

A Model Management and Integration
Platform for Mechatronics Product

Development

Jad El-khoury

Doctoral Thesis
Stockholm, Sweden 2006

TRITA – MMK 2006:03
ISSN 1400-1179
ISRN/KTH/MMK/R-06/03-SE
ISBN 91-7178-268-0

School of Industrial Engineering
and Management

Department of Machine Design
Royal Institute of Technology

SE-100 44 Stockholm, Sweden

Academic thesis, which with the approval of Kungliga Tekniska Högskolan, will be
presented for public review in fulfilment of the requirements for a Doctorate of
Engineering in Machine Design. The public review is held at Kungliga Tekniska Högskolan,
Salongen, Osquars backe 31, Stockholm; at 10:00 on the 3rd of March 2006.

© Jad El-khoury, January 2006

Abstract

Mechatronics development requires the close collaboration of various specialist
teams and engineering disciplines. Developers from the different disciplines
use domain-specific tools to specify and analyse the system of interest. This
leads to different views of the system, each targeting a specific audience, using
that audience’s familiar language, and concentrating on that audience’s
concerns. Successful system development requires that the views of all
developers produced by the different tools are well integrated into a whole,
reducing any risks of inconsistencies and conflicts in the design information
specified.

This thesis discusses techniques of managing and integrating the views from
various disciplines, taking better advantage of multidisciplinary, model-based,
development. A Model Data Management (MDM) platform that generically
manages models from the various domain-specific tools used in development is
presented. The platform is viewed as a unification of the management
functionalities typically provided by the discipline-specific PDM and SCM
systems. The unification is achieved by unifying the kind of objects it manages
– models. View integration is considered as an integral functionality of this
platform.

In demonstrating the platform’s feasibility, a generic version management
functionality of models is implemented. In addition, model integration is
investigated for the allocation of system functions onto the implementing
hardware architecture. The proposed approach promotes the independent
development of the views, allowing developers from each discipline to work
concurrently, yet ensuring the completeness, correctness and analysis of any
inter-view design decisions made.

The prototype MDM platform builds on existing technologies from each of the
mechanical and software disciplines. The proposed MDM system is built based
on a configurable PDM system, given its maturity and ability to manage model
contents appropriately. At the same time, the version control functionality
borrows ideas from the fine-grained version control algorithms in the software
discipline.

The platform is argued to be feasible given the move towards model-based
development in software engineering, bringing the discipline’s needs closer to
those of the hardware discipline. This leads the way for an easier and more
effective integrated management platform satisfying the needs of both
disciplines using a common set of mechanisms.

iii

Table of Contents

ABSTRACT__ I
TABLE OF CONTENTS __III
PREFACE ___ VII
APPENDED PUBLICATIONS ___IX
OTHER PUBLICATIONS BY THE AUTHOR _____________________________XI
1. INTRODUCTION___ 1
2. BACKGROUND - EARLIER ATTEMPTS________________________________ 5

2.1. THE AIDA-TOOLSET – A REAL-TIME SYSTEM DESIGN TOOL __________________ 5
2.2. XILO – A CONTROL/SCHEDULING CO-SIMULATION TOOL____________________ 8
2.3. INTEGRATION EXPERIENCES ___ 9
2.4. INTEGRATING THE AIDA-TOOLSET AND XILO TOOLS_______________________ 11

3. GOAL__ 13
3.1. THE PRODUCT DOMAIN FOCUS__ 13
3.2. MODEL-BASED DEVELOPMENT__ 15

4. APPROACH __ 17
4.1. MODEL AND TOOL INTEGRATION ______________________________________ 19
4.2. PLATFORM REQUIREMENTS __ 19
4.3. INTEGRATION CASES ___ 20

5. SUMMARY OF APPENDED PAPERS __________________________________ 23
5.1. PAPER A - A TOOL INTEGRATION PLATFORM FOR MULTI-DISCIPLINARY
DEVELOPMENT ___ 23
5.2. PAPER B - TOWARDS A MULTI-VIEW MODELLING ENVIRONMENT FOR
MECHATRONICS SYSTEMS ___ 24
5.3. PAPER C - MODEL DATA MANAGEMENT – TOWARDS A COMMON SOLUTION FOR
PDM/SCM SYSTEMS ___ 25
5.4. PAPER D - THE VERSION CONTROL ALGORITHM IMPLEMENTATION IN THE MODEL
DATA MANAGEMENT (MDM) PLATFORM___________________________________ 26

6. A SURVEY OF MODELLING AND INTEGRATION APPROACHES _______ 27
6.1. COMPARISON FRAMEWORK __ 28

iv

6.2. COMPARISON ___ 30
6.3. TOOL INTEGRATION APPROACHES_____________________________________ 33

7. INDUSTRIAL CASE STUDIES__ 35
7.1. KEYFIGURE ANALYSIS CASE STUDY ___________________________________ 35
7.2. FUNCTION MODELLING TO IMPROVE SOFTWARE DOCUMENTATION ___________ 37
7.3. CONCLUSION ___ 43

8. FUTURE WORK __ 45
9. CONCLUSION__ 49
10. REFERENCES___ 51
PAPER-A __ 55

ABSTRACT __ 56
A.1. INTRODUCTION ___ 57
A.2. NEEDS FOR TOOL AND MODEL INTEGRATION ____________________________ 58
A.3. MDM ARCHITECTURE ___ 59
A.4. MODEL-BASED DATA MANAGEMENT FUNCTIONALITIES ___________________ 64
A.5. TOOL IMPLEMENTATION __ 67
A.6. RELATED WORK __ 68
A.7. CONCLUSION___ 69
A.8. REFERENCES ___ 70

PAPER-B __ 73
ABSTRACT __ 74
B.1. INTRODUCTION ___ 75
B.2. CASE STUDY ___ 79
B.3. SINGLE-VIEW MODELLING __ 80
B.4. CASE STUDY MODELS__ 90
B.5. TWO-VIEW INTEGRATION __ 100
B.6. CROSS-VIEW ANALYSIS__ 124
B.7. TOOL IMPLEMENTATION ___ 133
B.8. RELATED WORK ___ 134
B.9. CONCLUSION__ 136
B.10. ACKNOWLEDGEMENTS ___ 138
B.11. REFERENCES ___ 138
APPENDIX__ 141
APPENDIX A TERMINOLOGY ___ 141
APPENDIX B NOTATIONS ___ 146
APPENDIX C PROOFS___ 148

PAPER-C ___ 167
ABSTRACT ___ 168
C.1. INTRODUCTION __ 169
C.2. MODEL-BASED DEVELOPMENT – BRINGING SOFTWARE DEVELOPMENT TOWARDS
HARDWARE DEVELOPMENT __ 170

v

C.3. MODEL DATA MANAGEMENT _______________________________________ 176
C.4. RELATED WORK__ 183
C.5. CONCLUSION __ 184
C.6. ACKNOWLEDGEMENTS___ 186
C.7. REFERENCES __ 186

PAPER-D __ 189
ABSTRACT __ 190
D.1. INTRODUCTION - MODEL DATA MANAGEMENT FUNCTIONALITY ____________ 191
D.2. MODEL VERSION CONTROL ___ 192
D.3. FUTURE WORK ___ 214
D.4. RELATED WORK ___ 216
D.5. CONCLUSION __ 217
D.6. ACKNOWLEDGEMENT ___ 217
D.7. REFERENCES __ 218

vii

Preface

The work presented in this thesis is partially funded by the Swedish Strategic
Research Foundation through the SAVE project, the national Swedish Real-Time
Systems research initiative ARTES, and the Swedish Governmental Agency for
Innovation Systems (VINNOVA) through the CODEX project, a collaborative
effort between Scania and KTH.

On a personal note, I would first like to show my appreciation to my supervisor
Martin Törngren for giving me the opportunity to do my PhD studies under his
supervision. Thanks also to my colleagues at the Mechatronics Lab, current and
old, for providing a pleasant working environment, and for putting up with me all
these years. The Olas deserve special recognition for a great cooperation and
interesting discussions. My senior, Redell! Your role as a co-supervision was vital
for my survival. Thank you for your Swedish lessons, and for not giving up on my
stubbornness to learn. (Jag tycker att jag börja fatta nu.) My junior, Larses! Your
enthusiasm for Hårdrock, Capitalism and Sprit will be missed. A salute to my old
colleague and friend Jonas, our brother in the struggle, for all the laughs and good
times we’ve had in the room and outside.

My thoughts go to all at the Department of Machine Design for the small chats in
the photocopier room, ‘Good Mornings’, lunches, etc. Special thanks go to the
administration team. In particular, the admin girls, Heléne Hedin and Jacqueline
Bernsten, for their long dedication for a good drink - I mean for their efficient
personnel and economic support. Unfortunately, my work did not involve much
welding. Just the same, a thank goes to Ulf Andorff and Kurt Lindqvist for
supervising and blessing my early arrivals to work, during their lunch breaks. You
made the dreaded fifteen minute long walk to work less painful. An appreciation
goes to Peter Reuterås, Tobias Grundel and Payam Madjidi for their superb IT-
support. Most importantly, the Fredagsöl gang leader, Martin Grimheden,
deserves a special mention for being there late enough to initiate a Friday Beer,
any time of the week. Your dedication is appreciated by many enduring PhD
students.

viii

Hugs and kisses go to my Family in Sweden: Anja, Anja, Farnosh, Laurent and
Mike. Thank you for your moral support and sustaining my needs for a good chat
over coffee breaks, lunches or the odd drink.

Elin! A superb job at reminding me about post-PhD life. Thank you for being
there, listening and sometimes ignoring my whining.

I am grateful for my parents, Marwan and Nawal, for giving me the opportunities
to be where I am today. Your unquestioning support is invaluable. Thanks sister
Josiane; brothers Walid and Toufic; and dear friends Sam and Toufic for your
arbitrary phone calls in the middle of the night, just because you felt like a chat. I
know you care.

Last but certainly not least, for the one person without whom this work would not
have been possible: Me. Thank you for putting up all these six years. I promise I
will not put you through this again. I have said it before, and I say it again:
‘Jad! You’re a Genius!’

Stockholm, January 2006

Jad El-khoury

No other humans or animals were harmed
in the making of this thesis.

ix

Appended Publications

Paper A

El-khoury J., Redell O. and Törngren M., A Tool Integration Platform for Multi-
Disciplinary Development, 31st Euromicro Conference on Software Engineering
and Advanced Applications, 2005.

The platform and algorithms presented are implemented by Jad El-khoury. The
paper was written in close collaboration between the authors.

Paper B

El-khoury J. and Redell O., Towards a Multi-View Modelling Environment for
Mechatronics Systems, Technical report, ISRN/KTH/MMK/R-05/24-SE, TRITA-
MMK 2005:24, ISSN 1400-1179, Department of Machine Design, KTH, 2005.

The work presented in the paper and the writing was made by Jad El-khoury.
Ola Redell assisted in discussing and provided input on the mechanisms and
implementation details.

Paper C

El-khoury J., Model Data Management – Towards a common solution for
PDM/SCM systems, Twelfth International Software Configuration Management
Workshop (SCM-12), 2005.

Paper D

El-khoury J., The Version Control Algorithm Implementation in the Model Data
Management (MDM) Platform, Technical report, ISRN/KTH/MMK/R-05/27-SE,
TRITA-MMK 2005:27, ISSN 1400-1179, Department of Machine Design, KTH,
2005.

xi

Other Publications by the Author

Publications Discussed in this Thesis:

1. Larses O. and El-khoury J., Function Modelling to Improve Software
Documentation. Technical report, ISRN/KTH/MMK/R-05/25-SE, TRITA-
MMK 2005:25, ISSN 1400-1179, Department of Machine Design, KTH,
2005.

2. Redell O., El-khoury J. and Törngren M., The AIDA-toolset for design and
implementation analysis of distributed real-time control systems.
Microprocessors and Microsystems, volume 28, 2004.

3. El-khoury J., Chen D. and Törngren M., A survey of modelling approaches for
embedded computer control systems (Version 2.0), Technical report,
ISRN/KTH/MMK/R-03/11-SE, TRITA-MMK 2003:36, ISSN 1400-1179,
Department of Machine Design, KTH, 2003.

4. El-Khoury J. and Törngren M., Towards a Toolset for Architectural Design of
Distributed Real-Time Control Systems, Proceedings of Real-Time Systems
Symposium (RTSS), 2001.

xii

Other Publications:

1. El-khoury J., Redell O. and Törngren M., Integrating views in a multi-view
modelling environment, Proceedings of the 15th International Symposium of
the Systems Engineering Conference, 2005.

2. Larses O. and El-khoury J., Views on General System Theory, Technical
report, ISRN/KTH/MMK/R-05/10-SE,TRITA-MMK 2005:10 ISSN 1400-
1179, Department of Machine Design, KTH, 2005.

3. Larses O. and El-khoury J., Multidisciplinary Modeling and Tool Support for
EE Architecture Design, 30th World Automotive Congress, FISITA, 2004.

4. Chen D. J., El-Khoury J. and Törngren M., A Modeling Framework for
Automotive Embedded Control Systems. SAE World Congress, SAE
Technical Paper Series 2004-01-0721, 2004.

5. Henriksson D., Redell O., El-khoury J., Törngren M. and Årzén K., Tools for
Real-time Control Systems CoDesign - A Survey, Department of Automatic
Control, Lund Institute of Technology, Internal report - ISRN
LUTFD2/TFRT—7611—SE, 2004.

6. Törngren M., El-khoury J., Sanfridson M. and Redell O., Modelling and
Simulation of Embedded Computer Control Systems: Problem Formulation,
Technical report, TRITA-MMK 2001:3, ISSN 1400-1179, ISRN
KTH/MMK/R--01/3--SE, 2001

1. Introduction

With the introduction of computer technology as a feature in mechanical
engineering products, a change is experienced in the expected functionality of
these mechatronics products, as well as the means of their development. The use
of micro-controllers, software, and network systems in modern technical products
has permitted functionality that would otherwise be impossible or very expensive.
The contribution of this technology is indispensable, and product success is
increasingly dependant on it. More resources are allocated to computer
technology, in order to gain an edge over competing products. For example, in the
ever increasing complexity of automotive electronics, roughly 70% of functional
innovations are made possible and performed by software [1].

The advantages of introducing computer technology in modern products come at
the cost of increasing the product development complexity, where designers are
facing many challenges to ensure that the products meet their requirements.

One source of complexity is due to the dramatic increase in the number of
software-based functions in the system. For example, in the automotive industry,
X-by-wire functions are projected to boost the share of electronics in chassis
production from today’s 12% to approximately 40% within the next ten years [2].
While the functions themselves can vary in complexity, the sheer number of these
functions forms a development challenge for the complete system. Weinberg [3]
discusses the issue of system complexity as related to its size. In promoting his
General Systems Thinking, he declares that ‘To a first approximation, we were
able to use the number of objects as a measure of complexity – the complement of
simplicity’. The challenge is to handle systems of ‘organised complexity’ –
systems that are too complex for analysis and too organised for statistics.

Complexity is further compounded by the dependencies between the system
functions. Previously standalone functions are becoming more interdependent,
where functions need to share common resources, as well as cooperate with each
other in order to fulfil their expected behaviour. Besides these functional
dependencies, other types of relationships need to be considered during system
development such as the mission-criticality or the strategic make/buy relationships
between functions [4].

1. Introduction

2

Complexity is not an inherent property of the system itself, but lies in the relation
between the system and its observer. Depending on the observer’s concerns,
different types of objects and relations between them are perceived. For example,
given the automation facilities in a modern car, its driver does not necessarily
perceive the system complexity in the same manner as its developer that needs to
provide such automation support.

In discussing the complexity problems of science, Checkland explains in [5] that
the world is a giant complex, and to cope with it, we are forced to reduce it into
separate areas which can be examined separately. This arrangement of knowledge
is inevitable given our limited ability to take in the whole. ‘Our knowledge of the
world is thus necessarily divided into different “subjects” or “disciplines”’.

Similarly, when dealing with system development complexity, multidisciplinarity
may become a necessity. Mechatronics systems development requires the close
collaboration of various specialist teams and engineering disciplines. In
automotive system design, for example, developers from the many disciplines of
engineering, such as control, software, mechanical and electrical engineering, need
to interact to meet the demands for dependable and cost-efficient integrated
systems.

The developers from the different disciplines use their own specific tools,
providing their own specific views of the system to be developed. Each system
view targets a specific audience, using that audience’s familiar language
(viewpoint), and concentrating on that audience’s concerns [6]. Figure 1 illustrates
some of the viewpoints and views that may be necessary during the development
of a typical vehicular system.

However, multidisciplinarity may in turn become a source of complexity.
Developers from the different disciplines differ in the design concerns and
interests in which they are involved. These concerns and interests are not
necessarily exclusive, which leads to overlap and dependencies in their
development information space. Even though they attempt to develop the same
system, developers from the different disciplines may then form a different
perception of the system’s aims, problems and solutions. This becomes a source of
conflict and complexity during development.

To take full advantage of multidisciplinary development, it is essential to have
good integration of the efforts of all involved disciplines, as well as good
communication between them. For successful system development, the views of
all developers produced by the different tools should be well integrated into a
whole, reducing any risks of inconsistencies and conflicts in the design
information specified in these views.

1. Introduction

3

Figure 1. Some of the disciplines and views in system development.

This thesis discusses techniques of managing and integrating the views from the
various disciplines, in order to minimise the complexity due to multidisciplinary
development, while optimising its benefits.

Prior to presenting the contribution of this thesis, some earlier experiences within
the research project in multidisciplinary tool development are discussed in the
following section. These experiences justified and inspired the aim and approach
advocated in this thesis, which will be detailed in sections 3 and 4. Section 5
introduces the particular thesis contributions, further detailed in the appended
papers. A survey of modelling and integration approaches is then presented in
section 6, followed by a summary of relevant industrial case studies in section 7.
Finally, future work is discussed in section 8 before concluding in section 9.

V

V

V

V

V

The system

Hardware topology

Mechanics

Control

Functionality

Software

2. Background - Earlier Attempts

This section presents earlier efforts made within this research project at developing
modelling and analysis tools to support certain aspects of mechatronics system
design. The aim and approach dealt with in this thesis are motivated by first hand
experiences in tool and model integration, discovered by the author when
developing and using these tools. A more complete description of the Aida-toolset
and XILO tools can be found in [7] and [8] respectively.

2.1. The AIDA-toolset – A Real-time System Design
Tool

The Aida-toolset integrates the specification and performance analysis of control
systems with embedded real-time system design. Various aspects of the system
can be described, from the control system specification to its implementation on a
distributed network of processors.

The aim of the toolset is to help the user evaluate a number of different system
designs before the actual realisation of the system. Design iterations may include
changes in the software structuring, function allocations, hardware structuring,
process priorities, process scheduling, communication protocols, etc. Evaluations
are based on timing analyses as well as simulations of the resulting control system
performance.

The AIDA-toolset is designed to support one particular work-flow, visualized in
figure 2, leading to a specific precedence in the order of building the models.
Initially, a pure control specification is designed and tested using Matlab/Simulink
[9], within which control performance analysis can be performed by simulation.
The resulting control algorithm and system dynamics provide the necessary
information for the software specification. At this stage of development, important
requirements such as controller jitter and delays are often overlooked, since they
are dependant on implementation details and their values can only be deduced
once the system is implemented. Next the control design is imported into the
AIDA-toolset where the Simulink model is translated to a data-flow diagram. The
resulting model is augmented with additional information such as execution times

2. Background - Earlier Attempts

6

for functions and size of data-flows. This model becomes the base for the real-time
system design. In the real-time system design, the user defines the target hardware,
allocates the functions to processors, maps the functions into processes and
specifies communication, triggering and scheduling related characteristics. When
the real-time design is complete, response time analysis techniques are used to
calculate the response times and release jitter of the processes and their contained
functions. Once successfully analysed, the model is exported back to Simulink for
further simulation. The new Simulink diagram is a copy of the original, augmented
with the implementation-induced time delays. These implementation effects are
hence taken into account in the resulting control performance analysis.

Figure 2. The work flow supported by the AIDA-toolset. Three different system
views in the AIDA-toolset are represented to the right: a Process Structure

Diagram, a Data Flow Diagram and a Hardware Structure Diagram.

The models used in the Aida-toolset are based on a larger modelling framework
for mechatronics systems [10]. In this framework, sixteen different models are
defined, of which seven are used in the toolset:

• The data-flow diagram (DFD) defines functions specifying the system
functionality and data-flows specifying the data exchange between these
functions.

• The function timing and triggering diagram (FTTD) defines the required
time precedence relations between these functions.

• The hardware structure diagram (HSD) describes the structure of the target
computer hardware.

1. The control designer starts
with a Simulink block diagram
representation of the system

2. Import the control
design to the AIDA toolset

4. Export the resulting control
design augmented with analysis
results to Simulink and analyse
control performance through
simulation.

3. Model the real-time implementation using the AIDA
models and analyse the function response times

2. Background - Earlier Attempts

7

• The process timing and triggering diagram (PTTD) defines, for each
processor in the system, the timing and triggering properties of its set of
processes and the mapping of functions into processes.

• The process structure diagram (PSD) defines the inter-process messages,
based on the data-flow information from the DFD and the processes
described in the PTTDs.

• The communication link diagram (CLD) defines, for each communication
bus, the communication frames based on the messages defined in the PSD.

• The process internal timing and triggering diagram defines, for each process
in the system, the time precedence relations between the functions allocated
to the process.

The environment of the Aida-toolset is based on two separate tools: DoME [11]
and Matlab/Simulink [9]. The use of the single tool, DoME, for the real-time
domain modelling allows easy integration and exchange of data between models,
given its provided facilities to define new domain-specific models.
Matlab/Simulink was chosen for its good support of control design and simulation
capabilities, which are also used to evaluate the implementation architecture
developed. These capabilities could not be provided in the DoME environment. As
shown in figure 3, the Aida-toolset consists of three major parts:

• Aidasign - The real-time system modelling environment.

• Aidalyze - The response time analysis tool, implemented in C++, performing
timing analysis methods for distributed real-time systems [12].

• The interface with Matlab/Simulink - connects Aidasign to Matlab/Simulink,
enabling import of Simulink data flow diagrams to Aidasign and later export
to Simulink.

Figure 3. Architectural overview of the AIDA-toolset, highlighting its three major
parts and their relations.

Matlab/Simulink Aidasign Aidalyze

Control modelling
and simulation
environment

Import

Export

Modelling
environment for the
AIDA models

Tool for analysis of
task response times
and release jitter

2. Background - Earlier Attempts

8

2.2. XILO – A Control/Scheduling Co-simulation Tool
The XILO tool supports the design of distributed real-time control systems,
through the modelling and co-simulation of control functionality together with the
controlled processes and the behaviour of the computer system. The co-simulation
of scheduling and other implementation-related mechanisms with the control
application allows the user to directly study the impact of such design decisions on
the resulting system behaviour. The tool promotes interdisciplinary design by
combining the views of control and computer engineering into one view.

The workflow supported by XILO is similar to that of the AIDA-toolset,
visualized in figure 2, with the following differences:

• The complete set of XILO models are developed within the same
environment. Hence, there is no need to perform import/export of the models
between tools.

• In XILO, the analysis is only performed through the co-simulation of the
application software behaviour, together with the system software and
hardware behaviour.

In order to achieve the goal of a multidisciplinary modelling environment,
modelling aspects were borrowed from a number of sources:

• The AIDA modelling framework [10] provided insights into the control
implementation requirements needed, the component models and their
parameters.

• The CODARTS method [13], as a software engineering design methodology
and model, highlighted the aspects of software that need to be included.

• Data flow diagrams from the control engineering approach were used for the
modelling of the application functionality.

XILO allows the modelling and simulation of the following views:

• Application software encompassing different functionalities in a wide variety
of styles (e.g. discrete-time, even-triggered, data-flow, state machines etc.).

• System software including the behaviour of the operating system scheduling
and inter-thread communication protocols.

• Distributed computer systems including communication networks and
computer nodes.

• Mechanical systems including sensors, actuators and mechanical system
dynamics.

2. Background - Earlier Attempts

9

The various views are modelled within a single hierarchy. At the top level, the
hardware topology of the whole system is modelled. This hardware structure
consists of three types of components: (1) The environment modelling the
mechanical dynamics of the system including sensors and actuators; (2)
Communication Links defining the communication protocols between computer
nodes; and (3) Computer Nodes in which the application and system software is
modelled.

Within each computer node, the software structure is defined through: (1) Tasks
defining the application software; (2) A task scheduler modelling a wide range of
schedulers such as event/time triggered, static/dynamic, and off-line/on-line
schedulers; (3) Operating system services such as inter-task communication, task
synchronisation and semaphores and (4) Hardware drivers such as communication
controllers, timers, ADCs and DACs.

Finally, within each software task, the application functionality is defined as a
sequence of sub-functions.

The XILO tool is based on a set of library components for the modelling of
standard functionalities such as schedulers, communication mechanisms and basic
operating system services. This approach allows the developers to evaluate a
number of different system designs, by the simple exchange and reconfiguration of
components.

The environment used to build and execute the models is Matlab/Simulink. This
environment is biased towards the control engineer environment, allowing the
control engineer to specify, validate and interact with the computer engineer in a
familiar environment.

2.3. Integration Experiences

2.3.1. Tool Integration
In the Aida-toolset, the relationships between the various models are outlined in
figure 4, where solid arrows correspond to subdiagram relationships while dashed
arrows indicate import relationships between tools.

From a usability perspective, it is desired to transparently integrate the tools. Since
Matlab/Simulink and DoME tools have no common mechanisms that enable direct
communication between them, integration of the models is performed through
import/export mechanisms. The import mechanism of the Aida-toolset allows the
translation of a Simulink model into a DFD model, through a one-to-one mapping
from Simulink blocks to DFD functions. Once a Simulink model has been

2. Background - Earlier Attempts

10

imported into the AIDA-toolset, additional information such as function execution
times and data-flow sizes can be specified. However, to enable future export to
Simulink, the model may not be otherwise modified, since the export mechanism
assumes the structure of original imported Simulink model. This restriction
undesirably creates a precedence relation between the models from the different
tools, preventing their parallel and independent development.

In comparison, the XILO tool handles all models within a single tool and hence
avoids the problem of tool integration. The adopted tool is however not
necessarily optimal for software and hardware development.

Figure 4. The structure of the models in the AIDA-toolset, where solid arrows
denote subdiagram relationships while dashed arrows denote import relationships.

2.3.2. View Integration
Within the Aida-toolset models, a challenge in having the many different views is
to keep the models consistent, whereby changes of information in one model are
propagated to other related models that share the information. The use of a central
database to manage all data shared by the models in the toolset was identified as a
need to avoid the problem of inconsistency. This was not possible due to DoME
limitations. Instead, the approach taken was to, for each piece of data, designate
one model that is the data owner, while the other dependent models operate on
data copies. Data is then automatically updated, when manually triggered by the
user, and in this way regaining consistency in the model set. The major drawback
of this approach is that model changes are not reflected in the whole system
immediately, leading to inconsistent models in the intervals between model
updates.

Function Timing
and Triggering

Diagram

Data-flow Diagram Hardware Structure
Diagram

Communication
Diagram

Process Structure
Diagram

Process Timing and
Triggering Diagram

Process internal
Timing and
Triggering
Diagram

2. Background - Earlier Attempts

11

In the XILO tool, the mapping from the control-based functional model to the real-
time implementation model is not managed, and no attempt is made to maintain
the models synchronised. In addition, the XILO tool avoids the consistency
problem by assuming a single model structure to fit the many implementation
views of the system. This approach however conflicted with the need for different
viewpoints for different disciplines, allowing developers to concentrate on specific
aspects.

2.4. Integrating the Aida-toolset and XILO Tools
During their development, it was realised that the Aida-toolset and XILO tools had
many properties in common, leading to the intention of integrating them. This goal
was deemed feasible given that the tools are inspired by the same modelling
framework [10]. The main differences between the tools are presented in table 1.
The tools essentially contain the same modelling content, while they mainly focus
on different analysis techniques, namely timing analysis and co-simulation. It
would hence be desired to provide the two complementary approaches for system
analysis based on the same modelling framework, and without the need to
manually duplicate the models.

Table 1. The main differences between the AIDA-toolset and the XILO tool.

 XILO Aida-toolset
Analysis Co-simulation Timing analysis

 simulation
Tools One tool for all disciplines Two domain-specific tools
View modelling Views modelled within one

hierarchy
Separate models for each
view.

Analysis results Control performance Timing behaviour in terms of
worst/best case response
times and jitter.
 Control performance

However, each analysis technique requires a specific environment to work within:
the Simulink simulation environment for XILO and Dome for the Aida-toolset.
The challenge is to manage the modelling content in a tool-independent manner,
not favouring one tool over the other, nor creating dependencies between them.
This desire directed the research interest towards model content management and
tool integration.

3. Goal

This thesis aims to develop a model integration and management platform that
supports the multidisciplinary, model-based development of mechatronics
systems. The platform should allow for the management and sharing of the
product information produced by tools and disciplines throughout the development
life cycle. Consequently, various analyses can be performed based on the same
information set. The platform should also facilitate the communication of
information between the different stakeholders, allowing any inconsistencies and
conflicts to be identified and dealt with.

Two assumptions or limitations are implicit in the above inter-disciplinary
integration aim: (1) A product domain focus and (2) a model-based development
approach. These are further developed in the following subsections.

3.1. The Product Domain Focus
In studying the complexity of product development, Eppinger and Salminen
introduce three domains of analysis: Process, product and organisation [14].
Decomposition is used within each of these domains in order to manage the
development complexity. The full development process is decomposed into
phases; an organisation is decomposed into teams; and a product is decomposed
into sub-systems. With the separation of development into product, process and
organisation domains, the interactions between these domains can be better
analysed, giving a better understanding of the complexity of product development.
The interactions within and between the three domains are illustrated in figure 5.

This model of product development does not explicitly take into consideration the
multidisciplinary nature of certain products. It is assumed that a single product
decomposition exists within the product domain. This assumption simplifies the
patterns of interaction between the product structure and the remaining domains.

However, the development of multidisciplinary products adds another dimension
of development complexity, whereby within each domain, the interactions
between the disciplines play an important role and need to be additionally
analysed.

3. Goal

14

For example, no single product structure can be assumed in a mechatronics
product. Developers from the different disciplines have their own specific
viewpoints of the system to be developed. That is, different description languages
and analytical methods are adopted to deal with the specific concerns of the
different disciplines [6]. The need to consider the product from different
viewpoints leads to different product structures – or views – of the system.

Figure 5. The patterns of interaction within each of the three domains of product
development, as well as across them (Reproduced from [14]).

Within the product domain, the interactions between the various structures need to
be analysed, in order to avoid inconsistencies between them. Similarly, the
different disciplines may need to follow different development processes, leading
to different process structures for each discipline [15]. In multidisciplinary
development, this leads to multiple process structures. From the organisational
perspective, the teams can no longer be viewed homogenously, as various
members (or entire teams) may belong to specific disciplines, creating multiple
organisation structures. As a result, the interactions between the domains can no
longer be treated as suggested in [14], since the mapping is no longer between
single structures within the domains.

components
●
 ● ■ ■
 ● ■
■ ■ ● ■
 ■ ● ■ ■
 ● ■
■ ■ ■ ●

co
m

po
ne

nt
s

 ■ ■ ●

tasks
● ■
 ● ■ ■
■ ■ ● ■
 ■ ● ■
■ ■ ● ■ ■
■ ■ ● ■
 ■ ■ ●

ta
sk

s

 ■ ■ ■ ●

teams
● ■
 ● ■ ■
■ ■ ● ■
 ■ ● ■
■ ■ ● ■ ■
■ ■ ● ■
 ■ ■ ●

te
am

s

 ■ ■ ■ ●

c. Development Organization
Interactions

a. Product Architecture
Interactions

b. Development
Process Interactions

3. Goal

15

Note that the source of different viewpoints (and hence the different structures)
stems not only from the different needs of the disciplines. Within each discipline,
different viewpoints may also be needed. The predominant system structure used
in traditional mechanical development reflects the physical decomposition of the
product into its designed components. On the other hand, software development
employs many structures, which also need to be integrated. In UML [16], for
example, many structures are adopted such as Class, Statechart, Use Case and
Deployment models. In this general sense, a discipline can be viewed as a broader
grouping of many views.

With this complex model in mind, the contribution of this thesis focuses on the
interactions between the various disciplines within the product domain. We aim to
integrate the various views produced by the different disciplines, ensuring the
consistency of the information assumed from their various viewpoints, and
providing a common basis for information flow between them.

It is acknowledged that the remaining domains cannot be simply ignored, and
handling the complexity within one domain does influence the complexity in the
remaining aspects. After all, the integration’s final aim is to support the engineers
in their development process. Nevertheless, it cannot be claimed that this thesis’
contribution directly integrates the development processes assumed by the
different disciplines, nor the integration of people within an organisation.

By formalising the interactions between the various product structures within the
product domain, this thesis can form a step to understand the more complex
interactions between the above three domains, assuming a multidisciplinary
product and development.

3.2. Model-based Development
A precondition to be able to integrate and handle the interactions between the
various product views is the availability of an explicit representation of these
views. That is, models describing the product structures – and hence the product –
are available.

Moreover, it does not suffice that the product models are simply provided. Instead,
for successful development, tying the product, process and organisation domains
together, the product models should be the basis of the development process
within the organisation. Product models form the basis for the interactions and
communication between the teams of the organisation; as well as the information
flow between the development phases. Such a basis for development is here
termed as model-based development.

3. Goal

16

Model-based development refers to a development approach whose activities
emphasise the use of models, tools and analysis techniques for the documentation,
communication and analysis of decisions taken at each stage of the development
lifecycle. Models can take many forms such as physical prototypes, graphical and
textual models. It is essential however that the models contain sufficient and
consistent information about the system, allowing reproducible and reliable
analysis of specific properties to be performed. In model-based development,
analysis plays the critical role of ensuring that the models being built - hence the
design decisions being taken – are consistent and satisfy the system requirements.

Within a given discipline, model-based development is commonly used, such as
the use of CAD tools in mechanical engineering. In the maturing software
engineering domain, model-based development is gaining acceptance. The
popularity of modelling languages such as UML is an indication of this trend.

In multidisciplinary model-based development, several viewpoints of the system
are formed by the different disciplines. This leads to several models, representing
the different product structures produced. In the integration of these models, the
discipline-specific description languages and analysis methods used to model these
structures should be preserved. Proper model integration may become a strong
basis of communication between engineers of different disciplines.

This thesis suggests an approach in which the integration of models from the
various design domains is also model-based, ensuring the explicit documentation
of the interactions between the product views. The state of practice of social
integration [17], where informal communication between engineers tries to ensure
consistency, is not desired.

Given the recent establishment of the model-based development in certain
disciplines such as software engineering, the sensibility of this assumption can be
questioned. According to Encyclopædia Britannica [18], ‘engineering’ is defined
as the ‘professional art of applying science to the optimum conversion of the
resources of nature to the uses of humankind’. Given this definition, one can
reverse the question and wonder how the application of the sciences can be validly
performed during engineering activities without access to explicit and reproducible
information. Product information and design decisions need to be explicitly and
unambiguously documented for their communication between engineers, and to
become a basis onto which scientific analysis can be performed. Engineering is a
combination of craftsmanship and scientific exploration; and model-based
development is a basic requirement for the latter to be possible. In other words, in
order for software development to change from an art to becoming an engineering
discipline, it ought to become model-based.

4. Approach

The aim of the integration platform is to integrate the different models used to
represent the structures or views from the various development disciplines. In the
development of large and complex products, an organisation normally adopts
some kind of product management tools in order to manage the large amount of
documents storing these models. For example, the development of software-
intensive products relies on Software Configuration Management (SCM) systems,
while mechanical system development uses Product Data Management (PDM)
systems. The need to obtain consistent access to the documents storing the models
leads to the necessity to coordinate the intended integration platform with these
management tools.

In multi-disciplinary product development, a number of these management
environments come into simultaneous use. This is necessary since developers from
each discipline require the specific support provided by its corresponding
management system. Integrating these environments becomes essential for the
successful integration of the efforts of all disciplines involved, considering the
central role they take in controlling the development process as well as facilitating
the communication between developers.

In summary, a model integration platform integrating different development tools
needs to be itself integrated with the management tools, which in turn need to be
integrated with each other. The various integration needs are illustrated in figure 6.

Another approach to the problem is to step back and treat the view integration
problem as part of the management problem already covered by PDM/SCM
systems. Model integration is treated as another functionality that can be
augmented to the conventionally expected functionalities of management tools.
This approach is illustrated in figure 7.

In one sense, incorporating the management tools expands the integration
problem. However, expanding the problem domain provides a better fit of the
view integration problem. Much can be borrowed from the PDM/SCM integration
efforts such as the work suggested in [15] and [19]. In addition, by absorbing the

4. Approach

18

management tools into the platform, a smaller number of tools need to be
integrated.

Problem simplification can also be claimed given the assumption of model-based
development. As argued in section 5.3 (Paper-C), the integration of PDM/SCM is
considered more feasible with this assumption, suggesting a unified platform that
generically handles models from all disciplines. Based on this platform, the
integration of the models from the different disciplines is made more feasible.

Figure 6. The integration needs of the various development and management
tools for mechatronics systems.

Figure 7. An integration approach treating view integration as part of the
management systems.

The integration problem is reduced to that of integrating PDM and SCM systems,
plus providing integration functionality based on the integrated solution. Within
the context of figure 5, the approach not only contributes to the integration of the
disciplines within the product domain by integrating their views, but by also
contributing to the integration of the management facilities such as process

Integrated
PDM/SCM

+
View Integration

Platform

 PDM/
SCM

Integration
Platform

PDM SCM

Exists
Expected
Integration
platform

4. Approach

19

control, workflow control, user management, etc. These facilities are used in the
process and organisational domains, leading to a better alignment of the three
domains.

4.1. Model and Tool Integration
Model integration is made a lot easier if one assumes a single tool that fully
supports the development of all involved views. Model management and
integration can thus be provided within the tool implementation itself. While this
may be desired, experience shows that no such silver bullet can be provided. Our
conviction is that no matter how large and encompassing modelling tools get, one
will never reach the point when a single tool will meet all the needs of a
multidisciplinary development process in any organisation. As a consequence, the
need to integrate model information between the tools that act on this information
will always exist.

No tool in the tool-set should take a predominant role, to which all other tools
integrate. Such an approach creates a dependency on that tool, and peripheral tools
can only be integrated indirectly. Instead, a central platform is suggested to which
tools are connected. It is through this platform that communication between tools,
and the integration of their models, occurs. Naturally, dependencies are created to
the integration platform, which is however expected to be more stable, as
suggested in section 4.3.

4.2. Platform Requirements
In summary, the integration platform should support the following needs:

• Support for discipline-specific tools – It should be possible to integrate
different kinds of tools from the various disciplines, recognising that different
organisations will assume a different toolset.

• Data sharing and view integration – A tool integration mechanism should
manage the duplication of information between tools, synchronizing and
maintaining its consistency. In addition, having chosen a specific set of tools,
certain design information ends up in between tools. This information
specifies a relationship between the different views (inter-view information).
Good integration mechanisms should permit the specifications of such cross-
view information, reflecting points of interaction at which the respective
stakeholders need to communicate.

• Model management – includes functionalities such as the storage of models,
handling of versions and variants of models, change request management,

4. Approach

20

process/workflow management as well as support for geographically
distributed development. Support for discipline-specific functionality should
also be provided such as build management for software development. An
integration platform ought to provide these functionalities centrally for all
tools that it integrates.

4.3. Integration Cases
Caution should be taken when adopting a given integration solution, given the
central role such a platform assumes in an organisation, and the dependencies it
creates between developers. In addition, an integration platform is expected to
outlive the many tools it integrates. While metrics such as the Return on
Investment (ROI) are developed to justify investments in central systems like
PDM and SCM [20], no such metrics are necessary in adopting tools such as
compilers or editors, which may be used locally within an organisation and are
replaced relatively more easily over time.

For these reasons, a stable, long-lasting and universal integration solution, which
can anticipate future changes in tools, is to be expected.

This stability is threatened by factors such as the fast growth in modelling
languages and tools, specifically for the maturing software engineering discipline.
On the other hand, partial standard efforts such as the MOF modelling standard
[21], formatting standards such as XML [22], and basic communication
mechanisms such as CORBA [23] and COM [24], provide a valuable foundation.
The appearance of the STEP [25] standard within the mechanical engineering
discipline is historical evidence that such efforts are possible.

In this thesis, it is recognised that achieving the stability expected of an integration
platform is very much a standardisation effort. For this reason, focus is instead
placed on two cases of integration techniques to cover each of the main needs
specified above: view integration and model management.

Concerning view integration, the integration of the system functional view to the
hardware architecture view, through the allocation of functions to hardware
components, is investigated. With each view related to a different discipline, this
example highlights the multidisciplinary problem. Further details are discussed in
section 5.2 and Paper-B.

Concerning model management, a generic version management functionality of
models is investigated. While version control is needed in both the mechanical and
software disciplines, the functionality differs between SCM and PDM systems.
This allows us to investigate how far such mechanisms can be aligned between the
disciplines. Version control is also critical since it will put to the test the other

4. Approach

21

crucial management functionalities of any common management system such as
the possibility of having a common product structure and data representation.
Further details are discussed in section 5.4 and Paper-D.

Finally, to satisfy the need to support discipline-specific tools, these cases need to
be dealt with assuming different modelling tools.

5. Summary of Appended Papers

This section provides a summary of the appended papers of this thesis. The
combination of these papers provides a good description of the tool integration
platform.

The reader is advised to read these papers before proceeding with the remaining
chapters of the thesis.

5.1. Paper A - A Tool Integration Platform for Multi-
Disciplinary Development

This paper presents the architecture for the Model Data Management (MDM)
platform that aims to satisfy the needs for tool and model integration presented in
section 4.2. MDM generically manages and integrates models from the various
tools used in the development of mechatronics products.

The platform aims to provide generic model management functionalities including
supporting the storage of models, handling of versions and variants of models,
access control, change request management, process/workflow management as
well as support for geographically distributed development. This is viewed as a
unification of the management functionalities typically provided by the discipline-
specific PDM and SCM systems traditionally used in the hardware and software
disciplines respectively. The model-based approach to data management unifies
the software and hardware disciplines by unifying the kinds of objects it manages
– models. The model-based management functionalities and the need to interrelate
the internal model contents require that the platform manages the fine-grained
details of each model from the integrated tools.

The architecture supports the decoupling of the modelling tools from the MDM
platform, permitting an open architecture where various tools can be integrated as
desired. This is made possible through the adaption layer that maps the tool-
specific format and meta-model, used internally by the tool to manage its model
data, to the generic format and meta-model of the platform.

5. Summary of Appended Papers

24

The proposed architecture explores the idea of building on existing technologies
from the more mature discipline of mechanical engineering, as well as borrowing
advanced functionalities from the software domain. MDM is built based on a
configurable PDM system. PDM is adopted due to its maturity and ability to
define information models, with a high level query language to access and modify
the model data in the repository. In addition, it is envisaged that the development
of the remaining MDM functionalities is made easier given the already developed
functionalities of PDM such as the support for distributed development, change
management, workflow control, etc. At the same time, the version control
functionality borrows ideas from the fine-grained version control algorithms in the
software discipline.

Model management functionalities are illustrated through the implementation of
the version control algorithm of Paper-D. In addition, model integration
techniques are provided, where model content can be shared across different tools.
This is illustrated in the partial implementation of the view integration
mechanisms proposed in Paper-B.

5.2. Paper B - Towards a Multi-View Modelling
Environment for Mechatronics Systems

The paper presents an approach to multi-view modelling and integration which
systematically integrates the two generally accepted complexity reduction
techniques of multi-view and hierarchical decomposition. The approach defines
how inter-view relationships can be used to tightly interweave the views’
hierarchies.

Through the use of a case study, model integration is investigated for the
allocation of system functions onto the implementing hardware architecture. The
resulting approach maintains the principle of hierarchical design within, as well as
between the views, where allocation can be performed at arbitrary levels across the
hardware and function hierarchies. The proposed approach promotes the
independent development of the views, allowing developers from each discipline
to work concurrently, yet providing support for a holistic view.

Mechanisms are defined to ensure the completeness and correctness of any inter-
view design decisions made, as well as, to perform cross-view keyfigure analyses.
The principle that a part of the complete system is a system of its own, with its
own set of views is reinforced, with the possibilities to perform cross-view
analysis on the complete system as well as its individual parts.

The feasibility of the inter-view mechanisms is investigated through the
implementation of a prototype tool, in which views, as well as, inter-view design

5. Summary of Appended Papers

25

information and analysis, could be performed. In addition, a partial
implementation of the approach is developed based on the MDM platform of
Paper-A. Through a generic inter-view association mechanism, the model data
from different tools can be interrelated. This acknowledges the need for the
different views to be modelled using domain-specific tools. The integration
platform takes a centralisation role in which the inter-tool information is managed
and stored.

The paper also presents the meta-meta-model of the MDM platform. A simple
meta-meta-model is adopted, allowing focus to be placed on the view integration
mechanisms and the management functionalities of interest.

5.3. Paper C - Model Data Management – Towards a
common solution for PDM/SCM systems

This paper investigates the effect of adopting model-based development in
software engineering in bringing the discipline closer to the hardware engineering
discipline and permitting a tighter integration of their management systems. The
investigation considers the three crucial factors for a successful integration: tools
and technologies, processes, and people [26].

It is argued that, as software development becomes increasingly model-based, its
needs become closer to those of hardware development. In particular, the process
management and information modelling functionalities expected of SCM systems
come closer to those provided by PDM systems for hardware development. This
leads the way for a more effective integrated management platform satisfying the
needs of both disciplines using a common set of mechanisms. The model-based
approach to data management unifies the disciplines by unifying the kind of
objects it manages – models. Management functionalities deal with models and
their internal contents as central entities, transparent of the file structure used to
store them.

The MDM platform, presented in Paper-A, provides a basis for the desired
common management functionalities, by generically handling different kinds of
models produced from a set of different tools and disciplines. To illustrate the
suggested common management solution, a model-based version management
functionality is implemented, as presented in Paper-D.

5. Summary of Appended Papers

26

5.4. Paper D - The Version Control Algorithm
Implementation in the Model Data Management
(MDM) Platform

In this paper, a simple model version control functionality (MVC) was
implemented, in order to exemplify the PDM/SCM integration approach suggested
in Paper-C, and test its feasibility using the MDM platform of Paper-A.

While version control is needed in both the mechanical and software disciplines,
the functionality differs between SCM and PDM systems. This allows us to
investigate how far such mechanisms can be aligned between the disciplines.
Version control is most fundamental and best validates the MDM approach since it
will put to the test the other crucial PDM/SCM integration factors such as the
possibility of having a common product structure and data representation.
Naturally, a full validation of the approach needs to investigate the feasibility of
the remaining management functionalities using the model-based approach.

MVC provides mechanisms that allow a user to save and extract any part of the
system model through check-in and check-out operations respectively. This
permits stakeholders to perform design activities in terms of models, where they
can organise, share and modify their models, transparent to the underlying file
structure.

The algorithm generically supports the fine-grained versioning of any model that
can be mapped to the meta-meta-model assumed in the platform, and presented in
Paper-B. In the current implementation, Data Flow Diagram (DFD) [27] models
from the Matlab/Simulink tool and Hardware Structure Diagram models [7] in the
Dome tool are handled.

6. A Survey of Modelling and Integration
Approaches

A survey of current approaches for the modelling of embedded computer control
systems was performed as part of this research project [28]. A short summary of
this study is presented in this section, together with a complementary survey of
representative tool integration approaches. The study was initiated to appreciate
the various flavours of modelling approaches available, and understand the
differences between them. The common patterns found between the approaches
formed a good basis for the definition of the meta-meta-model suggested in the
MDM platform (Paper-B). The tool integration solutions suggested by these
approaches, and their limitations, also became a good motivation for further
research on model and tool integration.

The survey aimed to study ‘what’ each approach models, with less focus on the
details of ‘how’ this is performed. For this purpose, a framework for
characterizing, comprehending and comparing the different approaches was
developed, focusing on the modelling content. As illustrated in Figure 8, the
framework combines generic modelling concepts with multiple iterations from the
evaluation of twelve modelling approaches covering different levels of design and
disciplines. This evolved and stabilised the framework, consolidating more
precisely the defined factors.

A modelling approach refers to any support technique or solution provided for the
design of embedded computer control systems, such as computer tools, languages
and standards. The choice of approaches covers different application domains,
disciplines and levels of design, ensuring that a broad collection of modelling
features are covered.

Twelve approaches have been evaluated based on published materials from the
respective developers. ACME [29], Wright [30], UniCon [31] and Rapide [32] are
software Architecture Description Languages (ADL). Lustre [33] and MAST [34]
have a computer science origin with formal methods and scheduling theory
background respectively. VCC [35] is an approach from the automotive industry.
Orccad [36], Giotto [37] and MetaH [38] are domain-specific approaches that aim

6. A Survey of Modelling and Integration Approaches

28

at control applications to be implemented on computer systems. Finally, both
Ptolemy [39] and SDL [40] focus on the high-level specification of the system,
and less on implementation details.

Figure 8. Technique for defining the framework – Top-down synthesis and bottom-
up refinement

6.1. Comparison Framework
To compare different modelling approaches, both the model contents, as well as
the design and analysis context within which the models are used, need to be taken
into consideration. In the comparison framework, this is formulated using three
groups of comparison factors: modelling content, design context and analysis
context. These factors are summarized in figure 9.

The content factors aim to identify the various system aspects that can be modelled
by a particular modelling approach. In this framework, a model is seen as
consisting of a set of abstractions that represent real system entities. The
abstractions may be classified into a set of common types. Furthermore, there exist
different types of relationships between the different abstractions, such as
communication between abstractions and decomposition of one abstraction into a
set of other types of abstractions. Following this view on models, the set of
abstraction types, the properties that define them, and the inter-abstraction
relation types that may exist in any modelling approach are identified.

Modelling Classification & Comparison Framework

Content
Factors

Language
Factors

Tools
Factors

Context
Factors

Top-down Synthesis

Modelling
Approach

A

Modelling
Approach

B

Modelling
Approach

L

Bottom-up Refinement

Systems, Design, Process

6. A Survey of Modelling and Integration Approaches

29

To facilitate the comparison, abstraction types, their properties and relation types
most relevant for embedded control systems are predefined in the framework, as
listed in figure 9. The content classification forms a common basis upon which it
is possible to organise and compare the content support provided by each
modelling approach.

Figure 9. Comparison framework structure and factors

Within the design context, the level of design at which the content is used by the
approach is of most interest. For comparison, four general design steps are
defined, ranging from implementation-independent specifications, towards the
final solution description: functional design, architectural design, medium-level
design, and detailed design.

Content
Abstractions

 Properties
 Structural interface
 Behaviour Semantics
 Activation
 Persistence
 Timing
 Error

Constraints
Inter-abstraction Relations

 Decomposition
 Encapsulation
 Behaviour Semantics

Constraints
 Communication
 Behaviour Semantics

Constraints

 Synchronisation
 Behaviour Semantics

Constraints

 Commonality
 Dependency
 Refinement
 Allocation
 Criticality
 Replication

Other

Design Context
Levels
Activities
Domains & Disciplines
Methodology
Traceability
Complexity Management

Reusability
Analysis Context

Functionality
Performance
Reliability
Safety

Other
Language

Representation technique
Adaptability
Multi-views

 Consistency guarantee
Tool

Availability
User interaction
Tool integration

System Generation

6. A Survey of Modelling and Integration Approaches

30

Within the analysis context, it is interesting to study the types of analysis that can
be performed given the modelling content provided by the approach. For
embedded computer control systems, relevant analysis types include: functionality,
performance, reliability and safety analysis.

Two other groups of factors are also handled in the framework: language and tool.
The former deals with the techniques and rules adopted by a modelling approach
for representing its content. Even though two approaches have the same content,
they may differ in the way this content is handled, used and represented in the
models. Finally, the tool factors attempt to identify the computer-aided techniques
and facilities available for manipulating, managing and verifying the models.

6.2. Comparison
The major part of this work was in the surveying and analysis of the modelling
content of the approaches. A detailed discussion and comparison of the content
can be found in the original study [28]. The procedure used to acquire the
comparison framework highlights the common features between the studied
approaches. Abstractions such as communication and software types; properties
such as timing; and inter-abstraction relations such as decomposition,
communication, refinement and allocation are most common between the studied
approaches.

Furthermore, in structuring the modelling content, common techniques are found
between the modelling approaches in order to absorb the complexity of the system
being modelled. The major identifiable mechanisms for complexity management
are: The widely adopted hierarchical decomposition, the use of domain-specific
terminology and concepts, the repeated use of a few central concepts, good
language and tool support, the division of content into multiple views, and
commonality mechanisms such as typing and specialisation/generalisation.

Through the analysis of the modelling content, the design levels addressed by each
modelling approach are determined, as illustrated in figure 10. In addition, table 2
presents a summary of the available and possible analysis techniques provided by
each approach. Available analysis techniques are those explicitly identified and
supported by an approach. Possible techniques are those that can be potentially
performed, given the content supported by an approach.

6. A Survey of Modelling and Integration Approaches

31

Figure 10. Design levels focused on by each modelling approach.

Table 2. Summary of available (√) and possible (+) analysis techniques

Functionality Performance
 Simulation Model

Checking Simulation Model
Checking Timing Reliability Safety

Ptolemy √ √
Lustre + √ + +
SDL + +
Acme
Wright + √
Rapide √ √ + √ +
VCC √ √ +
Orccad √ √ √ + √
Giotto √ √ √ √
MAST √ √
MetaH + + √ √
Unicon + + √

Concerning tool integration capabilities, the modelling approaches tend to
integrate other tools in order to cover certain aspects that are weak or not covered

Pt
ol

em
y

Fu
nc

tio
na

l
A

rc
h.

M

ed
iu

m

D
et

ai
le

d

Lu
st

re

SD
L R

ap
id

e

V
C

C

A
C

M
E

W
rig

ht

O
rc

ca
d

G
io

tto
 M
as

t

M
et

aH

U
ni

co
n

6. A Survey of Modelling and Integration Approaches

32

in the original approach. Compared to integration platforms (section 6.3), such
integration efforts tend to be ad-hoc, implemented to meet the current needs of the
approach. For example, MetaH is integrated with ControlH for the functional
description of its subprograms, and Giotto uses Simulink for graphical
representations. Certain approaches become quite dependent on this integration to
be usable. For example, Wright needs to have a CSP checker to perform any kind
of analysis. On the other hand, MetaH can still be operable without the use of
ControlH.

Much overlap exists between the content covered by the approaches. This is
specifically the case for approaches that attempt to cover similar activities and
analysis techniques, at the same level of design. The similarities between the ADL
languages, where focus is mainly placed on software modelling at the architectural
level, is a typical example. In these approaches, the main abstractions covered are
components, connectors and configurations used to model system software. It can
be argued that content overlap between approaches is an indication of integration
potential between them. The challenge remains to coordinate the remaining
content that does not entirely overlap.

Approaches covering the same activities at the same level of design can be used
interchangeably. Integrating such approaches might be of interest when the
different approaches provide complementary functionalities or analysis
techniques. For example, the ACME ADL might be desired to use for its
possibilities for generic specifications, while Wright provides analysis possibilities
through simulation and model checking.

In addition, approaches covering different activities, or different design levels
would be of interest to integrate to cover a wider range of design levels and
activities. For example, it may be of interest to integrate an ADL such as Rapide
with Ptolemy. While the latter provides higher level functional descriptions, the
former can be suitable for the architectural level of design. The model of
computation provided in Rapide (timed-posets) can also be complemented by the
variety of models of computations provided by Ptolemy.

An abundance of modelling languages and approaches that target various aspects
of system development exists. The union of these approaches may cover all that
can be desired. The challenge remains however in providing such a union. A
necessary component of any such integration effort is the integration of their
modelling content. Ad-hoc integration, as experienced in the studied approaches,
creates undesirable dependencies to the modelling tool. Instead, as discussed in
section 4.1, a platform addressing the integration of tools should be used. The next
subsection surveys a number of such platforms.

6. A Survey of Modelling and Integration Approaches

33

6.3. Tool Integration Approaches
This survey is based on the study of seven tool integration approaches: Cheops
[41], Eclipse [42], Fujaba [43], GeneralStore [44], IDM [45], IMPROVE [46] and
Toolnet [47].

Tool integration can be divided into two general categories: data integration and
control integration. The former focuses on relating the model data produced by
the different tools. On the other hand, control integration deals with tool activities
such as integrating the services or functionalities provided by the tools, providing
a common look and feel across the tools, controlling the workflow between the
tools, managing tool interactions, etc. A typical example of control integration is
the Eclipse platform for software development. Eclipse provides a plug-in based
framework to create, integrate and utilize software tools. The plug-in mechanism
is used to realise the services of the integrated tools, and through which tools can
interact and request services from each other. However, any files and data items
produced are managed internally by the integrated tools and are beyond the scope
of the platform. Naturally, certain tools such as Fujaba take into consideration both
aspects of integration. This section focuses mostly on data integration, given its
relevance for the issues discussed in this research.

Two different needs for data integration can be identified: the integration of
models covering different components of the complete system - component model
integration; and the integration of models covering different views of the same
system – view integration. These needs lead to different integration solutions.

The challenge in component model integration comes when the different
components are modelled using different models of computation, such as the time-
continuous or time-discrete models of computation. In this case, the heterogeneous
models need to be appropriately coupled at their interfaces to form a complete
model. From the surveyed approaches, GeneralStore and Cheops focus on
component model integration of software systems and mathematical models of
chemical plants respectively. Both perform component model integration through
the transformation of the heterogeneous models to a common internal
representation, based on a single meta-model. However, the common meta-model
in GeneralStore is only used to store the models, while the integrated system
model consists of the original models, together with wrapper elements generated
based on the specified interface definitions. Cheops, on the other hand, integrates
the transformed models into a complete system model, on which a common
numerical analysis method can be used. With both approaches, the resulting
complete model can be used for the co-simulation of the integrated components.

In dealing with view integration, the models generally need to be integrated at a
finer level of detail, associating specific content within the models to each other.

6. A Survey of Modelling and Integration Approaches

34

In this survey, four integration approaches deal with view integration: Fujaba,
IDM, IMPROVE and Toolnet. Different types of relations can be setup either
manually or automatically between the models. As identified in Toolnet, two
general categories of relations can be defined: general dependencies and data
duplication. Once the relations are setup, the most common analysis support
provided as part of the integration platforms is that of consistency checking of
model data between the tools, as provided in Fujaba, IMPROVE and Toolnet. The
approaches also provide mechanisms to repair any inconsistencies found during
the analysis. In certain cases, the integrated models deal with the same or close
aspects of the system being modelled. In other words, much duplicated or similar
data is found in the heterogeneous models. In such cases, a transformation
between the different model types can also be performed. Transformation facilities
are provided by Fujaba, IDM and IMPROVE.

Very few platforms consider the issue of data management. In Eclipse, such
support is gained through the integration of the CVS [48] versioning tool.
Considering that Eclipse does not perform data integration, CVS is simply treated
identically to any other development tool. Such integration is similar to that
illustrated in figure 6. The management tool manages the documents at the coarse
file level, without dealing directly with the fine-grained model data. From the
studied platforms, GeneralStore is the only platform to provide management
functionalities such as user authentication, transaction management and fine-
grained object versioning. This approach is closer to that illustrated in figure 7, but
not entirely satisfactory, since the need to integrate the platform with existing
PDM/SCM systems remains.

The general trend in the implementation of the platforms focusing on data
integration is to assume a centralised data storage system, to which tools are
integrated through a wrapper or a plug-in. The wrapper provides the necessary
abstraction from the tool-specific implementation and formats, and in this way
providing a uniform interface to the platform. The storage system can be a
database management system such as for GeneralStore, or a simple file as in
IMPROVE.

With the exception of GeneralStore, the repository is not generally used to manage
the complete set of model data from the tools. Instead, the platforms only handle
reference objects to the model data and additional integration information such as
relations between the references objects and relevant metadata. Model data is
expected to be managed and stored by its producing integrated tool. The strongest
motivation for not storing modelling data is to avoid the duplication of information
in the modelling tools as well as platform. Such an approach however limits the
possibility to provide the necessary management functionalities, as advocated in
this thesis.

7. Industrial Case Studies

This section presents a summary of two industrial case studies carried out at
Scania, as part of this research project. As briefly discussed in section 7.3, the case
studies were used as a source of inspiration, as well as to evaluate some of the
ideas presented in this thesis. The first case study aimed at a quantitative analysis
of architecture designs based on a set of keyfigures that reflect important quality
attributes. Given exposure to the challenges faced during this case study, a second
case study was initiated to deal with an analysis of the function modelling
capabilities at the organisation, together with a recommendation for future
improvements. A more complete description of these case studies can be found in
[49] and [50] respectively.

7.1. Keyfigure Analysis Case Study
During the early architectural design of a truck, architects face the challenge of
choosing the Electrical/Electronics (EE) architecture, onto which the system
functionality is to be implemented. It is desired to quantitatively analyse and
compare different architecture designs, taking into consideration and optimising
important design keyfigures such as the resulting system weight and costs. The
evaluation needs to perform trade-offs between a set of keyfigures, taking into
consideration a range of product variants.

For this end, a keyfigure tool supporting the architecture design of allocating
functions to control units, as well as the quantitative calculation and weighting of
selected keyfigures, was developed. The architecture of the developed keyfigure
tool, together with its different data sources is shown in figure 11.

A central database was used to collect information about the functional
specifications, communication signals and components set of the product variants.
Data was collected from a range of dispersed sources in the organisation. A core
source of information was the Function and Component Databases that needed to
be manually manipulated to suite the needs of the study. Another important source
of implementation data was the Communication Database used to deduce the
communication needs between functions, the decomposition of functions into

7. Industrial Case Studies

36

subfunctions, and their allocation to electronic units. In addition, specific product
variants were imported from proprietary product identification files, in which
variants were defined as a selection of a set of user functions.

Figure 11. Tool architecture for the keyfigure calculation tool

A wide range of keyfigures (See table 3) was selected based on four important
product aspects: Dependability, cost-efficiency, modularity and performance. An
example keyfigure is the number of cable connection points. This keyfigure relates
to the dependability aspect, since connections are an important source of faults and
failures in embedded automotive control systems. The aim is to reduce the number
of connection points in difficult environments, through the appropriate positioning
of control units. The length of cables and number of components are other easily
analyzable keyfigures relating to cost-efficiency.

In the study, the specification of the functionality and the hardware architecture
were separated, creating two views of the system. The separation facilitated the
possibility to perform multiple allocation strategies without needing to re-model
the system functionality. The functionality was modelled as function blocks linked
by communication links. The implementation was modelled as electronic units
linked by cables. The electronic units include sensors, actuators and electronic
control units (ECU). The different views are then interrelated once the functional
allocation onto the hardware is defined, where function blocks are associated to
electronic units and communication links are associated to one or more cables.

Manual adaptation Architecture
Database

Function and
Component
Databases Keyfigure

Analysis Tool

Comm.
Database

Import Tool

Analysis
Results

7. Industrial Case Studies

37

Table 3. The keyfigures considered in the quantitative architectural design
analysis.

 Number of connection
points

 Number of
suppliers/sensors

 Number of mission
critical connections

 Cable length Modularity Number of part numbers
 Connections in bad
environment

 Number of messages
through gateway

 Number of distributed
functions

 Number of cables in
difficult passages

 Number of Mission
critical units

 Number of widely
distributed functions

 Number of ECUs Processor utilization Number of pins/ECU
 Number of sensors Gateway utilization Component cost
 Weight Number of suppliers/ECU Bandwidth utilization
 Number of units
developed in-house

Once the functional allocation is performed, an analysis tool allowed the keyfigure
calculations for a specific product variant and system architecture. A screenshot of
the main analysis window, highlighting some of the measured keyfigures, is
provided in figure 12. Using this tool, it was possible to quickly compare
alternative architectures and find the weaknesses and strengths of the alternatives
as indicated by quantitative keyfigures.

7.2. Function Modelling To Improve Software
Documentation

Among the many distributed sources of information within the Scania
organisation, the current functional documentation of the EE
(Electrical/Electronics) system is mainly based on three core documents:

• User Function Specification (UFS) - specifies a User Function, which is a
specific functionality to be implemented in a vehicle, implemented over more
than one system.

• System Description (SD) - specifies a System, describing the physical entities
onto which User Functions are implemented such as sensors, actuators and
ECU-hardware units.

• Message sequence charts (MSC) - Specifies a Scenario describing a specific
sequence of events for a given User Function. Multiple scenarios are
specified for each User Function and these are grouped into Use Cases.

7. Industrial Case Studies

38

Figure 12. Screenshot of architecture scorecard tool

In a preliminary internal study, a range of problems were identified with the
current functional documentation, namely:

• Document inconsistencies - Text editors are used for the documentation,
where references to other documents are hard-coded, with no mechanisms to
update these links upon changes.

• Incomplete information – A scenario-based behaviour description of the
functions is used, leading to an incomplete specification. In addition,
functionality to be completely implemented within one hardware unit is not
necessarily documented.

• No user function overview – No documentation currently provides a general
overview of functions, focusing on the end-user aspects.

• Unclear dependencies - For a particular user function, the distribution of
function parts onto systems is implicit.

• Function and Implementation mixed-up - The current User Function
Specification document contains information about both function and
implementation, limiting the possibility of function reuse given

7. Industrial Case Studies

39

implementation changes, as well as blurring the boundaries between the roles
of the system owner and the function owner.

A brief investigation to deal with these problems was performed. The study
resulted in an information model and a documentation approach to function
specifications. The proposed techniques were evaluated through the specification
of three functions of varying complexity.

7.2.1. Information Modelling
The proposed information model to handle the document contents is illustrated in
Figure 13. The information model is broken down into different views that group
entities together targeting particular aspects of the system. Roles were also
identified to control access to the information model entities.

The three main views of the system are the Functional view, Software view and
Hardware view. A common pattern exists between each of these views,
specifically: (1) The hierarchical decomposition used within each view, for
managing the size and complexity of the system description. This highlights that
there exists no single dominating product structure, and each view describes the
system from a specific perspective. (2) The definition of entity interface through
which the entity interacts with its external environment.

• Function View - The main object in this view is the Function, with two sub-
types: PartFunction and Variable. A PartFunction object designates certain
functionality that given a certain input, produces a certain output. A Variable
object designates a transportation link that manages certain data internally
and provides access to this data to connected PartFunctions. A Function can
be decomposed into a set of (sub-)Functions, forming a hierarchical product
structure. The interface definition of a Function is defined by a set of ports,
where a port acts as a placeholder for a subset of its object’s externally
accessible properties.

• Software View - Similar to the Function view, the main object in this view is
the SoftwarePart, with two sub-types: SoftwareComponent and Data. A
SoftwareComponent object designates a sourcecode module that given a
certain input, produces a certain output. A Data object designates a data
storage facility that manages certain data internally and provides access to
this data to connected SoftwareComponents. A SoftwarePart can also be
decomposed into a set of (sub-)SoftwareParts, forming a hierarchical product
structure. The interface definition of a SoftwarePart is defined by a set of
SoftwarePorts, where a SoftwarePort designates a certain internal data item
that is externally accessible to other SoftwareParts.

7. Industrial Case Studies

40

• Hardware View - Similar to the Function view, the main object in this view is
the HardwarePart, with two sub-types: HardwareComponent and Cable. A
HardwareComponent object designates a physical block having geometrical
dimensions and a position. A Cable object designates a single cable with a
certain geometrical path. A HardwarePart can also be decomposed into a set
of (sub-)HardwareParts, forming a hierarchical product structure. The
interface definition of a HardwarePart is defined by a set of pins, where a Pin
designates a spatial location at which the HardwarePart can be connected to
other HardwareParts.

In addition, the User Function view is a special view targeting the product user,
and hence focuses on structuring the product functionality from the user
perspective. A complete system is described using a network of hierarchically
decomposed Functions. However, from the user perspective, certain sets of
Functions form a clear and valuable contribution that the user can relate to. Such a
set is managed in the information model using the UserFunction object. Ignoring
Function variants for the moment, a UserFunction is a grouping of Function
objects, forming a fully defined specific functionality (just like the hierarchical
composition of functions into PartFunctions). It is important to note that a
Function object does not exclusively belong to a single UserFunction. Certain
functionality, such a ‘speed sensing’, provides services that can be shared by many
UserFunctions. Such functions are a good indication of the interaction and
dependencies between user functionalities.

Finally, given the importance of product configurations, each of the above views is
further described using a specific variant view: FunctionVariant, SoftwareVariant
and HardwareVariant views, describing variants of functionalities, software
realizations of functionality and the hardware platform in which the software
realizations are allocated respectively. Again, a pattern can be found in
representing these three variant needs, and in their relation to other objects in the
information model.

• The FunctionVariant is used to represent variations for a particular user
functionality. A UserFunction is a grouping of FunctionVariants that provide
similar or competing functionality from which the user can choose. A
FunctionVariant object is in turn a grouping of Function objects, forming a
fully defined specific functionality. It is important to note that a Function
object does not exclusively belong to a single FunctionVariant, since certain
functionality can be a common part among the various variants of a given
UserFunction.

7. Industrial Case Studies

41

-name
-transformation

PartFunction

-ID(partNumber)
-drawing

HardwarePart

-name
-type

Data

Connector

-name
-unit
-range
-quality

Variable

-ID
-name
-unit
-range
-quality
-direction(in/out)

Port

1

-has

*

*

-accesses1

-ID
UserFunction

1 -consist of*

-ID
-position

Pin

-name
-sourceCode

SoftwareComponent

-ID
-name
-type
-direction(in/out)

SoftwarePort

-path
-area

Cable

*

-implemented by

1

*

-allocated to1

*

-implemented by

1

1 -has *

-connects

*

1

-name
-weight
-size
-position

HardwareComponent

-ID
Function

-ID
SoftwarePart

1

-has

*

1

-connects*

-collects

1*

-clockFrequency
-RAM
-flash

ECU
Sensor

1

*

1
*

1
*

-ID
-condition

FunctionVariant

-ID
-condition

HardwareVariant

-ID
-condition

SoftwareVariant

1
-selects*

-ID
-expression

Condition

-based on *

*

*

-based on *

*

-based on

*
1

0..1

1 0..1

1

0..1

1
*

1
*

1

-implemented by*

1

-implemented by

*

1

-allocated to*

Actuator

Figure 13. The proposed information model

7. Industrial Case Studies

42

• The SoftwareVariant is used to represent the different variants in how a
particular Function is implemented in software. A SoftwareVariant is a
grouping of SoftwarePart objects that together realise a given Function.

• The HardwareVariant is used to represent the different variants in how a
particular SoftwarePart is allocated to hardware. A HardwareVariant is a
grouping of HardwarePart objects that together implement a given
SoftwarePart.

In the above views, objects do not exclusively belong to one view. For example,
the SoftwarePart object belongs to both a Software view describing the software
implementation, as well as a HardwareVariant view describing the allocation of
software to hardware. Such objects help identify the dependencies that exists
between views, calling for special attention for their management, in order to
reduce duplication and inconsistencies in the product description.

7.2.2. Roles
As illustrated in table 4, certain roles responsible for the development of the views
were identified. In most cases, the responsibility of defining the objects within a
given view lies with the same role, and the table is hence presented relating views
to roles. However, given that objects may not be exclusively defined within one
view, it was necessary to relate the role responsibilities at a finer-grained level,
relating roles to specific information objects. For brevity, the fine-grained
responsibility sharing is not discussed here. In addition, besides the Owner roles,
there exist several other roles that only need to access the product information,
such as the system user, tester, safety analyst and maintenance/repair.

7.2.3. Proposed Documentation
The information model must be captured in some kind of descriptions, textual or
graphical, collected in documents. Given the shortcomings of the original
documentation, a new documentation solution is proposed replacing the original
UFS and MSC documents. Two new documents are suggested instead: A User
Function Description (UFD) document and a Function Architecture Description
(FAD) document, specifying the implementation-independent functionality and
their software/hardware implementation respectively. In the proposal, the SD
document is also redefined to focus on the hardware aspects of the system it
describes. The content of the new documents is simply a restructuring of the
previous documentation, and major changes have been avoided where possible in
order to permit a smoother shift to the new documentation structure. Since an
analysis of potential tools and models were beyond the scope of the study, and

7. Industrial Case Studies

43

recognising the effort needed in introducing new tools, documents are still defined
using text editors. The use of UML 2.0 activity diagrams for describing functions
is however proposed, given the present experience in its usage by some members
of the organisation.

Table 4. The roles responsible for the development of the information model
views.

View Owner role Role Description
Function Function owner Responsible for the specification, development and

validation of a user function.
Software System owner
Hardware System owner

Responsible for the development of a selected set of
software/hardware components for the implementation of a
selection of partFunctions/softwareParts.

Function
variant

Configuration
coordinator
(functions)

Software
variant

Configuration
coordinator
(software)

Hardware
variant

Configuration
coordinator
(hardware)

Manages and ensures compatibility between the
combinations of hardware and software for a given
configuration. A configuration is a selection of systems with
defined hardware and software versions. The configuration
coordinator manages the conditions pointing out different
variants.

User
function

Function
coordinator

F-SW
allocation

Function
coordinator

F-HW
allocation

Function
coordinator

Manages the interaction of user functions by coordinating
the definition and development of partFunctions and their
interactions.

SW-HW
allocation

Communication
coordinator

Manages the allocation of communication between software
components both within and between processing units. The
communication coordinator is responsible for reliable
communication and non-congested channels.

7.3. Conclusion
The keyfigure analysis case study borrowed many ideas from the tool and
mechanisms discussed in Paper-B. The multi-view principles presented in Paper-B
were adopted in the restructuring and division of the available dataset into
different views, thereby facilitating the desired analysis as well as the possibility
to perform multiple allocation strategies without needing to remodel the system
functionality. In addition, the database structure used in this case study is based on
the meta-meta-model suggested in the paper.

7. Industrial Case Studies

44

Preliminary studies and keyfigure analysis of the case study were first performed
using the prototype tool presented in Paper-B. However, a new keyfigure tool
implementation was ultimately used to facilitate the process of importing
information from the various sources at the organisation. In the final tool, the use
of hierarchy within each view, and hence the cross-hierarchy allocation
mechanisms, was not adopted. Nevertheless, the prototype tool later took
advantage of the case study material for experimentation and testing purposes.

During the import of information from the various data sources, many
inconsistencies in the documents were discovered due to duplication of
information in the different documents and the lack of mechanisms to propagate
changes between them. The needs for an integrated data management system as
advocated in this thesis were confirmed from experiences in the case study.

The discovery of inconsistencies also triggered the documentation case study of
section 7.2. The scope of the study did not encompass the implementation of tools
for the automated management of the suggested documentation. For this reason, it
was not possible, nor expected, to directly apply any of the solutions presented in
this thesis. However, many ideas were borrowed such as the division of the
information model into multiple views, as well as the particular meta-model within
each view. Given the lack of automated support, integration was achieved through
the restructuring of the documents to minimise the duplication of information and
to highlight any relationships between their contents.

8. Future Work

As mentioned in section 4.3, this thesis focused on two cases of integration to
cover each of the identified needs of view integration and model management. The
potential for future developments is hence great.

The view integration mechanisms presented in Paper-B need to be expanded to
cover other types of relationships. While specific to the allocation of system
functions to hardware, it is believed that these mechanisms can be applied to other
types of relationships such as that of mapping software components to hardware.
However, no claim can be made that these mechanisms are general enough to
handle all types of relationships. In particular, future work should address the
management of duplicated information between tools, synchronizing and
maintaining its consistency. A systematic approach when implementing these
relationships should allow a reuse of many of the concepts already explored. In
addition, the ability to perform inter-view associations over a larger number of
views is a challenge to handle in future developments. Finally, a complete MDM-
based implementation of the inter-view allocation approach remains to be
developed.

A full validation of the PDM/SCM unification approach needs to investigate the
feasibility of the remaining management functionalities. The functionalities of the
union of typical SCM and PDM tools would include: Version management,
product structure management, build management, change management, release
management, workflow and process management, document management,
concurrent development, configuration management and workspace management
[15]. A unified approach should support the common needs of hardware and
software development, as well as the discipline-specific needs such as build
management for software development.

Relating to implementation issues, the current platform implementation
investigates the potential of implementing the MDM platform using the
technology offered by a commercial PDM system. This reference implementation
can be used to highlight the shortcomings of conventional PDM, as well as the
specific needs of MDM. The experience gained can then be used in the
development of dedicated MDM systems.

8. Future Work

46

The implementation of the current functionalities has not considered the
performance issue yet, focusing instead on the feasibility of the approach in the
large. It remains however to see if the expected performance can be provided by a
conventional PDM, given that such a system is not normally designed to deal with
a large number of fine-grained data items. Such an evaluation will provide
valuable feedback on to the expected performance of new MDM solutions.

Finally, some process related and usability issues have been touched upon in this
thesis, and are relevant for future work.

The inter-view mechanisms defined in Paper-B support a process-independent
allocation practice. By placing certain restrictions, the allocation practices can be
constrained. For example, disallowing the possibilities for association extensions
through the sub-systems provides a top-down approach, where sub-system design
can only refine design decisions specified at the higher level. The open approach
however allows for the possibility to feedback information up the hierarchy.
Exploring these process issues can be of interest for future extensions.

Doubt remains whether the inter-view mechanisms actually facilitate the
developer’s work. It is believed that the approach, while based on simple concepts,
does require a new mind-set. From the limited gained experiences, the ability to
focus on specific parts of the system design, as well as inheriting and extending
other decisions made elsewhere in the system, is rewarding. This however does
depend on good feedback and support by the integration tool. In the worst case,
the approach advocated here can be seen as an experiment, or an initial step,
towards other possibilities of view integration.

More advanced fine-grained version control algorithms need to be implemented in
the platform. Future algorithms need to support concurrent development, by
allowing parallel access to modelling elements, as well as providing branch/merge
mechanisms. In addition, in supporting multiple product structures, support for the
parallel development of these structures need to be provided, while ensuring the
consistency of information across these structures. For usability reasons, the
graphical visualisation of the differences between two model versions needs to be
developed.

It would also be interesting to develop a number of version control algorithms
based on the same MDM platform. The system can then be configured so that
different strategies can be applied for different kinds of models. Different
development needs can thus be satisfied using variants of the same basic
mechanisms in a unified management system. For example, software development
might require the complex version control mechanisms and concurrent
development normally provided by SCM systems, while hardware development is

8. Future Work

47

satisfied with sequential revision control. The different solutions ought to be based
on the same basic mechanisms, user interface and terminology.

9. Conclusion

Weinberg [3] states that ‘A system is a way of looking at the world… The system
is a point of view – natural for a poet, yet terrifying for a scientist!’ System
structuring is not an inherent property of the system. Instead, it is a way of looking
at a system to better understand it.

In the shift from mechanical to multi-disciplinary mechatronics products, the need
for multiple viewpoints becomes more evident. The need for multiple disciplines
during development means that there will exist multiple viewpoints – multiple
product structures. This is specifically amplified with software development
within which the presence of many structures is more apparent.

For the successful integration of the efforts from each of these disciplines, the
views need to be appropriately integrated, preventing any inconsistencies and
divergences from creeping into the system design. Each view structure is equally
important and the challenge is to integrate them appropriately.

An acceptable environment to perform view integration, should also deal with the
various models used to represent these views. This leads to the need for model
management functionalities and hence the challenge of integrating the
management systems used by the specific disciplines, namely PDM and SCM
systems. It is here argued that model integration ought to be one of the many
functionalities supported by such an integrated, model-based, management system.

Recognising that such an environment ought to be a result of standardisation
effort, this thesis focused on two cases of integration techniques to investigate
each of the view integration and model management issues.

An approach to multi-view modelling and integration which tightly integrates the
view hierarchies is presented. Specifically, model integration is investigated for
the allocation of system functions onto the implementing hardware architecture.
The proposed approach promotes the independent development of the views,
allowing developers from each discipline to work concurrently, yet ensuring the
completeness, correctness and analysis of any inter-view design decisions made.

9. Conclusion

50

A Model Data Management (MDM) platform that generically manages models
from the various tools used in development is also presented. View integration is
considered as an integral functionality of this platform. The platform is viewed as
a unification of the management functionalities typically provided by the
discipline-specific PDM and SCM systems. The unification is achieved by
unifying the kind of objects it manages – models. The advantage of MDM over
conventional PDM/SCM systems is the inclusion of the internal content of its
supported models, allowing for a tighter integration of the design information
between different models. In demonstrating the platform feasibility, a generic
version management functionality of models is implemented.

The platform is argued to be feasible given the move towards model-based
development in software engineering, bringing the discipline’s needs closer to
those of the hardware discipline. This leads the way for an easier and more
effective integrated management platform satisfying the needs of both disciplines
using a common set of mechanisms. The needs of the disciplines will always differ
due to the nature of the products themselves. For example, the development
process of software and hardware products differ [15]. However, in a unified
management approach, the development needs of both disciplines can be satisfied,
using variants of the same basic mechanisms, by providing different strategies for
different kinds of models. It is essential however to base the strategies on the same
basic mechanisms and user interface, allowing the reuse of basic components and
preventing confusion in terminologies. While most critical for multi-disciplinary
development, the platform is equally appropriate for the development of purely
mechanical or software products.

The major aim of the current platform implementation was to experiment and
illustrate the concepts discussed in this thesis. The architecture builds on existing
technologies from each of the mechanical and software disciplines. The proposed
MDM system is built based on a configurable PDM system, given its maturity,
ability to manage model contents and the presence of already developed
management functionalities such as the support for distributed development,
change management, workflow control, etc. At the same time, the version control
functionality borrows ideas from the fine-grained version control algorithms in the
software discipline. The adoption of a PDM system is not indispensable and one
can envisage building an independent MDM that supports both disciplines. It is
our ideal vision that with the acceptance of model-based development, one no
longer needs to discuss the integration of PDM and SCM systems. Instead, a truly
unified approach to model data management can be used by both disciplines.

10. References

[1] Stuecka R., Bridging the Gap is not Enough – Life-cycle Management for
Automotive Electronics and Software, Global Automotive Manufacturing
and Technology, 2003.

[2] McKinsey & Company, Knowledge-based changes in the automotive value
chain, HAWK-2015, 2003.

[3] Weinberg G. M., An Introduction to General Systems Thinking, Dorset
House Publishing; Silver anniversary edition, ISBN 0932633498, 2001.

[4] Larses O., Factors influencing dependable modular architectures for
automotive applications. Technical Report TRITA-MMK 2005:09 ISSN
1400-1179. Royal Institute of Technology, KTH, Stockholm, 2005.

[5] Checkland P., Systems thinking, Systems practice: Includes a 30-Year
Retrospective. John Wiley & Sons, 1999.

[6] IEEE, ANSI/IEEE Standard 1471-2000, Recommended practice for
architectural description of software-intensive systems, September 2000.

[7] Redell O., El-khoury J. and Törngren M., The AIDA toolset for design and
implementation analysis of distributed real-time control systems,
Microprocessors and Microsystems, Volume 28, Issue 4, 2004.

[8] El-Khoury J. and Törngren M., Towards a Toolset for Architectural Design
of Distributed Real-Time Control Systems, 21st Real-Time Systems
Symposium, 2001.

[9] Mathworks, Simulink, http://www.mathworks.com/products/simulink/,
accessed January 2006.

[10] Redell O., Modelling of Distributed Real-Time Control Systems, An
Approach for Design and Early Analysis, Licentiate Thesis, Department of
Machine Design, KTH, TRITA-MMK 1998:9, ISSN 1400-1179, ISRN
KTH/MMK--98/9--SE, 1998.

[11] Dome, Dome guide, Version 5.2.2,
http://www.htc.honeywell.com/dome/index.htm, 1999, accessed January
2006.

[12] Redell O., Response Time Analysis for Implementation of Distributed
Control Systems, Doctoral thesis, Dep. of Machine Design, KTH, TRITA-
MMK 2003:17, ISSN 1400-1179, ISRN KTH/MMK--03/17--SE, 2003.

10. References

52

[13] Gomaa H., Software design methods for concurrent and realtime systems,
Addison-Wesley publishing company, ISBN 0-201-52577-1, 1993.

[14] Eppinger S. and Salminen V., Patterns of Product Development Interactions,
International Conference on Engineering Design, 2001.

[15] Crnkovic I., Asklund U. and Persson Dahlqvist A., Implementing and
integrating product data management and software configuration
management, Artech House Publishers, 2003.

[16] UML, OMG Unified Modelling Language Specification, V1.5, 2003.
[17] Larses O. and Adamsson N., Drivers for Model Based Development,

Proceedings of the 8th International Design Conference on Design, 2004.
[18] Encyclopædia Britannica Premium Service, ‘engineering’,

http://www.britannica.com/ebc/article-9363722, accessed January 2006.
[19] Westfechtel B. and Conradi R., Software Configuration Management and

Engineering Data Management: Differences and Similarities, Proceedings
8th International Workshop on System Configuration Management,
Springer-Verlag, pages 95-106, 1998.

[20] Bendix L. and Borracci L., Towards a Suite of Software Configuration
Metrics, Twelfth International Software Configuration Management
Workshop (SCM-12), 2005.

[21] MOF, “Meta Object Facility (MOF) specification”, V1.4, April 2002.
[22] World Wide Web Consortium, Extensible Markup Language (XML)

http://www.w3.org/XML, accessed January 2006.
[23] Object Management Group, Common Object Request Broker Architecture

(CORBA), http://www.omg.org/technology/documents/formal/corba_2.htm,
accessed January 2006.

[24] Microsoft, Component Object Model Technologies (COM),
http://www.microsoft.com/com/default.mspx, accessed January 2006.

[25] Kemmerer S. J. (editor), STEP, the grand experience, National Institute of
Standards and Technology, special publication 939, 1999.

[26] Dahlqvist, A.P., Crnkovic, I. and Asklund, U., Quality Improvements by
Integrating Development Processes, 11th Asia-Pacific Software Engineering
Conference, 2004.

[27] Cooling J., Software engineering for real-time systems. Pearson Education
Limited, ISBN 0201596202, 2003.

[28] El-khoury J., Chen D. and Törngren M., A survey of modelling approaches
for embedded computer control systems (Version 2.0), Technical report,
ISRN/KTH/MMK/R-03/36-SE, TRITA-MMK 2003:36, ISSN 1400-1179,
Department of Machine Design, KTH, 2003.

[29] Garlan D., Monroe R. and Wile D., ACME: An Architecture Description
Interchange Language, Proceedings of the Centre for Advanced Studies on
Collaborative Research (CASCON) Conference, 1997.

10. References

53

[30] Allen R. J., A Formal Approach to Software Architecture, Ph.D. Thesis,
Carnegie Mellon University, Technical Report Number: CMU-CS-97-144,
1997.

[31] Shaw M., DeLine R., Klein D. V., Ross T. L., Young D. M. and Zelesnik G.,
Abstractions for Software Architecture and Tools to Support Them, IEEE
Transactions on Software Engineering, pages 314-335, 1995.

[32] Luckham D. C. and Vera J., An Event-Based Architecture Definition
Language, IEEE Transactions on Software Engineering, 1995.

[33] Halbwachs N., Synchronous programming of reactive systems: A tutorial
and commented bibliography, Proceedings of the International Conference
on Computer-Aided Verification (CAV), 1998.

[34] Harbour M. G., Gutiérrez J. J., Palencia J. C. and Moyano J. M. D., MAST:
Modeling and Analysis Suit for Real-Time Applications, Proceedings of the
Euromicro Conference on Real-Time Systems, 2001.

[35] Demmeler T., O’Rourke B. and Giusto P., Enabling Rapid Design
Exploration through Virtual Integration and Simulation of Fault Tolerant
Automotive Application, Society of automotive engineers, Document
Number: 2002-01-0563, 2002.

[36] Simon D., Pissard-Gibollet R., Kapellos K. and Espiau B., Synchronous
composition of discretized control actions: design, verification and
implementation with Orccad, 6th International Conference on Real-Time
Control Systems and Application, 1999.

[37] Henzinger T. A., Horowitz B. and Kirsch C.M., Giotto: A time-triggered
language for embedded programming, In Proceedings of the First
International Workshop on Embedded Software, 2001.

[38] Krueger J. W., Vestal S. and Lewis B., Fitting the pieces together:
system/software analysis and code integration using MetaH, Proceedings of
the 17th Digital Avionics Systems Conference, 1998.

[39] Liu X., Liu J., Eker J. and Lee E. A., Heterogeneous Modeling and Design
of Control Systems, Software-Enabled Control: Information Technology for
Dynamical Systems, 2003.

[40] Bræk R., SDL Basics, Computer Networks and ISDN Systems, volume 28,
issue 12, special Issue: SDL and MSC, 1996.

[41] G. Schopfer, A. Yang and W.Marquardt, Tool-Integration in Chemical
Process Modelling, 9th European software Engineering Conference and 11th
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
2003.

[42] Eclipse, The Eclipse Project, http://www.eclipse.org/, accessed January
2006.

10. References

54

[43] Burmester S., Giese H. (et al.), Tool integration at the meta-model level: the
Fujaba approach, International Journal on Software Tools for Technology
Transfer, volume 6, no. 3, 2004.

[44] Reichmann C., Kuhl M., Graf P. and Muller-Glaser K. D., GeneralStore - A
CASE-Tool Integration Platform Enabling Model Level Coupling of
Heterogeneous Designs for Embedded Electronic Systems, 11th IEEE
International Conference and Workshop on the Engineering of Computer-
Based Systems, 2004.

[45] Karsai G., Lang A. and Neema S., Design patterns for open tool integration,
Software and Systems Modelling, Volume 4, Issue 2, 2004.

[46] Becker S. M., Haase T. and Westfechtel B., Model-based a-posteriori
integration of engineering tools for incremental development process,
Software and Systems Modelling, Volume 4, Issue 2, 2004.

[47] Freude R. and Königs A., Tool integration with consistency relations and
their visualization, 9th European software Engineering Conference and 11th
ACM SIGSOFT Symposium on the Foundations of Software Engineering,
2003.

[48] Ximbiot, CVS, http://ximbiot.com/cvs/, accessed January 2006.
[49] Larses O., Applying quantitative methods for architecture design of

embedded automotive systems, Proceedings of INCOSE International
Symposium, 2005.

[50] Larses O. and El-khoury J., Function Modelling to Improve Software
Documentation. Technical report, ISRN/KTH/MMK/R-05/25-SE, TRITA-
MMK 2005:25, ISSN 1400-1179, Department of Machine Design, KTH,
2005.

