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Abstract 

Challenging usage policy issues can arise within 
virtual organizations (VOs) that integrate participants 
and resources spanning multiple physical institutions. 
Participants may wish to delegate to one or more VOs 
the right to use certain resources subject to local 
policy and service level agreements; each VO then 
wishes to use those resources subject to VO policy. 
How are such local and VO policies to be expressed, 
discovered, interpreted, and enforced? As a first step 
to addressing these questions, we develop and 
evaluate policy management solutions within a 
specialized context, namely scientific data grids within 
which the resources to be shared are computers and 
storage. We propose an architecture and recursive 
policy model, and define roles and functions, for 
scheduling resources in grid environments while 
satisfying resource owner and VO policies.  

1. Introduction  

We consider scenarios in which providers wish to 
grant to consumers the right to use certain resources 
for some agreed-upon time period. Providers might be 
companies providing outsourcing services, or 
scientific laboratories that provide different 
collaborations with access to their computing 
resources. Providers and consumers may be nested: a 
provider may function as a middleman, providing 
access to resources to which the provider has itself 
been granted access by some other provider. Usage 
policy issues can arise at multiple levels in such 
scenarios. Providers want to express (and enforce) the 
policies under which resources are made available to 
consumers. Consumers want to access and interpret 
policy statements published by providers, in order to 
monitor their agreements and guide their activities. 
Both providers and consumers want to verify that 
policies are applied correctly. In summary, we are 
interested in the expression, publication, discovery, 

enforcement, and verification of policies, at both 
resource provider and consumer levels. 

We report here on work that addresses these issues 
within a specific problem domain, namely the 
distributed analysis of large quantities of scientific 
data [1]. In so-called “data grids,” we have a three-
level structure in which individual scientists and sites 
provide resources (computers, storage, and networks) 
to scientific collaborations that in turn provide 
resources to their members. Providers and consumers 
negotiate service level agreements (SLAs) to establish 
what resources providers make available for consumer 
use. VOs must then allocate aggregate resources 
provided by different owners to different VO 
purposes, and orchestrate distributed data analyses to 
use those aggregated resources efficiently.  

This problem encompasses challenging and 
interrelated policy, scheduling, and security issues. We 
focus here on policy issues, although from a 
scheduling perspective. Specifically, we seek to 
address the following questions: “How usage policies 
are enforced at the resource and VO level?”, “What 
strategies must a VO deploy to ensure usage policy 
enforcement?”, “How are usage policies distributed 
to enforcement points?”, and “How usage policies are 
made available to VO job and data planners?” In 
addressing these questions, we build on previous work 
concerning the specification and enforcement of local 
resource scheduling policies [2,3,4,5,6]; the 
negotiation of SLAs with remote resource sites [7,8]; 
and expressing and managing VO usage policies [9]. 
We extend this work to Grid environments, such as 
Grid3 [10], which are composed of sites, VOs, VO 
groups and other entities.  

2. Problem Statement 

The grids that we target in this work may comprise 
hundreds of institutions and thousands of individual 
investigators that collectively control tens or hundreds 
of thousands of computers and associated storage 
systems [11,12]. Each individual investigator and 



 

institution may participate in, and contribute resources 
to, multiple collaborative projects that can vary widely 
in scale, lifetime, and formality. At one end of the 
spectrum, two collaborating scientists may want to 
pool resources for the purposes of a single analysis. At 
the other extreme, the major physics collaborations 
associated with the Large Hadron Collider encompass 
thousands of physicists at hundreds of institutions, and 
need to manage workloads comprising dynamic mixes 
of varying priority work, requiring the efficient 
aggregation of computing and storage elements [14]. 

Our approach considers two classes of entities: 
resource providers and resource consumers. A 
physical site is a resource provider; a VO can be both 
a resource consumer (consuming resources provided 
by a site) and a provider (providing resources to users 
or user groups). We assume that each provider-
consumer relationship is governed by an appropriate 
SLA, but do not address the nature of these SLAs [14].  

We use a simple example to illustrate some issues 
that can arise. Assume that provider P has agreed to 
make R resources available to consumer C for a period 
of one month. How is this agreement to be interpreted? 
These resources might be dedicated to C or, 
alternatively, P might make them available to others 
when C is not using them. In the latter case, P might 
commit to preempt other users as soon as C requests 
them, or might commit to preempt within a certain 
time period. If C is allowed to acquire more than R 
resources when they are not used, then this may or 
may not result in C’s allocation being reduced later in 
the month. C may or may not allow reservations.  

A VO in its role as both resource consumer (from 
sites or other VOs) and provider (to its consumers: 
users or groups within the VO) acts as a broker for a 
set of resources. These brokering functions can be 
implemented in at least three different ways. The VO 
could determine a partitioning of the resources to 
which it has negotiated access, and then work to 
establish SLAs directly between its consumers and its 
providers that reflect this partitioning. Or, if its 
providers support the necessary mechanisms, the VO 
could hand its consumers some form of digital ticket 
that the VO could present to any of the VO’s resources 
[15]. In both cases, the VO need not have any further 
involvement in the consumer-provider relationship.  

3. Specification Syntax and Semantic  

In the experiments described in this paper we 
represent a policy for the allocation of resources by a 
provider to a consumer as a set of resource allocations 
of the form: 

 

< resource-type, provider, consumer,  
    epoch-allocation, burst-allocation > 

where:  
resource-type ::= [ CPU | NET | STORAGE ] 
provider ::= [ site-name | vo-name ] 
consumer ::= [vo-name|(vo-name,group-name)] 
epoch-allocation ::= (interval, percentage) 
burst-allocation ::= (interval, percentage) 

 

In the grid environment that we consider here, 
allocations can be made for processor time, storage, or 
network bandwidth. An allocation specifies a 
maximum percentage of a resource type managed by 
the provider, which it allocates to the designated 
consumer for a specified period of time. Note that this 
definition of policy yields a multi-level hierarchy of 
resource assignments: to a VO, by a resource owner; 
to a VO user or group, by a VO; and so on.  

Limits are specified for both long-term scheduling 
“epochs” and for “burst periods.” Both periods are 
modeled here as recurring within fixed time slots. A 
provider may grant requests above the epochal 
allocation if sufficient resources are available, but 
these resources can be preempted if other parties with 
appropriate allocations request those resources at a 
later stage. Our starting point for this approach is the 
Maui [4] semantic in specifying resource utilizations. 
In the Maui context, “fair share” is the use of historical 
CPU data to influence job priority with a goal of 
allocating certain percentages of available CPU cycles 
to particular users or groups.  

For MAUI, a fair share percentage value would 
lower or raise the priority of currently user queued 
jobs in an attempt to bring the CPU utilization in line 
with the fair share target. For example, if a group has 
used less than its share of the available cycles over a 
period of time, then fair share would increase the 
priority of the same group next queued jobs, 
attempting to bring its utilization up to the share 
target. Another important aspect of fair share is how 
historical CPU utilization is determined. Utilization is 
calculated by breaking up the scheduled time into 
intervals. The length of each fair share interval is 
specified by two parameters, FSINTERVAL, and 
FSDEPTH. FSINTERVAL specifies the time interval, 
while FSDEPTH specifies how many intervals must 
be considered for the fair share computation. A third 
parameter, FSDECAY, determines the weight of each 
interval used in the overall CPU usage calculation [4].  

For simplification, we consider in this paper only 
“average limits”, and use (FSINTERVAL, FSDEPTH, 
FSDECAY) = (3600, 1, 1) for both epoch and burst 
utilizations. Examples of usage policy specifications in 
our model are: Site1 gives VO0 20% of its CPU 
resources over a 1-hour period using this policy tuple:  

  

[CPU, Site1, VO0, (3600s,20),(5s,60)] 
 

and VO0 gives its own Group0 40% of its CPU 
resources over a 1-hour period using:  
 



 

[CPU, VO0, Group0, (3600s,40),(5s,90)] 

4. Usage Policy Enforcement Prototype 

The main questions we seek to answer with the 
prototyping and simulation efforts we describe here 
are the following: “What strategies must a VO deploy 
to ensure grid-wide resource policy enforcement in a 
decentralized manner which we believe is required for 
practical grid deployment?”, and, at a site level, “Can 
we implement VO-based site policy enforcement in a 
simple and portable manner for the popular local 
schedulers that are deployed in our application 
environments, as typified by PBS and Condor?” These 
questions try to capture the main problems that can be 
faced in practice. A grid may be composed of a large 
number of entities, and in the same time be composed 
of heterogeneous components that run at different 
levels. We consider important to address these 
questions, otherwise our solution is too specific to be 
accepted for today existing grids.  

In order to gain practical experience with these 
issues we have developed a prototype system that 
implements the usage policy management model 
introduced before and used it to control the allocation 
of computing resources. In our prototype, usage 
policies are entered through a web interface and 
disseminated to associated enforcement points. The 
prototype environment which we used for our 
evaluation and experimentation is depicted in Figure 1. 
Most experiments were conducted on a simple grid 
consisting of two execution sites, two VOs, and two 
submission sites [1]. 

 

 
Figure 1: VO-Level Architecture  

Policy enforcement points (PEPs) are responsible 
for executing policies. They gather monitoring metrics 
and other information relevant to their operations, and 
then use this information to steer resource allocations 
as specified by the usage policies [16,17].  

We distinguish between two types of PEPs. Site 
policy enforcement points (S-PEPs) reside at all sites 
and enforce site-specific policies. S-PEPs operate in a 
continuous manner, in the sense that jobs are 

immediately preempted or removed when policy 
requirements are no longer met. Jobs are not, however, 
necessarily restricted from entering site queues just 
because policy would prevent them from running. In 
sub-section 4.1 we present a further refinement of our 
S-PEP in a concrete context, the Grid3 environment.  

VO policy enforcement points (V-PEPs), labeled V 
and associated with VOs, operate in a similar way to 
S-PEPs. They make decisions on a per-job basis to 
enforce policy regarding VO specifications for 
resource allocations to VO groups or to types of work 
executed by the VO. V-PEPs are invoked when VO 
planners make job planning and scheduling decisions 
to select which jobs to run, when to send them to a site 
scheduler, and which sites to run them at. V-PEPs 
interact with S-PEPs and schedulers to enforce VO-
level policy specifications.  

4.1.  Site Usage Policy Enforcement 

We describe here two solutions for site usage 
policy enforcement, and in Section 6 compare them in 
terms of  the capacity to achieve resource sharing 
according to policy. 

Solution 1 (Stand-alone S-PEP): Our first 
solution does not require a usage policy-cognizant 
cluster resource manager. It works with any primitive 
batch system that has at least the following 
capabilities: provide accurate usage and state 
information about all scheduled jobs, job 
start/stop/held/remove capabilities, and running job 
increase/decrease priority capabilities.  

The S-PEP sits at the level of the local 
scheduler(s), checks continuously the status of jobs in 
all queues and invokes management operations on the 
cluster resource manager when required to enforce 
policy. In more detail, the S-PEP gathers site usage 
policy from the policy enforcement distribution 
module, collects monitoring information from the 
local schedulers about cluster usage, computes CPU-
usage parameters, and sends commands to schedulers 
to start, stop, restart, hold, and prioritize jobs. Our 
approach provides both priority-based and feasibility-
based enforcements.  

Priority-based enforcement involves only job’s 
priority modifications without preempting or removing 
jobs from execution. Practically, all jobs are allowed 
to run, but resource utilization is controlled by means 
of what share are allocated during the execution. 
Feasibility-based enforcement assumes that all jobs 
run with the same priority, and the only approach to 
enforce usage policy is to hold/start or pre-empt jobs 
from execution. Note that the S-PEP does not have its 
own queue.  



 

The processing logic of our prototype S-PEP is 
based on the algorithms presented below:  
 

1. foreach VOi with EPi 
2.   # Case 1: fill BPi 
3.   if �(BAj)==0 &  
        BAi < BPi & Qi has jobs then  
4.     release job i from some Qi 
5.   # Case 2: available and BAi < BPi 
6.   else if  �(BAk)<TOTAL &  
       BAi<BPi & Qi has jobs then  
7.     release job i from some Qi 
8. # Case 3: res. contention: fill EPi 
9. else if  �(BAk)==TOTAL &  

              BAi<EPi & Qi has jobs then  
10.   if j exists & BAj >= EPj then 
11.      suspend an over-quota job Qj 
12.    release job i from some Qi  
13. foreach VOi with EPi  
14.   if EAi>EPi then  
15.    suspend jobs for VOi from all Qi  
 

where:  
EPi = Epoch allocation policy for VOi 
BPi = Burst allocation policy for VOi 
Qi  = set of queues with jobs from VOi 
BAi = Burst Resource Allocation for VOi 
EAi = Epoch Resource Allocation for VOi 
TOTAL = possible allocation on the site  
Over-quota job = job of VOj  

 

As a further clarification, BA or EA represents the 
share actually utilized by a VO, computed based on 
the terms defined in Section 3. BP or EP represents 
upper values for these utilized shares. When BP or EP 
increases for example, the VO is entitled to more 
shares starting with the moment of the change. 
However, we avoided variations in our experiments.  

An important novelty of our S-PEP over a cluster 
resource manager is its capability to keep track of jobs 
under several resource managers and to allow the 
specification of more complex usage policies without 
the need to change the actual cluster resource manager 
implementation. The results are captured in section 6.  

Solution 2 (Policy-Aware Scheduler): Our 
second solution was developed and implemented with 
success in the context of Grid3 environment. We 
decouple the functionalities of the S-PEP in two major 
components and map to existing solutions: a 
standalone site policy observation point (S-POP) and 
the cluster resource manager modules for resource 
allocation control. In this case, we assume that the 
cluster resource manager is able to enforce by itself 
the desired usage policies, which are provided by 
means of our S-POP module. Examples of such cluster 
resource managers are Condor [18], Portable Batch 
System [3], and Load Sharing Facility [5], widely used 
on Grid3 [10]. This solution is similar to MAUI’s 
approach in working in conjunction with various RMs.  

The S-POP’s main functions are to optionally 
provide and translate to/from the RM understanding 
what usage policies have to be enforced, and to 
monitor the actual resource utilization. An advantage 
of this solution is that site administrators do not have 
to use an additional grid component in managing their 
clusters. Again, our implementation of the S-POP has 
the advantage of interfacing with more than one 
resource manager at a time, but with slight MAUI 
modification the same goals could be achieved.  

4.2.  VO Usage Policy Enforcement 

At the VO level, the V-PEP is cognizant of VO 
policies. Our V-PEP modules operate at the 
submission host queues. The V-PEP executes its logic 
to determine whether new jobs should be submitted to 
sites according to the VO usage policies. We have 
modeled a version of the logic presented in this sub-
section using a “first-come-first-served” scheme with 
opportunistic scheduling mechanisms to utilize 
effectively resources. Opportunistic scheduling 
allocates free resources whenever VOs which are 
entitled to schedule jobs do not have any work to run.  

The V-PEP provides answers to two questions: 
“What jobs should be scheduled next?”, and “When 
job j should start?”. The third question important here, 
“Where job j should run?”, is also addressed by our V-
PEP prototype, but we consider this question beyond 
the size and purpose of this paper. Also, the V-PEP 
has different functions than S-PEP presented before. 
The difference is driven by the large amount of 
information that must be collected. The logic of our V-
PEP is described by the algorithm below, which can 
be seen to be symmetric to that of the S-PEP:  

 

 1. foreach (Gi with EPi, BPi, BEi) 
 2.   # Case 1: fill BPi + BEi 
 3.   if �(Baj)==0 &  
         BAi<Bpi & Qi has jobs then  
 4.     schedule a job from some Qi 
          to the least loaded site  
 5.   # Case2: res. available &BAi<BPi 
 6.   else if (�(BAk) < TOTAL) 
          & BAi<BPi & Qi has jobs then  
 7.    schedule a job from some Qi 
         to the least loaded site  
 8.  # Case 3: rs. contention: fill EPi 
 9.  else if (�(Bak)==TOTAL)&(BAi<EPi) 
             &(Qi exists) then  
10.   if (j exists & BAj>=EPj) then 
11.      stop scheduling jobs for VOj  
12.    # Need to fill with extra jobs? 
13.    if (BAi < EPi + BEi) then  
14.      schedule a job from some Qi 
           to the least loaded site  
15. if (EAi < EPi) & (Qi has jobs) then  
16.   schedule additional backfill jobs 



 

4.3. Verifying Monitoring Infrastructure 

Accurate monitoring is important if we are to 
understand how our prototype actually performs in 
different situations. As a first step towards this goal, 
we develop mechanisms for measuring how resources 
are used by each VO and by the grid, overall. 

As monitoring infrastructure, we build upon the 
Ganglia Cluster Monitoring toolkit [19], a distributed 
solution for collecting cluster monitoring information. 
The system is composed of a host sensor collector, a 
summation meta-daemon and a cluster/host web-
interface. We enhanced this monitoring tool by 
transforming the summation meta-daemon into a 
monitoring distribution point (MDP), able to exchange 
data with other MDPs and to collect information about 
hardware usage, VO-related usage, and policy 
restrictions [14]. Information exchanged by MDPs is 
encoded in XML format and it is composed of 
different metrics for different entities. In order to 
avoid large amount of information gathering at the 
root MDPs and to distribute the process of maintaining 
monitoring information, we introduce various 
summation operations for different metrics. This 
approach provides scalability by ensuring that the 
same amount of information is exchanged among 
MDPs at different levels in the monitoring tree. The 
frequency with which information is exchanged also 
influences monitoring system capabilities and 
accuracy. For GangSim, both monitoring information 
collection and distribution are performed at pre-
specified time intervals. In addition, MDPs monitor 
local host load, and if this increases over a pre-
configured value, the exchange interval is increased, 
thus reducing the accuracy of monitoring information.  

4.4.  Usage Policy Management 

While previous sections answered three of the 
questions stated in introduction, the “How are usage 
policies distributed to enforcement points?” question 
has remained yet unanswered. In this sub-section we 
provide a simple solution we tested with our prototype 
over Grid3 [10].  

In our approach, the monitoring system (MDPs) 
provides in addition support for usage policy 
specification and distribution. The usage policies are 
specified through a web interface that connects to a 
selectable MDP. Further, the MDP distribute these 
usage policies to all site and submission host MDP 
that are associated with it. Even further, in a multi-
layer deployment (cascading MDPs), each MDP 
multicasts periodically its usage policies to the other 
MDPs. While this solution is not very scalable 
(thousands of MDPs), we assume that for a grid ten 

times larger than today Grid3 is sufficient. As an 
additional note, usage policies are associated with the 
MDP that distributed it and with the console that 
provided it and they can be deleted only by the same 
point of decision. While this is an important point of 
our solution, we analyze in more detail this problem 
somewhere else [23].  

5. Architecture Simulations  

We describe here simulation studies that we 
conducted to evaluate the grid-wide resource 
allocation model that we presented in the previous 
section. In particular, we wanted to determine whether 
CPU resources could be allocated in a fair manner 
across multiple VOs, and multiple groups within a 
VO, without requiring the centralized control that is 
impractical in a grid environment.  

We conducted our grid-wide simulations by 
discrete simulation mechanisms that generated 
performance data which was fed directly into the 
Ganglia collectors. The simulators ran in “real time” 
rather than using a simulation clock. The simulations 
were conducted using a module that managed all 
internal structures for our VO-Ganglia simulation tool 
[14], based on predefined clusters, workloads, and 
usage and scheduling policies components. 

We ran our tests on a simulated grid consisting of 
two sites with a total of 22 CPU resources, 7 in one 
and 15 in the other, and two VOs. The scheduling 
policies used were based on FCFS (at both the VO and 
the site level), without preemption, and with 
opportunistic strategies to increase overall utilization.  

The complexity of the environment used in this 
first set of simulations is specifically low in order to 
provide case scenarios that can be followed easily.  

Workload: We used a composite workload that 
overlays work for two VOs, each consisting of two 
groups. The workload consisted of the 440 jobs shown 
in Table 1. All workloads are synthetic being 
composed of jobs, each corresponding to a certain 
amount of work and without any precedence 
constraints.  

 

Table 1: Grid-wide workload summary 

VO Group #jobs Mean Job Duration 
0 0  80 150 sec 
0 1 100 250 sec 
1 0 120 200 sec 
1 1 140 300 sec 

 

Jobs arrive, are executed, and leave the system 
according to a Poisson distribution. Because in our 
simulations we consider an environment with several 
VOs, an important factor is synchronization among 



 

workloads. Here, we all workloads start at the same 
moment in time (synchronized), very appropriate to a 
scientific community that work for gathering results 
before a conference deadline.  

The simulation period was one hour (one 
scheduling epoch) and the measurement interval was 
five seconds. Job durations and inter-arrival times 
were generated randomly using Poisson and Gaussian 
distributions, respectively. 

Policy: The two sites had different local policies, 
as specified by the following tuples. All burst intervals 
were five seconds, while epoch periods were one hour.  
 Allocating grid resources from 2 sites to 2 VOs: 
(1) [CPU, Site1, VO0, (3600,20),(5,60)] 
(2) [CPU, Site2, VO0, (3600,20),(5,60)] 
(3) [CPU, Site1, VO1, (3600,80),(5,90)] 
(4) [CPU, Site2, VO1, (3600,80),(5,90)] 
 Allocating VO resources from 2 VOs to 4 groups: 
(5) [CPU, VO0, Group0, (3600,40),(5,90)] 
(6) [CPU, VO0, Group1, (3600,60),(5,90)] 
(7) [CPU, VO1, Group0,(3600,50),(5,100)] 
(8) [CPU, VO1, Group1,(3600,50),(5,100)] 

 

Job states: The graphs in this section are based on 
a model where jobs pass through four states: submitted 
by a user to a submission host; submitted by a 
submission host to a site, but queued or held; running 
at a site; and completed.  

Each view of VO or group resource allocation and 
utilization, below, is shown as a pair of graphs. Even 
numbered figures show the workload for the VO or 
group, broken down by jobs in different states of grid 
scheduling, as follows. Dark gray lines represent jobs 
executing at a site; white lines represent jobs queued 
or hold at sites; and black lines represent the total 
number of jobs at the site (the sum of the two previous 
states). Jobs at the job submission site (or planner) and 
finished jobs are not shown. The gray area is the total 
number of CPUs (22) available for job execution. The 
X axis for all graphs represents seconds, while the Y 
axis represents percentages in terms of the total 
available computing power (22 CPUs in this section).  

Odd numbered figures show policy enforcement 
actions by overlaying CPU utilization on top of policy 
limits. The straight policy line shows percentage of 
total grid resources allocated; it reflects percentage of 
grid to VO and then percentage of VO to group. The 
straight policy line shows the cumulative percentage 
of epoch allocation used at each point in time. The 
black curve shows the burst (or instantaneous) CPU 
allocation, sampled in these tests every five seconds.  

Allocation of Grid resources to VOs (S-PEP in 
conjunction with V-PEP): We first look at the 
effectiveness of policies 1 through 4, above, at 
allocating the resources of both grid sites to two 
different virtual organizations, VO0 and VO1. Figure 2 
shows the effect on the jobs of VO0 of policies 1 

through 4.  illustrates the policy levels for VO0 and the 
effects of enforcement.  
 

 
Figure 2: VO0 job execution on two sites 

 

 
Figure 3: Usage Policy for VO0 on two sites 

 

We see in  that VO0 is allocated 20% of the overall 
grid resources, and is permitted short-term bursts in 
which it can use up to 60% of all grid resources. At 
about t=00:02 into the test, we observe that VO0’s 
workload hit its maximum burst limit, and was 
throttled back by the policy enforcement logic. 

Immediately after that point, at about t=00:04, as 
VO1’s workload begins to build, we see () that VO0’s 
allocation is throttled back to its epochal limit (20%) 
until about t=00:07, when VO1’s contention for 
resources drops back to a level that once again permits 
VO0 to gain resources above its epochal allocation. 
The same usage policy enforcement action takes place 
from about t=00:19 to t=00:28.  

Finally, at t=00:37, we see VO0’s total CPU 
consumption for this epoch (rising light gray line) hit 
its epoch allocation limit (black line), after which the 
PEP ensures no new jobs are initiated for VO0 until the 
end of the current scheduling epoch (at t=01:00).  

 

 
Figure 4: VO1 Jobs execution on two grid sites 
 

 
Figure 5: Usage Policy for VO1 on two sites 

 

Observing the grid-wide resource utilization of 
VO1 in , we can see that its allocation of grid resources 
is limited to its 80% epochal allocation due to 
contention from VO0 from t=00:03 to t=00:08, and 
t=00:20 to t=00:29. At t=00:40 and t=00:53 contention 



 

from VO0 has diminished to the point where the S-
PEP permits VO1 to reach its burst allocation of 100%. 
Note that within the observed epoch, VO1 comes close 
to, but does not exceed, its allocation. 

Allocation of VO resources to Groups (V-PEP): 
In a manner analogous to enforcing policy for the 
allocation of site resources to VOs, our distributed 
PEP model can simulate the allocation of VO 
resources to groups within a VO and measure the 
effectiveness of policy enforcement of such sub-
allocations. We describe here the results of simulating 
the enforcement of policy rules 5 through 8 above, 
which specify that the CPU resources allocated from 
the grid sites to VO0 are to be sub-allocated to VO0’s 
Group0 and Group1 on a 40% / 60% basis. 

We see in Figure 7 that VO0 Group0 is throttled 
back to its epochal limit at two different points (t=00:0 
and t=00:22), and then exceeds its epochal allocation 
at t=00:32. Similar policy enforcement of Group1 can 
be seen at several points in Figure 9. Group1, too, 
exceeds its epochal limit somewhat later, at t=00:40, 
after which jobs running at that time complete but no 
new jobs are scheduled. Both of these groups then 
carry their workload into the next scheduling epoch.  

 

 
Figure 6: Workload for VO0 Group0 

 

 
Figure 7: Policy enforcement for VO0 Group0 

 

 
Figure 8: Workload for VO0 Group1 

 

 
Figure 9: Policy enforcement for VO0 Group1 

 

Overall Grid Utilization: Figures 10 and 11 show 
overall grid utilization by all VOs. We see from Figure 
11 that CPU resources are well utilized whenever 

sufficient demand exists, despite the allocation-
limiting actions of the PEPs. 
 

 
Figure 10: Overall grid workload 

 

 
Figure 11: Overall grid CPU utilization 

 

Testing generality: As an initial test of the 
generality of our approach to handle a larger grid, we 
ran a simulation test of the same workload and policies 
as were specified above for two VOs and four groups, 
but on a grid of 5 sites and 83 hosts.  

 

 
Figure 12: Policy for VO0 on 5 sites 

 

 
Figure 13: Policy for VO0 Group0 on 5 sites 

 

Figure 12 captures CPU utilization on five sites 
(burst in middle gray and epoch in light gray) over a 1-
hour scheduling epoch by two VOs, each composed of 
two groups. The grid-wide policies in effect are 
(epoch/burst) 20/60 for VO0 and 80/90 for VO1, with 
40/60 for VO0/G0 and 60/80 for VO0/G1. These 
policies are represented with black/dark gray (epoch 
limits / burst limits). Figure 13 captures the resource 
sharing between the two groups as implemented by the 
VO policy mechanisms. Because the test grid for this 
example was large enough, there was no contention at 
the group level and jobs run without policy limitations. 

6. Usage Policy Experimental Results 

Here we report on experiments that compare the 
two S-PEP solutions introduced in Section 4.1. We 
measure how well local resource managers, in 
particular Condor and Maui in conjunction with Open-



 

PBS, are able to enforce our proposed extensible usage 
policy specification. In each case, two VOs submit 
workloads identical to those used in the previous 
simulations to a single site (Site0), with one of our two 
S-PEP approaches used to enforce a usage policy in 
which CPU resources are allocated 20% to VO0 and 
80% to VO1. The two VOs are allowed 30 second 
burst utilizations of 60% and 90% of the site’s CPU 
resources, respectively:  
 
[CPU, Site

0
, VO

0
, (3000s,20%),(30s,60%)] 

[CPU, Site
0
, VO

1
, (3000s,80%),(30s,90%)] 

 

Jobs were submitted via the Globus Toolkit® 2.0 
[20]. The test site was monitored by collecting load 
information every 10 seconds. As a side note, we are 
not aware of other schemas for usage policy 
enforcement at the site level in the form proposed 
here. The closest match  [15] does global enforcement 
for usage policies (grid-level).  

6.1.  S-PEP Usage Policy Enforcement  

The first set of experiments involves our S-PEP 
implementation, which performs policy enforcement 
actions every 30 seconds. Figures 14-17 show 
instantaneous and total CPU utilization per VO as a 
function of time for different VOs and schedulers.  

 

 
Figure 14: S-PEP with Condor (VO0) 

 
Figure 15: S-PEP with Condor (VO1) 

 

 
Figure 16: S-PEP with Maui/OpenPBS (VO0) 

We observe that the policy enforcement module 
has similar effects for both schedulers. The ideal 
behavior cannot be achieved, due to the latencies 
incurred in submitting processes to site schedulers, 
and the subsequent scheduling delay. In addition, the 
monitoring sub-component achieves different 

behaviors, being influenced by the capacity (or in-
capacity) of the tested scheduler to return job 
information in a timely fashion.  

 

 
Figure 17: S-PEP with Maui/OpenPBS (VO1) 

6.2. Local RM Usage Policy Enforcement  

The second solution is entirely based on the local 
schedulers’ capabilities to enforce various usage 
policies. Usage policies are specified as RM 
configuration rules; the S-POP collects and translates 
them to an abstract policy understandable at grid level.  

 

 
Figure 18: Condor as S-PEP (VO0) 

 
Figure 19: Condor as S-PEP (VO1) 

 

 
Figure 20: OpenPBS/Maui as S-PEP (VO0) 

 
Figure 21: OpenPBS/Maui as S-PEP (VO1) 

 

Figures 18-21 show instantaneous and total CPU 
utilization per VO as a function of time for the two 
VOs and the two different local schedulers. The usage 
policy is simpler in this case to accommodate 
Condor’s capabilities in priority specifications. 



 

6.3. Quantitative Comparison 

Table 2 presents a quantitative comparison of our two 
enforcement solutions. We define burst usage policy 
violation (BUPV) as the ratio of the CPU-resource over-
burst allocation consumed by users (BETi) to total CPUs 
available. We compute this quantity as follows: 

 

BUPV = � (BETi) / (#cpus * �t) 
 

We define the epoch usage policy violation (AUPV) 
as the ratio of the CPU-resource over-epoch allocation 
consumed by users (EETi) to total CPU resources 
available. We compute this quantity as follows: 

 

EUPV = � (EETi) / (#cpus * �t)  
 

We define aggregated resource utilization (ARU) 
as the ratio of the CPU-resource actually consumed by 
users (ETi) to the total CPU-resources available. We 
compute this quantity as follows:  

 

ARU = � (ETi) / (#cpus * �t) 
 

Table 2: Quantitative Comparison Results 
Policy BUPV EUPV ARU 

S-PEP/Condor 0.12 0.01 70.2 
S-PEP/PBS 0.10 0.08 88.5 
RM/Condor 0.16 0.16 73.2 

RM/PBS 0.03 0.17 67.6 
 

These results require further validation using 
additional workloads. However, we see that for these 
particular scenarios, S-PEP achieves better 
enforcement of epoch usage policies than do local 
resource managers; for burst usage policies, there is no 
clear winner. We also see that PBS is slightly better at 
enforcing burst usage policies than is Condor.  

6.4.  Grid3 Usage Policy Enforcement Status  

We test our assumptions in a real scenario by 
monitoring the site usage policies and actual resource 
usages over a period of two weeks at a single Grid3 
site, U. Chicago. Results are captured in Figure 22. U. 
Chicago runs Condor, but we also see similar 
behaviours for other local resource managers (e.g., 
OpenPBS, LSF). The two VOs that compete for 
resources are USATLAS and Grid-Exerciser. The 
usage policies enforced were 35% for USATLAS and 
0.1% for GRIDEX, based on Condor’s extensible fair 
share. USATLAS’s larger allocation means that 
whenever it has jobs queued at this site, they are 
immediately executed. But as soon as USTALAS load 
decreases (X=800, or X=1030), Grid-Exerciser’s jobs 
take over and get all the resources they request. When 
the USATLAS jobs start again (X=950), Grid-
Exerciser’s jobs are throttled back. 

 
Figure 22: Allocations at U. Chicago 

6.5.  Grid3 Advantages  

In order to evaluate the utility of taking into 
account usage policies, we conducted further tests on 
Grid3. We used a specialized resource SLA based 
broker [21] that uses policy specification and resource 
utilization information gathered by means of S-POPs. 
The broker creates and maintains an internal image of 
Grid3 and answers following queries: “From the list L 
of sites, on which subset S can a specified VO run?”, 
and “Which is the best site for VO's workload?”.  

We define the aggregated response time (ART) as 
follows, with RTi being individual job time response:  

 

ART = •i=1..N RTi / N 
 

We define the aggregated job completion (AJC) 
during a predefined time interval as follows:  

 

AJC = Job Completed / Job Submitted 
 

The results in Table 3 capture aggregated resource 
utilization, average response time, and aggregated job 
completion [14] for a workload consisting of 1000 
jobs submitted to a subset of 16 sites. Each job ran on 
average 35 minutes, and the experiment 2.5 hours.In 
all cases, our broker identified feasible sites for 
execution. In the first two rows (NP), sites were 
selected based only on CPU information. In the last 
two rows (SC), sites were selected based on the usage 
policies as well. Further, we used random assignment 
(RA) and round robin (RR) for site selection.  

 

Table 3: Results for the BLAST Workload 
Policy  ART ARU AJC 

RA /NP 97.01 0.27 0.54 
RR /NP 114.99 0.27 0.54 
RA /SC 126.43 0.35 0.69 
RR /SC 130.70 0.33 0.65 

 

We observe that the use of policy information 
leads to a better job completion rate, even though the 
response time seems to be higher. However, we 
consider further analysis beyond this paper’s scope. 
We consider further analysis beyond the scope of this 
paper. 



 

7. Related Work  

In et al. [15] propose a system for policy based 
scheduling of grid-enabled resource allocations. It 
provides strategies for (a) controlling the request 
assignment to grid resources by adjusting resource 
usage accounts or request priorities; and (b) managing 
efficiently resources by assigning user quotas. The 
difference with our approach consists in that we do not 
assume a central point of policy enforcement.  

Humphrey et al [22] consider a different means for 
usage policies. They focus on VO-wide resource 
distribution and how resources can be allocated based 
on various requirements. We look from both a 
consumer and provider point of view, targeting also 
provider goals and their resource management.  

Ludwig et al. [24] propose a more generic system 
for SLA-based resource allocation, Cremona. 
Cremona is a framework for SLA specification and 
automated negotiations. The difference with our 
solution consists in the targeted level.  We focus on 
providing an infrastructure for usage policy distributed 
management that can also be used by the Cremona 
framework for resource provisioning.  

Firozabadi et al. [23] describe an alternative 
approach in usage policy specification. They define 
notions such as obligations and entitlements, and 
provide a theoretical foundation. Again, as for [26] 
comparison, our solution addresses a specific practical 
problem. We consider that Firozabadi et al. provide an 
alternative for the MAUI solution used as a starting 
point, but the environment conditioned our solution.  

8. Conclusions and Future Work 

In this paper we achieved results on several 
dimensions. Firstly, we were interested in providing a 
usage policy, which can be applied with success in real 
case scenarios. Secondly, we compared two cluster-
wide enforcement prototypes, able to deal with several 
cluster management packages, and provided 
preliminary results comparing their effectiveness. 
Thirdly, we provided the design of an infrastructure 
for usage policy-based grid scheduling.  

There are still problems not fully explored in this 
paper. Firstly, our analysis did not consider the case of 
resource over-provisioning, a policy that allocates 
40% of CPU to VO0 and 80% to VO1. Secondly, we 
did not address here how our solution applies to other 
resources besides processor time, disk and network.  
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