-
SSF (IPT-430000-2010-038), N E M O & C O D E D (ITEA2 08022,
IDI-20110864) and ENERGOS (CEN-20091048). Finally, it
is also funded by the UPM (Technical University of Madrid)
under their Researcher Training program.

References

1. Adachi Barbosa, E., Bat is ta , T., Garcia, A., Silva, E.: Pl-
aspectualacme: An aspect-oriented architectural descrip-
tion language for software product lines. In: I. Crnkovic,
V. Gruhn, M. Book (eds.) Software Architecture, Lee-

ture Notes in Computer Science, vol. 6903, pp. 139-146.
Springer Berlin / Heidelberg (2011)

2. Aizenbud-Reshef, N., Nolan, B.T. , Rubin, J., Shaham-
Gafni, Y.: Model traceability. IBM Systems Journal
45(3) , 515 -526 (2006). DOI 10.1147/sj.453.0515

3. Ajila, S., Kaba, A.: Using traceability mechanisms to sup-
port software product line evolution. In: Information
Reuse and Integration, 2004. IRI 2004. Proceedings of
the 2004 IEEE International Conference on, pp. 157-162
(2004). DOI 10.1109/IRI.2004.1431453

4. Anquetil , N., Kulesza, U., Mitschke, R., Moreira,
A., Royer, J .C. , Rummler, A., Sousa, A.: A model-
driven traceability framework for software prod-
uct lines. Software and Systems Modeling p. 25
(June 2009). DOI 10.1007/sl0270-009-0120-9. URL
ht tp: / /www.springer l ink.com/content /wvm4hv8r78117785

5. Antkiewicz, M., Czarnecki, K.: Featureplugin: feature
modeling plug-in for eclipse. In: eclipse '04: Proceedings
of the 2004 OOPSLA workshop on eclipse technology eX-
change, pp. 67-72. ACM, New York, NY, USA (2004).
DOI 10.1145/1066129.1066143

6. Bachmann, F. , Bass, L.: Managing variability in software
architectures. In: SSR '01: Proceedings of the 2001 sym-
posium on Software reusability, pp. 126-132. ACM, New
York, NY, USA (2001). DOI 10.1145/375212.375274

7. Bachmann, F. , Goedicke, M., Leite, J., Nord, R., Pohl,
K., Ramesh, B., Vilbig, A.: A meta-model for repre-
senting variability in product family development. In:
F. van der Linden (ed.) Software Product-Family Engi-
neering, Lecture Notes in Computer Science, vol. 3014,
pp. 66-80. Springer Berlin / Heidelberg (2004)

8. Bass, L., Clements, P , Kazman, R.: Software Architec-
ture in Practice, 2nd edition. Addison-Wesley Pearson
Education (2003)

9. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated
analysis of feature models 20 years later: A l i terature re-
view. Inf. Syst. 35(6) , 615-636 (2010)

10. Berg, K., Bishop, J., Muthig, D.: Tracing software prod-
uct line variability: from problem to solution space. In:
SAICSIT '05: Proceedings of the 2005 annual research
conference of the South African inst i tute of computer
scientists and information technologists on IT research
in developing countries, pp. 182-191. South African In-
s t i tu te for Computer Scientists and Information Technol-
ogists, , Republic of South África (2005)

11. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Soft-
ware Development. Springer (2005)

12. Bezivin, J.: On the unification power of models. Software
and Systems Modeling 4(2), 171-188 (2005)

13. Cleland-Huang, J., Gotel, O., Zisman, A. (eds.): The
Grand Challenge of Traceability (vl .0) . Springer-Verlag
London Limited (2012)

14. Clements, P., Northrop, L.: Software Product Lines:
Practices and Pat te rns . Addison-Wesley (2002)

15. Czarnecki, K.: Mapping features to models: A tém-
plate approach based on superimposed variants. In:
G P C E 2005 - Generative Programming and Component
Enginering. 4th International Conference, pp. 422-437.
Springer (2005)

16. Dashofy, E.M., Hoek, A.v.d.: Representing product fam-
ily architectures in an extensible architecture description

http://www.springerlink.com/content/wvm4hv8r78117785

language. In: P F E '01: Revised Papers from the 4 th In-
ternat ional Workshop on Software Product-Family Engi-
neering, pp. 330-341. Springer-Verlag (2002)

17. Díaz, J., Pérez, J., Garbajosa, J., Yagüe, A.: Change-
impact driven agüe architecting. In: Proceedings of the
46th Hawaii International Conference on System Sciences
(HICSS '13), Hawaii, USA, January 7-10, 2013, pp. 4780-
4789. IEEE Computer Society Press (2013)

18. Espinoza, A., Garbajosa, J.: A proposal for defining a set
of basic Ítems for project-specific traceability methodolo-
gies. In: Software Engineering Workshop, 2008. SEW '08.
32nd Annual IEEE, pp. 175-184 (2008)

19. Gotel, O., Finkelstein, C : An analysis of the require-
ments traceability problem. In: Proceedings of the First
International Conference on Requirements Engineering,
pp. 94 -101 (1994). DOI 10.1109/ICRE.1994.292398

20. Gotel, Orlena et al.: The grand challenge of traceability
(vl .0) . In: J. Cleland-Huang, O. Gotel, A. Zisman (eds.)
Software and Systems Traceability, pp. 343-409. Springer
London (2012)

21. Hauser, J.R., Clausing, D.: The house of quality. Harvard
Business Review 66(3) , 63-73 (1988). Available through
Harvard Business School Publishing.

22. van Heesch, U., Avgeriou, P., Hilliard, R.: A documen-
tat ion framework for architecture decisions. Journal of
Systems and Software 85(4) , 795 - 820 (2012). DOI
10.1016/j.jss.2011.10.017

23. van der Hoek, A., Heimbigner, D., Wolf, A.L.: Captur ing
architectural configurability: Variants, options, and evo-
lution. Tech, rep., Technical Report CU-CS-895-99, De-
par tment of Computer Science, University of Colorado,
Boulder, Colorado (1999)

24. Jacobson, L, Griss, M., Jonsson, P.: Software Reuse. Ar-
chitecture, Process and Organization for Business Suc-
cess. Addison-Wesley (1997)

25. Kang, K.C., Cohén, S.G., Hess, J.A., Novak, W.E. , Pe-
terson, A.S.: Feature-oriented domain analysis (foda) fea-
sibility study. Tech, rep., Carnegie-Mellon University,
P i t t sburgh, PA, USA, CMU/SEI-90-TR-21 ESD-90-TR-
222 (1990)

26. Khurum, M., Gorschek, T.: A systematic review of do-
main analysis solutions for product lines. J. Syst. Softw.
82(12), 1982-2003 (2009)

27. Kizcales, G., Lamping, J., Mendhekar, A., Maeda, C :
Aspect-oriented programming. In: Proceedings of the
l l t h European Conference on Object-Oriented Program-
ming (E C O O P) , Lecture Notes in Computer Science, vol.
1241. Springer-Verlag (1997)

28. Kolovos, D.S., Paige, R.F. , Polack, F.A.C.: On-demand
merging of traceability links with models. In: In Proc. of
3 rd ECMDA Traceability Workshop (2006)

29. Letelier, P.: A framework for requirements traceability in
uml-based projects. In: In Proc. of l s t Intl. Workshop on
Traceability in Emerging Forms of Softw. Eng, pp. 32-41
(2002)

30. Loughran, N., Sánchez, P., Garcia, A., Fuentes, L.: Lan-
guage support for managing variability in architectural
models. In: SC'08: Proceedings of Software Composition,
7th International Symposium, Lecture Notes in Com-

puter Science, vol. 4954, pp. 36-51 . Springer (2008)
31 . Magee, J., Kramer, J.: Dynamic s t ructure in software ar-

chitectures. In: Proceedings of the 4 th ACM SIGSOFT
symposium on Foundations of software engineering, SIG-
S O F T '96, pp. 3-14. ACM, New York, NY, USA (1996)

32. Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Vari-
ability in quality a t t r ibutes of service-based software sys-
tems: A systematic l i terature review. Information and
Software Technology 55(2) , 320-343 (2013)

33. Mart in, J.L., Yague, A., González, E., Garba-
josa, J.: Making software factory truly global:
the smart software factory project. In: F. Fager-
holm (ed.) Software Factory Magazine. Available on
http: / /www.softwarefactory.cc/magazine, p . 19 (2010)

34. Massoud Amin, S., Wollenberg, B.: Toward a smart
grid: power delivery for the 21st century. Power and
Energy Magazine, IEEE 3(5), 34-41 (2005). DOI
10.1109/MPAE.2005.1507024

35. Matinlassi, M.: Comparison of software product line ar-
chitecture design methods: Copa, fast, form, kobra and
qada. In: ICSE '04: Proceedings of the 26th International
Conference on Software Engineering, pp. 127-136. IEEE
Computer Society, Washington, DC, USA (2004)

36. Medvidovic, N., Taylor, R.N.: A classification and com-
parison framework for software architecture description
languages. IEEE Trans. Softw. Eng. 26(1) , 70-93 (2000).
DOI ht tp: / /dx.doi .org/10.1109/32.825767

37. Mens, T.: Future Research Challenges in Software Evolu-
tion and Maintenance - Report from EC Expert Meeting.
ERCIM News 8 1 (2010)

38. Moon, M., Chae, H.S., Nam, T., Yeom, K.: A metamodel-
ing approach to tracing variability between requirements
and architecture in software product lines. In: CIT '07:
Proceedings of the 7th IEEE International Conference
on Computer and Information Technology, pp. 927-933.
IEEE Computer Society, Washington, DC, USA (2007)

39. Object Management Group: Data distr ibution service for
real-time systems, v i .2 (2006)

40. Object Management Group: Meta-Object Facil-
ity (MOF) Specification 2.0 T R formal-06-01-01.
h t t p : / / w w w . o m g . O r g / s p e c / M O F / 2 . 0 / P D F / (2006)

41 . Object Management Group: OCL Specification Versión
2.2. h t tp : / /www.omg.Org / spec /OCL/2 .2 / (2011)

42. Olsen, G., Oldevik, J.: Scenarios of traceability in model
to text transformations. In: D. Akehurst, R. Vogel,
R. Paige (eds.) Model Driven Architecture- Foundations
and Applications, Lecture Notes in Computer Science,

vol. 4530, pp. 144-156. Springer Berlin / Heidelberg
(2007)

43. van Ommering, R., van der Linden, F. , Kramer, J.,
Magee, J.: The koala component model for consumer elec-
tronics software. Computer 33(3) , 78-85 (2000). DOI
10.1109/2.825699

44. Pérez, J., Díaz, J., Garbajosa, J., Alarcón, P.P.: Flexi-
ble working architectures: Agüe architecting using ppcs.
In: Proceedings of the 4th European Conference on Soft-
ware Architecture (ECSA 2010), LNCS, pp. 102-117.
Springer-Verlag, Berlin, Heidelberg (2010)

45. Pérez, J., Díaz, J., Soria, C.C., Garbajosa, J.: Plástic par-
tial components: A solution to support variability in ar-
chitectural components. In: Proceedings of Joint Working
I E E E / I F I P Conference on Software Architecture 2009
and European Conference on Software Architecture 2009,
W I C S A / E C S A 2009, Cambridge, UK, 14-17 September
2009, pp. 221-230. IEEE (2009)

46. Pohl, K., Bóckle, G., Linden, F.: Software Product Line
Engineering: Foundations, Principies and Techniques.
Springer, Germany (2005)

47. Pohl, K., Brandenburg, M., Gülich, A.: Integrating re-
quirement and architecture information: A scenario and
meta-model approach. In: REFSQ'01 : Proceedings of
The Seventh International Workshop on Requirements
Engineering: Foundation for Software Quality, pp. 68-84
(2001)

48. Poshyvanyk, D., Di Penta , M., Kagdi, H.: Sixth inter-
national workshop on traceability in emerging forms of

http://www.softwarefactory.cc/magazine
http://dx.doi.org/10.1109/32.825767
http://www.omg.Org/spec/MOF/2.0/PDF/
http://www.omg.Org/spec/OCL/2.2/

software engineering: (tefse 2011). In: 33rd International
Conference on Software Engineering (ICSE 2011), pp.
1214 -1215 (2011). DOI 10.1145/1985793.1986052

49. Ramesh, B., Jarke, M.: Toward reference models for re-
quirements traceability. IEEE Trans. Softw. Eng. 27(1) ,
58-93 (2001). DOI ht tp: / /dx.doi .org/10.1109/32.895989

50. Runeson, P., Hóst, M.: Guidelines for conducting and re-
port ing case s tudy research in software engineering. Em-
pirical Software Engineering 14, 131-164 (2009)

51. Runeson, P., Hóst, M., Rainer, A., Regnell, B.: Case
Study Research in Software Engineering: Guidelines and
Examples. John Wiley & Sons (2012)

52. Satyananda, T.K., Lee, D., Kang, S., Hashmi, S.I.: Iden-
tifying traceability between feature model and software
architecture in software product line using formal con-
cept analysis. In: Proceedings of the International Con-
ference Computat ional Science and its Applications, pp.
380-388. IEEE Computer Society, Washington, DC, USA
(2007)

53. Schwaber, K., Beedle, M.: Agüe Software Development
with Serum. Prentice-Hall (2002)

54. Scott, J., Kazman, R.: Realizing and refining architec-
tura l tactics: Availability. Tech, rep., CMU/SEI-2009-
TR-006 ESC-TR-2009-006 (2009)

55. Selic, B.: The pragmatics of model-driven develop-
ment. IEEE Softw. 20(5) , 19-25 (2003). DOI
ht tp: / /dx.doi .org/10.1109/MS.2003.1231146

56. Staab, S., Walter, T., Grner, G., Parreiras, F.: Model
driven engineering with ontology technologies. In:
U. Amann, A. Bar tho, C. Wende (eds.) Reasoning Web.
Semantic Technologies for Software Engineering, Lee-

ture Notes in Computer Science, vol. 6325, pp. 62-98.
Springer Berlin Heidelberg (2010)

57. Stake, R.E.: The Art of Case Study Research. SAGE
Publications Inc (1995)

58. Szyperski, C : Component Software: Beyond Object-
Oriented Programming. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

59. Taha, W.M.: Domain-Specific Languages IF IP T C 2
Working Conference, DSL, Lecture Notes in Computer

Science, vol. 5658. Springer Berlin / Heidelberg (2009)
60. Weiler, T.: Modelling architectural variability for soft-

ware product lines. In: SVM'03: Proceedings of the
Software Variability Management Workshop, pp. 53-61
(2003)

61. Yin, R.: Case s tudy research. Design and methods. 4 th
ed. London, Sage (2008)

http://dx.doi.org/10.1109/32.895989
http://dx.doi.org/10.1109/MS.2003.1231146

