

A Model for Usage Policy-based Resource Allocation in Grids

Catalin L. Dumitrescu
Dept. of Computer Science
The University of Chicago
catalind@cs.uchicago.edu

Michael Wilde
Math and CS Division

Argonne Natl. Laboratory
& University of Chicago

Ian Foster
Math and CS Division

Argonne Natl. Laboratory
& University of Chicago

Abstract

Challenging usage policy issues can arise within
virtual organizations (VOs) that integrate participants
and resources spanning multiple physical institutions.
Participants may wish to delegate to one or more VOs
the right to use certain resources subject to local
policy and service level agreements; each VO then
wishes to use those resources subject to VO policy.
How are such local and VO policies to be expressed,
discovered, interpreted, and enforced? As a first step
to addressing these questions, we develop and
evaluate policy management solutions within a
specialized context, namely scientific data grids within
which the resources to be shared are computers and
storage. We propose an architecture and recursive
policy model, and define roles and functions, for
scheduling resources in grid environments while
satisfying resource owner and VO policies.

1. Introduction

We consider scenarios in which providers wish to
grant to consumers the right to use certain resources
for some agreed-upon time period. Providers might be
companies providing outsourcing services, or
scientific laboratories that provide different
collaborations with access to their computing
resources. Providers and consumers may be nested: a
provider may function as a middleman, providing
access to resources to which the provider has itself
been granted access by some other provider. Usage
policy issues can arise at multiple levels in such
scenarios. Providers want to express (and enforce) the
policies under which resources are made available to
consumers. Consumers want to access and interpret
policy statements published by providers, in order to
monitor their agreements and guide their activities.
Both providers and consumers want to verify that
policies are applied correctly. In summary, we are
interested in the expression, publication, discovery,

enforcement, and verification of policies, at both
resource provider and consumer levels.

We report here on work that addresses these issues
within a specific problem domain, namely the
distributed analysis of large quantities of scientific
data [1]. In so-called “data grids,” we have a three-
level structure in which individual scientists and sites
provide resources (computers, storage, and networks)
to scientific collaborations that in turn provide
resources to their members. Providers and consumers
negotiate service level agreements (SLAs) to establish
what resources providers make available for consumer
use. VOs must then allocate aggregate resources
provided by different owners to different VO
purposes, and orchestrate distributed data analyses to
use those aggregated resources efficiently.

This problem encompasses challenging and
interrelated policy, scheduling, and security issues. We
focus here on policy issues, although from a
scheduling perspective. Specifically, we seek to
address the following questions: “How usage policies
are enforced at the resource and VO level?”, “What
strategies must a VO deploy to ensure usage policy
enforcement?”, “How are usage policies distributed
to enforcement points?”, and “How usage policies are
made available to VO job and data planners?” In
addressing these questions, we build on previous work
concerning the specification and enforcement of local
resource scheduling policies [2,3,4,5,6]; the
negotiation of SLAs with remote resource sites [7,8];
and expressing and managing VO usage policies [9].
We extend this work to Grid environments, such as
Grid3 [10], which are composed of sites, VOs, VO
groups and other entities.

2. Problem Statement

The grids that we target in this work may comprise
hundreds of institutions and thousands of individual
investigators that collectively control tens or hundreds
of thousands of computers and associated storage
systems [11,12]. Each individual investigator and

institution may participate in, and contribute resources
to, multiple collaborative projects that can vary widely
in scale, lifetime, and formality. At one end of the
spectrum, two collaborating scientists may want to
pool resources for the purposes of a single analysis. At
the other extreme, the major physics collaborations
associated with the Large Hadron Collider encompass
thousands of physicists at hundreds of institutions, and
need to manage workloads comprising dynamic mixes
of varying priority work, requiring the efficient
aggregation of computing and storage elements [14].

Our approach considers two classes of entities:
resource providers and resource consumers. A
physical site is a resource provider; a VO can be both
a resource consumer (consuming resources provided
by a site) and a provider (providing resources to users
or user groups). We assume that each provider-
consumer relationship is governed by an appropriate
SLA, but do not address the nature of these SLAs [14].

We use a simple example to illustrate some issues
that can arise. Assume that provider P has agreed to
make R resources available to consumer C for a period
of one month. How is this agreement to be interpreted?
These resources might be dedicated to C or,
alternatively, P might make them available to others
when C is not using them. In the latter case, P might
commit to preempt other users as soon as C requests
them, or might commit to preempt within a certain
time period. If C is allowed to acquire more than R
resources when they are not used, then this may or
may not result in C’s allocation being reduced later in
the month. C may or may not allow reservations.

A VO in its role as both resource consumer (from
sites or other VOs) and provider (to its consumers:
users or groups within the VO) acts as a broker for a
set of resources. These brokering functions can be
implemented in at least three different ways. The VO
could determine a partitioning of the resources to
which it has negotiated access, and then work to
establish SLAs directly between its consumers and its
providers that reflect this partitioning. Or, if its
providers support the necessary mechanisms, the VO
could hand its consumers some form of digital ticket
that the VO could present to any of the VO’s resources
[15]. In both cases, the VO need not have any further
involvement in the consumer-provider relationship.

3. Specification Syntax and Semantic

In the experiments described in this paper we
represent a policy for the allocation of resources by a
provider to a consumer as a set of resource allocations
of the form:

< resource-type, provider, consumer,
 epoch-allocation, burst-allocation >

where:
resource-type ::= [CPU | NET | STORAGE]
provider ::= [site-name | vo-name]
consumer ::= [vo-name|(vo-name,group-name)]
epoch-allocation ::= (interval, percentage)
burst-allocation ::= (interval, percentage)

In the grid environment that we consider here,
allocations can be made for processor time, storage, or
network bandwidth. An allocation specifies a
maximum percentage of a resource type managed by
the provider, which it allocates to the designated
consumer for a specified period of time. Note that this
definition of policy yields a multi-level hierarchy of
resource assignments: to a VO, by a resource owner;
to a VO user or group, by a VO; and so on.

Limits are specified for both long-term scheduling
“epochs” and for “burst periods.” Both periods are
modeled here as recurring within fixed time slots. A
provider may grant requests above the epochal
allocation if sufficient resources are available, but
these resources can be preempted if other parties with
appropriate allocations request those resources at a
later stage. Our starting point for this approach is the
Maui [4] semantic in specifying resource utilizations.
In the Maui context, “fair share” is the use of historical
CPU data to influence job priority with a goal of
allocating certain percentages of available CPU cycles
to particular users or groups.

For MAUI, a fair share percentage value would
lower or raise the priority of currently user queued
jobs in an attempt to bring the CPU utilization in line
with the fair share target. For example, if a group has
used less than its share of the available cycles over a
period of time, then fair share would increase the
priority of the same group next queued jobs,
attempting to bring its utilization up to the share
target. Another important aspect of fair share is how
historical CPU utilization is determined. Utilization is
calculated by breaking up the scheduled time into
intervals. The length of each fair share interval is
specified by two parameters, FSINTERVAL, and
FSDEPTH. FSINTERVAL specifies the time interval,
while FSDEPTH specifies how many intervals must
be considered for the fair share computation. A third
parameter, FSDECAY, determines the weight of each
interval used in the overall CPU usage calculation [4].

For simplification, we consider in this paper only
“average limits”, and use (FSINTERVAL, FSDEPTH,
FSDECAY) = (3600, 1, 1) for both epoch and burst
utilizations. Examples of usage policy specifications in
our model are: Site1 gives VO0 20% of its CPU
resources over a 1-hour period using this policy tuple:

[CPU, Site1, VO0, (3600s,20),(5s,60)]

and VO0 gives its own Group0 40% of its CPU
resources over a 1-hour period using:

[CPU, VO0, Group0, (3600s,40),(5s,90)]

4. Usage Policy Enforcement Prototype

The main questions we seek to answer with the
prototyping and simulation efforts we describe here
are the following: “What strategies must a VO deploy
to ensure grid-wide resource policy enforcement in a
decentralized manner which we believe is required for
practical grid deployment?”, and, at a site level, “Can
we implement VO-based site policy enforcement in a
simple and portable manner for the popular local
schedulers that are deployed in our application
environments, as typified by PBS and Condor?” These
questions try to capture the main problems that can be
faced in practice. A grid may be composed of a large
number of entities, and in the same time be composed
of heterogeneous components that run at different
levels. We consider important to address these
questions, otherwise our solution is too specific to be
accepted for today existing grids.

In order to gain practical experience with these
issues we have developed a prototype system that
implements the usage policy management model
introduced before and used it to control the allocation
of computing resources. In our prototype, usage
policies are entered through a web interface and
disseminated to associated enforcement points. The
prototype environment which we used for our
evaluation and experimentation is depicted in Figure 1.
Most experiments were conducted on a simple grid
consisting of two execution sites, two VOs, and two
submission sites [1].

Figure 1: VO-Level Architecture

Policy enforcement points (PEPs) are responsible
for executing policies. They gather monitoring metrics
and other information relevant to their operations, and
then use this information to steer resource allocations
as specified by the usage policies [16,17].

We distinguish between two types of PEPs. Site
policy enforcement points (S-PEPs) reside at all sites
and enforce site-specific policies. S-PEPs operate in a
continuous manner, in the sense that jobs are

immediately preempted or removed when policy
requirements are no longer met. Jobs are not, however,
necessarily restricted from entering site queues just
because policy would prevent them from running. In
sub-section 4.1 we present a further refinement of our
S-PEP in a concrete context, the Grid3 environment.

VO policy enforcement points (V-PEPs), labeled V
and associated with VOs, operate in a similar way to
S-PEPs. They make decisions on a per-job basis to
enforce policy regarding VO specifications for
resource allocations to VO groups or to types of work
executed by the VO. V-PEPs are invoked when VO
planners make job planning and scheduling decisions
to select which jobs to run, when to send them to a site
scheduler, and which sites to run them at. V-PEPs
interact with S-PEPs and schedulers to enforce VO-
level policy specifications.

4.1. Site Usage Policy Enforcement

We describe here two solutions for site usage
policy enforcement, and in Section 6 compare them in
terms of the capacity to achieve resource sharing
according to policy.

Solution 1 (Stand-alone S-PEP): Our first
solution does not require a usage policy-cognizant
cluster resource manager. It works with any primitive
batch system that has at least the following
capabilities: provide accurate usage and state
information about all scheduled jobs, job
start/stop/held/remove capabilities, and running job
increase/decrease priority capabilities.

The S-PEP sits at the level of the local
scheduler(s), checks continuously the status of jobs in
all queues and invokes management operations on the
cluster resource manager when required to enforce
policy. In more detail, the S-PEP gathers site usage
policy from the policy enforcement distribution
module, collects monitoring information from the
local schedulers about cluster usage, computes CPU-
usage parameters, and sends commands to schedulers
to start, stop, restart, hold, and prioritize jobs. Our
approach provides both priority-based and feasibility-
based enforcements.

Priority-based enforcement involves only job’s
priority modifications without preempting or removing
jobs from execution. Practically, all jobs are allowed
to run, but resource utilization is controlled by means
of what share are allocated during the execution.
Feasibility-based enforcement assumes that all jobs
run with the same priority, and the only approach to
enforce usage policy is to hold/start or pre-empt jobs
from execution. Note that the S-PEP does not have its
own queue.

The processing logic of our prototype S-PEP is
based on the algorithms presented below:

1. foreach VOi with EPi
2. # Case 1: fill BPi
3. if �(BAj)==0 &
 BAi < BPi & Qi has jobs then
4. release job i from some Qi
5. # Case 2: available and BAi < BPi
6. else if �(BAk)<TOTAL &
 BAi<BPi & Qi has jobs then
7. release job i from some Qi
8. # Case 3: res. contention: fill EPi
9. else if �(BAk)==TOTAL &

 BAi<EPi & Qi has jobs then
10. if j exists & BAj >= EPj then
11. suspend an over-quota job Qj
12. release job i from some Qi
13. foreach VOi with EPi
14. if EAi>EPi then
15. suspend jobs for VOi from all Qi

where:
EPi = Epoch allocation policy for VOi
BPi = Burst allocation policy for VOi
Qi = set of queues with jobs from VOi
BAi = Burst Resource Allocation for VOi
EAi = Epoch Resource Allocation for VOi
TOTAL = possible allocation on the site
Over-quota job = job of VOj

As a further clarification, BA or EA represents the
share actually utilized by a VO, computed based on
the terms defined in Section 3. BP or EP represents
upper values for these utilized shares. When BP or EP
increases for example, the VO is entitled to more
shares starting with the moment of the change.
However, we avoided variations in our experiments.

An important novelty of our S-PEP over a cluster
resource manager is its capability to keep track of jobs
under several resource managers and to allow the
specification of more complex usage policies without
the need to change the actual cluster resource manager
implementation. The results are captured in section 6.

Solution 2 (Policy-Aware Scheduler): Our
second solution was developed and implemented with
success in the context of Grid3 environment. We
decouple the functionalities of the S-PEP in two major
components and map to existing solutions: a
standalone site policy observation point (S-POP) and
the cluster resource manager modules for resource
allocation control. In this case, we assume that the
cluster resource manager is able to enforce by itself
the desired usage policies, which are provided by
means of our S-POP module. Examples of such cluster
resource managers are Condor [18], Portable Batch
System [3], and Load Sharing Facility [5], widely used
on Grid3 [10]. This solution is similar to MAUI’s
approach in working in conjunction with various RMs.

The S-POP’s main functions are to optionally
provide and translate to/from the RM understanding
what usage policies have to be enforced, and to
monitor the actual resource utilization. An advantage
of this solution is that site administrators do not have
to use an additional grid component in managing their
clusters. Again, our implementation of the S-POP has
the advantage of interfacing with more than one
resource manager at a time, but with slight MAUI
modification the same goals could be achieved.

4.2. VO Usage Policy Enforcement

At the VO level, the V-PEP is cognizant of VO
policies. Our V-PEP modules operate at the
submission host queues. The V-PEP executes its logic
to determine whether new jobs should be submitted to
sites according to the VO usage policies. We have
modeled a version of the logic presented in this sub-
section using a “first-come-first-served” scheme with
opportunistic scheduling mechanisms to utilize
effectively resources. Opportunistic scheduling
allocates free resources whenever VOs which are
entitled to schedule jobs do not have any work to run.

The V-PEP provides answers to two questions:
“What jobs should be scheduled next?”, and “When
job j should start?”. The third question important here,
“Where job j should run?”, is also addressed by our V-
PEP prototype, but we consider this question beyond
the size and purpose of this paper. Also, the V-PEP
has different functions than S-PEP presented before.
The difference is driven by the large amount of
information that must be collected. The logic of our V-
PEP is described by the algorithm below, which can
be seen to be symmetric to that of the S-PEP:

 1. foreach (Gi with EPi, BPi, BEi)
 2. # Case 1: fill BPi + BEi
 3. if �(Baj)==0 &
 BAi<Bpi & Qi has jobs then
 4. schedule a job from some Qi
 to the least loaded site
 5. # Case2: res. available &BAi<BPi
 6. else if (�(BAk) < TOTAL)
 & BAi<BPi & Qi has jobs then
 7. schedule a job from some Qi
 to the least loaded site
 8. # Case 3: rs. contention: fill EPi
 9. else if (�(Bak)==TOTAL)&(BAi<EPi)
 &(Qi exists) then
10. if (j exists & BAj>=EPj) then
11. stop scheduling jobs for VOj
12. # Need to fill with extra jobs?
13. if (BAi < EPi + BEi) then
14. schedule a job from some Qi
 to the least loaded site
15. if (EAi < EPi) & (Qi has jobs) then
16. schedule additional backfill jobs

4.3. Verifying Monitoring Infrastructure

Accurate monitoring is important if we are to
understand how our prototype actually performs in
different situations. As a first step towards this goal,
we develop mechanisms for measuring how resources
are used by each VO and by the grid, overall.

As monitoring infrastructure, we build upon the
Ganglia Cluster Monitoring toolkit [19], a distributed
solution for collecting cluster monitoring information.
The system is composed of a host sensor collector, a
summation meta-daemon and a cluster/host web-
interface. We enhanced this monitoring tool by
transforming the summation meta-daemon into a
monitoring distribution point (MDP), able to exchange
data with other MDPs and to collect information about
hardware usage, VO-related usage, and policy
restrictions [14]. Information exchanged by MDPs is
encoded in XML format and it is composed of
different metrics for different entities. In order to
avoid large amount of information gathering at the
root MDPs and to distribute the process of maintaining
monitoring information, we introduce various
summation operations for different metrics. This
approach provides scalability by ensuring that the
same amount of information is exchanged among
MDPs at different levels in the monitoring tree. The
frequency with which information is exchanged also
influences monitoring system capabilities and
accuracy. For GangSim, both monitoring information
collection and distribution are performed at pre-
specified time intervals. In addition, MDPs monitor
local host load, and if this increases over a pre-
configured value, the exchange interval is increased,
thus reducing the accuracy of monitoring information.

4.4. Usage Policy Management

While previous sections answered three of the
questions stated in introduction, the “How are usage
policies distributed to enforcement points?” question
has remained yet unanswered. In this sub-section we
provide a simple solution we tested with our prototype
over Grid3 [10].

In our approach, the monitoring system (MDPs)
provides in addition support for usage policy
specification and distribution. The usage policies are
specified through a web interface that connects to a
selectable MDP. Further, the MDP distribute these
usage policies to all site and submission host MDP
that are associated with it. Even further, in a multi-
layer deployment (cascading MDPs), each MDP
multicasts periodically its usage policies to the other
MDPs. While this solution is not very scalable
(thousands of MDPs), we assume that for a grid ten

times larger than today Grid3 is sufficient. As an
additional note, usage policies are associated with the
MDP that distributed it and with the console that
provided it and they can be deleted only by the same
point of decision. While this is an important point of
our solution, we analyze in more detail this problem
somewhere else [23].

5. Architecture Simulations

We describe here simulation studies that we
conducted to evaluate the grid-wide resource
allocation model that we presented in the previous
section. In particular, we wanted to determine whether
CPU resources could be allocated in a fair manner
across multiple VOs, and multiple groups within a
VO, without requiring the centralized control that is
impractical in a grid environment.

We conducted our grid-wide simulations by
discrete simulation mechanisms that generated
performance data which was fed directly into the
Ganglia collectors. The simulators ran in “real time”
rather than using a simulation clock. The simulations
were conducted using a module that managed all
internal structures for our VO-Ganglia simulation tool
[14], based on predefined clusters, workloads, and
usage and scheduling policies components.

We ran our tests on a simulated grid consisting of
two sites with a total of 22 CPU resources, 7 in one
and 15 in the other, and two VOs. The scheduling
policies used were based on FCFS (at both the VO and
the site level), without preemption, and with
opportunistic strategies to increase overall utilization.

The complexity of the environment used in this
first set of simulations is specifically low in order to
provide case scenarios that can be followed easily.

Workload: We used a composite workload that
overlays work for two VOs, each consisting of two
groups. The workload consisted of the 440 jobs shown
in Table 1. All workloads are synthetic being
composed of jobs, each corresponding to a certain
amount of work and without any precedence
constraints.

Table 1: Grid-wide workload summary

VO Group #jobs Mean Job Duration
0 0 80 150 sec
0 1 100 250 sec
1 0 120 200 sec
1 1 140 300 sec

Jobs arrive, are executed, and leave the system
according to a Poisson distribution. Because in our
simulations we consider an environment with several
VOs, an important factor is synchronization among

workloads. Here, we all workloads start at the same
moment in time (synchronized), very appropriate to a
scientific community that work for gathering results
before a conference deadline.

The simulation period was one hour (one
scheduling epoch) and the measurement interval was
five seconds. Job durations and inter-arrival times
were generated randomly using Poisson and Gaussian
distributions, respectively.

Policy: The two sites had different local policies,
as specified by the following tuples. All burst intervals
were five seconds, while epoch periods were one hour.
 Allocating grid resources from 2 sites to 2 VOs:
(1) [CPU, Site1, VO0, (3600,20),(5,60)]
(2) [CPU, Site2, VO0, (3600,20),(5,60)]
(3) [CPU, Site1, VO1, (3600,80),(5,90)]
(4) [CPU, Site2, VO1, (3600,80),(5,90)]
 Allocating VO resources from 2 VOs to 4 groups:
(5) [CPU, VO0, Group0, (3600,40),(5,90)]
(6) [CPU, VO0, Group1, (3600,60),(5,90)]
(7) [CPU, VO1, Group0,(3600,50),(5,100)]
(8) [CPU, VO1, Group1,(3600,50),(5,100)]

Job states: The graphs in this section are based on
a model where jobs pass through four states: submitted
by a user to a submission host; submitted by a
submission host to a site, but queued or held; running
at a site; and completed.

Each view of VO or group resource allocation and
utilization, below, is shown as a pair of graphs. Even
numbered figures show the workload for the VO or
group, broken down by jobs in different states of grid
scheduling, as follows. Dark gray lines represent jobs
executing at a site; white lines represent jobs queued
or hold at sites; and black lines represent the total
number of jobs at the site (the sum of the two previous
states). Jobs at the job submission site (or planner) and
finished jobs are not shown. The gray area is the total
number of CPUs (22) available for job execution. The
X axis for all graphs represents seconds, while the Y
axis represents percentages in terms of the total
available computing power (22 CPUs in this section).

Odd numbered figures show policy enforcement
actions by overlaying CPU utilization on top of policy
limits. The straight policy line shows percentage of
total grid resources allocated; it reflects percentage of
grid to VO and then percentage of VO to group. The
straight policy line shows the cumulative percentage
of epoch allocation used at each point in time. The
black curve shows the burst (or instantaneous) CPU
allocation, sampled in these tests every five seconds.

Allocation of Grid resources to VOs (S-PEP in
conjunction with V-PEP): We first look at the
effectiveness of policies 1 through 4, above, at
allocating the resources of both grid sites to two
different virtual organizations, VO0 and VO1. Figure 2
shows the effect on the jobs of VO0 of policies 1

through 4. illustrates the policy levels for VO0 and the
effects of enforcement.

Figure 2: VO0 job execution on two sites

Figure 3: Usage Policy for VO0 on two sites

We see in that VO0 is allocated 20% of the overall
grid resources, and is permitted short-term bursts in
which it can use up to 60% of all grid resources. At
about t=00:02 into the test, we observe that VO0’s
workload hit its maximum burst limit, and was
throttled back by the policy enforcement logic.

Immediately after that point, at about t=00:04, as
VO1’s workload begins to build, we see () that VO0’s
allocation is throttled back to its epochal limit (20%)
until about t=00:07, when VO1’s contention for
resources drops back to a level that once again permits
VO0 to gain resources above its epochal allocation.
The same usage policy enforcement action takes place
from about t=00:19 to t=00:28.

Finally, at t=00:37, we see VO0’s total CPU
consumption for this epoch (rising light gray line) hit
its epoch allocation limit (black line), after which the
PEP ensures no new jobs are initiated for VO0 until the
end of the current scheduling epoch (at t=01:00).

Figure 4: VO1 Jobs execution on two grid sites

Figure 5: Usage Policy for VO1 on two sites

Observing the grid-wide resource utilization of
VO1 in , we can see that its allocation of grid resources
is limited to its 80% epochal allocation due to
contention from VO0 from t=00:03 to t=00:08, and
t=00:20 to t=00:29. At t=00:40 and t=00:53 contention

from VO0 has diminished to the point where the S-
PEP permits VO1 to reach its burst allocation of 100%.
Note that within the observed epoch, VO1 comes close
to, but does not exceed, its allocation.

Allocation of VO resources to Groups (V-PEP):
In a manner analogous to enforcing policy for the
allocation of site resources to VOs, our distributed
PEP model can simulate the allocation of VO
resources to groups within a VO and measure the
effectiveness of policy enforcement of such sub-
allocations. We describe here the results of simulating
the enforcement of policy rules 5 through 8 above,
which specify that the CPU resources allocated from
the grid sites to VO0 are to be sub-allocated to VO0’s
Group0 and Group1 on a 40% / 60% basis.

We see in Figure 7 that VO0 Group0 is throttled
back to its epochal limit at two different points (t=00:0
and t=00:22), and then exceeds its epochal allocation
at t=00:32. Similar policy enforcement of Group1 can
be seen at several points in Figure 9. Group1, too,
exceeds its epochal limit somewhat later, at t=00:40,
after which jobs running at that time complete but no
new jobs are scheduled. Both of these groups then
carry their workload into the next scheduling epoch.

Figure 6: Workload for VO0 Group0

Figure 7: Policy enforcement for VO0 Group0

Figure 8: Workload for VO0 Group1

Figure 9: Policy enforcement for VO0 Group1

Overall Grid Utilization: Figures 10 and 11 show
overall grid utilization by all VOs. We see from Figure
11 that CPU resources are well utilized whenever

sufficient demand exists, despite the allocation-
limiting actions of the PEPs.

Figure 10: Overall grid workload

Figure 11: Overall grid CPU utilization

Testing generality: As an initial test of the
generality of our approach to handle a larger grid, we
ran a simulation test of the same workload and policies
as were specified above for two VOs and four groups,
but on a grid of 5 sites and 83 hosts.

Figure 12: Policy for VO0 on 5 sites

Figure 13: Policy for VO0 Group0 on 5 sites

Figure 12 captures CPU utilization on five sites
(burst in middle gray and epoch in light gray) over a 1-
hour scheduling epoch by two VOs, each composed of
two groups. The grid-wide policies in effect are
(epoch/burst) 20/60 for VO0 and 80/90 for VO1, with
40/60 for VO0/G0 and 60/80 for VO0/G1. These
policies are represented with black/dark gray (epoch
limits / burst limits). Figure 13 captures the resource
sharing between the two groups as implemented by the
VO policy mechanisms. Because the test grid for this
example was large enough, there was no contention at
the group level and jobs run without policy limitations.

6. Usage Policy Experimental Results

Here we report on experiments that compare the
two S-PEP solutions introduced in Section 4.1. We
measure how well local resource managers, in
particular Condor and Maui in conjunction with Open-

PBS, are able to enforce our proposed extensible usage
policy specification. In each case, two VOs submit
workloads identical to those used in the previous
simulations to a single site (Site0), with one of our two
S-PEP approaches used to enforce a usage policy in
which CPU resources are allocated 20% to VO0 and
80% to VO1. The two VOs are allowed 30 second
burst utilizations of 60% and 90% of the site’s CPU
resources, respectively:

[CPU, Site

0
, VO

0
, (3000s,20%),(30s,60%)]

[CPU, Site
0
, VO

1
, (3000s,80%),(30s,90%)]

Jobs were submitted via the Globus Toolkit® 2.0
[20]. The test site was monitored by collecting load
information every 10 seconds. As a side note, we are
not aware of other schemas for usage policy
enforcement at the site level in the form proposed
here. The closest match [15] does global enforcement
for usage policies (grid-level).

6.1. S-PEP Usage Policy Enforcement

The first set of experiments involves our S-PEP
implementation, which performs policy enforcement
actions every 30 seconds. Figures 14-17 show
instantaneous and total CPU utilization per VO as a
function of time for different VOs and schedulers.

Figure 14: S-PEP with Condor (VO0)

Figure 15: S-PEP with Condor (VO1)

Figure 16: S-PEP with Maui/OpenPBS (VO0)

We observe that the policy enforcement module
has similar effects for both schedulers. The ideal
behavior cannot be achieved, due to the latencies
incurred in submitting processes to site schedulers,
and the subsequent scheduling delay. In addition, the
monitoring sub-component achieves different

behaviors, being influenced by the capacity (or in-
capacity) of the tested scheduler to return job
information in a timely fashion.

Figure 17: S-PEP with Maui/OpenPBS (VO1)

6.2. Local RM Usage Policy Enforcement

The second solution is entirely based on the local
schedulers’ capabilities to enforce various usage
policies. Usage policies are specified as RM
configuration rules; the S-POP collects and translates
them to an abstract policy understandable at grid level.

Figure 18: Condor as S-PEP (VO0)

Figure 19: Condor as S-PEP (VO1)

Figure 20: OpenPBS/Maui as S-PEP (VO0)

Figure 21: OpenPBS/Maui as S-PEP (VO1)

Figures 18-21 show instantaneous and total CPU
utilization per VO as a function of time for the two
VOs and the two different local schedulers. The usage
policy is simpler in this case to accommodate
Condor’s capabilities in priority specifications.

6.3. Quantitative Comparison

Table 2 presents a quantitative comparison of our two
enforcement solutions. We define burst usage policy
violation (BUPV) as the ratio of the CPU-resource over-
burst allocation consumed by users (BETi) to total CPUs
available. We compute this quantity as follows:

BUPV = � (BETi) / (#cpus * �t)

We define the epoch usage policy violation (AUPV)
as the ratio of the CPU-resource over-epoch allocation
consumed by users (EETi) to total CPU resources
available. We compute this quantity as follows:

EUPV = � (EETi) / (#cpus * �t)

We define aggregated resource utilization (ARU)
as the ratio of the CPU-resource actually consumed by
users (ETi) to the total CPU-resources available. We
compute this quantity as follows:

ARU = � (ETi) / (#cpus * �t)

Table 2: Quantitative Comparison Results
Policy BUPV EUPV ARU

S-PEP/Condor 0.12 0.01 70.2
S-PEP/PBS 0.10 0.08 88.5
RM/Condor 0.16 0.16 73.2

RM/PBS 0.03 0.17 67.6

These results require further validation using
additional workloads. However, we see that for these
particular scenarios, S-PEP achieves better
enforcement of epoch usage policies than do local
resource managers; for burst usage policies, there is no
clear winner. We also see that PBS is slightly better at
enforcing burst usage policies than is Condor.

6.4. Grid3 Usage Policy Enforcement Status

We test our assumptions in a real scenario by
monitoring the site usage policies and actual resource
usages over a period of two weeks at a single Grid3
site, U. Chicago. Results are captured in Figure 22. U.
Chicago runs Condor, but we also see similar
behaviours for other local resource managers (e.g.,
OpenPBS, LSF). The two VOs that compete for
resources are USATLAS and Grid-Exerciser. The
usage policies enforced were 35% for USATLAS and
0.1% for GRIDEX, based on Condor’s extensible fair
share. USATLAS’s larger allocation means that
whenever it has jobs queued at this site, they are
immediately executed. But as soon as USTALAS load
decreases (X=800, or X=1030), Grid-Exerciser’s jobs
take over and get all the resources they request. When
the USATLAS jobs start again (X=950), Grid-
Exerciser’s jobs are throttled back.

Figure 22: Allocations at U. Chicago

6.5. Grid3 Advantages

In order to evaluate the utility of taking into
account usage policies, we conducted further tests on
Grid3. We used a specialized resource SLA based
broker [21] that uses policy specification and resource
utilization information gathered by means of S-POPs.
The broker creates and maintains an internal image of
Grid3 and answers following queries: “From the list L
of sites, on which subset S can a specified VO run?”,
and “Which is the best site for VO's workload?”.

We define the aggregated response time (ART) as
follows, with RTi being individual job time response:

ART = •i=1..N RTi / N

We define the aggregated job completion (AJC)
during a predefined time interval as follows:

AJC = Job Completed / Job Submitted

The results in Table 3 capture aggregated resource
utilization, average response time, and aggregated job
completion [14] for a workload consisting of 1000
jobs submitted to a subset of 16 sites. Each job ran on
average 35 minutes, and the experiment 2.5 hours.In
all cases, our broker identified feasible sites for
execution. In the first two rows (NP), sites were
selected based only on CPU information. In the last
two rows (SC), sites were selected based on the usage
policies as well. Further, we used random assignment
(RA) and round robin (RR) for site selection.

Table 3: Results for the BLAST Workload
Policy ART ARU AJC

RA /NP 97.01 0.27 0.54
RR /NP 114.99 0.27 0.54
RA /SC 126.43 0.35 0.69
RR /SC 130.70 0.33 0.65

We observe that the use of policy information
leads to a better job completion rate, even though the
response time seems to be higher. However, we
consider further analysis beyond this paper’s scope.
We consider further analysis beyond the scope of this
paper.

7. Related Work

In et al. [15] propose a system for policy based
scheduling of grid-enabled resource allocations. It
provides strategies for (a) controlling the request
assignment to grid resources by adjusting resource
usage accounts or request priorities; and (b) managing
efficiently resources by assigning user quotas. The
difference with our approach consists in that we do not
assume a central point of policy enforcement.

Humphrey et al [22] consider a different means for
usage policies. They focus on VO-wide resource
distribution and how resources can be allocated based
on various requirements. We look from both a
consumer and provider point of view, targeting also
provider goals and their resource management.

Ludwig et al. [24] propose a more generic system
for SLA-based resource allocation, Cremona.
Cremona is a framework for SLA specification and
automated negotiations. The difference with our
solution consists in the targeted level. We focus on
providing an infrastructure for usage policy distributed
management that can also be used by the Cremona
framework for resource provisioning.

Firozabadi et al. [23] describe an alternative
approach in usage policy specification. They define
notions such as obligations and entitlements, and
provide a theoretical foundation. Again, as for [26]
comparison, our solution addresses a specific practical
problem. We consider that Firozabadi et al. provide an
alternative for the MAUI solution used as a starting
point, but the environment conditioned our solution.

8. Conclusions and Future Work

In this paper we achieved results on several
dimensions. Firstly, we were interested in providing a
usage policy, which can be applied with success in real
case scenarios. Secondly, we compared two cluster-
wide enforcement prototypes, able to deal with several
cluster management packages, and provided
preliminary results comparing their effectiveness.
Thirdly, we provided the design of an infrastructure
for usage policy-based grid scheduling.

There are still problems not fully explored in this
paper. Firstly, our analysis did not consider the case of
resource over-provisioning, a policy that allocates
40% of CPU to VO0 and 80% to VO1. Secondly, we
did not address here how our solution applies to other
resources besides processor time, disk and network.

Acknowledgements: This work was supported in part
by the NSF Information Technology Research
GriPhyN project, under contract ITR-0086044. Graphs
in this paper were created using the RRDtool [25].

References

1. Ranganathan, K. and I. Foster, “Decoupling Computation
and Data Scheduling in Distributed Data-Intensive
Applications”, in 11th International Symposium on High
Performance Distributed Computing, Edinburgh, Scotland.

2. Condor Project, Condor-G. 2002.
3. Altair Grid Technologies, LLC, A Batching Queuing

System, Software Project, 2003.
4. Cluster Resources, Inc., Maui Scheduler, Software Project.
5. Platform Computing Corporation, Administrator's Guide,

Version 4.1, February 2001.
6. Foster, I. et al., “End-to-End Quality of Service for High-

end Applications”, in Computer Communications, 2004.
7. S. Tuecke, et al., Grid Service Specification.
8. Dan, A. et al., “Connecting Client Objectives with

Resource Capabilities: An Essential Component for Grid
Service Management Infrastructures”, in International
Conference on Service Oriented Computing, NY, 2004.

9. Pearlman, L. et al., “A Community Authorization Service
for Group Collaboration”, in 3rd International Workshop on
Policies for Distributed Systems and Networks, 2002.

10. Foster, I., et al., “The Grid2003 Production Grid: Principles
and Practice”, in 13th International Symposium on High
Performance Distributed Computing, 2004.

11. Avery, P. and I. Foster, “The GriPhyN Project: Towards
Peta-scale Virtual Data Grids”, NFS proposal, 2001.

12. Chervenak, A. et al., “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis
of Large Scientific Data Sets”, in Network and Computer
Applications, 2001.

13. IBM, WSLA Language Specification, Version 1.0. 2003.
14. Dumitrescu, C. and I. Foster., “Usage Policy-based CPU

Sharing in Virtual Organizations”, in 5th International
Workshop in Grid Computing, 2004.

15. In, J., et al., "Policy Based Scheduling for Simple Quality
of Service in Grid Computing", in International Parallel &
Distributed Processing Symposium (IPDPS). April '04.

16. RFC3060, Policy Core Information Model, 1st Specification
17. RFC3198, Terminology for Policy - Based Management.
18. Condor Project, Condor User's Manual, 2002.
19. Massie, M., B. Chun, and D. Culler, “The Ganglia

Distributed Monitoring: Design, Implementation, and
Experience”, in Parallel Computing, May 2004.

20. Foster, I. and C. Kesselman, Globus: A Toolkit-Based Grid
Architecture, GridBook chapter, p. 259-278.

21. Dumitrescu, C., Foster, I., Raicu, I., “A Scalability and
Performance Measurements of a Usage SLA based Broker
in Large Environments”, iVDGL/GriPhyN report, 2005.

22. Firozabadi, B., et al., “A Framework for Contractual
Sharing in Coalitions”, in 5th International Workshop on
Policies for Distributed Systems and Networks, NY, 2004.

23. Wasson, G., Humphrey, M., “Policy and Enforcement in
Virtual Organizations”, in 4th International Workshop on
Grid Computing, Phoenix, 2003.

24. H. Ludwig, A. Dan, B. Kearney, “Cremona: An
Architecture and Library for Creation and Monitoring of
WS-Agreements”, in International Conference on Service
Oriented Computing, NY, 2004.

25. Oetiker, T., “RRDtool: A system to store and display time
series”, http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/.

