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Abstract
This paper describes an approach to determine a layout for the order picking area in warehouses,
such that the average travel distance for the order pickers is minimized. We give analytical
formulas by which the average length of an order picking route can be calculated for two different
routing policies. The optimal layout can be determined by using such formula as an objective
function in a non-linear programming model. The optimal number of aisles in an order picking
area appears to depend strongly on the required storage space and the pick list size.

1 Introduction

Order picking is the process by which products are retrieved from storage to satisfy customer
demand. In its simplest form, an order arrives at the warehouse and an order picker is sent
into the picking area with the customer’s list to retrieve the requested items from storage.
Much research has been done to find methods to retrieve products from storage as efficiently
as possible. The high efforts in this area are partly caused by the fact that order picking is an
extremely expensive activity. Typically, the order picking contributes most to the operational
costs of a warehouse (Tompkins et al., 2003). For the time required to pick an order, we can
roughly distinguish three components: traveling between items, picking of items and remaining
activities. Picking the items consists of a series of actions ranging from positioning the vehicle
to putting the picked items on a product carrier. The remaining activities include picking up
an empty pick carrier, the acquisition of information, and dropping off the full pick carrier at
some point after picking is complete. Most efforts to improve the operational efficiency of order
picking can be categorized into three groups of operating policies, namely routing, batching,
and storage assignment. Each of these approaches generally focuses on reducing travel times
since these are easiest to influence. The time required for picking and remaining activities is
influenced by aspects such as the chosen rack type and training of personnel.

Routing concerns the traveling of the order picker from location to location to retrieve prod-
ucts. Usually, a large part of an order picker’s time is spent on traveling. Therefore this is
an important aspect to consider. Research has focused on developing and comparing various
routing methods. For example, Petersen (1997) gives a number of routing methods for ware-
houses with a ladder-structure, i.e. a warehouse with a number of parallel aisles where order
pickers can change aisles in the front and rear cross aisle of the warehouse. Cross aisles are aisles
perpendicular to the pick aisles and can be used to change from one aisle to the next. Rout-
ing methods vary from simple heuristics to optimization schemes using dynamic programming.
Two frequently used heuristics will be used in this paper and are explained below. A dynamic
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programming approach for routing in a warehouses with an added cross aisle in the middle is
given in Roodbergen and De Koster (2001).

With batching several orders or partial orders are combined to create one or more picking
routes. One form is to aggregate all available orders and to pick each product type individually.
Another form is to combine several complete orders into one picking route. Numerous interme-
diate forms exist. Much research is performed in this area, especially on methods that combine
complete orders into a single route, see e.g. De Koster et al. (1999b) or Ruben and Jacobs
(1999). If an order picker retrieves several orders at the same time, there are two possibilities:
either the products are sorted by order while picking (sort-while-pick) or the order integrity is
restored after picking is completed (pick-and-sort). For sort-while-pick a special vehicle may
be required to separate the various orders. For pick-and-sort a manual or automated sorting
system may be needed. A situation where multiple pickers work on the same order can be found
in areas with zoning, i.e. where each order picker only picks those products from an order that
are located in his assigned part of the warehouse.

Research concerning storage assignment focuses mainly on rules to assign products to loca-
tions. Existing rules range from random, where new storage locations are assigned to products
randomly, to full-turnover storage, where products with the highest pick frequency are assigned
to the easiest accessible locations. Intermediate forms also exist, such as ABC-storage, where
the A, B, and C categories are determined based on pick frequencies but storage within the
categories is random (see e.g. Petersen and Schmenner, 1999).

A common objective for order-picking systems is to maximize the service level subject to
resource constraints such as labor, machines, and capital. The service level is composed of a
variety of factors such as response time, order integrity, and accuracy. A crucial link between
order picking and service level is that the faster an order can be retrieved, the sooner it is available
for shipping to the customer. If an order misses its shipping due time, it may have to wait until
the next shipping period. Also, short order retrieval times imply high flexibility in handling late
changes in orders. Minimizing the order retrieval time (or picking time) is, therefore, a need
for any order-picking system. Possible improvements by changing the operating policies are
restricted by the physical layout of the area. That is, given a certain layout of the picking area,
a good mix of operating policies can be chosen. In this paper, we will take the reverse approach.
We propose a method that can find a layout that optimizes the order picking efficiency, given
certain operating policies. Such a method allows designers to take operational efficiency factors
into account while designing the warehouse. Specifically, we formulate a non-linear programming
model to optimize the layout with respect to average travel distances.

In Section 2 we describe a model to find the best layout in a picking area consisting of
one block. In Section 3 estimates are developed for the average travel distance of two common
routing policies. In Section 4 the location of the depot is discussed. In Section 5 the results
from the travel distance estimates are compared with simulation and with existing estimates
from the literature. Section 6 describes some layout experiments. Layout differences resulting
from the optimization with different routing policies are analyzed in Section 7. Conclusions are
given in Section 8.

2 A model for layout optimization

We consider a manual order picking operation, where order pickers walk or drive through a
picking area to retrieve products from storage. Picked items are placed on a vehicle, which the
order picker takes with him on his route. With some minor changes, we can also optimize other
picking environments with this model, see Section 3.4. The picking area is rectangular with no
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unused space and consists of a number of parallel aisles. At the front and rear of the picking
area there is a cross aisle to enable aisle changes. An example of a layout of such a picking area
is given in Fig. 1. Solid black squares in the figure indicate sections in the rack where items
have to be picked.

Order pickers are assumed to be able to traverse an aisle in either direction and to change
direction within an aisle. Items are stored on both sides of the aisles. Item locations are deter-
mined randomly according to a uniform distribution. We consider this storage assignment policy
because it can be considered as a base-line against which layouts with other storage assignment
policies can be compared. Furthermore, random storage is frequently used in practice. This
occurs, for example, in situations where the product assortment changes too fast to produce
reliable statistics about demand frequency (see e.g. De Koster et al., 1999a). Previous work
on travel distance estimation for random storage is described in Hall (1993). Estimations in an
activity based storage environment are described in for example Caron et al. (1998) and Chew
and Tang (1999). Each order consists of a number of items, which can and will be picked in
a single route (such a "pick order" can be the result of a batching procedure, though). Picked
orders have to be deposited at the depot, where the picker also receives the instructions for the
next route. The depot is located in the front cross aisle.

We use two routing policies called the S-shape (or traversal) policy and the largest gap policy.
These policies are widely used in practice (see Hall, 1993). With the S-shape policy, any aisle
containing at least one item is traversed through the entire length. Aisles where nothing has to
be picked are not entered. After picking the last item, the order picker returns to the front end
of the aisle. With the largest gap policy, the picker enters the first aisle and traverses this aisle
to the back of the warehouse. Each subsequent aisle is entered up to the ‘largest gap’ and left
from the same side as it was entered. A gap represents the distance between any two adjacent
items, or between a cross aisle and the nearest item. The last aisle is traversed entirely and the
picker returns to the depot along the front entering again each aisle up to the largest gap. Thus,
the largest gap is the part of the aisle that is not traversed. Fig. 1 contains routes found by
applying the S-shape and largest gap policies to an example situation.

XXXXXXXXXXXXXX
Insert figure 1
XXXXXXXXXXXXXX
To find the layout that results in minimal average travel distances, we first have to find an

analytical expression that expresses the average travel distance as a function of a number of
layout arguments. We distinguish the following variables that influence average travel distance:

n the number of aisles (integer);

y the length of each of the aisles (real);

d the depot location, 1 ≤ d ≤ n (real).

The depot can be located anywhere in the front cross aisle between the left-most aisle (aisle 1)
and the right-most aisle (aisle n). The position is indicated with a number. For example, d = 1
indicates that the depot is located at the head of aisle 1; d = 3.5 indicates that the depot is
located between aisles 3 and 4.

Furthermore, we define the following parameters:

m the number of picks per route (integer);
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wa center-to-center distance between two adjacent aisles (i.e. width of an aisle including the
storage racks);

wc width of a cross aisle;

S total aisle length, measured along the pick face.

Once we have an expression for the average travel distance, then we can try to minimize this
expression. If TX

m (n, y, d) gives the average travel distance of routing policy X in a picking area
with n aisles of length y and the depot located at d, given that m products have to be picked
per route, then our problem can be formulated as:

minTX
m (n, y, d)

n · y = S

n ≥ 1 (integer)

y ≥ 1.0
1 ≤ d ≤ n.

Thus, we try to find values for n, y and d such that TX
m (n, y, d) is minimized, under the

conditions that total aisle length equals S, the number of aisles is 1 or more, the depot is
located in the front cross aisle between aisle 1 and n, and the minimum length of an aisle is 1.0
meter (which is the minimum that would be physically possible to build). The model can be
used for any routing method, provided that an expression TX

m (n, y, d) is available to calculate
average travel distances. In the next section we will derive such expressions for two commonly
used routing methods.

3 Average travel distance estimation

In this section, we will give explicit formulas to calculate the average travel distance in a picking
area consisting of one block. Previous work on travel distance estimation in similar situations
includes Hall (1993) and Kunder and Gudehus (1975). The estimates presented in these papers
are fairly simple formulations and may therefore provide an easy-to-use method to obtain a rough
estimate for the expected travel distance. We give more precise estimates, which will allow us
to accurately determine layouts with the model of the previous section and to prove an optimal
location for the depot. A comparison between our estimates, the estimates of Hall (1993),
the estimate of Kunder and Gudehus (1975), and simulation is given in Section 5. The travel
distance consists of two components: (1) distance traveled within the aisles and (2) distance
traveled in the cross aisles. We will derive estimates for both components separately.

3.1 S-shape travel within the aisles

Under the assumption that products are distributed uniformly over the aisles and locations, we
can easily derive that the number of aisles containing at least one pick location, has an expected
value of:

E[A] = n ·
µ
1−

µ
n− 1
n

¶m¶
, (1)
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which is n times the probability that an aisle contains at least one pick. This is similar to
the formulations in Caron et al. (1998), Chew and Tang (1999), and Hall (1993). Actually this
is a good approximation of the expected number of aisles (see Kunder and Gudehus, 1975).

The expected value of the distance traveled inside the aisles for S-shape, DS
y , can then be

stated as:

E[DS
y ] = y0 ·E[A] + C (2)

where y0 = y+wc. That is, y0 is the length of an aisle plus two times the distance to go from
the end of an aisle to the center of the cross aisle (two times 12wc). This distance is added since
we assume that the order pickers walk through the middle of the cross aisles. C is a correction
term that accounts for extra travel in the last aisle that is visited. This extra travel distance
occurs if the number of aisles that has to be visited is an odd number. In this case the last aisle
is both entered and exited from the front (see Fig. 1 for an example). In Hall (1993) and Kunder
and Gudehus (1975) it is assumed that if the order picker has to turn in the last aisle, then the
distance traveled in this aisle is 2 · y0. That is, the last aisle first has to be traversed entirely to
the back of the warehouse before the order picker can return to the front. In manual picking
operations, however, the order picker will generally return to the front directly after picking the
last item, instead of first going to the back of the warehouse. Caron et al. (1998) use a slightly
different routing policy. They assume that the order picker makes the turn in the aisle where
the turn will be the shortest, instead of always turning in the last aisle. Furthermore, they
assume that the warehouse always has an even number of aisles. In practice, it will be difficult
for the order picker to know in which aisle to make the turn and the warehouse may have an
odd number of aisles.

We will estimate the correction term C for the most common situation where the turn (if
any) is made in the last aisle with an item. Furthermore, the turn occurs directly after the last
item has been picked. Now, suppose that a turn has to be made and the number of picks in this
last aisle is b, then the distance traveled for a turn in this aisle would equal:

2 · b

b+ 1
· y + wc

which is based on the well-known property that the maximum of b continuous uniformly
distributed [0,1] variables equals b/(b + 1). Since we already accounted for a distance of y0 in
the estimate y0 ·E[A], we find that the additional travel for turns is given by:

2 · b

b+ 1
· y + wc − y0 = 2 · b

b+ 1
· y − y.

Let us now determine the probability that such a turn occurs. First, we need to determine
the probability that all picks fall into exactly g aisles out of the n aisles, where g is an odd
number. This probability is given by: µ

n
g

¶³ g
n

´m ·X (3)

where X is 1 minus the probability that all m picks fall into less than g aisles, conditional
on the fact that all m items fall into at most g specific aisles. X equals:

X = 1−
g−1X
i=1

(−1)i+1
µ

g

g − i

¶µ
g − i

g

¶m

.
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This result relies on the inclusion-exclusion rule. We start with a probability of 1 that all
items are in g aisles. We then subtract the probability that the items are in g − 1 or less aisles,
which equals

¡ g
g−1
¢ ³g−1

g

´m
. However, we have now subtracted the probability that all items

are in g − 2 or less aisles ¡ g
g−1
¢¡g−1

g−2
¢
times, but we should have only subtracted it

¡ g
g−2
¢
times.

Therefore we have to add
¡ g
g−1
¢¡g−1

g−2
¢− ¡ g

g−2
¢
=
¡ g
g−2
¢
multiplied by

³
g−2
g

´m
. However, now we

have added the probability that all items are in g − 3 aisles ¡ g
g−3
¢
too often. And so on.

The correction term for the extra travel distance in the last aisle can be formulated as:

C =
X
g∈G

"µ
n
g

¶³ g
n

´m ·X ·
Ã
2 · y ·

m
g

m
g + 1

− y

!#
where

G = {g | 1 ≤ g ≤ n, g ≤ m and g is odd} .

3.2 Largest gap travel within the aisles

In this section we will give an average travel distance estimate for another commonly used routing
policy: largest gap. Based on results from Hall (1993) an estimate for the travel distance within
the aisles with the largest gap policy can be obtained as:

n · y0 ·
mX
i=0

"µ
m

i

¶µ
1

n

¶iµn− 1
n

¶m−i
Di

#
(4)

where Di is a factor that denotes the expected travel distance on a line of length 1 if i
items are randomly distributed over this line. The values Di were obtained by simulation and
tabulated in Hall (1993) for i = 1, ..., 10.

Formula 4 does not take into account that the first and last aisle are always entirely traversed
with largest gap routing. Furthermore, if all items are in one aisle, then the route should just
consist of entering and leaving that aisle from the front side. We will give a new estimate for
largest gap for which we distinguish between (1) the case where all items are in a single aisle
and (2) the case where items are distributed over two or more aisles. For the second case we
add the additional time required to entirely traverse the first aisle and the last aisle with picks.

The probability that all items are in one aisle equals n · ¡ 1n¢m =
¡
1
n

¢m−1
and the average

distance traveled in that situation is simply 2y · m
m+1 + wc. What remains to be estimated is

the distance traveled given that at least 2 aisles are to be visited. This event occurs with a
probability of 1 − ¡ 1n¢m−1 . Given that at least two aisles contain picks, we can estimate the
number of aisles to visit by:

E[A | A ≥ 2] = E[A]− ¡ 1n¢m−1
1− ¡ 1n¢m−1

where E[A] is given by equation 1.
To estimate the distance to be traveled in an aisle, we first obtain the probability:

P (i items in an aisle | i ≥ 1) = 1

1− ¡n−1n ¢mµmi
¶µ

1

n

¶iµn− 1
n

¶m−i
.
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Similar to Hall (1993) we can then multiply these probabilities by the related travel distance
to obtain an estimate for travel in the aisles if at least two aisles have to be visited:

1

1− ¡n−1n ¢m · (E[A | A ≥ 2]) ·
mX
i=1

µ
m

i

¶µ
1

n

¶iµn− 1
n

¶m−i
(yDi +wcEi) (5)

where Di is identical to Hall (1993) and Ei (1 ≤ Ei ≤ 2) is a simulated estimate for the number
of times an aisles needs to be entered, given a certain number of picks in that aisle (the idea to
use the estimate Ei is inspired by Ðukíc and Oluíc, 2001). The values for i = 1, ...50 are given
in Table 1.

Finally, we note that two of these aisles actually should be traversed entirely. We, therefore,
subtract two aisles from equation 5 and add the distance of 2 full aisles, which is equal to
2(y+wc), to the total estimate. This gives us as a total estimate for travel within the aisles with
largest gap routing:

E[DLG
y ] =

µ
1

n

¶m−1µ
2y · m

m+ 1
+wc

¶
+

Ã
1−

µ
1

n

¶m−1!
· 2(y + wc) +

1− ¡ 1n¢m−1
1− ¡n−1n ¢m · (E[A | A ≥ 2]− 2) ·

mX
i=1

µ
m

i

¶µ
1

n

¶iµn− 1
n

¶m−i
(yDi + wcEi) .

3.3 Travel within the cross aisles

The estimate for travel in the cross aisles is identical for S-shape and largest gap and consists of
three components (1) travel from the depot to the left-most aisle with picks, (2) travel from aisle
to aisle while picking items, and (3) travel from the right-most aisle with picks to the depot.
See also Fig. 2 for a graphical illustration of the components.

XXXXXXXXXXXXXX
Insert figure 2
XXXXXXXXXXXXXX
Both Hall (1993) and Kunder and Gudehus (1975) assume that the depot is located in the

middle of the front cross aisle. Kunder and Gudehus (1975) determined the probability that all
items are distributed over a certain number, say f , aisles and estimated the distance traveled in
the cross aisles by 2·wa ·

³
f−1
f+1 · n− 1

´
. That is, the distance in the cross aisles is estimated using

a property of f points distributed over a line according to a continuous uniform distribution.
Hall (1993) uses the same property in a different way, estimating the distance in the cross aisles
by 2 · wa · (n − 1) · m−1m+1 . Both approximations have the same two problems. First of all, a
discrete process is approximated using expected values for the continuous case. Secondly, it is
assumed that for each route the depot is located between the left-most and right-most aisle with
picks. Situations in which all aisles with picks are on one side of the depot are neglected. As an
example of the possible impact of this deviation, consider a situation with d = 1 and m = 1. In
this example, the actual expected travel distance in the cross aisles equals wa · (n − 1), which
is the distance from the depot to the middle of the warehouse and back. Both the formulation
of Hall (1993) and Kunder and Gudehus (1975) will return an estimate of zero. This difference
will decrease if the number of picks m increases. Section 5 contains a comparison of the various
distance estimates.

Firstly, we estimate the average distance from the depot to the right-most aisle containing
items. The probability that i is the right-most aisle to be visited is

¡
i
n

¢m− ¡ i−1n ¢m which is the
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probability that all picks fall in aisles 1, ..., i minus the probability that all picks fall in aisles
1, ..., i−1. The distance to be traveled is then the distance from depot location to the right-most
aisle. If aisle i would be the right-most aisle with items, then the distance to travel would be
wa · |i− d|. Taking the sum over all values of i and multiplying by their probability of occurrence
gives the expected distance to be traveled from the depot to the right-most aisle:

wa ·
nX
i=1

µ
|i− d| ·

·µ
i

n

¶m

−
µ
i− 1
n

¶m¸¶
. (6)

Similarly, we can find the distance from the depot to the left-most aisle to be:

wa ·
nX
i=1

µ
|i− (n− d+ 1)| ·

·µ
i

n

¶m

−
µ
i− 1
n

¶m¸¶
. (7)

Next we determine the estimate for the distance traveled in the cross aisles while picking
items. We have n aisles numbered 1, ..., n from left to right. The estimated distance between
the left-most aisle containing picks and the right-most aisle containing picks is given by:

wa·
nX
c<r

(r−c)·
·µ

r − c+ 1

n

¶m

− 2
µ
r − c

n

¶m

+

µ
r − c− 1

n

¶m¸
= wa·

Ã
(n− 1)− 2 ·

n−1X
i=1

µ
i

n

¶m
!

where the term between square brackets gives the probability that all m items fall in aisles
c, ..., r, at least one pick falls in c and at least one pick falls in r.

The expected value of the distance traveled in the cross aisles, Dx, can now be obtained by
adding all three components for cross aisle travel:

E[Dx] = wa ·
Ã
n− 1− 2 ·

n−1X
i=1

µ
i

n

¶m
!

+wa ·
nX
i=1

µ
(|i− d|+ |i− n+ d− 1|) ·

·µ
i

n

¶m

−
µ
i− 1
n

¶m¸¶
.

3.4 Estimate for total average travel distance

Adding the two components (distance traveled in aisles and in cross aisles) gives the total
expected travel distance in the picking area:

TX
m (n, y, d) = E[DX

y ] +E[Dx].

This formulation has been developed for a manual picking operation. Therefore, we were
able to use the average travel distance as a performance criterion. If we analyzed, for example,
an automated storage / retrieval system, then a better performance criterion would be average
travel time, because travel speed in aisles and cross aisles is unequal in such an environment. If
we define ty as the travel speed in the aisles and tx as the travel speed in the cross aisles then
the estimate for average travel time would be ty · E[Dy] + tx · E[Dx]. Furthermore, additional
time may be required for each change of aisles to position the vehicle correctly, especially in
an environment with a relatively large vehicle in narrow aisles. Since this extra time has to be
added each time the vehicle enters an aisle, we can just add tc ·E[A] to the travel time estimate
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of S-shape, where tc is the time needed to enter an aisle. For largest gap we can easily build an
appropriate expression using values of Ei from Table 1.

In practical situations it will often be the case that the pick list size is variable. The formulas
we developed are valid only for a fixed pick list size. However, they can easily be adapted for
variable pick list sizes. For example, assume that we know for every pick list size m that
it will occur with probability pm, then the estimate for average travel distance is given byP∞

m=1 pm · TX
m (n, y, d).

Clearly, due to the nature of the approach we used (e.g. we assume that expected travel
distance in aisles and expected travel distance in cross aisles are independent), these formulations
give approximations of actual average travel distances. We will test the performances of the
formulas in Section 5.

4 Optimization of the depot location

Bassan et al. (1980) show that under the condition of random storage, the depot should be
located in the middle of the front cross aisle to minimize average travel distance. Their proof
was given in the context of a single command environment (i.e. each pick list contains only one
item). We will show that it holds for any pick list size. Intuitively, a depot in the middle of
the front cross aisle seems to be the best with respect to average travel time. In this way, the
probability seems to be highest that the depot is located between the left-most and right-most
aisle of a picking route, thus preventing extra travel time to go forth and back to this region
from a depot that is out of the middle. However, in the literature, as well as in practice, depot
locations vary. A depot located in the middle is used in Goetschalckx and Ratliff (1988), Hall
(1993), Kunder and Gudehus (1975) and Petersen (1999). A depot located in a corner is used
in Chew and Tang (1999), De Koster et al. (1999b), Gibson and Sharp (1992), and Rosenwein
(1996). Both middle and corner options are considered in Jarvis and McDowell (1991), Petersen
(1997) and Petersen and Schmenner (1999).

Theorem
The depot location that minimizes average travel distance is the exact middle of the front cross
aisle.

Proof
The depot location only influences average travel distance through the term (see equations 6
and 7):

wa ·
nX
i=1

µ
(|i− d|+ |i− n+ d− 1|) ·

·µ
i

n

¶m

−
µ
i− 1
n

¶m¸¶
.

We distinguish 4 cases.
Case 1: if i ≥ d and i+d ≥ n+1 then |i− d|+ |i− n+ d− 1| = i−d+ i−n+d−1 = 2i−n−1.
Since 2i−n− 1 is independent of d there is no influence of the depot location on average travel
distance.
Case 2: if i ≤ d and i+d ≥ n+1 then |i− d|+ |i− n+ d− 1| = d−i+i−n+d−1 = 2d−n−1.
Travel distance is minimized by choosing d as small as possible under the condition that i ≤ d
and i + d ≥ n + 1. Substituting i by d gives 2d ≥ n + 1 or d ≥ n+1

2 . This implies that travel
distance is minimized if d = n+1

2 , i.e. the depot is located in the middle of the front cross aisle.
Case 3: if i ≥ d and i+d ≤ n+1 then |i− d|+|i− n+ d− 1| = i−d−i+n−d+1 = −2d+n+1.
Travel distance is minimized by choosing d as large as possible under the condition that i ≥ d
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and i + d ≤ n + 1. Substituting i by d gives 2d ≤ n + 1 or d ≤ n+1
2 . This implies that travel

distance is minimized if d = n+1
2 , i.e. the depot is located in the middle of the front cross aisle.

Case 4: if i ≤ d and i+d ≤ n+1 then |i− d|+|i− (n− d+ 1)| = d−i−i+n−d+1 = −2i+n+1.
This is independent of the depot location.
Thus, average travel distance is minimized by taking d = n+1

2 . ¥
We have proven that the depot is to be located in the middle of the front cross aisle under

the conditions that random storage is used and that the depot location is restricted to the front
cross aisle. The proof holds for both S-shape routing and largest gap routing, since both have
the same amount of travel in the cross aisles. The above proof holds also for some other routing
heuristics (for a description of other routing heuristics see e.g. Petersen, 1997) because they
have exactly the same amount of cross aisle travel per route. An evaluation of the percentage
difference in average travel distance between a picking area with a depot located at the left and
a picking area with a depot located in middle is included in the next section.

5 Model accuracy experiments

We compare the values calculated with the formulas from Section 3 with the results from sim-
ulation. Furthermore, we will include the estimates of Hall (1993) and Kunder and Gudehus
(1975) into our comparisons. For this comparison, we consider a manual picking operation in a
shelf area, where several order pickers may be assigned to the same zone. The center-to-center
distance between two neighboring aisles is 2.5 meters. Order pickers are assumed to travel
through the exact middle of the aisles and cross aisles. Cross aisles are 2.5 meters wide. For this
type of picking areas we assume the following measures to be representative. Aisle length varies
between 10 and 30 meters. Each order picker works in a zone consisting of 7 to 15 aisles. We
use the extremes of these values for our comparison, which gives four different layouts. For each
layout we consider three different values for the number of picks per route, namely 1, 10 and 30.
Furthermore, for each situation we consider two depot locations: at the left (at the head of aisle
1) and in the middle of the front cross aisle. For the simulation we generated 2000 orders for each
situation. This number of replications is sufficient to obtain a 95% confidence interval with a
half-width of less than 2% of the sample mean. Pick locations are distributed over the aisles and
locations according to a uniform distribution. No picks occur in the cross aisles. Tables 2 and 3
give the results from the simulation, our formulas, and the existing formula(s) for respectively
S-shape routing and largest gap routing. The percentage difference in Tables 2 and 3 between
simulated and calculated values has been calculated before rounding of the route lengths.

From the results, we can see that the formulas of Hall (1993) and Kunder and Gudehus (1975)
become less accurate if the number of picks decreases; deviations of more than 50% occur. The
results from our formulas follow the behavior of the simulation closely. For each situation, the
results of our formulas are close to the simulation results. Therefore, average route length can be
determined by straightforward calculations with our formulas instead of developing a simulation
model for the order picking area. The quality of the estimates is especially important since we
wish to use it to determine a layout. Errors in the distance estimates may result in an erroneous
ranking of the alternatives and, therefore, lead to the choice of a layout that is not as efficient
as possible.

XXXXXXXXXXXXXX
Insert tables 2 and 3
XXXXXXXXXXXXXX
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6 Some layout considerations for S-shape

We can use the model of Section 2 to determine the best layout for various values of the total
aisle length. Using formula 2, we determine average route length for 1, 2, 3, ... aisles while
decreasing aisle length such that total aisle length is kept constant. The depot can be located
in the middle of the front cross aisle, because we already showed in the previous section that
the middle is the best location. Aisle length is determined by dividing total aisle length by the
number of aisles and adding twice the distance needed to go from the end of the aisle to the
middle of the cross aisle (y0 = S/n+wc). By taking the number of aisles that give the minimum
average route length, we obtain the best layout with respect to travel distance. Essentially, this
means we suggest solving the layout model by complete enumeration. Even though enumeration
is generally not the obvious approach, there is no strong need to search for a more efficient
solution method here. The solution space is very small, because the minimum aisle length is 1
meter, and because the number of aisles is an integer value. Thus, for example, for a warehouse
layout problem with S = 150, there are only 150 possible solutions, ranging from a layout with
1 aisle of 150 meters to a layout with 150 aisles of 1 meter each. Calculation time for these 150
possible layouts is less than 1 second on a 1.5 GHz personal computer.

XXXXXXXXXXXXXX
Insert figure 3
XXXXXXXXXXXXXX
Fig. 3 depicts average route length for S-shape routing as a function of the number of aisles

for S = 300 and m = 3, 10, 30. The minimum route length for m = 3, 10, 30 can be found at
respectively 17, 21 and 2 aisles. First of all, the erratic behavior of the upper curve (m = 30)
is striking. This may be explained as follows. If the picking area has an odd number of aisles
and if all aisles have to be visited, then the order picker has to make a turn in the last aisle.
Thus, part of the last aisle is traveled twice. If the number of picks is high then the probability
that all aisles have to be visited is high and the distance traveled twice in the last aisle is large.
This effect diminishes if the number of aisles increases, because the probability decreases that
all aisles must be visited. Considering the formulas for S-shape from section 3, it can be derived
that if all aisles are visited, then the travel distance equals:

2wa(n− 1) + nwc + S if the number of aisles is even (8)

2wa(n− 1) + nwc + S + 2y · ¡mn /(mn + 1)¢− y if the number of aisles is odd. (9)

To investigate the difference in travel distance between layouts that differ by one aisle only,
we replace n by 2ν in equation 8 and by 2ν + 1 in equation 9. Then, we subtract equation 8
from equation 9, which gives us a difference of

2wa + wc + 2y ·
³

m
2ν+1/(

m
2ν+1 + 1)

´
− y.

Since m
n /(

m
n + 1) ≥ 1

2 for situations with m ≥ n (which must be true, because otherwise
not all aisles would be visited), it follows that in this situation the travel distance in a layout
with an even number of aisles is lower than the travel distance in a layout with one aisle more
(and therefore an odd number of aisles). Note that the travel distance in a layout with 2ν aisles
can be either smaller or larger than the travel distance with 2ν − 1 aisles. Furthermore, this
disadvantage may be outweighed by the gains from having one more aisle, which increases the
probability of not having to visit one (or more) of the aisles. This effect can be observed in Fig.
3, where the curves become more smooth if n increases.
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From Fig. 3 we can also see that two aisles was the best option for the situation with a pick
list size of n = 30. It would be interesting to know whether a higher pick density in general
tends to favor layouts with just 2 aisles. We evaluate the behavior of TS

m(n, y, d) if m approaches
infinity.

It is fairly straightforward to show that

lim
m→∞E[A] = n

lim
m→∞C =

½
y if n is odd
0 if n is even

lim
m→∞E[Dx] = wa(n− 1).

Because the probability that all aisles are visited approaches 1 if m→∞ it holds that there
is a shorter layout with an even number of aisles for each layout with an odd number of aisles.
We, therefore, can restrict our search for a minimum to the situations for which n is even. Thus,

lim
m→∞TS

m(n, y, d) = lim
m→∞E[Dy] + lim

m→∞E[Dx]

= lim
m→∞((y + wc) ·E[A]) + lim

m→∞C + lim
m→∞E[Dx]

= (y + wc)n+ wa(n− 1) if n is even.

The minimum is obtained at n = 2 (there are no smaller even values). From a practical point
of view, it may be noted that a single picking area consisting of two aisles may not always be
convenient. Firstly, the shape may be difficult to fit into the overall warehouse design. Secondly,
there is a risk of congestion, since all pickers would then be working in the same two aisles. This
could result in a zone-based approach for order picking, where each order picker is responsible
for picking in two aisles. Obviously, this may require system changes, such as the inclusion of a
sorting area or the introduction of a method where picked items are passed from one picker to
the next ("pick-and-pass"). These changes would have to weighted against the benefits of travel
time reductions.

Finally, it is interesting to note from a practical point of view that curves appear to be quite
flat around the optimum (at least if the optimum is not equal to 2 aisles). That is, around the
optimum there are a large number of other layouts that have average travel distances which
are only a few percent higher. A designer may be able to use this flexibility to meet other
requirements. Such requirements may include prevention of congestion, flexibility for redesign
or stability with respect to changes in the pick list size. Instead of finding "the best" layout, a
designer may use the model to determine the k-best layouts and then choose from these layouts
based on other considerations than travel time alone.

7 Influence of the routing policy on the layout

We have formulated a model to determine optimal layouts for a given routing policy. Further-
more, we have derived two expressions for average travel distance, which can be used as objective
functions in the model. One objective function consists of a travel distance estimate for S-shape
routing and the other for largest gap routing. Given a certain choice for a specific routing
method, it is now fairly straightforward to determine the best layout based on expected pick
list size and the required storage space. In design practice, however, the layout is often chosen
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before the routing policy. It would, therefore, be interesting to know what the actual influence
of the routing policy is on the layout. Or, formulated differently, what is the loss in efficiency
if the layout is optimized with another routing policy than the policy that is actually going to
be used? We investigate this issue as follows. We take the same manual picking operation in
a shelf area (i.e. wa = 2.5 and wc = 2.5) and determine the optimal layout for both routing
policies for a range of sizes (S = 50, 60, 70, ..., 500) and pick list sizes (m = 2, 3, 4, ..., 30). We
then calculate the expected travel distance when S-shape is used in the layout that has been
optimized for S-shape and we calculate the expected travel distance when using S-shape in the
layout optimized for largest gap. The percentage difference between these two travel distances
is given in Table 4. A table for largest gap routing would be very similar.

XXXXXXXXXXXXXX
Insert table 4
XXXXXXXXXXXXXX
As can be seen from Table 4, there is only a small difference in travel distances for most

situations. The upper-right corner of the table contains only zeros because the optimal layout in
these situations consists of exactly 2 aisles regardless of the routing policy. The lower-left corner
contains situations where the optimal layout consists of strictly more than 2 aisles for both
routing methods (though the exact number may differ). The grey area consists of situations
where the optimal layout for S-shape consists of exactly 2 aisles and the optimal layout for
largest gap consists of strictly more than 2 aisles. As can be seen from the table, the only
significant differences occur in the last situation.

From the above experiment it can be seen that in many practical situations (namely those
where the majority of pick list sizes fall outside the grey area) there is no significant efficiency
loss if another routing method is used for the optimization than for the actual operation. On
the other hand, large deviations (in our experiment up to 18%) may occur depending on the
required storage space and the pick list sizes. If the routing policy is undecided when the layout
has to be chosen, it may therefore be advisable to perform a sensitivity analysis on the various
routing policies.

Another interesting point to consider is whether conditions can be identified when S-shape
or largest gap is to be preferred as a routing policy. From Hall (1993), it is known that S-shape is
preferred over largest gap if the number of picks per aisle exceeds 4. This rule, however, assumes
that the layout is already determined in advance. Using our model, we can compare routing
policies together with their optimal layout. To illustrate the possibilities, we analyze an initial
design for a shelf area (wa = 2.5; wc = 2.5) with 18 picks per route and 4 aisles of 75 meters each.
Travel distance is then 324.4 meters for S-shape and 340.3 meters for largest gap. The optimal
layout, however, consists of 23 aisles for S-shape and 20 aisles for largest gap. The resulting
travel distances are then 300.3 meters for S-shape and 246.6 meters for largest gap. Largest gap
thus outperforms S-shape here. We have completed this experiment for S = 50, 60, 70, ..., 500
and m = 2, 3, 4, ..., 30. For all these 1334 situations the largest gap policy gave travel distances
that are equal to or shorter than the distances for the S-shape policy. The best layout - when
optimized for largest gap - is for all situations such that the number of aisles equals 2 (i.e. largest
gap and S-shape routing are the same) or the number of aisles is such that there are less than
4 items per aisle. We repeated this experiment for pallet racks (wa = wc = 4) with the same
results. It seems, therefore, that if layout still needs to be determined, then largest gap routing
is generally to be preferred over S-shape routing.
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8 Concluding remarks

In this paper we have evaluated the relation between the layout of the order picking area and
the average length of a picking route for areas consisting of one block. Analytical formulas
are presented by which the average route length can be calculated for two different routing
policies. The outcomes of the formulas depend on the number of aisles, the aisle length, the
depot location, the number of picks per route and some physical parameters of the racks. The
results from the formulas are compared with simulation results. It appeared that the difference
between simulated and calculated values was minor in all of our experiments. Therefore, we
consider the analytical formulas to be accurate enough to be used instead of simulation.

The analytical formulas can be used as objective function in the presented non-linear pro-
gramming model to find an optimal layout for the order picking area in warehouses. We proved
that the best depot location is in the middle of the front cross aisle. The proof is valid for
several routing heuristics under the condition that random storage is used. Given that S-shape
will be used for routing, we derived some general characteristics of "good" layouts. For high
picking densities, S-shape routing is best employed in a layout with an even number of aisles
instead of an odd number of aisles. From the viewpoint of strict travel distance minimization,
a very high pick density is best dealt with in a picking area where each picking zone consists of
exactly two aisles. For practical implementations, other considerations than travel distance can
be taken into account easily too, since there are generally several layouts that have an average
travel distance that is close to the optimum.

In a comparison of more than 2500 different layout problems, we found that largest gap
routing performed better than or equal to S-shape routing in all situations if the optimal layout
was used for each routing method. The optimal layout is sensitive to the routing policy used in
the optimization. We found efficiency losses of up to 18% when optimizing the layout for another
routing policy than was used for the actual operation. It must also be noted that there are large
regions where the resulting travel distance is highly insensitive to the routing method used in
the optimization. Given these uncertain effects, it is advisable to perform the optimization for
more than one routing method before deciding on the layout.
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9 Captions

Fig. 1. Example of an order picking area, including example routes as found by the S-shape
heuristic (upper image) and the largest gap heuristic (lower image).

Fig. 2. Illustration of the three components for travel in the cross aisles.
Fig. 3. Average route length in meters as a function of the number of aisles for three

different pick list sizes (indicated next to the curves). Total aisle length (S) equals 300 meters.
Asterisks indicate the minimum for m = 3 and m = 10.

Table 1. Values of Di and Ei for i = 1, . . . , 50 (based on 1,000,000 replications).
Table 2. Average route length in meters for picking an order with the S-shape routing

policy. For each of the formulas the percentage difference with the distance obtained from the
simulation is also given.

Table 3. Average route length in meters for picking an order with the largest gap routing
policy. For each of the formulas the percentage difference with the distance obtained from the
simulation is also given.

Table 4. Percentage difference in travel distance when using the S-shape routing policy in
a layout optimized for S-shape and in a layout optimized for largest gap.
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i D i E i i D i E i
1 0.500 1.000 26 1.712 1.926
2 0.778 1.333 27 1.719 1.929
3 0.958 1.500 28 1.727 1.931
4 1.087 1.600 29 1.734 1.933
5 1.183 1.667 30 1.740 1.936
6 1.259 1.715 31 1.746 1.937
7 1.321 1.750 32 1.752 1.939
8 1.371 1.778 33 1.758 1.941
9 1.414 1.800 34 1.763 1.943

10 1.451 1.818 35 1.768 1.944
11 1.483 1.833 36 1.773 1.946
12 1.511 1.846 37 1.777 1.947
13 1.535 1.857 38 1.782 1.949
14 1.558 1.867 39 1.786 1.950
15 1.577 1.875 40 1.790 1.951
16 1.595 1.883 41 1.794 1.952
17 1.612 1.889 42 1.798 1.954
18 1.627 1.895 43 1.801 1.955
19 1.640 1.900 44 1.805 1.956
20 1.653 1.905 45 1.808 1.956
21 1.665 1.909 46 1.811 1.957
22 1.675 1.913 47 1.814 1.958
23 1.685 1.917 48 1.817 1.959
24 1.695 1.920 49 1.820 1.960
25 1.703 1.923 50 1.823 1.961

TABLE 1. Values of D i  and E i  for i  = 1,…, 50 (based on 1,000,000 
replications).



aisle number number depot
length of aisles of items location distance difference distance difference distance difference

10 7 1 left 27.0 15.0 -44.3% 18.8 -30.4% 27.5 2.0%
10 7 1 middle 20.9 15.0 -28.3% 18.8 -10.3% 21.1 0.8%
10 7 10 left 98.5 86.1 -12.6% 103.7 5.3% 99.0 0.5%
10 7 10 middle 97.4 86.1 -11.6% 103.7 6.5% 97.7 0.4%
10 7 30 left 121.8 100.8 -17.2% 125.6 3.2% 122.4 0.5%
10 7 30 middle 121.7 100.8 -17.2% 125.6 3.2% 122.3 0.5%
10 15 1 left 46.3 15.0 -67.6% 18.8 -59.5% 47.5 2.5%
10 15 1 middle 30.9 15.0 -51.5% 18.8 -39.4% 31.2 0.7%
10 15 10 left 159.1 127.9 -19.6% 161.1 1.2% 159.6 0.3%
10 15 10 middle 154.4 127.9 -17.2% 161.1 4.3% 155.0 0.4%
10 15 30 left 235.2 211.8 -9.9% 240.2 2.2% 235.1 0.0%
10 15 30 middle 234.4 211.8 -9.7% 240.2 2.5% 234.4 0.0%
30 7 1 left 46.8 55.0 17.5% 48.8 4.1% 47.5 1.5%
30 7 1 middle 40.8 55.0 34.9% 48.8 19.5% 41.1 0.7%
30 7 10 left 210.5 205.9 -2.2% 223.7 6.3% 212.0 0.7%
30 7 10 middle 209.7 205.9 -1.8% 223.7 6.6% 210.7 0.5%
30 7 30 left 270.8 258.1 -4.7% 274.3 1.3% 272.6 0.7%
30 7 30 middle 270.6 258.1 -4.6% 274.3 1.3% 272.6 0.7%
30 15 1 left 66.2 55.0 -16.9% 48.8 -26.4% 67.5 2.0%
30 15 1 middle 50.8 55.0 8.2% 48.8 -4.1% 51.2 0.7%
30 15 10 left 309.2 268.2 -13.3% 320.6 3.7% 310.6 0.5%
30 15 10 middle 304.4 268.2 -11.9% 320.6 5.3% 306.0 0.5%
30 15 30 left 501.0 483.9 -3.4% 512.4 2.3% 501.2 0.0%
30 15 30 middle 500.2 483.9 -3.3% 512.4 2.4% 500.4 0.0%

TABLE 2. Average route length in meters for picking an order with the S-shape routing policy. For each of the formulas the 
percentage difference with the distance obtained from the simulation is also given.

S-shape

simulation Kunder & Gudehus Hall new formula



aisle number number depot
length of aisles of items location distance difference distance difference

10 7 1 left 27.0 6.2 -76.8% 27.5 2.0%
10 7 1 middle 20.9 6.2 -70.1% 21.1 0.8%
10 7 10 left 88.3 76.6 -13.3% 88.8 0.6%
10 7 10 middle 87.0 76.6 -12.0% 87.6 0.7%
10 7 30 left 125.8 125.4 -0.3% 127.0 0.9%
10 7 30 middle 125.8 125.4 -0.3% 127.0 1.0%
10 15 1 left 46.3 6.2 -86.5% 47.5 2.5%
10 15 1 middle 30.9 6.2 -79.8% 31.2 0.7%
10 15 10 left 137.1 116.3 -15.2% 137.7 0.4%
10 15 10 middle 132.5 116.3 -12.2% 133.1 0.5%
10 15 30 left 217.3 198.8 -8.5% 217.9 0.3%
10 15 30 middle 216.6 198.8 -8.2% 217.2 0.3%
30 7 1 left 46.8 16.2 -65.3% 47.5 1.5%
30 7 1 middle 40.8 16.2 -60.2% 41.1 0.7%
30 7 10 left 176.7 153.2 -13.3% 177.6 0.5%
30 7 10 middle 175.4 153.2 -12.6% 176.4 0.6%
30 7 30 left 271.6 273.8 0.8% 272.6 0.4%
30 7 30 middle 271.5 273.8 0.8% 272.5 0.4%
30 15 1 left 66.2 16.2 -75.5% 67.5 2.0%
30 15 1 middle 50.8 16.2 -68.0% 51.2 0.7%
30 15 10 left 240.9 204.2 -15.2% 242.1 0.5%
30 15 10 middle 236.3 204.2 -13.6% 237.5 0.5%
30 15 30 left 432.9 404.6 -6.5% 432.3 -0.1%
30 15 30 middle 432.2 404.6 -6.4% 431.6 -0.1%

TABLE 3. Average route length in meters for picking an order with the largest gap routing policy. For 
each of the formulas the percentage difference with the distance obtained from the simulation is also 
given.

Largest Gap

simulation Hall new formula



S  \  m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
50 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 0 0 0 3 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 5 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80 0 0 0 1 0 1 8 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90 0 0 1 0 0 0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

100 0 0 0 0 0 0 0 6 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
110 0 0 0 0 0 0 0 3 8 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
120 0 0 0 0 0 0 0 0 4 9 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
130 0 0 1 1 0 0 0 0 2 6 10 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
140 0 0 0 0 0 0 0 0 0 3 8 11 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
150 0 0 0 0 1 1 1 1 0 1 5 9 12 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
160 0 0 1 1 0 0 0 0 0 0 3 6 10 13 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0
170 0 0 0 0 1 1 1 1 0 0 0 4 7 11 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0
180 0 0 1 1 0 0 0 0 0 0 0 2 5 8 11 14 17 0 0 0 0 0 0 0 0 0 0 0 0
190 0 0 0 0 1 1 1 1 0 0 0 0 3 6 9 12 15 0 0 0 0 0 0 0 0 0 0 0 0
200 0 0 0 1 1 1 0 0 0 0 0 0 1 4 7 10 13 15 0 0 0 0 0 0 0 0 0 0 0
210 0 0 1 1 0 1 1 1 0 0 0 0 0 3 6 8 11 13 16 0 0 0 0 0 0 0 0 0 0
220 0 0 0 0 1 1 0 0 1 1 0 0 0 1 4 7 9 12 14 16 0 0 0 0 0 0 0 0 0
230 0 0 1 1 1 1 1 1 1 0 0 0 0 0 2 5 7 10 12 14 16 0 0 0 0 0 0 0 0
240 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 3 6 8 10 13 15 17 0 0 0 0 0 0 0
250 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 2 4 7 9 11 13 15 17 0 0 0 0 0 0
260 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 3 5 7 10 12 14 15 17 0 0 0 0 0
270 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 4 6 8 10 12 14 16 18 0 0 0 0
280 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 2 4 7 9 11 13 14 16 18 0 0 0
290 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 3 5 7 9 11 13 15 16 0 0 0
300 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 2 4 6 8 10 12 13 15 17 0 0
310 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 3 5 7 9 10 12 14 15 17 0
320 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 3 5 7 9 11 13 14 16 17
330 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 2 4 6 8 10 11 13 14 16
340 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 3 5 7 8 10 12 13 15
350 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 2 4 6 7 9 11 12 14
360 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 3 5 6 8 9 11 12
370 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 2 3 5 7 8 10 11
380 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 2 4 6 7 9 10
390 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 3 5 6 8 9
400 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 2 4 5 7 8
410 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 3 4 6 7
420 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 2 3 5 6
430 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 2 4 5
440 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 3 4
450 0 0 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 2 4
460 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 3
470 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 2
480 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1
490 0 0 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
500 0 0 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

TABLE 4. Percentage difference in travel distance when using the S-shape routing policy in a layout optimized for
S-shape and in a layout optimized for largest gap.







FIGURE 3. Average route length in meters as a function of the number of aisles for three 
different pick list sizes (indicated next to the curves). Total aisle length (S) equals 300 
meters. Asterisks indicate the minimum for m=3 and m=10 .
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