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Summary. This paper introduces a scheme for the numerical solution of a
model for two turbulent flows with coupling at an interface. We consider
a variational formulation of the coupled model, where the turbulent kinetic
energy equation is formulated by transposition. We prove the convergence of
an approximation to this formulation for 2D flows by piecewise affine trian-
gular elements. Our main contribution is to prove that the standard Galerkin
- Finite Element approximation of the Laplace equation approximates in L2

norm its solution by transposition, for data with low smoothness. We include
some numerical tests for simple geometries that exhibit the behaviour pre-
dicted by our analysis.
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1 Introduction

This paper deals with the numerical solution of two turbulent flows coupled
through a common interface and, in particular, of air - atmosphere turbulence.

Numerical turbulence models are widely used in engineering to predict
the behaviour of many kinds of flows of applied interest. A long development
of physical turbulence models has taken place since the early 70’s to model
flows of increasing complexity (Cf. Wilcox [19]). Recently, an interest for the
theoretical and numerical analysis of these models has taken place, motivated
by the need of constructing numerical solvers on mathematical grounds.

The main issue in the mathematical analysis of turbulence models is to find
a convenient weak formulation for the equations of the turbulence statistics.
Lewandowski (Cf. [12]) analyses the so-called ϕ-θ model, a two-equations
model with larger levels of turbulent diffusion than the well-known k-ε one.
An existence result is derived, for given smooth velocity fields. In this case,
the usual concept of weak solution of Lions (Cf. [14]) is enough to obtain
an existence result. This essentially occurs because the source terms in the ϕ

and θ equations are nonpositive. This result is improved in Gómez and Or-
tegón (Cf. [10]) by considering a more realistic ϕ-θ model, which includes
coupling with the velocity field equations. Still, the usual weak formulation
of the equations for ϕ and θ is used.

In Lewandowski (Cf. [13]) the mixing - length model is analyzed. This is
a one-equation model, including velocity and turbulent kinetic energy (TKE
in what follows), for which an existence result is proved. For this model, the
production term for the TKE is nonnegative. As it has only L1 regularity,
this equation is formulated in the renormalized sense of Lions and Murat
(Cf. [16]), and a priori estimates of Boccardo–Gallouët type [4] are used.
However, no existence results of any kind of weak solutions for the full k-ε
model has been reported, up to our knowledge.

In Mohammadi and Pironneau [17] an analysis of some aspects of the
numerical approximation of the k-ε model is performed. Concretely, some
Finite Element numerical schemes that use the method of characteristics for
time discretization are introduced. Althoug these schemes are proved to be
stable, no convergence results are reported.

Recently, Bernardi et al. have considered in [2] a model for the coupling
of two turbulent flows separated by a fixed interface. The flow i (i = 1, 2)

is assumed to occupy a bounded domain 	i of R2, and to be represented by
the (vector) velocity field ui , the pressure pi and the turbulent kinetic energy
(TKE in what follows) ki . The interface � = ∂	1 ∩ ∂	2 is assumed to coin-
cide with the intersection of both 	̄1 and 	̄2 with the hyperplane x2 = 0,
while 	1 and 	2 are contained in the half-spaces x2 > 0 and x2 < 0 respec-
tively, where we denote by x = (x1, x2) a generic point of R2. The flows are



Solution of coupled turbulence model 3

assumed to be governed by the following boundary value problem:

−div
(
αi(ki)∇ui )+ grad pi = fi in 	i, i = 1, 2,

div ui = 0 in 	i, i = 1, 2,

−div
(
γi(ki)∇ki

) = αi(ki) |∇ui |2 in 	i, i = 1, 2,

ui = 0 on �i, i = 1, 2,

ki = 0 on �i, i = 1, 2,

αi(ki) ∂ni
ui = (uji

− ui) |ui − uji
| , vi = 0, on �, i = 1, 2,

with j1 = 2, j2 = 1
ki = |u1 − u2|2, on �, i = 1, 2,

(1)

where ui and vi respectively denote the horizontal and vertical components
of the velocity field ui . Also, the quantities αi(k) and γi(k) are the eddy vis-
cosities, assumed to be bounded and continuous functions of the argument
k.

System (1) is motivated by the coupling of two turbulent fluids Fi , i = 1
and 2, such as in the framework ocean/atmosphere or in the case of two layers
of a stratified fluid as is the ocean (see e.g. [12], Chap. 1 & 3). These fluids
Fi are coupled through the interface condition in the sixth line of (1), on
the part of the boundary � supposed to be fixed. Indeed, we assume that the
so-called “rigid lid hypothesis” holds, which is standard in geophysics and
oceanography. Basically, � is a mean interface and the values of ui , pi and
ki on � are in fact mean values of the velocity, pressure and energy. So, the
turbulent mixing layer of the two turbulent fluids is modelled by the sixth
and seventh lines in (1) which contain the information related to a realistic
interface ocean/atmosphere (see [12], Section 1.4 for more details about this
modelling).

Model (1) is given in [2] a weak formulation as follows: Because of the
boundedness of each function αi , following the ideas of Lions (Cf. [14]) leads
to a weak mixed formulation of the first two lines. However, because of low
smoothness of the boundary conditions at the interface �, the renormaliza-
tion in the sense of Lions and Murat [16] for elliptic equations does not seem
the best way for the study of the TKE equations in the present problem. For
this reason, the unknown ki is at first transformed in an equivalent unknown,
in order to replace the operator div

(
γi(ki)∇) by a simpler Laplace operator.

The corresponding new equation is proved to have a sense by transposition,
according to the ideas of Stampacchia [18] and of Lions and Magenes [15],
Chap. 2, Section 6. Under this formulation, the existence of a solution of the
global system (1) is proved if the domains 	1 and 	2 are either convex, or
have C1,1 boundaries. Uniqueness of solutions for small data is also proved.

Recently, Bernardi and al. have considered in [3] a spectral discretization
of system (1) and perform its numerical analysis. The convergence of the
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method is proven in the two-dimensional case, together with optimal error
estimates for smooth solutions.

The goal of this paper is to introduce a Finite Element numerical discret-
ization of system (1). The equations for velocity and pressure are approxi-
mated by a standard mixed method. The main difficulty that we face is to
derive efficient approximations of the solution by transposition of the TKE
equation. Essentially, this equation reads as{−�k = α in 	,

k = δ on ∂	,
(2)

where k (resp., 	) stands for either k1 or k2 (resp., 	1 or 	2), α is a function
of L1(	) and δ a function of L4(∂	). Since either 	 is convex, or ∂	 is C1,1,
the Laplace operator L which associates with data g in H−1(	) the solution
ϕ = Lg ∈ H 1

0 (	) of the problem{−�ϕ = g in 	,

ϕ = 0 on ∂	,
(3)

is an isomorphism from L2(	) into H 2(	)∩H 1
0 (	) (See [11], Thm. 3.2.1.2).

The solution by transposition of (2) is now defined as follows :Find k ∈ L2(	) such that ∀g ∈ L2(	),∫
ω

k g dx = −
∫

∂	

δ ∂n(Lg) dτ +
∫

	

α (Lg) dx.
(4)

A direct numerical approximation of this formulation would need to explic-
itely know L acting on the elements of the discrete space, or some suitable
approximation. The approximation introduced in this paper starts from the
observation that the approximation by Finite Elements of problem (1) pro-
vides in particular a regularization of the data appearing in equation (2). Then,
the standard Galerkin approximation of (2) makes sense, and only internal
approximations of H 1

0 (	) are needed. We prove that indeed the standard
Finite Element Galerkin solution of the TKE equation (2) approximates the
solution by transposition in L2 norm. As a consequence, we prove the strong
convergence of a subsequence of our global approximation to a solution of
the continuous model (1), in H 1 and L2 norms for velocity and kinetic energy,
respectively. We consider piecewise linear Finite Elements because the low
regularity of the solutions of problem (1) makes it unefficient the use of higher
degree elements. However, our convergence analysis may be extended to gen-
eral Finite Element approximations with some technical work.

Our paper is organized as follows. In Section 2 we introduce our first
approximation and prove the existence of solutions. Section 3 is devoted to
prove the convergence of this approximation, in the terms mentioned above.
Finally, in Section 4 we report some numerical experiments for domains with
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simple geometries that exhibit the convergence in the norms predicted by our
theory.

2 Numerical approximation

We shall at first describe the weak formulation of problem (1) introduced
in [2]. This is based upon a reformulation of the TKE equation, as follows.
We assume that αi and γi are continuous bounded functions from the set of
nonnegative real numbers R+ onto R, which satisfies

∀k ∈ R+, M ≥ αi(k) ≥ ν and M ≥ γi(k) ≥ ν,(5)

where M and ν are positive constant. Let us define the functions Gi , i = 1
and 2, by

Gi(k) =
∫ k

0
γi(κ) dκ.(6)

The functions Gi are differentiable with bounded derivative, and also
increasing and nonnegative on R+, so that they admit an inverse G−1

i from
R+ into R+. Moreover, the functions α̃i , i = 1 and 2, defined by

α̃i = αi ◦G−1
i ,(7)

satisfy the same properties as the αi , namely they are continuous, bounded
and satisfy

∀% ∈ R+, α̃i(%) ≥ ν.(8)

The unknowns ki are replaced by the new unknowns %i = Gi(ki). The equa-
tion for the TKE in (1) is formally replaced by

−�%i = α̃i(%i) |∇ui |2 in 	i,

%i = 0 in �i,

%i = Gi(|u1 − u2|2) in �.

(9)

Let us now introduce the spaces

Xi =
{
ui = (ui, vi) ∈ H 1(	i)×H 1

0 (	i); ui = 0 on �i },

L2
0(	i) = { qi ∈ L2(	i);

∫
	i

qidx = 0 }, i = 1, 2;

and define, for simplicity of notation,

Ei = Xi × L2
0(	i)× L2(	i).
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The formulation introduced in [2] is

Obtain (ui , pi, %i) ∈ Ei, i = 1, 2 such that ∀(vi , qi, gi) ∈ Ei,

ãi(%i;ui , vi )+ bi(vi , pi)− bi(ui , qi)

+n(ui , uji
, vi ) = 〈fi , vi〉,(10) ∫

	i

%i gi dx = −
∫

�

Gi(|u1 − u2|2) ∂ni
(Ligi) dτ

+
∫

	i

α̃i(%i) |∇ui |2 Ligi dx;(11)

where 〈·, ·〉 stands for the duality between Xi and X′
i , the forms ãi(·, ·, ·),

bi(·, ·) and n(·, ·, ·) are defined by

ãi(%i;ui , vi ) =
∫

	i

α̃i(%i)∇ui · ∇vi dx, bi(vi , qi)

= −
∫

	i

qi (div vi ) dx,(12)

n(ui , uji
, vi ) =

∫
�

(ui − uji
) |ui − uji

| vi dτ,(13)

and the operators Li are defined by (3) with 	 = 	i . Equation (10) is a weak
formulation of the two first equations in (1), plus the boundary conditions
set by the fourth and sixth equations. Equation (11) is the formulation by
transposition of the third equation in (1), plus the boundary conditions set by
the fifth and seventh equations, via the change of unknowns %i = Gi(ki).

In [2] it is proved by a fixed point argument that problem (10)-(11) admits
at least one solution, that belongs to Xi ×L2

0(	i)×H s(	i), for all s < 1/2,
i = 1, 2. This solution is proved to provide a solution in the sense of distri-
butions of the original model (1).

To describe our discretization, we assume that the 	i are polygonal, and
consider at first a family of triangular meshes Tih of 	i , i = 1, 2. We assume
the following hypothesis on the meshes :

Hypothesis 1

a) The meshes are regular, in the usual sense of the Finite Element Method
(Cf. Ciarlet [6]).

b) The meshes are compatible on �, in the sense that the sets

∂Tih = {T ∩ �, for T ∈ Tih}, i = 1, 2(14)

are equal.

We shall also assume the following hypothesis on the domains:
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Hypothesis 2 Both domains 	i are polygonal and have no fissures.

As discrete velocity - pressure spaces we shall use for simplicity the Mini-
Element (P1

⊕
Bubble, P1) on both 	1 and 	2. These spaces are respec-

tively defined by

Xih =
(
[Vih]2 ∩Xi

)⊕ Bih, Mih = Vih ∩ L2
0(	i),(15)

where Vih is the piecewise affine Finite Element space,

Vih = {vih ∈ C(	̄i) | vih|T is affine ∀T ∈ Tih },
and Bih is the “bubble” space,

Bih = {bih ∈ C(	̄i) | bih|T is proportional to biT ∀T ∈ Tih },
biT denoting the local bubble on element T , defined as the product of all
barycentric coordinates associated to the vertex of T .

The family {Xih, Mih}h>0, for i = 1, 2, is well known to satisfy the dis-
crete Babuška - Brezzi inf-sup condition on 	i : There exists a constant
β̃i > 0 such that

∀qih ∈ Mih, sup
vih∈Xih

bi(vih, qih)

‖vih‖H 1(	i)
2
≥ β̃i ‖qih‖L2(	i)

.(16)

Notice that due to Hypothesis 1 b), the velocity spaces X1h and X2h are
compatible on �, in the sense that the trace spaces

Zih = {vih|� , for vih ∈ Xih, }, i = 1, 2

are equal.
We also consider the subspace Kih of H 1

0 (	i) formed by piecewise affine
Finite Elements on triangulation Tih,

Kih = Vih ∩H 1
0 (	i).

We look for a discrete approximation %ih of %i as %ih = %0ih + Dih, where
%0ih ∈ Kih and Dih is a suitable extension of the boundary data Gi(|u1−u2|2)

to 	i . Let us define the operator Pih : Zih �→ Xih, by

Pihvh =
∑
αj∈�

vh(αj ) ϕi
j ,

where we denote by αj the nodes of interpolation of the Xih on � (which by
Hypothesis 1 b) do not depend on i), and by ϕi

j the canonical basis functions
of space Xih associated to each node αj defined by ϕi(αj ) = δij . We now
define

Dih = Gi(|Pih(u1h − u2h)|2), i = 1, 2.



8 C. Bernardi et al.

Notice that by construction, Dih|� = Gi(|u1h − u2h|2)|� . Also, as each Gi is
differentiable with bounded derivative, then Dih belongs to H 1(	i), i = 1, 2.

Let us define the space Eih = Xih ×Mih × Kih. Our approximation of
formulation (10) - (11) may now be stated as follows :

Obtain (uih, pih, %0ih) ∈ Eih, i = 1, 2 such that ∀(vih, qih, gih) ∈ Eih,

ãi(%ih;uih, vih)+ bi(vih, pih)

−bi(uih, qih)+ n(uih, ujih, vih) = 〈fi , vih〉,(17) ∫
	i

∇%ih · ∇gih dx

=
∫

	i

α̃i(%ih) |∇uih|2 gih dx;(18)

%ih = %0ih +Dih, with Dih = Gi(|Pih(u1h − u2h)|2).(19)

We shall prove in the next Section that this problem admits at least one solu-
tion. Our main result in the paper is the following

Theorem 1 Assume Hypothesis 1 and 2, then there exists a subsequence of
the solutions (u1h, p1h, %1h), (u2h, p2h, %2h) provided by method (17)-(19)
that converge strongly in

(H 1(	1)2 × L2
0(	1)×H s(	1))× (H 1(	2)2 × L2

0(	2)×H s(	2)),

for 0 ≤ s < 1/2, to a solution of problem (10)-(11).
If this solution is unique, then the whole sequence converges to it.

Remark 1 In Dauge (Cf. [8]) it is proved that Li is an isomorphism from
H−s(	i) on to H 2−s(	i) ∩H 1

0 (	i), if s > s0 = 0 when 	i is convex, or

s > s0 = 1− π

ω
,(20)

where ω is the largest internal angle of ∂	i . In the last case, as we are assum-
ing by Hypothesis 2 that the 	i have no fissures, then w < 2π and s0 < 1/2.

Remark 2 It is proved in [2] that for small data f1 and f2 problem (10)-(11)
admits a unique solution. Thus, in this case Theorem 1 provides a complete
convergence result.

Remark 3 We may obtain a maximum principle for the TKE under some
additional restriction on the triangulations Tih. Indeed, if all angles of ele-
ments of Tih are acute, then the matrix associated to the discrete Laplacian
operator in (18) is an M-matrix. As the boundary data given by (19) and the
r.h.s. of (18) are nonnegative, we deduce that %ih, and then kih also are non-
negative. Moreover, %ih = 0 if and only if uih is constant and u1h ≡ u2h(≡
constant) on �.
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3 Convergence analysis

We first state an existence result for discretization (17)-(18)-(19). We shall
assume in this Section that Hypotheses 1 and 2 hold. For simplicity, we shall
not state this in each result.

Our proof uses Brouwer’s fixed point theorem. We shall consider the
following partial problems :

Problem 1 Given (ūih, %̄0ih) ∈ Xih ×Kih, i = 1, 2,

Obtain ( (u1h, p1h), (u2h, p2h) ) ∈ ( (X1h ×M1h), (X2h ×M2h), ),

such that ∀ ( (v1h, q1h), (v2h, q2h) ) ∈ ( (X1h ×M1h), (X2h ×M2h), ),

ãi(%̄ih;uih, vih)+ bi(vih, pih)− bi(uih, qih)+ n(uih, ujih, vih)

= 〈fi , vih〉,(21)

where

%̄ih = %̄0ih + D̄ih, with D̄ih = Gi(|Pih(ū1h − ū2h)|2),

for i = 1, 2.

Problem 2 Given (uih, %̂i) ∈ Xih × L2(	i), i = 1, 2,

Obtain %0ih ∈ Kih, , i = 1, 2

such that∫
	i

∇%ih · ∇gih dx =
∫

	i

α̃i(%̂i) |∇uih|2 gih dx, ∀gih ∈ Kih(22)

where
%ih = %0ih +Dih, Dih = Gi(|Pih(u1h − u2h)|2).

Notice that (21) is a coupled problem for u1h and u2h, while (22) in reality
represents two decoupled problems for %01h and %02h.

Lemma 1 Problems 1 and 2 admit unique solutions, which satisfy the esti-
mates

‖u1h‖H 1(	1)2 + ‖u2h‖H 1(	2)2 ≤ C

ν

[ ‖f1‖L2(	1)2 + ‖f2‖L2(	2)2

]
,(23)

‖p1h‖L2(	1) + ‖p2h‖L2(	2) ≤
C

ν

[
‖f1‖2

L2(	1)2 + ‖f2‖2
L2(	2)2(24)

+‖f1‖L2(	1)2 + ‖f2‖L2(	2)2

]
,

‖%ih‖H s(	i) ≤ Cs (1+ h1/2−s)
[ ‖α̃i(%̂ih) |∇uih|2

‖L1(	i)
+ ‖u1h |� − u2h |�‖2

L4(�)

]
,(25)

for s0 < s ≤ 1/2, where Cs is a constant depending only on s, 	1, 	2, �,
‖γ1‖L∞(R), ‖γ2‖L∞(R) and the aspect ratio of triangulations T1h and T2h.
Notice that the estimates (23) and (24) are independent of the data.
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Proof. Problem 1 The existence of solution of the velocities uih in H 1(	i)

is deduced as in Section 3 of [1]: Define the spaces

Vih = {vih ∈ Xih such that bi(vih, qih) = 0, ∀ qih ∈ Mih }, for i = 1, 2.

Then, the pair (u1h, u2h) ∈ V1h × V2h satisfies, ∀ (v1h, v2h) ∈ V1h × V2h,

ãi(%̄ih;uih, vih)+ n(uih, ujih, vih) = 〈fi , vih〉,(26)

for i = 1, 2.
Following [1], this problem admits a unique solution, due to the mono-

tonicity of the whole operator appearing in (26), acting on V1h × V2h. This
solution is readily proved to satisfy estimate (23).

To obtain the pressures, let us define 7ih ∈ X′
ih by

〈7ih, vih〉 = ãi(%̄ih;uih, vih)+ n(uih, ujh, vih)− 〈fi , vih〉;
and the discrete gradient operator Gih : Mih �→ X′

ih by

〈Gih(qih), vih〉 = bi(vih, qih), ∀qih ∈ Mih.

Notice that Vih = (Im(Gih))⊥. Due to (26),7ih ∈ V ⊥
ih = Im(Gih). Thus,

there exists some pih ∈ Mih such that 7ih = Gih(−pih). Or, in other words,
( (u1h, p1h), (u2h, p2h) ) is a solution of Problem (21). This solution is unique
due to the inf-sup condition (16).

To obtain the L2(	i) estimate for the pressures, let us consider that, as
� is C∞ and bounded, then H 1/2(�) is injected in Lp(�), for 1 ≤ p ≤ ∞,
with compact injection. Also, as ∂	i is Lipschitz-continuous, then uih|� ∈
H 1/2(�). Then,

|n(uih, ujih, vih)| ≤ ‖u1h|� − u2h|� ‖2
L3(�)2 ‖ vih|� ‖L3(�)2

≤ C
[
‖u1h‖2

H 1(	1)2 + ‖u2h‖2
H 1(	2)2

]
‖vih‖H 1(	i)

2,

for some constant C > 0 independent of h. Estimate (24) follows from the
discrete inf-sup condition (16). ��
Proof. Problem 2 As Dih ∈ H 1(	i) and α̃i(%̂i) |∇uih|2 ∈ L∞(	i), it is
clear that Problem 2 admits a unique solution.

To deduce estimate (25), observe that H s(	i) = H s
0 (	i) if 0 ≤ s ≤

1

2
(Cf. Grisvard [11]). Then, using the reflexivity of H s

0 (	i), H s(	i) =(
H−s(	i)

)′
. From Hypothesis 2, for s0 < s ≤ 1/2, we deduce (see Remark

1)

‖%ih‖H s(	i) = sup
Q∈B−{0}

〈%ih,−�Q 〉
‖�Q‖H−s (	i)

≤ C sup
Q∈B−{0}

〈%ih,−�Q 〉
‖Q‖H 2−s (	i)

;(27)
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where B = H 2−s(	i) ∩H 1
0 (	i), and 〈·〉 stands for the H s(	i) − H−s(	i)

duality product.
Notice that H 2−s(	i) is continuously injected in C0(	i) if s < 1. Thus,

for Q ∈ B, its standard interpolate on Kih (defined by Qh(αj ) = Q(αj ), for
all αj node of Tih), is well defined. We write

〈%ih,−�Q 〉 =
∫

	i

∇%ih · ∇Q dx −
∫

�

%ih ∂niQ dτ

=
∫

	i

∇%ih · ∇Qh dx +
∫

	i

∇%ih · ∇(Q−Qh) dx

−
∫

�

δih ∂niQ dτ

=
∫

	i

α̃i(%̂i) |∇uih|2 Qh dx +
∫

	i

∇Dih · ∇(Q−Qh) dx

+
∫

	i

∇%0ih · ∇(Q−Qh) dx −
∫

�

δih ∂niQ dτ

:= I+ II+ III+ IV,(28)

where δih = Gi(|u1h |� − u2h |� |2).
We next estimate these four summands.

Estimates of I As ‖Qh‖L∞(	i) ≤ ‖Q‖L∞(	i),

|I| ≤ ‖α̃i(%̂i) |∇uih|2‖L1(	i)
‖Qh‖L∞(	i)

≤ C ‖α̃i(%̂i) |∇uih|2‖L1(	i)
‖Q‖H 2−s (	i)

(29)

Estimates of II A slight modification of the arguments of Exercice 8.3 of
Dupont and Scott (Cf. [9]) proves that there exists a constant C > 0 depend-
ing only on 	i such that

‖∇(Q−Qh)‖L2(	i)
≤ C h1−s ‖Q‖H 2−s (	i)

.(30)

Also, denote zh = Pih(u1h |� − u2h |� ). Then,

‖∇Dih‖L2(	i)
= ‖G′

i (|zh|2)∇ (|zh|2
) ‖L2(	i)

≤ ‖γi‖L∞(R) ‖∇
(|zh|2

) ‖L2(	i)
.

Denote by Ch the set of elements K ∈ Tih such that meas(∂K ∩ �) > 0,
and by {α1, α2, · · · , αM} the nodes of Tih that lie on �. Then, there exists a
constant C > 0 depending on the aspect ratio of the triangulations, such that

‖∇ (|zh|2
) ‖2

L2(	i)
= 4

∑
T ∈Ch

|∇zh|T |2
∫

T

|zh|2 dx ≤ C

M∑
i=1

|zh(αi)|4.



12 C. Bernardi et al.

This occurs because the regularity of the triangulations Tih ensures

|∇zh|T | ≤ C

3∑
i,j=1

∣∣∣∣zh(αiT )− zh(αjT )

h

∣∣∣∣2 ,

∫
T

|zh|2 dx ≤ C h2
M∑

i=1

|zh(αiT )|2,

where αiT , i = 1, 2, 3 are the nodes of element T .
By a scaling argument,

h

M∑
i=1

|zh(αi)|4 ≤ C ‖zh|�‖4
L4(�)

.

Then,

‖∇ (|zh|2
) ‖L2(	i)

≤ C h−1/2 ‖zh|�‖2
L4(�)

,

and

‖∇Dih‖L2(	i)
≤ C h−1/2 ‖u1h |� − u2h |�‖2

L4(�)
.(31)

Combining now estimates (30) and (31), we deduce

|II| ≤ ‖∇Dih‖L2(	i)
‖∇(Q−Qh)‖L2(	i)

≤ C h1/2−s ‖u1h |� − u2h |�‖2
L4(�)

‖Q‖H 2−s (	i)
.(32)

Estimates of III From (30),

|III| ≤ C h1−s ‖∇%0ih‖L2(	i)
‖Q‖H 2−s (	i)

.(33)

To estimate the first factor above, let us consider that

‖∇%0ih‖L2(	i)
= sup

gh∈Kih−{0}

∫
	i

∇%0ih · ∇gh dx

‖∇gh‖L2(	i)

.

From here, using equation (22), we deduce

‖∇%0ih‖L2(	i)
≤ C

[
‖α̃i(%̂i) |∇uih|2‖L1(	i)

sup
gh∈Kih−{0}

‖gh‖L∞(	i)

‖∇gh‖L2(	i)

+‖∇Dih‖L2(	i)

]
.(34)
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Given gh ∈ Kih, there exists a node α0 of triangulationTih such that |gh(α0)| =
‖gh‖L∞(	i), as gh is a piecewise affine function. As the triangulations are reg-
ular, there exists a chain of nodes of Tih, α0, α2, · · · , αN , that rely α0 with
αN ∈ ∂	i , such that N = O(h−1). Using gh(αN) = 0, we deduce

‖gh‖L∞(	i) ≤
N∑

i=1

|gh(αi)− gh(αi−1)| ≤ N1/2

(
N∑

i=1

|gh(αi)− gh(αi−1)|2
)1/2

≤ C h−1/2

(
N∑

i=1

|gh(αi)− gh(αi−1)|2
)1/2

.(35)

Consider now that

‖∇gh‖2
L2(	i)

≥ C
∑

T ∈Tih

3∑
i,j=1

∫
T

|gh(αi,T )− gh(αj,T )|2
h2

dx

≥ C
∑

T ∈Tih

3∑
i,j=1

|gh(αi,T )− gh(αj,T )|2

≥ C h ‖gh‖2
L∞(	i)

,

the last inequality being due to estimate (35). Then,

‖gh‖L∞(	i) ≤ C h−1/2 ‖∇gh‖L2(	i)
.(36)

Combining now estimates (36) and (31) with (34) and (33), we deduce

|III| ≤ C h1/2−s
[
‖α̃i(%̂i) |∇uih|2‖L1(	i)

+‖u1h |� − u2h |�‖2
L4(�)

]
‖Q‖H 2−s (	i)

.(37)

Estimates of IV As � is C∞, then H 1/2−s(�) is continuously imbedded in
Lq(�) with q > 2. Then,

|IV| ≤ ‖δih‖L4(�)‖∂niQ‖L4/3(�) ≤ C‖u1h |� − u2h |�‖2
L4(�)

‖Q‖H 2−s (	i)
.(38)

Inserting estimates (29), (32), (37) and (38) in (28) and (27), we deduce (25).
��

This result allows to prove the existence of solutions of our numerical approx-
imation:
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Theorem 2 The discrete problem (17) - (18) - (19) always admits a solution,
which satisfies the estimates

‖u1h‖H 1(	1)2 + ‖u2h‖H 1(	2)2 ≤ C

ν

[ ‖f1‖L2(	1)2 + ‖f2‖L2(	2)2

]
,(39)

‖p1h‖L2(	1) + ‖p2h‖L2(	2) ≤
C

ν

[
‖f1‖2

L2(	1)2 + ‖f2‖2
L2(	2)2(40)

+‖f1‖L2(	1)2 + ‖f2‖L2(	2)2

]
,

‖%ih‖H s(	i) ≤ Cs (1+ h1/2−s)
[
‖α̃i(%ih) |∇uih|2

‖L1(	i)
+ ‖u1h |� − u2h |�‖2

L4(�)

]
,(41)

for s0 < s ≤ 1/2, where Cs is a constant depending only on s, 	1, 	2, �,
‖γ1‖L∞(R), ‖γ2‖L∞(R) and the aspect ratio of triangulations T1h and T2h.

Proof We use Brouwer’s fixed point Theorem. Let us consider the transfor-
mation F from space Eh = (X1h ×K2h)× (X2h ×K2h) onto itself defined
as follows : The image by F of an element

(
(ū1h, %̄01h), (ū2h, %̄02h)

) ∈ Eh

is the element ( (u1h, %01h), (u2h, %02h) ) ∈ Eh defined in two steps :

Step 1: u1h and u2h are the velocity components of the solution of Problem
1 with data

(
(ū1h, %̄01h), (ū2h, %̄02h)

)
.

Step 2: %01h and %02h are the solution of Problem 2 with data (u1h, %̂1h) and
(u2h, %̂2h), where %̂ih = %̄0ih + D̄ih, D̄ih = Gi(|Pih(ū1h − ū2h)|2), i =
1, 2.

Transformation F is well defined, due to the uniqueness of solutions of Prob-
lems 1 and 2. It is a continuous mapping from space Eh onto itself, as all
operator terms appearing in Problems 1 and 2 are continuous, when acting
on spaces of finite dimension as it is the case.

Further, to estimate %0ih, let us recall that %0ih = %̄ih−Dih, with %̄ih solu-
tion of (22) and Dih = Gi(|Pih(u1h − u2h)|2). On one hand, estimate (25)
reads

‖%̄ih‖L2(	i)
≤ C

[
‖α̃i(%̂ih) |∇uih|2‖L1(	i)

+ ‖u1h |� − u2h |�‖2
L4(�)

]
.(42)

On another hand, denote wh = u1h |� − u2h |� , zh = Pih(wh). Then, using
the notation of the proof of Lemma 1, and the arguments employed in the
estimate of II,

‖Dih‖2
L2(	i)

≤ C

∫
	i

|zh|4 = C
∑
T ∈Ch

∫
T

|zh|4 dx ≤ C h2
M∑

i=1

|wh(αi)|4

≤ C h ‖wh‖4
L4(�)

≤ C h [‖u1h‖2
L4(�)

+ ‖u2h‖2
L4(�)

]2.
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Then, using the continuity of the injection of H 1/2(�) into L4(�),

‖Dih‖L2(	i)
≤ C h1/2 [‖u1h‖2

H 1(	1)2 + ‖u2h‖2
H 1(	2)2 ], i = 1, 2.(43)

Using estimates (42) and (43) and the boundedness of the α̃i ,

‖%0ih‖L2(	i)
≤ C (1+ h1/2) [‖u1h‖2

H 1(	1)2 + ‖u2h‖2
H 1(	2)2 ], i = 1, 2(44)

Using now estimate (23), we deduce

‖F (
(ū1h, %̄01h), (ū2h, %̄02h)

) ‖H 1(	1)2×L2(	1)×H 1(	2)2×L2(	2) ≤ M,

where
M = C

[
‖f1‖2

L2(	1)2 + ‖f2‖2
L2(	2)2

]
.

By Brouwer’s fixed point Theorem, we conclude that Problem (17) - (18)
- (19) always admits a solution. Estimates (39), (40) and (41) are directly
deduced from (23), (24) and (25). We are now ready to prove Theorem 1. ��
Proof of Theorem 1 We perform this proof in three steps.
Step 1 : A priori estimates.

Let us start by finding a bound for the energies %ih. By Theorem 2, the
sequence {%ih}h>0 is bounded in H s(	i), i = 1, 2, for any s0 < s ≤ 1/2.

Also, from estimates (39) and (40), the sequences {uih}h>0 and {pih}h>0

are respectively bounded in H 1(	i)
2 and L2

0(	i), i = 1, 2.
Step 2 : Limit Momentum Equations.

Let us recall now that the embedding of H s(	i) in L2(	i) for any s > 0
is compact. Then, for i = 1 and i = 2 the sequence {%ih}h>0 contains a
subsequence which is strongly convergent in L2(	i) to a function %i .

From the estimates for the velocities, we may find a subsequence of
{uih}h>0 weakly convergent in H 1(	i)

2 to a function ui , i = 1, 2. Under
this situation, it is first proved in [2] that {uih |� }h>0 contains a subsequence
strongly convergent in L3(�) to ui |� . Next, that the corresponding subse-
quence {α̃i(%ih) |∇uih|2}h>0 converges strongly to α̃i(%) |∇ui |2 in L1(	i) or,
equivalently, that {uih}h>0 converges to ui in H 1(	i)

2 (We denote all subse-
quences in the same way).

Also, the corresponding subsequence of pressures {pih}h>0 contains a
subsequence weakly convergent in L2(	i) to pi , i = 1, 2. Then, we may
pass to the limit in (17) and deduce that (u1, p1, %1) and (u2, p2, %2) verify
equation (10).
Step 3 : Limit KTE equation.

Consider gi ∈ D(	i), i = 1, 2, and denote Qi = Ligi . As in the proof
of Lemma 1, we have∫

	i

%ih gi dx =
∫

	i

∇%ih · ∇Q dx −
∫

�

%ih ∂niQ dτ

=
∫

	i

∇%ih · ∇Qh dx +
∫

	i

∇%ih · ∇(Q−Qh) dx
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−
∫

�

δih ∂niQ dτ

=
∫

	i

α̃i(%ih) |∇uih|2 Qh dx +
∫

	i

∇Dih · ∇(Q−Qh) dx

+
∫

	i

∇%0ih · ∇(Q−Qh) dx −
∫

�

δih ∂niQ dτ

:= I+ II+ III+ IV,(45)

where δih = Gi(|u1h |� − u2h |� |2).
We next analyze the convergence of these four summands.

Limit of I As in Exercice 8.3 of Dupont and Scott (Cf. [9]), using the con-
tinuous embedding of H 2(	i) into W 1/2,∞(	i),

‖Q−Qh‖L∞(	i) ≤ C h1/2 ‖Q‖W 1/2,∞(	i)
≤ C h1/2 ‖Q‖H 2(	i)

.

As {α̃i(%ih) |∇uih|2}h>0 converges strongly to α̃i(%) |∇ui |2 in L1(	i), then

lim
h→0

∫
	i

α̃i(%ih) |∇uih|2 Qh dx =
∫

	i

α̃i(%i) |∇ui |2 Q dx.

Limit of II Similarly to the estimation of II in the proof of Lemma 1, we
have

|II| ≤ C h1/2 ‖u1h |� − u2h |�‖2
L4(�)

‖Q‖H 2(	i)

≤ C h1/2 [‖u1h‖2
H 1(	1)2 + ‖u2h‖2

H 1(	2)2 ] ‖Q‖H 2(	i)
.

Then, the summand II vanishes in the limit h → 0.

Limit of III Proceeding as in the estimate of III in the proof of Lemma 1,
we obtain

|III| ≤ C h1/2−s
[
‖α̃i(%̄i) |∇uih|2‖L1(	i)

+ ‖u1h |� − u2h |�‖2
L4(�)

]
×‖Q‖H 2−s (	i)

.

Then, the summand III vanishes in the limit h → 0.

Limit of IV Due to the continuity of the embedding of H 1/2(�) in L4(�),
uih |� converges strongly to u|� in L4(�). Then, δih converges strongly to
Gi(|u1 |� − u2 |� |2) in L2(�). Then,

lim
h→0

∫
�

δih ∂niQ =
∫

�

Gi(|u|� − u|� |2) ∂niQ.

We have deduced that %i satisfies (11) for test functions gi ∈ D(	i), i = 1, 2.
Given gi ∈ L2(	i), there exists a sequence {gin}n≥1 ⊂ D(	i) convergent to
gi in L2(	i). Then, Ligin converges to Ligin in H 2(	i) and, consequently,
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∂ni
(Ligin) converges to ∂ni

(Ligi) in H 1/2(�) and Ligin converges to Ligin

in C0(	̄i). Then, we may pass to the limit and conclude that (11) holds for
any gi ∈ L2(	i), i = 1, 2.

This completes the proof of Theorem 1. ��
Remark 4 The extension of this result to 3D flows faces hard technical dif-
ficulties. Indeed, in 3D estimate (36) reads

‖gh‖L∞(	i) ≤ C h−1 ‖∇gh‖L2(	i)
.

Then, estimates (25) becomes

‖%ih‖H s(	i) ≤ Cs

[
(1+ h−s) ‖α̃i(%̂ih) |∇ūih|2‖L1(	i)

+(1+ h1/2−s) ‖ū1h |� − ū2h |�‖2
L4(�)

]
.

This only yields that the sequence {%ih}h>0 is bounded in L2(	i), thus inval-
idating the compactness argument that proves Theorem 1.

This could be overcomed extending the analysis of Bramble [5], where
the estimate

‖gh‖L∞(	i) ≤ C | log h | ‖∇gh‖L2(	i)
,

is proved. However, this only applies to 2D finite difference discretizations
on uniform grids.

4 Numerical experiments

The goal of this section is to show some numerical results that simulate a
realist physic case, validate the model with its boundaries conditions, and
test the accuracy of the method with respect to the convexity of the domain.

Physically, we simulate the behaviour of a coupled model for ocean-
atmosphere flow where the ocean is forced by the atmosphere. The flow in
the atmosphere is generated by a imposed horizontal wind.

We propose two numerical test, where the computational domains have
simple geometries. The difference between both tests is the convexity of
the computational domains, which seemingly will affect the accuracy of the
scheme. Indeed, the regularity of the continuous TKE %1 and %2 will depend
on the smoothing properties of the inverse Laplacian operators Li . In their
turn, these depend on the degree of convexity of the domain.

• Test1: Convex Domain. As computational domain for the atmosphere,
we take a rectangular box, 	1 = (0, 5)× (0, 1). Its boundary is decom-
posed into ∂	1 = �−1 ∪ �+1 ∪ �, where
– � = [0, 5]× {0} (interface);
– �−1 = {(x, y) ∈ 	1 / x = 0} (inflow boundary); and
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Fig. 1. Geometric configuration for Test 2

– �+1 = {(x, y) ∈ 	1 / y = 1} ∪ {(x, y) ∈ 	1 / x = 5} (outflow
boundary).

The ocean is located in another rectangular domain 	2 = (0, 5)×(−1, 0).
Its boundary is decomposed into ∂	2 = �2 ∪ �, where �2 = ∂	2 \ �.
We shall impose no-slip boundary conditions on �2.

• Test2: Non-Convex Domain. For this test the domain for the atmosphere
is the same as in the Test1. For the ocean, we assume that there is a large
submarine mountain. Concretely, we set

	2 = {(x, y) ∈ R2 / 0 ≤ x ≤ 5, H(x) ≤ y ≤ 0},

where

H(x) =


−1 0 ≤ x ≤ 2
−2.6+ 0.8x 2 < x ≤ 3
2.2− 0.8x 3 < x ≤ 4
−1 4 < x ≤ 5

The boundaries are decomposed as in Test1. The geometric configuration
of Tests 1 and 2 is schematized in Figure 1.

The idea is to force the atmosphere-ocean system by a steady wind
imposed in boundary �−1 and look for a steady state of this forcing.

The system that we have solved is the following one:
ui · ∇ui − div

(
αi(ki)∇ui )+ ∇ pi = 0 in 	i, i = 1, 2,

div ui = 0 in 	i, i = 1, 2,

ui · ∇ki − div
(
γi(ki)∇ki

) = αi(ki) |∇ui |2 in 	i, i = 1, 2,

(46)

We have included here convection effects to solve a realistic flow.
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We have imposed the following boundary conditions.

Boundary conditions To include an incoming wind into the atmosphere
we consider the following modifications of the boundary conditions of the
original system (1):

• Velocities and pressures:
– u1 = u−1 on �−1 ;
– ∂nu1 + p1 · n = 0 on �+1 ;
– u2 = 0 on �2

– α̃i(%i)∂ni
ui = cfi

(uji
− ui)|ui − uji

| on �; i = 1, 2 with j1 = 2 and
j2 = 1;

Here, we take

u−1 =
(

A1 + A2y

0

)
(47)

where A1 and A2 are constant (linear velocity profile).
The constant A1 represents the jump of the horizontal velocity u1 − u2

across the interface �. It has been taken as a free parameter.
Also, the constants cf1 and cf2 represent the relative effects of the rough-
ness of the interface between atmosphere and ocean onto each flow. These
are also free parameters of our model.
To determine the constant A2 we use the conditions

α̃1(%1)∂n1u1 = cf1(u2 − u1)|u1 − u2| on �

and
∂n1u1 = A2,

issued from (47) using the expression for α1(k) (See (49)). This yields

A2 = cf1

3.3× 10−4
A2

1.

In our computations we have taken A1 = 0.5, and cf1 = cf2 = 10−3.

• Turbulent kinetic energy:
– k2 = 0, on �2.

– k1 = 0, on �−1 .

–
∂k1

∂n
= 0, on �+1 .

– ki = ci |u1 − u2|2, on �.

To determine the constants c1 and c2, we consider that physically the TKE
is of the order of a few percents of the kinetic energy of the mean flow. We
have thus taken

c1 = c2 = 0.05.
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Turbulent viscosities We have considered turbulent viscosities of the form

αi(k) = γi(k) = νi + νiτ (k),

where

• νi is the cinematic viscosity, with values ν1 = 1/3.000 (air) and ν2 =
1/300 (water), and

• νiτ is the eddy viscosity.

This expression for αi(k) is proposed in [17], for a TKE+Mixing length
one-equation model. The expression for the eddy viscosities is

νiτ (k) = cµliµk1/2;

where liµ is a mixing length and cµ is an empirical constant. In the previous
expression liµ must contain the damping effects in the region close to the
wall. In our case this wall is the interface � and we assume that the boundary
layer is concentrated on �. Then, following [17] we set

liµ = χc−3/4
µ yi

(
1− exp

( − y+i
100

))
(48)

with y+i =
√

ki

1

νi

yi .

On the other hand, the experience shows that the turbulent boundary layer
corresponds to 20 ≤ y+i ≤ 100. We have considered y+i = 100, for i = 1, 2.
This corresponds to

y1 = 54

107
k−1/2, y2 = 36

108
k−1/2.

We have replaced these expressions in (48) to define the actual mixing length
that we have used.

The constants cµ = 0.09 and χ = 0.41 (Prandtl constant) are obtained
via experimentation. Consequently, if denote di = liµ(yi) then,

αi(k) = νi + dik
−1/2, i = 1, 2, with

d1 = 0.277× 10−4 and d2 = 0.185× 10−5.(49)

This expression does not satisfy (5). In practice, to compute αi(k), we replace
k by max {k, k0} for some very small k0 > 0.

The functions Gi defined in (6) are now:

Gi(k) = νik + 2

3
dik

3/2.
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For small k, the leading summand in this expression is largely the second
one. In practice, we have taken

Gi(k) = 2

3
dik

3/2.(50)

We stress that our purpose is to perform a qualitative analysis of our
numerical results for a realist flow, rather than performing a highly accurate
computation.

Discretization of the problem We replace kih by the new unknowns %i =
Gi(ki) where Gi are defined in (50), then we consider the problem:

ui ∇ui − div
(
α̃i(%i)∇ui )+ ∇pi = 0 in 	i, i = 1, 2,

div ui = 0 in 	i, i = 1, 2,

ui ∇[G−1
i (%i)]−�%i = α̃i(%i) |∇ui |2 in 	i, i = 1, 2,

with the boundary conditions

u1 = u−1 on �−1 ;
∂nu1 + p1 · n = 0 on �+1 ;
u2 = 0 on �2;
%i = 0 on �i, i = 1, 2,

α̃i(%i)∂ni
ui = cfi

(uji
− ui)|ui − uji

| on �; i = 1, 2, j1 = 2 j2 = 1;
%i = G−1

i (ci |u1 − u2|2) on � i = 1, 2.

(51)

Due to the changement of boundary conditions, we now look for a solution
of problem (51) such that

u1∈X̃1, with X̃1 = {v = (v1, v2)∈H 1(	1)×H 1(	1); v2 = 0 on �∪�−1 }
while the remaining variables are searched for in the same spaces as in prob-
lem (1).

Using the notations of section 2, we consider two triangulations Tih, one
of each 	i , i = 1, 2, compatible in the sense of Hypothesis 1, and define the
space

Y1h = [V1h]2 × X̃1.

For simplicity of notation, we shall denote Y2h = X2h. We look for dis-
crete velocities u1h and u2h respectively in Y1h and Y2h, and for pressures
pih ∈ Mih (cf. 15). The pairs of spaces (Yih, Mih) do not satisfy the discrete
inf-suf condition (16). We shall overcome this difficulty by using a stabilized
discretization technique.
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To solve problem (51) we have used a time-stepping strategy which con-
sists in looking at the solutions of (51) as steady states of the corresponding
evolution problem. The time discretization is given by

du
dt
≈ un+1 − un

�tn
,

dk

dt
≈ kn+1 − kn

�tn
,

where �tn is computed every step and we have used a strategy of local time
step based on a local CFL condition.

To treat the incompressibility restriction we have used a Penalty Stabilized
Method. The actual problem that we have solved is the following:

Step 1 Given (un
ih, %n

0ih) ∈ Yih × Ki0h, i = 1, 2, obtain (un+1
ih , pn+1

ih ) ∈
Yih ×Mih, i = 1, 2, such that

(
un+1

ih − un
ih

�tn
, vh

)
+ aih(kn

ih;un+1
ih , vh)+ bi(vh, pn+1

ih )− bi(un+1
ih , qih)

+nih(un+1
ih , un+1

jh ;un
ih, un

jh, vh)− TES(pn+1
ih , qih) = 0

∀(vih, qih) ∈ [Yih ∩H 1
0 (	)]2 ×Mih, i = 1, 2;

(52)

where

kn
ih = G−1

i (ln
i0h +Dn

ih), Dn
ih = Gi(|Pih(un

1h − un
2h)|2),(53)

and

• aih(k;u, v) =
∑

T ∈Tih

αiT (k)(∇u,∇v)T ,

αiT (k) being a constant value on each element. This value is calculated
as the arithmetic mean of the values αi(k(ajT )), where a1T , a2T , a3T are
the vertex of triangle T ;

• nih(ui , uj ;wi , wj , v) =
∑
I∈Zh

((ui − uj )|wi − wj |, v)I .

Here we recall that, for instance, ui denotes the first component of the
velocity field ui .

This form is a linearization of the form n defined in (13) and Zh is the set
defined by (14);

• TES(p, q) =
∑

T ∈Tih

τT (∇p,∇q)T ,

τT being a stabilizing coefficient of size O(h2
T ). This is the penalty sta-

bilizing term of the pressure discretization. The actual expression for τT

that we have taken is the one which is obtained by static condensation of
the bubble in the Mini-Element (cf. [7]).
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Step 2 Given un+1
ih , %n

i0h ∈ Yih×Ki0h, i = 1, 2. Obtain %n+1
i0h ∈ Ki0h, i = 1, 2

by 
(

%n+1
i0h − %n

i0h

�tn
, gih

)
+ (∇%n+1

i0h ,∇gih) = Cih(kn
ih;un+1

ih , gih)

−(∇Dn+1
ih ,∇gih)− (un+1

ih · ∇kn
ih, gih), ∀gih ∈ Ki0h,

(54)

where Dn+1
ih = Gi(|Pih(un+1

1h − un+1
2h )|2), kn

ih is given by (53), and

Cih(k;u, g) =
∑

T ∈τih

αiT (k)(|∇u|2, g)T

where αiT (k) is the value defined in Step 1.

Step 3 Once %n+1
ih = %n+1

i0h +Dn+1
ih is known, we compute kn+1

ih as

kn+1
ih =

(
3

2

1

di

%n+1
ih

)2/3

.

The expression for aih and nih that we have considered maintain the coer-
civeness and monotonicity properties of the continuous linear Navier-Stokes
operator.

Also, the expression for the source term Cih(k;u, g) for %ih is a weak form
of the expression aih(k;u, v). This ensures that this source term is bounded
in L1(	i), similarly to the continuous case.

Finally, for simplicity we use an explicit discretization to the convection
term in (54). Although we have not included the contribution of the term
Dn+1

ih to the time derivative, this does not change the actual steady state of
equation (54).

We stress that a special care must be put in treating the point where the
boundaries ∂	1, ∂	2 and � meet. This should not be considered as an inter-
face point to assign boundary conditions, but rather as a boundary point for
both domains 	1 and 	2. Otherwise, an incompatibility between the bound-
ary conditions on ∂	1, ∂	2 and the interface conditions on � may occur,
yielding unphysical pressure results.

To start the above time-stepping procedure, we have set initial conditions
which meet the prescribed boundary conditions, as simple as posible, starting
from an ocean in rest.

The initial velocity is calculated in such a way that in the atmosphere it
is the linear profile, and in the ocean it vanishes,

u0
1h(x, y) = u−1 , on 	1, u0

2h(x, y) = 0, on 	2.
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Also, we want the turbulent kinetic energy in the ocean at the initial
instant to take the value cero. This is incompatible with the boundary condi-
tion k2 = c2|u1 − u2|2, unless c2 = 0, but this would yield k2(t) = 0 at any
t > 0. To solve this problem, we have set

k0
1h(x, y) = c1|u0

1h(x, y)− u0
2h(x, y)|2 on �,

k0
2h(x, y) = c(t)|u0

1h(x, y)− u0
2h(x, y)|2 on �,

where c(t) is a linear function which is zero at t = 0, and takes the value c2

at t = t0 (t0 prefixed).

Numerical results Now we show the numerical results obtained for Tests
1 and 2, following the algorithm described above. For both tests, we use a
reference triangulation Tih, i = 1 and 2, with 3200 nodes and 6004 triangular
elements. These meshes satisfy Hypotheses 1 as we can see in Figure 2. We
suppose that the system arrives to a stationary steady when

‖un+1
i − un

i ‖L2

‖un
i ‖L2

< 10−6, and
‖kn+1

i − kn
i ‖L2

‖kn
i ‖L2

< 10−6.

To test the quality of our numerical results we have performed some qual-
itative and quantitative tests.

We may perform a quantitative test using that the flow in the atmosphere
generated by our boundary condition is in fact a mixing layer flow. Then, the
self-similarity is a good test for any numerical solver of steady states of this
flow.

The basic parameter to define self-similarity profiles of mixing layers is
the thickness δ of the layer. To define δ, we denote by x the longitudinal
variable along the layer, and by y the cross-flow variable. For each x, we
define y1 such that

u1(y1) = u1 +
√

0.9(u2 − u1)

where u1 = u(x, 1) and u2 = u(x, 0).
We then define the thickness δ = y1. Now, we may define the similarity

profiles uS
1 and kS for the velocity and energy, as

uS
1 (x, yS) = u(x, y)− u1

u2 − u1
, kS(x, yS) = k(x, y)

maxyk(x, y)
, whit yS = y

δ

We say that a solution is self-similar if the corresponding similarity pro-
files are independent of x.

As we may observe in Figures 3 and 4, our results lead to good self-similar
profiles for mean velocity and kinetic energy. These figures are obtained at
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Fig. 3. Self-similar profile for velocity

different distances from the leading edge, concretely x = 1.9, x = 2.9 and
x = 3.9.

To qualitatively test our solver, we look at the physical coherence of the
results.

In Figures 5 and 6 we show the velocity fields for Test 1 and Test 2.
Notice that the presence of the obstacle dramatically affects the oceanic flow,
while the atmospheric flow remains practically unchanged. For Test 2, we
may observe how the flow slows down a before arriving to the straitness and
accelerates again after crossing it. On the other hand, the no-slip boundary
conditions originate a recirculation in the right side of the mountain, and
moreover we may see how the upper layer of the deep recirculating water
mixes with the water near the interface while the bottom layer enters the left
side of the mountain following a nearly parabolic profile (Figure 7).

Figure 8 displays the iso-pressure contour lines. The pressure in the
atmosphere is nearly linear far from the leading edge, where an important
decompression takes place. In the ocean, there is a respectively large decom-
pression-compression in the initial and final points of the interface. The pres-
ence of the obstacle also produces a compression-decompression effect.

In Figure 9 we have represented the iso-TKE lines. A typical mixing layer
appears for the atmospheric flow. Also, the TKE is created at the interface
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Fig. 4. Self-similar profile for kinetic energy

and is transported into the ocean by the recirculating flow, for both tests.
Some instabilities appear due to convection dominance, which do not seem
to be an obstacle for our purposes of estimating the effect of convexity on
the accuracy of our scheme.

Finally, we have estimated the convergence order of the kinetic energy
in both tests in the following way: let us call h the discretization parameter,
and denote by e(h) = k − kh, the discretization error in TKE, where k is the
exact solution, and kh is the approximated solution obtained by the previous
algorithm.

Furthermore, we assume that the error e(h) admits an asymptotic expan-
sion of the form:

e(h) = µ hp +O(hp+1).

Then, taking three different values for h, we deduce that an approximation
to p is a solution of the nonlinear equation

‖kh1 − kh2‖L2

‖kh1 − kh3‖L2
= (h2/h1)p − 1

(h3/h1)p − 1
.

The value h1 corresponds to our reference grid, while h2 = 0.66h1,
h3 = 1.33h1.

The result obtained for Test 1 (convex domain) is p ≈ 2.2 and for Test 2
(non-convex domain) p ≈ 1.6.
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As we expected, the convexity of the domain plays a relevant role in the
accuracy of our numerical scheme.

Conclusion

As a conclusion, we may consider that our scheme satisfactorily reproduces
the overall qualitative behaviour of a coupled turbulent system formed by
two stratified flows. Also, that our convergence analysis holds in practice for
realistic flows. These results encourage to deepen in the research developed
in this paper, in two ways: By extending the convergence analysis to 3D flows
an to more complex turbulent models, and also by performing more realistic
simulations, in order to use our coupled numerical model with predictive
purposes.
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