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A theory to describe the propagation of elastic waves in a porous medium saturated by a 
mixture of two immiscible, viscous, compressible fluids is presented. First, using the principle 
of virtual complementary work, the stress-strain relations are obtained for both anisotropic 
and isotropic media. Then the forms of the kinetic and dissipative energy density functions are 
derived under the assumption that the relative flow within the porous medium is of laminar 
type and obeys Darcy's law for two-phase flow in porous media. The equations of motion are 
derived, and a discussion of the different kinds of body waves that propagate in this type of 
medium is given. A theorem on the existence, uniqueness, and regularity of the solution of the 
equations of motion under appropriate initial and boundary conditions is stated. 

PACS numbers: 43.20.Hq, 43.20. Bi 

INTRODUCTION 

Our purpose is to develop a model describing the propa- 
gation of waves in an elastic system composed of a porous 
solid saturated by two immiscible, compressible, viscous 
fluids. We develop our equations for the case of water and oil 
using the indices "w" and "0" to refer to the water and oil 
phases, but the formulation is valid for any wetting-nonwet- 
ting system in which the "w" refers to the wetting phase and 
the "0" to the nonwetting phase. 

The relative flow of both fluids with respect to the rock 
frame will be considered to be of laminar type and to obey 
Darcy's law for two-phase flow in porous media. Such rela- 
tive movements of the fluids produce energy losses which are 
included in the model by introducing a dissipation function 
in the Lagrangian formulation of the equations of motion. 
The assumption of laminar flow implies that we are consid- 
ering wavelengths which are much larger than the average 
size of the pores or, equivalently, frequencies below a certain 
critical value. 

Capillary pressure effects due to the pressure difference 
between the two fluids are also taken into account in our 

derivation. The theory of wave propagation in a porous me- 
dium saturated by a single-phase fluid was presented by 
Biot. •-3 Burridge and Keller 4 gave an alternate derivation of 
Biot's equations via homogenization. Existence, uniqueness, 
and regularity of the solution of Biot's equations were estab- 
lished in Ref. 5, while some finite element methods for ob- 
taining approximate solutions were discussed in Ref. 6. 

The organization of the paper is as follows. In Sec. I we 
obtain the form of the strain energy density using the princi- 

ple of virtual complementary work and derive stress-strain 
relations for both anisotropic and isotropic media. In Sec. II 
we determine expressions for the kinetic and dissipation en- 
ergy densities and then state the Lagrangian form of the 
equations of motion, using as generalized coordinates the 
solid displacement and the oil and water relative displace- 
ment vectors. The expression for the dissipation function is 
obtained under the assumption that the relative flow within 
the porous medium takes place according to Darcy's law for 
two-phase flow in porous media. 

In Sec. III we analyze the equations of motion for iso- 
tropic media with the object of determining the different 
kinds of waves which propagate in this type of medium. We 
find that there are five possible different body waves, three of 
them corresponding to compressional modes of propagation 
and the other two, of identical speed, associated with shear 
modes. This is an expected generalization of the single-phase 
theory of Biot. Analytical properties and attenuation effects 
for each of these waves will be given in a complementary 
publication. 7 

Finally, in Sec. IV we present results on the existence 
and uniqueness of the solution of the equations of motion 
derived in Sec. II under appropriate initial and boundary 
conditions. 

I. THE STRESS-STRAIN RELATIONS 

Let us consider a porous medium f• saturated by a mix- 
ture of oil and water, and let So = So (x) and Sw = Sw (x) 
denote the oil and water saturations, respectively. We as- 
sume that the two phases completely saturate the porous 

1439 J. Acoust. Soc. Am. 87 (4), April 1990 0001-4966/90/041439-10500.80 ¸ 1990 Acoustical Society of America 1439 



part of fl, which we shall denote by lip, so that 
&+s•-•. 

Let 4 = 4(x) be the effective porosity in fl and let u s'r 
= uS, r(x), rio, r= rio, r(x), and riw, r = riw, r(x ) denote the lo- 

cally averaged solid, oil, and water displacements in fl. The 
physical meaning of the variables rio, r and rim, r is the follow- 
ing. Let us consider a unit cube Q of bulk material. Then, for 
any face Fof Q the quantity œe C)So rio, r.v da represents the 
amount of oil displaced through F, v being the outer unit 
normal to F and &r the surface measure on F. A similar 

definition holds for ri•,r. 

Let us consider an initial state of equilibrium about dis- 
placements •s, u o, and u •, and set 

•o= •o,r_ •o, 0 = o,w, 
U s -- us, T__ •s. 

Next, let rij = •0 + Ar/j and rrij = •ij + Arr/j be the total 
stress tensor in the bulk material and the stress tensor in the 

solid part of fl, respectively, where Arij and Arr/j represent 
changes in the corresponding stresses with respect to refer- 
ence stresses ?ij and •ij associated with the initial equilibri- 
um state. Similarly, let Po = •o + Apo and p• = • + Apw 
be the oil and water pressures, Apo and Ap• being incre- 
ments in oil and water pressures with respect to given refer- 
ence pressures .•o and .• corresponding again to the initial 
equilibrium state. Recall the capillarity relation8'9: 

pc =pc(&) = (•o + apo) - (• + 

=pc(So) + Apo -- Ap•>0, (1) 

where Pc is assumed to depend only on the (oil) saturation 
and So denotes the saturation in the initial equilibrium state. 
Without loss of generality we can assume thatfi• = 0. Then, 
according to ( 1 ), 

•o -pc(So). 

Let 

apc =apo -ap•, (2) 

ASo -- So -- So, 0 = o,w. (3) 

Note that, neglecting terms of the second order in ASo, 

apc =p; (&)a&. (4) 
Also set 

ao -- -- qbSopo, 0 = o,w, 

rr = rr o + 

Then, 

r ij = rr ij + the Kronecker symbol. (5) 

Now, w.e shall derive the strain-stress relations for our 
system using the principle of virtual complementary work. •ø 
Let us consider a domain fl of bulk material bounded by c•fl. 
Assume that fl is initially in static equilibrium under the 
action of surface forces• ø, 0 = s,o,w, where• ø represents the 
force in the O-part of c•fl per unit of surface area of bulk 
material (body forces such as gravity are ignored in our anal- 
ysis). Thus, 

D ø D D D 
f i = -- • & •o 6 ij 'V j , f • - -- q) S w • w 6 ij •'j = 0, 
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D S 
f i = •ij•'j ß 

Now, consider a new system of surface forces f•o superim- 
posed on the original system f/ø such that fl remains in equi- 
librium under the action of the total surface forces 

f io, r=Ti o + f •O, O-- S,O,W. (6) 
Since the fluids are at rest, all fluid pressures are constant on 
fl. Hence, 

Opo 
Vpo-• = 0, Vp• = 0, 

(7) 
V•o =v•m -0. 

Since the total stress field is also in equilibrium, 

•7oT = •Tij = 0, 
(8) 

V.? = 0. 

(Here and in what follows we use the Einstein summation 
convention; i.e., sum on repeated indices, except for those 
symbols indicating solid, oil, and water.) 

Next, note that it follows from ( 1 ) and (7) that in the 
initial equilibrium state ( Apo = Ap• = 0), 

p;(So)VSo -V•o -v• =0. 

Since it is the case that p; > 0, we see that 

VS o =0. (9) 

Let W* = W* (At o,Apo,Apm,Apc ) be the complementary 
strain energy density and 

r* = fa W* dx - fo (f 'S'u'S' + frri,o. + f•ori•O)dtr (10) 
be the complementary energy. Then, according to the com- 
plementary energy theorem, •o of all generalized tensor fields 
(Ari•,Apo,Ap•,/Xpc) satisfying the equilibrium conditions 
(7) and (8) and the cbnstraint (2), the actual one is distin- 
guished by being an extremum (minimum) of the comple- 
mentary energy 7 •*. We shall include the condition (2) by 
introducing a Lagrange multiplier. Thus, if 

J= 7•* + ;n A ( Apo - Ap• - Apc ) dx, 
the complementary energy theorem implies that 

0 = u: + + 
+ f• [6•(apo - apm - apc) 
+A(6Apo --6Apm -- 6Apc) ]dx. (11) 

The equation 

fn 6W* dx- fa (6f ,S.u,S. +6f• ri•. + 6f•ri•)do ' 

+ A(6Apo --6Apm --6Apc)}dx (12) 
states the principle of virtual complementary work for our 
system. 

, 
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Next, neglecting terms of the second order and using 
( 3 ) and (4), we see that 

f•,,r= _ q•SoPo6ijv j 

= -qb(S o q- ASo)(•o q- aPo)•iivj 

w, r f • = - OS•p•boh (13) 

Similarly, using (4) and ( 5 ), 

= [%. + •4(&Po + S•p• )] v• 

+ [at u +•u•(So apo +s• ap• +•o aSo)]Vj 

+ [Pc (•o)/P; (•o)] APe ))vj. (14) 
Set 

fi=pc (So )/pj (So ). 

Then it follows from (6), (13), and (14) that 

6f ; = - •b(So6 Apo + fi6 Ape )(•ijYj, 

6f 7 = - Os•6 ap•6•;•;, 

6f ,s. = [ • ari; + 6•;O(So6 apo + s•6 ap• + • ap• ) ]•. 
Thus ( 11 ) becomes 

-- ui•S•6 Ap• 6i•v• - u•/36 Ape 6i•v• ]der 

+ f• {[•(apo - ap• - apc ) 
+ x(• apo - 6 ap• - • apc ) ])& = o, (•5) 

where 

uø=d(• ø - u s) 
and 

u• = d(• • - u s) 

are the oil and water displacements relative to the solid 
flame. Let 

%(uS) -T \Sx.• + 
be the strain tensor in the solid part of fl. Also, set 

• o _ _ V.u o, 0 = o,w. 

In the case of uniform porosity, So• o and Sw• w measure the 
amounts of' oil and water entering or leaving a unit cube of' 
bulk material. Also, since • remains in equilibrium, the gen- 
eralized virtual stresses 8Ari•, 8Apo, and 6Apw satisfy the 
equilibrium conditions (7) and (8), so that 

•6Arij :0, V(6Apo): V(6Apw) :0, (16) 

which obviously imply that 

V(6Apc ) =0. (17) 

Next, applying the Gauss theorem to transform the surface 
integral in the right-hand side of' (15), we see that 

6J= 6W* dx- •ij(• Ari• + (So• ø-- A)6 Apo 

+ (s• • + x)• ap• + (fi•o + x)• apc 

+ (apo - ap• - apc)•1 

s 8 6Aru_u • 8 

] --u•ø•x / (gw6Apw) &--0. (18) 
Now, using (9) and the equilibrium conditions (16) and 
(17), (18) becomes 

aJ= aW*dx- [%aAri: + (So•ø-X)aapo 

+ (s• • + x)aap• + (fi•o + x)aapc 

+ (apo - ap• - apc) • ]dx 

----fa 6F(Ari;,Apo,Apw,Apc,A)dx = O. (19) 
Since 6W* (or dW*) is an exact differential in the general- 
ized stresses (Ari2,Apo,Apw,Apc), 6Fis also an exact differ- 
ential of the same variables and A, and from (19) we deduce 
that 

8F r) W* 

8At u 8At o 
8F 8W * 

Oapo Oapo 
8F 8W * 

8F 8W * 

Oapc Oapc 

e i• = 0, (20a) 

Hence, 

• -- So• ø + A = O, (20b) 

Sw•' w _ X = O, (20c) 

fi•ø--X =o, (20d) 

•= apo - apw - apc =0. 

6w* = %a Ar u + (So• ø - X)a Apo 

+ ($w• w + x)• apw + (fi•o + x)• apc. 

( 20e ) 

(21) 

The fact that 6W* is an exact differential also implies that 

82W * 82W * 

o•Ari• OArk• OArk• o•Ari• 
82W * 82W * 

= , O-- o,w,c, (22) 
oqAri• 8Apo 8Apo 

82W * 82W * 
= , a,O = o,w,c,a4:0. 

Oap• Oapo Oapo 
If we restrict ourselves to linear stress-strain relations, 

W* is a quadratic, positive-definite function of the general- 
ized stress components (Ari;,Apo,Apw,Apc). The strain- 
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stress relations for an anisotropic medium can be written in 
the form 

•U = '•uklATk• + PlijApo + P2uAPm + P3ijApc, 
•'•o• ø-- • • Plij ATij -Jr- Q1 Apo -Jr- Q4 Apw -Jr- Q5 Apc, 

s• • + x = P•,j a•,j + •4 •o + • • + • a•c, 

I•ø + x= e3ij a•u + gs a•o + • • + g• a•c. 
(23) 

From (23) and the symmetry of the stress tensor •u we see 
that the following conditions must hold: 

A •kl = A •lk = A lkij, 
P,u = PO,, l = 1,2,3. 

Let us consider the linear, isotropic case. Following Refs. 1 
and 3, W* is a quadratic, positive-definite fo• in the invar- 
iants • = • + • + •%3, •Po, •P•, •Pc, and 

I2 = 2[ (AT12) 2 + (AT21) 2 -3- (ATi3) 3 + (AT31) 2 

-•- (AT23) 2 -•- (AT32) 2 -- 2ATllAT22 

-- 2ATiiAT33 -- 2AT22AT33 ] . 

Thus, 

W* = •[H(Av) 2 + ( 1/4N)I2 - 2P, AvApo -- 2P2AvAp• 

-- 2P3AvApc -t- 2Q4APoAp• -t- 2QsApoAPc 

-I- 2Q6ApwApc -J- Ql ( Apo ) 2 

-Jr- Q2( Apw) 2 -[- Q3(Ap½)2]. 
Using (20) and (21 ), we see that the strain-stress relations 
are given by 

6 o = (1/2N) Av o 

+ 6u(DAv- p•Apo -- P2Ap• -- p3Ap• ), (24a) 

Sog ø-- /• = -- P1 AT • QiAPo -I- Q4APw -t- QsApc, 
(24b) 

s•g • + • = - v:av + Qaapo + Q:ap• + Q6apc, 
(24c) 

/3g ø + 2 = -- P3Ar + Q•Apo -I- Q6Ap• -I- Q3APc, 
(24a) 

where 

D = H-- 1/2N. 

Let W = W(60,g o,g •,)t ) be the strain energy of the sys- 
tem; it is an exact differential in its variables. Since we are 
considering only linear strain-stress relations, W = W*. lø 
From (21 ) we see that 

w=«[%avo + (Sogø-X)apo 

+ (s•g • + 2)ap• + (/sg o + •)apc ] (25) 
and 

6 w = A%6% + (So/Xpo +/3apc ) 6• o 

-t- S• Ap• tSf • -t - [ Apc -- ( Apo -- Ap•o ) ] tSA. 
(26) 

Note that, when the constraint (2) is imposed on the system, 
(25) becomes 

w= «(eua•,j + •o[ (•o +/•) apo -/sap• ] + 
=«[6uAru +•ø(• o +•)apo + (••--•ø)ap• ]. 

(27) 

Next, set 

y= [ ( A7.ij ) l(i,j(3,Apo,Apw•p c it, 

Z= [ (Eij )l<i,j<3,So•ø -- /•,Sw• w -•- /•,•o '4-/• it. 
Then we can rewrite the strain-stress relations (24) in the 
equivalent form 

Z=EY, 

where E•R 12x12 is a symmetric, positive-definite matrix. 
Let A. (A) denote the minimum eigenvalue of A for any 
matrix A•R mx m. Then, it follows from (25) that (with 
[',']e and II'lle denoting the usual Euclidean inner product 
and norm in R n, respectively) 

and 

W=•[EY, Y] e 

>[•.(E)/2111YII3 

= [A. (E)/2]((Apo) 2 + (Ap•) 2 + (Apc) 2 
t, J 

i,j 

(28) 

W= «[E-1Z, g le>/[,,•. (g-l)/2lllgllg 

= [x. (E-l)/2] ((•o•ø) z + (••)z 
+ (/3• ø) 2 + 32 2 + 22 [(/3--g'o )•o 

- ) + s•] + Z [•,• (us) ]• 
t, J 

t, J 

C• > 0, since So, S•, and • are positive and are bounded 
away from zero. To obtain the strain-stress relations for the 
constrained system [i.e., the system under the constraint 
(2) ] we eliminate the Lagrange multiplier 2 from (24) and 
use (2) to see that 

6 u = (1/2N) Av u + 6•j (DAy - F•Apo -- F2Ap• ), 
(30a) 

s•g•_ ggo= _ F:av + H3apo + H:ap•, (300) 
where 

m• = Q• + Q3 ß 2Qs, H3 = Q4 + Q6- Q3 - Qs, 
H2 = Q2 + Q3 - 2Q6. 

Thus, we see that in our constrained system eij, (So + •)g o 
and S•g • - •g o play the role of generalized strains, which 
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are linear functions of the stresses Ar u, Apo, and Apw [cf. 
(27) ]. Next, set 

y= [ (A7.ij)l<i,j<3,Apo,Apw ]t, 

Z = [ (eij)l<i,j<3,( & -Jr- fi)•ø,Sw•W -- fi•o] t. 
Then, (30) can be written in the form 

Z=EY, (31) 

where •e_R l lx l l is a symmetric matrix. Combining (2), 
(25), (27), and (28) shows that 

W= -•[EY, Y ]e 

=•[Er, r]e 

•/./1,, (E)((Ago)2 _j_ (Apw)2 _j - E (A'T'ij)2) ' 2 •,j 

Thus, the matrix E in (31 ) is positive definite. Also, combin- 
ing (2), (25), (27), and (29) gives 

w= ]e 
= 91-[Z,E-1Z ]e 

>C1((•.o)2 _j_ (•-w)2 _j_ E [•rij(us)]2). (32) l,J 

A calculation shows that the matrix (2)- 1 has the same 
structure as E, which allows us to write the stress-strain 
relations 

j,= (2)- l• (33) 
in the form 

A•.ij _ 2Neu + 6o[Ace_ Rl(S ø + fi)•o 

_ R2(S•_ fi•o)], (34a) 
Ape = -- R•e d- J•(So d- fi)•o d- J3(S• • -- fi•o), 

(34b) 

Ap•, = -- R2e + J3(So -3- fl)•o -3- J2(Sw•' w _ fl•o), 
(34c) 

where 

e = •'11 '-[- •'22 + •'33. 

From (34) we see immediately that the generalized stresses 
A•' u, (So d-,8)Apo- ,SAps,, and S•,Ap• appearing in the 
expression for the strain energy Wgiven in (27) can be writ- 
ten in the form 

A7'ij = 2N6ij -t- •Jij (Ace -- Bl•' o _ B2 •. w), (35a) 
(So + t9)Apo - flap,, = - Ble + Ml• o + M3 • w, 

(35b) 

Sw Ap• = -- B2e + M3• o + M2• •, (35c) 
where 

B1 = (So d-/•)Ri--i•R2, B2=SwR2, 

M1 = (•o -[-/•) 2J1 -- 2fi(•o + fi)J3 -[- fi 2J2, 

m2=s2wJ2, M3 = Sw [ (•o 
Set 

Y= [ ( ATij ) i<i,j<3 , (S o 'Jff fi) Apo -- fiApw,SwApw ] , 
A 

Z= [ (eij)l(i,j(3,•ø,•w] ß 

In matrix form (35 ) becomes 
A AA 

Y= EZ. 
A • 

On the other hand, we see by (33) that E= L(E)-lL t, 
where 

œ= œ ' 0 
A A 

I being the identity matrix in R 9X9. Since det L > 0, E is 
also symmetric and positive-definite. 

The coefficients in the right-hand side of (34) or (35) 
should be determined by performing the analogues of the 
jacketed and unjacketed compressibility tests as described in 
Ref. 2. This problem will be the subject of a complementary 
publication. ? 

Next, we shall obtain some relations satisfied by the po- 
tential energy • of the system; these will be useful in deriv- 
ing the equations of motion. Recall that • is defined by the 
equation 

• = fn W dx -- fa (f"' u• + f:•: + f:•:)d.. (36) 
Since W = W*, obviously 

• = •*. (37) 

Also, transforming the surface integral in the right-hand side 
of (36) into a volume integral in the usual fashion, we can 
always write W• in the form 

• = f• •a dx, (38) 
where •a denotes the potential energy density of the sys- 
tem. 

Let us consider a perturbation of the system from the 
equilibrium state. Using (21 ), the argument leading to ( 18 ) 
shows that 

+ ( + aac ) 
+ ) 

+ 6[apc - (ape - ap)1) 
= dx, 

with • denoting the complementary potential energy den- 
sity. Thus, 

oxj + u:a bT, ( oapo + apc ) 

Hence, (37), (38), and the assumption that 8• is an exact 
differential imply that 
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s 8Aru 
&j + ' ( Xpo 

+ • [apc - (apo - ap•) ]. 
Note that, when the constraint (2) is imposed on the system, 
the last term in the right-hand side above disappears. Also, if 

$ o w 

u i, u i, and u i are chosen as generalized coordinates to de- 
scribe our system, the hypothesis that the system is conser- 
vative gives us the relations 

87•a 8At u 

8u, ø. 
(So•po + fi•pc ) 

[So•po + pc (So )•So ], 

(39a) 

(39b) 

(SwApw), 1<i<3. (39c) 

II. THE EQUATIONS OF MOTION 

Set u = (u•,u;?,u• ø) = (u s ), 1 <i<3, 1 < j<9. The uj's will 
be chosen to be the generalized coordinates or state variables 
to describe the evolution of the fluid-solid system. In order 
to obtain the Lagrangian form of the equations of motion we 
need to compute the kinetic energy density Tand the dissipa- 
tion energy density function •. Let us take a unit cube Q of 
bulk material and let Qp denote the porous part of Q. Let Po, 
0 = s,o,w, be the mass densities of solid, oil, and water, re- 
spectively, and let 

p,= (i --•)p, 
be the mass of solid per unit volume of bulk material. 

Let o• and o• denote the relative microvelocity field of 
each particle of oil and water, respectively. Since the relative 
flow inside the pores is assumed to be of laminar type, the 
following linear relations must hold: 

Ou; Ou7 Ouy Ou7 
oT = a o. • + b u , o• = c u + d u . (40) ot • ot 

Now, we observe that, in Q x Q,, the kinetic energy is given 
by 

1 fe 8u• 8u• 1 8u• p, ••dx =•p• ••. 
• ,e, 8t 8t 2 8t 8t 

Thus, since the amount of mass of oil in Q, is given by •poSo 
and that of water by •p•S•, the kinetic energy Tin the cube 
Q is given by the expression 

,=, ou, ou, . ,oXo;(ou, 
+ • p•s• • + 07 • ot + 07 dx. (4•) 

Let us compute each of the integral terms above. First, let 

p• = 4 (poSo + p•s• ) 
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be the mass of fluid per unit volume of bulk material. Then, 
since 8u•/St is constant on Q, 

1 So ••dx +pwS• ••dx 
2 o 8t 8t Ot 8t 

2 P2 8t 8t 

Also, since 8uiø/St is obtained by averaging o/ø over the cube 
Q, we see that 

fo, Su• v• o dx = poSo poSo -•- 
Ou,'. Ou, ø 
8t Ot 

• • , t9=0, W. 

Next, since BuT/St is constant over Qp, using (40) we obtain 

fe, ( 8u• Ou] 8u• ø Our poSo v•, v•, dx = So m •, s 8t at {- m2u 8t 8t 

-['- 2m3 8u•' 8uf,) "Ot 8t ' 
where 

m•,• -- Po •Q, akiakj dx, 
m2u = t2o fQ• bt, ibt,j dx, 
m3 u = Po ;Qv akibij dx. 

Similarly, 

p•oS•o re, v•'v•' dx 
8u7 = Sw q•,, Ot Ot •- q2,j 

with 

q•,, = p• ;g, ciicij dx, 
q2u : tow fQv dkidkj dx, 
q3,j = Pw fQp dkiCkj dx. 

Ou7 0u? Ou• Ou? ) 8t 8t ]- 2q3,, Ot 8t ' ' 

Thus, the kinetic energy density T in (41) takes the final 
form 

1 8u• 8u• 8u• 8u7 
T=--p-- FpoSo t-p•Sw 

2 8t 8t 8t 8t 

8u• 8u7 
8t 8t 

Ou• Ou? 
l-g3ø at 8t ' 

(42) 

where 

+-5-gl" 8t 8t F-•-g2,, 8t 8t 

p =p, +t22, 

g, = Som, + S•q,, 

g2 -- Som2 q- S•q2, 
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g3 = Som3 q- Swq3, 

where p is the mass density of the bulk material. The matri- 
ces corresponding to %, b•, %, and d o must be such that g3 is 
symmetric. 

Now, we proceed to compute the form of the dissipation 
energy density function •. Recall that dissipation has been 
assumed to depend only on the relative motion between the 
fluids and the rock frame. Also, it is known • that • can be 
written as as quadratic form in the relative velocities 8uø/•t, 
8u•/•t. Thus, ignoring the friction effects between the oil 
and water phases, we can write • in the form 

ou:ou: ou: ou:) =• r +p•r , (43) 
2 o % 8t 8t % 8t 8t 

Po and Pw being the oil and water viscosities, respectively. 
Next, we shall relate the matrices R o -- (r%) and R w 

= (r%) to the relative permeability functions k ro 
= k ro (So) and k rw = k rw (So) and to the absolute perme- 
ability matrix K= [ki•(x)] using Darcy's law for two- 
phase flow in porous media. The symbols $ro and Srw will 
denote the residual oil and water saturations, respectively. 
Note that in the range O<So <Sro the oil is not allowed to 
move relative to the solid, and similarly, the water is not 
allowed any relative motion for Sw•[ O,Srw ]. Since in our 
model both fluid phases are allowed to move, we have im- 
plicitly assumed that 

Sro <& < 1 --Srw. (44) 

The reader is referred to Refs. 12, 8, 13, and 9 for detailed 
discussions of multiphase flow in porous media. 

Next, recall that in the absence of generalized external 
forces, the fundamental relation between forces and state 
variables can be expressed in the form •l 

• -t- = 0, 1 •i•9. (45) 

Hence, using (39b), (39c), (43), and (•45), we obtain the 
relations 

•oRo •u•: _ •[•o•Po ß Pc (•o)•So ], (46a) 
•t 

•R• •u•= _ V(•Ap•). (46b) 
Ot 

Ignoring gravity forces, we can write Darcy's law for our 
system in the form s'9'•3 

• kFo • (So uø) = - K VApo, (47a) 
•t •o 

• kFw (Su = - K Yaps, (47b) 
•t • 

while conservation of mass of each phase is given by the 
relations 

•(dpoSo ) = V.(p K• VApo) , (48a) •t o 

•(•p•S• )= V.(p•Kkr• VAp•), (48b) •t g• 

Using Eqs. (48), we can analyze the time and spatial 

dependence of the saturation for the wavelengths under con- 
sideration. For that purpose, let A be a characteristic wave 
length and let Po and So be the reference oil pressure and the 
reference saturation. Let us assume for the moment that all 

coefficients in (48a) are constant and that the permeability 
K is scalar. Then, the change of variables x' = x/A, t' = t/r 
in (48a) shows that the characteristic time r for a significant 
change in oil saturation takes the form 

q-= •So/.to/• 2/•okroK. 
An evaluation of the expression above for common values of 
the variables involved and for wavelengths of the order of 
one to ten centimeters gives us values of q- of the order of a 
tenth of a second, which is at least three orders of magnitude 
greater than the time at which significant changes in oil and 
water pressures are expected. Thus, we shall assume that So 
(and Sw ) are independent of time, which in turn implies that 
VASo is much smaller than VApo. This fact and (9) allow us 
to rewrite (46) in the form 

øuø = - oVapo, 
8t 

8u w (49) 
= - svap. 

8t 

Also, using the hypothesis of time independence of the satu- 
ration and neglecting terms containing a factor ASo, 
0 = o,w, we see that 

8 (So u ø) -- 8 o 3; [(xø + ASo)u ] 
_ c•u o 

•$o -•- , 
Hence, (47) becomes 

S-- 0 •zt 0 k r o • = -- K VApo, 
•t Po 

0 = o,w. (50) 

From (49) and (50) we conclude that 

R 0 = [(•o)2/kro ]g- 1, 0 -- o,w, (51) 

which gives us the desired expressions for the matrices R o 
and Rw in (43). 

The Lagrange formulation of the equations of motion is 
given by 

Thus, using (39), (42), (43), and ( 51 ), the assumption of 
time independence for the saturation and the linearizing ar- 
gument given in (50) to drop terms containing factors of 
ASo in d/dt(OT/Oit i ), we obtain the equations 

• 2u•. _ • 2u•' _ • 2u•' 
t 9 •t 2 +tooSo +pwSw =•, (52a) •t 2 •t 2 •Xj 

- O:u. : o _Su; 
poSo + g•o + 8t 2 8t 2 

+ (S-o)2 tto , -•ro (K--)0 

•t 2 

8t 

[ (So + fi)aVo - fiapw ], (52b) 
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8t 2 + •, 8t 2 + •2•, 8t 2 

+ •r• (K - •)'s 
(SwApw), i-- 1,2,3. (52c) 

III. CLASSIFICATION OF THE WAVES IN ISOTROPIC 
MEDIA 

In the isotropic case ( 35 ) shows that Eqs. (52) take the 
form 

82u• 82u• ' 82u• ø 
pot + poXo + cgt 2 8t 2 

= [2Ne 0 +a•(Xce--B,•ø--B2•)], (53a) 

_ •2u• •2u 7 •2u• ao& • •1 • •3 • (•o)2 •o •U• 
8t 2 8t 2 8t 2 kkro 8t 

= ( -- Ble + Ml• ø + M3• •), (53b) 
•X i 

_ 82u• 82u7 82u• _ poSw + •3 + •2 + ( Sw ) 2 •w •u• 
8t 2 8t 2 8t 2 kkr• 8t 

= ( -- B2e + M3g o + M2g •), i= 1,2,3. 
8xi 

(53c) 

The matrices •, •2, •3, and K have been taken as scalars: 
•is, = •ais, •2is = •2ais, •30 = •3ais, and K 0 = kais. 

Here, we can assume constant coefficients. After some 

algebraic manipulations, we can write the equations above in 
the vector form 

82u • 82u o _ 82u• 

p•+Po•o •t 2 +pwSw •t 2 
= N&u • + V[ (Ac + N)e + B• + B2e•], (54a) 

poXo 82uS - 82u ø - 82u • - o •t 2 + g• •t 2 + g3 •t 2 + ( Sø ) 2 • •Uø kkro 8t 
= V[B•e + M• + M3e•], (54b) 

p•S• 82uS 82uø - 82u• - • 8t2 + •3 8t2 + g2 8t2 + ( S• ) 2 • 8u kkr• 8t 
= V [ B2e + M3• + M2 e• ], (54c) 

where 

6 ø=V'•ø, 6 •=V'•. 

To obtain the equation governing the propagation of dilata- 
tional waves, we apply the divergence operator to the rela- 
tions above. In doing so, we get the equations 

E ø A [ Ge + B• + B26w] 
c) 2 e -- 26ø 

=P ogt 2 nt-Po So ø• •t 2 

•[B•e + M•W + M36•] 

+pwS• 
6• 2Ew 

c•t 2 ' 

= po• ø c) 2e c226 ø _ C226 w __ Ot 2 q-•Yl Ot 2 q- g30t 2 q- (So)2 ,tt o 0eø kkro 8t 

A [ B2e + M3e ø + M2 e•] 

= p•S'-• 8 2e 8 2•o 8 8t 2 q- •3 -• q- •2 St---- T 

+ (S-w)• /•w &w 
kkrw 8t 

with 

G=Ac +2N. 

(55) 

Now, assume a plane compressional wave of angular fre- 
quency c and wave number a r q- ia i traveling in thex• direc- 
tion in the form 

e = q•a)ei(ax' + ct), 

Eo • q2(a)ei(ax, + ct), 

• = q3(a)ei(ax, + ct). 

Thus, the wave has phase velocity v = c/Jarl and attenu- 
ation coefficient ai. Set a = c/a = a n q- iOt i. Then, substitu- 
tion in (55) gives us the vector equation 

• q(a) _ a2 (•/q(a) __ i½ q(a) ), (56) 
where 

•(a) •(a),q}a)) q(a) = (•1 '•2 ' 

½ =diag(0, (•ø)2 •Uo (S'-•) 2 c kkro ' c kkrw 
and •/•_R 3x3 and •_R 3x 3 have the forms 

G B• B2] [ /9 Polo p•o•o • • n l M1 M3 , • • tOo•o •1 •3 ß 
B2 M3 M2 L•w•w •3 •2 

Next, we observe that since g and J• are associated with the 

strain and kinetic energies, they are positive definite, while 
the diagonal matrix • is obviously nonnegative. Thus, any 
solution a 2 of the generalized eigenvalue problem (56) satis- 
fies the condition 

Re(a 2) > 0, Im(a 2) >0. 

Let (a © 2 ß ) ,j -- I, II, III, be the solutions of (56). Using the 
relation 

a• •) + ia• •) =c/a(; ) = c(a•; ) - ia•;))/la(;)12 , 

(;) <0, so that a• 2)>0 and we we choose a © such that a i 
have the physically meaningful solution. The corresponding 
phase velocities are given by 

Let us consider the purely elastic case (i.e., 
go = g• = 0). Multiplying both sides of (56) by •- •/2, we 
deduce the relation 

with M = •- •/2 • •- •/2 and •" = •- •/2q.. Let •"• be the 
set oforthonormal eigenvectors associated with the symmet- 
ric, positive-definite matrix M. The fact that the O""s are 
orthogonal implies that 

•q ',q J e = O, i•j. (57) 
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The orthogonality relation (57) is analogous to the one de- 
rived by Biot • for the single phase case. For realistic values of 
the parameters in g', •, and • the three compressional 
wave phase velocities and attenuations are different. v 

Now, we proceed to analyze the rotational waves. Let 
co a = curl (ua), 0 = s,o,w. Then, applying the curl operator 
to (54), we obtain the equations 

• 20)s • • 20)o 

POt 2 -3- gO Sø Ot 2 
0 2o)s 0 20)ø 

poSo +gl 
Ot 2 Ot 2 

+ (•o• $to 0o• o 
kkro Ot 

p•S-• 0 2co• _ 0 2co ø Ot 2 "]- g3 8t 2 

+ (S-•): • 
kkr• Ot 

• = NAO) s, (58a) 
0t 2 

• 2o) w 
q- g3• 

•t 2 

= o, (58b) 

• 2o) w 
q- g2• 

Ot 2 

= 0. (58c) 

Again, let us consider a plane rotational wave of angular 
frequency c and wave number a (•) = a• •) + ia• •) traveling in 
the x•-direction in the form 

•. _(a (s)) a(S)x• + ct) o)s q l ei( , 

(a(S))ei(a(S)x , + ct) o)o _. q2 , 

CO w = q3(a(S))ei(a(S)x, + ct). 
Substitution in (58b) and (58c) yields the relations 

q(2a 'ø) -- g•poSo -- •3pwSw •(a(S') 
g• - • 

_(a(S)) gl•pwSw -- •3PoSo .,(a (s)) 
q3 --' • ql • 

g•g2 -- • 
where 

g• = •, -- [i(•o)2/c] (Ito/kkro), 
g• = •2 - [ i(S• ) 2/c ] (It•/kkr•). 

Using the expressions above in (58a) we obtain the equation 

poSo (g•*pSo - •o•$•) + p•$• (gtp•$• - •OoSo ).) -' g•g• 
, (59) 

which allows us to determine the shear wave phase velocity 
v • - c/la(fl and attenuation coefficient a3 •). 

In a complementary publication ? we analyze the behav- 
iour of the different types of waves described here as they 
depend upon the different parameters involved. 

IV. EXISTENCE AND UNIQUENESS RESULTS 

Let the positive-definite mass matrix •R 9x9 and the 
non-negative dissipation matrix c• • 9 x 9 be defined by 

[ poXo 
0 0 0 

0 (So) 2/t•o K-' 0 
kr o 

o o 

I being the identity matrix in R 3 x 3. Also, let 

.•(u) = {V. ar(u), - v[ (•o + #) apo(U) -#ap•(u) ], 
- v[s-•ap•(u)]}. 

Then, in the nonhomogeneous case, the vector form of the 
equations of motion (52) is given by 

d 02u 0u +(• .2•(u) 
Ot 2 Ot 

= F(x,t), (x,t)•fiX (0, T)----fiXJ. (6O) 

Let us impose the initial conditions 

u(x,O) = u ø, x•fi, 

•u 

ot 
(x,0) = v ø, x•fi, 

and the boundary conditions 

Arv = -- g(x,t), (x,t)•Ofi X J, 

(So + ]•) Apo -- ]• Ap• = ?'o (X,t), 

(61) 

(x,t)•Ofi X J, 
(62) 

Sw Apw = y• (x,t), (x,t)•Ofi XJ. 

Now, we shall introduce a weak form of problem (60)-(62). 
For n >• 1, let ( ',' ) denote the inner product in [L 2 (fi) ] n, 
and let ( ',' ) the inner product in [ L 2 (0fi) ] n. Let v denote 
the outer normal to 811. Also, let 

H(div,fi) = {v•[L 2(•)]3:V.u•._L 2(•)), 

V= [H•(fi) ]3XH(div,fi) XH(div,fi), 

provided with the natural norm 

IIo11• [1101ll• 2 +11 2 2 1/2 = 0211,,d•.n, + IIo311mdi•.n, ] , 

/)1,/)2,/) 3 

The weak form of (60) is found by testing Eq. (60) 
against v• V and consists of finding a map u:J-, V such that 

Ot 2 ,l/ -{- cff • ,l/ -{- A(u,v) + 
+ (v2'V, yo) + 
=(F,v), v•V, t•J, 

where A ( ',' ) is the symmetric, bilinear form on V defined by 
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^(v,w) = (A% (v),% (w•)) - ((So +/3) Apo (v) 

-/3apw (v),V' w9 - ((Swapw) (v),V. w•). 
Note that it follows from (27), (32), and Korn's second 
inequality •4-•6 that 

A(v,v) = 2 f• W(%(v•),V'v•,V'v•)dx 
c11vll - c311vll•, 

Next, let 

(63) 

p2•. 
L © (J, [H - 1/2 (051) ] •) 

•r+ lg 
c3tr+ • L 2(j, [H -,/2( 

OYw 
+ 

cTt • 

Q2= iluOll + ilvO 

2 

L o• [J,H t/2(0D.) ] 

I• + IIF(x,0)llg + •. 

G• r+ 1•/w 
o•t,+• L 2[J, Ht/2(012) ] 

6• r•' o 

c9•F 

c•t • 

L © [J,H '/2(0D.) ] 

2 

L 2{j,[ L 2( • ) ] •} 

O •r+ 1•/ø 
ont•+l L 2[J,H t/2(0D.) ] 

We can state the main theorem on the existence and 

uniqueness of the solution of problem (60)-(62). Its proof 
will be omitted since it is very similar to that of the corre- 
sponding theorem in (Ref. 5) in the single-phase case. 

Theorem 5.1: Let F, g, 7/0, Yw, uø, and v ø be given and 
such that Po c oe, P• coe, and Q c oe. Then, there exists a 
unique solution u(x,t) of (60)-(62) such that u, •u/ 
cTt e L øø (J,V) and c72u/cTt2e L øø{J,[L 2(11)]9}. 
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