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A MODEL OF CONTINUOUS SEDIMENTATION OF FLOCCULATED

SUSPENSIONS IN CLARIFIER-THICKENER UNITS

RAIMUND BÜRGERA, KENNETH H. KARLSENB, AND JOHN D. TOWERSC

Abstract. The chief purpose of this paper is to formulate and partly analyze a new mathe-
matical model for continuous sedimentation-consolidation processes of flocculated suspensions
in clarifier-thickener units. This model appears in two variants for cylindrical and variable
cross-sectional area units, respectively (Models 1 and 2). In both cases, the governing equation
is a scalar, strongly degenerate parabolic equation in which both the convective and diffusion
fluxes depend on parameters that are discontinuous functions of the depth variable. The initial-
value problem for this equation is analyzed for Model 1. We introduce a simple finite-difference
scheme and prove its convergence to a weak solution that satisfies an entropy condition. A lim-
ited analysis of steady states as desired stationary modes of operation is performed. Numerical
examples illustrate that the model realistically describes the dynamics of flocculated suspensions
in clarifier-thickeners.

1. Introduction

Continuously operated clarifier-thickener units for the solid-liquid separation of suspensions are
widely used in chemical engineering, mineral processing, the pulp-and-paper and food industries,
and wastewater treatment. For many purposes, spatially one-dimensional mathematical models
of these units are sufficient. They are usually based on the kinematic sedimentation theory by
Kynch [62], which describes the batch settling of a so-called ideal suspension of small, equal-sized
rigid spheres in a viscous fluid by the conservation law ut + b(u)x = 0 for the solids volume
fraction u as a function of depth x and time t. The material specific properties of the suspension
are described by the Kynch batch flux density function b(u). If a global conservation of mass
principle is taken into account, then the extension of this theory to clarifier-thickener units leads
to a conservation law with a flux that depends discontinuously on x, since the suspension feed flow
is split into upwards- and downwards-directed bulk flows into the clarification and thickening zones,
respectively. The discontinuous flux makes the well-posedness analysis and numerical simulation
of the clarifier-thickener model difficult.

As is well known, the solution of the conservation law arising from the kinematic theory prop-
agates along characteristics, which are straight lines in cylindrical vessels. However, most suspen-
sions are not ideal; rather, they consist of small flocs, or as we say, they are flocculated. These
mixtures include inorganic slurries such as tailings from mineral processing, which are flocculated
artificially in order to enhance settling rates, as well as biological sludges in wastewater treatment.
They form compressible sediment layers, which are characterized by curved iso-concentration lines
in settling columns, and can therefore not be predicted by the kinematic theory. Instead, an ex-
tended dynamic model including pore pressure and effective solids stress has to be used. Such a
model is provided by a theory of sedimentation-consolidation processes [10, 27], whose governing
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Figure 1. Clarifier-thickener units treating a flocculated suspension: (a) steady-
state operation in conventional mode, (b) steady-state operation in high-rate
mode, (c) a variant of the clarifier-thickener setup with a vertical feed inlet.

equation (if the model is reduced to one space dimension) is a quasilinear degenerate parabolic
equation, which degenerates into the equation of first-order hyperbolic type of the kinematic sedi-
mentation model when u ≤ uc, where uc is a material-dependent critical concentration or gel point
at which the solid flocs start to touch each other.

It is the purpose of this paper to present and analyze a clarifier-thickener model for flocculated
suspensions as a combination of the first-order models for ideal suspensions with the sedimentation-
consolidation theory, which contributes a strongly degenerate diffusion term. The proposed model
consists of an initial-value problem for a strongly degenerate parabolic partial differential equation,
in which both the convective flux and the diffusion flux depend discontinuously on the spatial
variable x.

To be more precise, we consider a continuously operated axisymmetric clarifier-thickener vessel
as drawn in two variants in Figures 1 (a) and (b) and Figure 1 (c), respectively. Throughout
this paper, we assume that all flow variables depend on depth x and time t only. This means in
particular that u is assumed to be constant across each horizontal cross section. We subdivide
the vessel into four different zones: the thickening zone (0 < x < xR), which is usually the unique
zone considered in conventional analyses of continuous sedimentation, the clarification zone (xL <
x < 0) located above, the underflow zone (x > xR) and the overflow zone (x < xL). The vessel is
continuously fed at depth x = 0, the feed level, with fresh feed suspension at a volume feed rate
QF(t) ≥ 0. The concentration of the feed suspension is uF(t). The prescribed volume underflow
rate, at which the thickened sediment is removed from the unit, is QR(t) ≥ 0. Consequently, the
overflow rate is QL(t) = QR(t)−QF(t), where we assume that the two control functions QF(t) and
QR(t) are chosen such that QL(t) ≤ 0. Of course, the solids concentrations in the underflow and
overflow cannot be prescribed, and are part of the solution. Furthermore, we distinguish between
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the four abovementioned zones in the clarifier-thickener, which are a property of the equipment
modeled, and the clear liquid, hindered settling, and compression regions, in which a suspension at
a given point of time has the concentrations zero, 0 < u ≤ uc, and u > uc, respectively. Thus, the
time-dependent location of the regions is a property of a particular flow, that is, of the solution to
the problem. Finally, let us mention that the hypothetical assumption QF < 0 would mean that
material is suctioned from rather than injected into the unit (as corresponding to our assumption
QF ≥ 0). This case is not included in the present analysis.

The model includes two different stationary modes of operation that are usually distinguished
in the applicative literature [34]: conventional operation, as shown in Figure 1 (a), when the
sediment level (where u = uc) is located below the feed level, and high-rate (also known as high-
capacity) operation (Figure 1 (b)), when one lets the sediment level (and thus the compression
region) rise into the clarification zone. In the latter mode of operation, practitioners observe that
the concentration above the compression region usually is zero. These distinctions are made in
engineering applications, and we will show that both modes are captured by the model which we
analyze in this paper. Figure 1 (c) shows a variant of the clarifier-thickener setup of Figures 1 (a)
and (b), in which the feed flow enters the vessel from above through a feed inlet. Note that the
feed inlet will usually occupy some of the cross-sectional area of the vessel. We assume that the
vessel drawn in Figure 1 (c) is controlled by regulating the feed flow QF and the discharge flow
QR, such that no active control of the overflow rate QL is necessary. In any circumstance we
consider a submerged feed source at a fixed vertical location. The notion “high rate” stems from
the observation that this mode of operation usually permits higher solids throughput than the
conventional mode, since the clarification zone can handle part of the solids feed flux. Capacity
and design calculations based on the new model are, however, outside the scope of this paper. For
the sake of simplicity, we also neglect the action of the rake provided in most industrial thickeners,
which rotates above the gently sloped floor of the thickener to move the concentrated sediment
towards the discharge opening.

Similar clarifier-thickener models were proposed by several authors including Barton et al. [6],
Chancelier et al. [30] and Lev et al. [64]. All available treatments are, however, limited to the
case of an ideal (non-flocculated) suspension, which is included as a special case in our analysis.
In addition, we point out that in [30] the problem of flux discontinuities is circumvented by
smoothing out the flux in small ε-neighborhoods of the flux around the levels zero and xR (in
our notation). However, uniqueness for ε → 0 is proved in [30] for steady-state solutions only.
Important contributions to the analysis and the determination of solutions to clarifier-thickener
models for ideal suspensions have been made by Diehl [39, 40, 41, 42, 43], in which local-in-time
existence and uniqueness results for problems with piecewise constant initial data are obtained
[39, 40, 41] and stationary solutions are completely classified [41, 43]. Numerical simulations
using a Godunov-type scheme are presented in [40, 41, 42]. The paper [34] presents a limited
discussion of a steady-state clarifier-thickener model for flocculated suspensions that has many
features in common with the one presented here but is incomplete in that boundary conditions or
flux transitions at the discharge level are lacking.

In a recent series of papers [19, 21, 23, 25] the authors with collaborators have initiated an
activity aiming at providing a firm rigorous ground of mathematical (existence and uniqueness)
and numerical analysis for the first-order clarifier-thickener models. Roughly speaking, the main
ingredient in these clarifier-thickener models is a first-order scalar conservation law of the type

(1.1) ut + f
(

γ(x), u
)

x
= 0,

where the (with respect to u, non-convex) flux f and the discontinuous vector-valued coefficient
γ = (γ1, γ2) are given functions. As is well known, independently of the smoothness of γ(x),
solutions to (1.1) are in general not smooth and weak solutions must be sought. Moreover, discon-
tinuous weak solutions are in general not uniquely determined by their initial data. Consequently,
an entropy condition must be imposed to single out the physically correct solution. These “phys-
ically relevant” solutions are called entropy weak solutions. When γ is smooth, Kružkov’s theory
[61] ensures the existence of a unique and stable entropy weak solution to (1.1). Kružkov’s theory
does not apply when γ is discontinuous. In our previous work cited above, which culminated in
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[25], we suggested to use a variant of Kružkov’s notion of entropy weak solution for (1.1) that
accounts for the discontinuities in γ. Moreover, we proved existence and uniqueness (stability)
of such entropy weak solutions in a certain functional class. The existence of such solutions was
a consequence of convergence results for various numerical schemes such as front tracking [19], a
relaxation scheme [21], and upwind difference schemes [23, 25].

The papers [19, 21, 23, 25] were inspired by previous work in the area of conservation laws with
discontinuous fluxes. Due to their many applications, this is an area that has enjoyed a lot of
interest in recent years [2, 5, 9, 12, 39, 40, 48, 49, 50, 51, 52, 57, 59, 60, 65, 66, 67, 70, 72, 73, 75,
76, 77, 78] (this list is not complete). Without entering into too many details, let us just mention
that the usual way to cope with the discontinuous parameter γ(x) is to express it as an additional
conservation law γt = 0, which yields a system of conservations laws for the “unkowns” (γ, u).
The equation γt = 0 introduces linearly degenerate fields in this system with eigenvalues that are
zero. Consequently, if fu is zero at some points (γ, u), then the system is nonstrictly hyperbolic
and it experiences so-called nonlinear resonant behavior, which means more complicated wave
interactions than in strictly hyperbolic systems. Indeed, one cannot in general expect to bound
the total variation of the conserved quantities directly, but only when measured under a certain
singular mapping, as was done first in [76] for a related system. An alternative “scalar” approach
in which γ is not treated as a separate unknown is presented in [52, 54, 55, 57, 77, 78], and further
developed in [21, 23, 25] in the context of the first-order clarifier-thickener models. If we took the
model studied herein and discretized the discontinuity vector γ(x) as an additional conservation
law γt = 0, then we should expect similar nonlinear resonance phenomena as known for first-order
systems, since our model degenerates to first-order type on a solution value interval (u-interval)
of positive length.

The main ingredient in the models suggested herein, which accounts for compression effects, is
not a first-order equation like (1.1), but rather a second-order strongly degenerate parabolic (or
mixed hyperbolic-parabolic) equation of the type

(1.2) ut + f
(

γ(x), u)x = (γ1(x)A(u)x)x ,

where A(·) is nondecreasing with A(0) = 0. Note that A(·) can have “flat” regions, and thus
(1.2) is strongly degenerate. As a consequence, independently of the smoothness of γ = (γ1, γ2),
solutions to (1.2) will in general be discontinuous and it becomes necessary to work within a
framework of entropy weak solutions also for (1.2). In the case of smooth coefficients, the general
mathematical theory of hyperbolic conservation laws was developed more than thirty years ago.
On the other hand, the mathematical theory for strongly degenerate parabolic equations (with
smooth coefficients) has advanced significantly only in the last few years [7, 8, 28, 31, 32, 53, 68,
69, 82, 83, 84] (this list is not complete either). Although conservation laws with discontinuous
fluxes are well studied by now, strongly degenerate parabolic equations with discontinuous fluxes
are much less studied. In fact, the only papers that we are aware of are [54, 55, 56], among which
the latter two are of importance for the present paper. In [55] equations like (1.2) are studied with
a concave convective flux u 7→ f(γ(x), u) and with (γ1(x)A(u)x)x replaced by A(u)xx. Existence of
an entropy weak solution is established by proving convergence of a difference scheme of the type
discussed in this paper. Uniqueness and stability issues for entropy weak solutions are studied in
[56] for a particular class of equations.

Herein we develop further the methods used in [25, 55, 56] in order to apply them to our
new mathematical model for the dynamics of flocculated suspensions in clarifier-thickener units.
The new results of this paper can be summarized as follows. Firstly, we introduce a suitable
definition of entropy weak solutions for the model variant with constant cross-sectional area (to
which the mathematical and numerical analysis is limited). We argue that the x-discontinuity of
the diffusion term (γ1(x)A(u)x)x requires an additional condition in this definition, which states
that A(u) is continuous across the jumps of γ1 (in our model γ1 is the characteristic function on
an interval (xL, xR)). Support for the necessity to state this condition comes from analyses of
similar equations for two-phase flow in heterogeneous porous media, in which a similar condition
is stated, and from the uniqueness analysis of our problem, which is the second novel point and
in particular relies on this condition. Thirdly, we formulate a simple finite-difference scheme for
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the clarifier-thickener and prove its convergence by a compactness analysis. A feature of the
compactness analysis is that the discontinuities in the fluxes make it hard to bound the total
variation of the conserved variable. Instead, we introduce a particular non-linear functional under
which we are able to bound the total variation. We show that the limit element satisfies all parts
of the definition of entropy weak solutions, except for the continuity of A(u). This issue is left
as an open problem. Fourthly, we present an analysis of admissible stationary solutions based on
the discussion of entropy weak solutions of the stationary ODE variant of the governing PDE of
the transient model, and finally, a limited selection of numerical examples illustrating the clarifier-
thickener model. Both the steady-state analysis and the numerical simulations support the view
that it is reasonable to require A(u) to be continuous.

Before outlining the remainder of this paper, let us briefly mention that we do not explicitly
include the effect of hydrodynamic diffusion. This effect is also omitted in the majority of clarifier-
thickener papers by other authors [6, 30, 34, 39, 40, 41, 42, 43], but is included in the analyses by
Lev et al. [64] and Verdickt et al. [81]. A profound justification of the omission of hydrodynamic
diffusion is beyond the scope of this paper, but is provided in Section 7.4 of [10] on the basis
of practical limitations, theoretical considerations, computational comparisons, and experimental
results. If we had decided to include hydrodynamic diffusion by adding a term, say, µuxx with
µ > 0 to the right-hand side of (1.2), then the resulting governing PDE would possess smooth
solutions and allow for a simpler analytical and numerical treatment than the one advanced in
this work. In essence, the discontinuities appearing in transient solutions would be blurred, and in
Remark 5.4 we discuss how hydrodynamic affects steady states for the clarifier-thickener problem.
Finally, let us mention that hydrodynamic diffusion is not explicitly modelled, but in a sense
implicitly present in our model, since our concept of Kružkov entropy weak solution is equivalent
to stating that our solution is obtained in the limit µ → 0 of smooth solutions of strictly parabolic
equations with regularizing (hydrodynamic) diffusion term µuxx. See Section 4.3.

The remainder of this paper is organized as follows. In Section 2, the clarifier-thickener model
is derived. We consider two variants for units with constant and variable interior cross-sectional
area, respectively (Models 1 and 2). In particular, we incorporate the governing equation of the
sedimentation-consolidation theory developed in full detail in [10]. We describe in Section 3 the
finite-difference scheme for the simulation of both models. The scheme appears in two variants, an
explicit one which also is analysed, and a semi-implicit one for which a less restrictive condition
for the time step size is valid, and which therefore is suitable for large-time simulations. In
Section 4 we analyze the initial value problem for Model 1, relying on our previous efforts [25,
55, 56]. A definition of entropy weak solutions is given (and discussed extensively), jump and
entropy jump conditions are derived, and uniqueness of entropy weak solutions is proved. We
study the explicit difference scheme described in Section 3 and prove compactness of a family of
approximate solutions generated by this difference scheme. We prove that the limit function u
is a weak solution of Model 1 that satisfies the entropy condition. The question whether A(u) is
continuous for this limit function is left open. An important problem for practitioners are steady-
state solutions, which correspond to the normal operation of a clarifier-thickener unit for constant
feed and discharge control parameters. In Section 5, we construct steady-state solutions to Model 1
as piecewise continuous solutions a time-independent ODE version of the transient Model 1. These
solutions are again based on the continuity of A(u), but this time this property follows from the
ODE formulation. Finally, Section 6 presents a limited choice of numerical examples illustrating
Models 1 and 2.

2. Mathematical model

2.1. Balance equations. Consider a vessel with a variable cross-sectional area S(x). Since we
assume u = u(x, t), the continuity equations for the solids and the fluid are given by

S(x)ut +
(

S(x)uvs

)

x
= 0,(2.1)

−S(x)ut +
(

S(x)(1 − u)vf

)

x
= 0,(2.2)
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where vs and vf are the solids and the fluid phase velocity, respectively. The mixture flux, that
is the volume average flow velocity weighted with the cross-sectional area at height x, is given by
Q(x, t) := S(x)(uvs + (1 − u)vf). The sum of (2.1) and (2.2) produces the continuity equation of
the mixture, Qx(x, t) = 0, which implies that Q(·, t) is constant as a function of x. When Q suffers
no jumps with respect to x, we obtain Q(x, t) = Q(xR, t) = Q(t). This equation is equivalent to
one of the mass balance equations. We let it replace (2.2) and rewrite (2.1) in terms of the flow
rate Q(t) and the solid-fluid relative velocity or slip velocity vr := vs − vf , for which a constitutive
equation will be formulated. Observing that

S(x)uvs = S(x)
[(

uvs + (1 − u)vf

)

u + u(1 − u)(vs − vf)
]

= Q(t)u + S(x)u(1 − u)vr,(2.3)

we obtain from (2.1) the equation

S(x)ut +
(

Q(t)u + S(x)u(1 − u)vr

)

x
= 0.(2.4)

The kinematic sedimentation theory [62] is based on the assumption that vr is a function of u
only, vr = vr(u). However, the slip velocity is usually expressed in terms of the Kynch batch flux
density function b(u), such that vr(u) = b(u)/(u(1 − u)) and (2.4) takes the form

S(x)ut +
(

Q(t)u + S(x)b(u)
)

x
= 0.(2.5)

The function b is usually assumed to be piecewise differentiable with b(u) = 0 for u ≤ 0 or
u ≥ umax, where umax is the maximum solids concentration, b(u) > 0 for 0 < u < umax, b′(0) > 0
and b′(umax) ≤ 0. A typical example is [74]

b(u) = v∞u(1 − u)C if 0 < u < umax, b(u) = 0 otherwise,(2.6)

where C ≥ 1 and v∞ > 0 is the settling velocity of a single floc in pure fluid. It should be pointed
out that in the presence of diffusion terms modeling compression effects, to be introduced later, the
maximum concentration attained in a settling system depends on the balance between convection
and diffusion terms, but not critically on the choice of umax. In order to facilitate the analysis, we
assume in this paper umax = 1, and that b(u) is smooth on [0, 1].

We now apply the sedimentation-consolidation theory outlined in [10, 27] to include the sed-
iment compressibility. By constitutive assumptions, a dimensional analysis, and considering one
space dimension only, this theory leads to the following equation for the relative velocity vr, which
plays the role of one of the linear momentum balances:

vr = vr(u, ux) =
b(u)

u(1 − u)

(

1 +
σ′
e(u)

∆̺gu
ux

)

,(2.7)

where ∆̺ > 0 denotes the solid-fluid density difference, g the acceleration of gravity, and σe(u)
is the effective solid stress function, which is now the second constitutive function (besides b)
characterizing the suspension. This function is assumed to satisfy σe(u) ≥ 0 for all u and

σ′
e(u) :=

dσe(u)

du

{

= 0 for u ≤ uc,

> 0 for u > uc.
(2.8)

A commonly used semi-empirical effective stress formula is the power law

σe(u) = 0 for u ≤ uc; σe(u) = σ0

(

(u/uc)
k − 1

)

for u > uc,(2.9)

with parameters σ0 > 0 and k > 1. Note that the derivative σ′
e(u) of the function defined in (2.9)

is in general discontinuous at u = uc. Inserting (2.7) into (2.4) and defining

a(u) :=
b(u)σ′

e(u)

∆̺gu
, A(u) :=

∫ u

0

a(s) ds,(2.10)

we obtain the governing equation
(

S(x)u
)

t
+

(

Q(t)u + S(x)b(u)
)

x
=

(

S(x)A(u)x

)

x
.(2.11)

Since a(u) = 0 for u ≤ uc and u = umax and a(u) > 0 otherwise, (2.11) is first-order hyperbolic
for u ≤ uc and second-order parabolic for u > uc. Since (2.11) degenerates into hyperbolic type
on a solution value interval of positive length, (2.11) is called strongly degenerate parabolic. The
location of the type-change interface u = uc (the sediment level) is in general unknown beforehand.
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For the determination of appropriate functions b and σe for real materials, see [15, 16, 45].
Moreover, the sedimentation-consolidation model is equivalent to the suspension dewatering theory
employed in [4, 38, 63, 79], and other works by the same group of authors.

2.2. The clarifier-thickener model. In the present model, the volume bulk flows are Q(x, t) =
QR(t) for x > 0 and Q(x, t) = QL(t) for x < 0. This suggests employing (2.11) with Q(t) = QR(t)
for 0 < x < xR and Q(t) = QL(t) for xL < x < 0. Furthermore, we assume that in the overflow
and underflow zones, the solid material is transported with the same velocity as the liquid. This
means that the solid-fluid relative velocity vanishes, vr = 0. Moreover, the cross-sectional area
S(x) needs to be positive outside the interval [xL, xR]. We assume that S(x) = S0 for x < xL and
x > xR, where S0 > 0 is a small but positive pipe diameter. From (2.3) we now read off that

S(x)uvs|x 6∈[xL,xR] = S0uvs =

{

QL(t)u for x < xL,

QR(t)u for x > xR.
(2.12)

The feed mechanism is introduced by adding a singular source term to the right-hand part of the
solids continuity equation (2.1). If we prescribe an initial concentration u0 in the vessel, we can
summarize the resulting dynamic model as

S(x)ut + G̃(x, t, u)x =
(

γ1(x)A(u)x

)

x
+ QF(t)uF(t)δ(x), x ∈ R, t > 0,(2.13)

u(x, 0) = u0(x), x ∈ R, u0(x) ∈ [0, umax],(2.14)

G̃(x, t, u) = S(x)uvs =



















QL(t)u for x < xL,

QL(t)u + S(x)b(u) for xL < x < 0,

QR(t)u + S(x)b(u) for 0 < x < xR,

QR(t)u for x > xR,

(2.15)

γ1(x) :=

{

S(x) if xL ≤ x ≤ xR,

0 otherwise.

For the mathematical analysis we assume that the control functions QL, QR and uF are constant.
Finally, we may express the singular source term in (2.13) in terms of the derivative of the Heaviside

function. Adding the term −H(x)QFuF to G̃(x, u) and subtracting the term QLuF, which is
constant with respect to x, we obtain the strongly degenerate convection-diffusion problem

S(x)ut + G(x, u)x =
(

γ1(x)A(u)x

)

x
, x ∈ R, t > 0,(2.16)

u(x, 0) = u0(x), x ∈ R, u0(x) ∈ [0, umax],(2.17)

G(x, u) =



















QL(u − uF) for x < xL,

QL(u − uF) + S(x)b(u) for xL < x < 0,

QR(u − uF) + S(x)b(u) for 0 < x < xR,

QR(u − uF) for x > xR.

(2.18)

2.3. Model 1 (constant interior cross-sectional area). A simple but important sub-case is
a vessel whose cross-sectional area is constant in the interior, i.e., we consider

S(x) =

{

S0 for x < xL and x > xR,

Sint for xL ≤ x ≤ xR.
(2.19)

In this case, the solution of (2.16)–(2.18) does not depend on the value of S0. To see this, we
introduce the new space variable w = w(x) defined by the bijective mapping R ∋ x 7→ w ∈ R,

w(x) :=











(S0/Sint)(x − xL) + xL for x < xL,

x for xL ≤ x ≤ xR,

(S0/Sint)(x − xR) + xR for x > xR,

(2.20)
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and from (2.16) we infer that the function v defined by v(w(x), t) = u(x, t) satisfies the following
initial-value problem, where we define the velocities qR := QR/Sint, qL := QL/Sint, and the
diffusion functions ã(·) := a(·)/Sint, A(·) := A(·)/Sint:

vt + g(w, v)w =
(

γ1(w)A(v)w

)

w
, w ∈ R, t > 0,(2.21)

v(w, 0) = u0

(

w(x)
)

, x ∈ R,(2.22)

g(w, v) :=



















qL(v − uF) for w < xL,

qL(v − uF) + b(v) for xL < w < 0,

qR(v − uF) + b(v) for 0 < w < xR,

qR

(

v − uF) for w > xR.

(2.23)

We refer to (2.21)–(2.23) as Model 1. Since the variation of S(x) at x = xL and x = xR no longer
appears in (2.21), Model 1 is formally attained by setting S ≡ 1 in (2.18) for all x ∈ R. This
significantly facilitates the analysis. Finally, we define the vector of discontinuity parameters

γ := (γ1, γ2), γ1(w) :=

{

1 for w ∈ (xL, xR),

0 for w /∈ (xL, xR),
, γ2(w) :=

{

qL for w < 0,

qR for w > 0,

and the flux function

f
(

γ(w), u
)

:= g(x, u) = γ1(x)b(u) + γ2(x)(u − uF).(2.24)

Remark 2.1. Consider a non-flocculated ideal suspension, for which A ≡ 0. Then Model 1
recovers the clarifier-thickener model with S ≡ 1 and xL = −xR we analyzed previously [19,
21, 22, 25]. Our derivation now clearly shows that these analyses (including well-posedness and
convergence of numerical schemes) are in fact not restricted to the assumption of transport pipes
(leading away from the unit for x < xL and x > xR) that have the same diameter as the thickening
vessel. Rather, by application of the inverse of (2.20), they are also valid for vessels with cylindrical
interior and transport pipes of arbitrarily small (but positive) pipe diameter S0.

For the function b(u) given by (2.6) with v∞ = 10−4 m/s, C = 5, the velocities qL = −10−5 m/s
and qR = 2.5 × 10−6 m/s, and uF = 0.08, the flux functions b(u) and the fluxes adjacent to the
discontinuities of γ near x = xL, x = 0 and x = xR are plotted in Figure 2. These parameters will
also be utilized in Sections 5 and 6.

2.4. Model 2 (variable interior cross-sectional area). In the case that S(x) is variable on
(xL, xR), we refer to (2.16)–(2.18) as Model 2. It is convenient to rewrite (2.16) as

S(x)ut + F (γ(x), u)x = (γ1(x)A(u)x)x

and rewrite the flux function G(x, u) as

F (γ(x), u) := G(x, u) = γ1(x)b(u) + γ2(x)(u − uF),

where

γ1(w) :=

{

S(x) for x ∈ (xL, xR),

0 for x /∈ (xL, xR),
, γ2(w) :=

{

QL for x < 0,

QR for x > 0.

3. Numerical scheme

The numerical scheme for the solution of (2.16)–(2.18) is a straightforward extension of that
used in [23] for the first-order variant of (2.16). To define it, choose ∆x > 0, set xj := j∆x, and
discretize the parameter vector γ, the initial data, and the cross-sectional area by

γj+1/2 := γ(xj+1/2), U0
j := u0(xj), Sj :=

1

∆x

∫ xj+1/2

x
j−1/2

S(x) dx.

Here xj+1/2 := xj + ∆x/2, i.e., the midpoint in the interval [xj , xj+1). In contrast to [25], we
discretize u0 and γ in a pointwise manner, rather than via cell averages. The discretization of u0

circumvents some analytical difficulties that would otherwise turn up in the proof of Lemma 4.14,
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Figure 2. (a) The Kynch batch flux density function b(u) and the fluxes adja-
cent to (b) x = xL, (c) x = xR and (d) x = 0.

and is not unreasonable from a computational point of view. For n > 0 we define the approxima-
tions according to the explicit marching formula

Un+1
j = Un

j − λj∆−h
(

γj+1/2, U
n
j+1, U

n
j

)

+
λj

∆x
∆−

(

γ1,j+1/2∆+A(Un
j )

)

,(3.1)

where λj := ∆t/(Sj∆x), ∆−Vj := Vj − Vj−1, ∆+Vj := Vj+1 − Vj , and

h(γ, v, u) :=
1

2

[

f(γ, u) + f(γ, v) −
∫ v

u

∣

∣fu(γ, w)
∣

∣dw

]

(3.2)

is the Engquist-Osher flux [44]. Let tn := n∆t and let χn, χj and χj+1/2 denote the characteristic
functions of the intervals [tn, tn+1), [x

j−1/2
, xj+1/2), and [xj , xj+1), respectively. We then define

u∆(x, t) :=
∑

n≥0

∑

j∈Z

Un
j χj(x)χn(t), γ

∆(x) :=
∑

j∈Z

γj+1/2χj+1/2(x).(3.3)

Note that the discontinuity vector γ is discretized on a spatial mesh which is staggered (i.e.,
shifted by ∆x/2) with respect to that of the conserved quantity u. This makes it possible to
use the scalar Engquist-Osher function (3.2) for the convective part of the problem. A natural
alternative would be to align the two discretizations. However, in that case one would have to
solve (exactly or approximately) a Riemann problem for a system of two equations in two variables
(namely, for u and the volume average velocity q) at each cell boundary, which makes the resulting
numerical method rather complicated, see [48, 59, 60, 65, 66]. In particular, our treatment of the
convective part is simpler than the complicated (but accurate) front tracking algorithm used in
[19]. Staggering the discretizations also simplifies the analysis, making it possible to apply, with
some allowances for the parabolic terms, some of the analytical techniques developed for monotone
schemes for purely hyperbolic problems.
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Let us recall that the scheme stated here comprises both Model 1 and Model 2, and is employed
for numerical examples for both models in Section 6. The analysis of the scheme is, however,
limited to Model 1 (with S ≡ 1).

In Section 6 we also use the following semi-implicit variant of (3.1) for large-time computations:

Un+1
j = Un

j − λj∆−h
(

γj+1/2, U
n
j+1, U

n
j

)

+
λj

∆x
∆−

(

γ1,j+1/2∆+A(Un+1
j )

)

.(3.4)

The scheme (3.4) requires the solution of a system of nonlinear equations in each time step by the
Newton-Raphson method. This can be done efficiently by Thomas’ algorithm, since the coefficient
matrix is tridiagonal. The advantage of using (3.4) lies in the fact that we only need to satisfy a
CFL condition requiring that ∆t/∆x is bounded, while (3.1) enforces that ∆t/(∆x)2 be bounded,
see Lemmas 4.12 and 4.13.

4. Mathematical analysis

In several instances we will not repeat arguments that are only minor modifications of proofs
that have already appeared in [25], [55] or [56]. In various bounds, C denotes a universal constant.

4.1. The initial value problem. For the sake of consistency with our previous papers, we
will abuse the notation slightly by replacing the transformed spatial variable w by x, and the
transformed functions v and A by u and A, respectively. The Cauchy problem of interest is then

ut + f(γ(x), u)x = (γ1(x)A(u)x)x , (x, t) ∈ ΠT := R × (0, T );

u(x, 0) = u0(x), x ∈ R,
(4.1)

where f(γ, u) = γ1b(u)+γ2(u−uF). The parameter vector for this problem is γ := (γ1, γ2), where

γ1(x) :=

{

1 for x ∈ (xL, xR),

0 for x /∈ (xL, xR),
γ2(x) :=

{

qL for x ≤ 0,

qR for x > 0.

We assume that qL < 0 and qR > 0. This rules out the case of batch settling (qL = 0, qR = 0).
However, once our analysis is complete, it will be clear that one can accommodate batch processing
as a separate case where one restricts the analysis to the interval [xL, xR]. We assume that
b ∈ C2([0, 1]), and b(0) = b(1) = 0. Furthermore, we assume that b′ vanishes at exactly one
location u# ∈ (0, 1), where the function has a maximum, and that b′′ vanishes at no more than
one inflection point in uinfl ∈ (0, 1); if such a point is present, we assume that uinfl ∈ (u#, 1).
For example, b(u) may be given by (2.6). In accordance with (2.9), (2.10), we will assume that
A ∈ Lip([0, 1]), A′(u) = 0 for u < uc, and that A′(u) > 0 for u ∈ (uc, 1).

For the initial data, we assume that u0 satisfies

(4.2)

{

u0 ∈ L1(R) ∩ BV (R); u0(x) ∈ [0, 1] ∀x ∈ R;

A(u0) is absolutely continuous on [xL, xR]; γ1A(u0)x ∈ BV (R).

In this paper, γ is only allowed to take values in G := {(qL, 0), (qL, 1), (qR, 0), (qR, 1)}. This sim-
plifies matters somewhat compared to our previous paper [25], where the cell average discretization
of γ required us to consider several lateral sides of the rectangle marked by the vertices in G.

4.2. Definition of entropy weak solution. If (4.1) is allowed to degenerate at certain points,
that is, A′(s) = 0 for some values of s, solutions are not necessarily smooth and weak solutions
must be sought. This property is independent of the smoothness of γ. Moreover, weak solutions
are not necessarily unique, requiring some additional condition, a so-called entropy condition, to
single out the physically meaningful solution.

As in [25], the function space BVt(ΠT ) plays an important role in our definition of entropy
weak solution. We denote by M(ΠT ) the locally finite Radon (signed) measures on ΠT . The
space BVt(ΠT ) consists of of locally integrable functions W : ΠT → R for which ∂tW ∈ M(ΠT ).

Let J := {xL, 0, xR} denote the set of points where γ is discontinuous. For a point m ∈ J , we
use the notation γ(m−) and γ(m+) for the one-sided limits at the point m:

γ(m−) := lim
x↑m

γ(x), γ(m+) := lim
x↓m

γ(x).
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The following definition is motivated by [25, 55, 56].

Definition 4.1 (BVt entropy weak solution). A measurable function u : ΠT → R is a BVt entropy
weak solution of the initial value problem (4.1) if it satisfies the following conditions:

(D.1) u ∈ L1(ΠT ) ∩ BVt(ΠT ), u ∈ [0, 1] a.e. in ΠT , and A(u)x ∈ L∞((xL, xR) × (0, T )).
(D.2) For all test functions φ ∈ D(ΠT )

∫∫

ΠT

(

uφt +
[

f
(

γ(x), u
)

− γ1(x)A(u)x

]

φx

)

dx dt = 0.(4.3)

(D.3) The initial condition is satisfied in the following strong L1 sense:

(4.4) ess lim
t↓0

∫

R

∣

∣u(x, t) − u0(x)
∣

∣ dx = 0.

(D.4) For a.e. t ∈ [0, T ], x 7→ A(u(x, t)) is continuous at x = xL and x = xR.
(D.5) The following Kružkov-type entropy inequality holds for all c ∈ R and all test functions

0 ≤ φ ∈ D(ΠT ):
∫∫

ΠT

(

|u − c|φt + sgn(u − c)
[

f
(

γ(x), u
)

− f
(

γ(x), c
)]

φx − γ1(x)
∣

∣A(u) − A(c)
∣

∣

x
φx

)

dx dt

+

∫ T

0

∑

m∈J

∣

∣f
(

γ(m+), c
)

− f
(

γ(m−), c
)∣

∣φ(m, t) dt ≥ 0.
(4.5)

A function u : ΠT → R satisfying conditions (D.1), (D.2), and (D.3) is called a BVt weak
solution of the initial value problem (4.1).

4.3. Comments on the entropy weak solution concept.

4.3.1. Motivation of the entropy condition (4.5). It is possible to motivate the entropy condition
(4.5) by the fact that limit functions constructed by the method of vanishing viscosity, in combina-
tion with smoothing of the coefficients, satisfy this condition. To this end, let γε(x) := (γ1,ε, γ2,ε)
be a C∞ approximation of γ, such that γε equals γ everywhere except on (m − ε, m + ε) for
m ∈ {xL, 0, xR}, and such that the sign of γ

′
ε is constant on (m − ε, m + ε) for m ∈ {xL, 0, xR}.

Since γ 7→ f(γ, c) is linear, fγ(γ, c) does not depend on x. For each µ, ε > 0, let uµ,ε be a classical
solution to the uniformly parabolic equation

(4.6) uµ,ε
t + f

(

γε(x), uµ,ε
)

x
=

(

γ1,ε(x)A(uµ,ε)x

)

x
+ µuµ,ε

xx .

Let us suppose that uµ,ε → u in Lp
loc for any 1 ≤ p < ∞. The rest of this remark is devoted to

proving that the limit u satisfies the entropy condition (4.5).
Since γε is smooth, the chain rule and the convexity of η imply that uµ,ε satisfies the following

entropy condition for all convex C2 functions η : R → R:

(4.7)
η(uµ,ε)t + q

(

γε(x), uµ,ε
)

x
−

(

γ1,ε(x)r(uµ,ε)x

)

x
− µη(uµ,ε)xx

+ γ
′
ε(x) ·

(

η′(uµ,ε)fγ(γε(x), uµ,ε) − qγ(γε(x), uµ,ε)
)

≤ 0 in D′(ΠT ),

where q : R
2 × R → R and r : R → R are defined respectively by

qu(γ, u) = η′(u)fu(γ, u), r′(u) = η′(u)A′(u),

By a standard approximation argument, (4.7) implies that the following Kružkov-type entropy
condition holds for any constant c ∈ R:

|uµ,ε − c|t +
[

sgn(uµ,ε − c)
(

f(γε(x), uµ,ε) − f(γε(x), c)
)]

x
−

(

γ1,ε

∣

∣A(uµ,ε) − A(c)
∣

∣

x

)

x

− µ |uµ,ε − c|x + sgn(uµ,ε − c)f
(

γε(x), c
)

x
≤ 0 in D′(ΠT ),

(4.8)

where

f(γε(x), c)x = γ
′
ε(x) · fγ(γε(x), c) = γ′

1,ε(x)fγ1,ε(γε(x), c) + γ′
2,ε(x)fγ2,ε(γε(x), c).



12 BÜRGER, KARLSEN, AND TOWERS

From (4.8) it is clear that the following ”less precise” inequality holds:

|uµ,ε − c|t +
[

sgn(uµ,ε − c)
(

f(γε(x), uµ,ε) − f(γε(x), c)
)]

x

−
(

γ1,ε

∣

∣A(uµ,ε) − A(c)
∣

∣

x

)

x
− µ |uµ,ε − c|xx −

∣

∣f
(

γε(x), c
)

x

∣

∣ ≤ 0 in D′(ΠT ),
(4.9)

that is, for any 0 ≤ φ ∈ D′(ΠT ),

(4.10)

∫∫

ΠT

(

|uµ,ε − c|φt + sgn(uµ,ε − c)
(

f(γε(x), uµ,ε) − f(γε(x), c)
)

φx

− γ1,ε |A(uµ,ε) − A(c)|x φx + µ |uµ,ε − c|φxx

)

dx dt

+

∫∫

ΠT

|f(γε(x), c)x|φdx dt ≥ 0.

Using the properties of γ and γε, we can write (notice the signs)
∫∫

ΠT

|f(γε(x), c)x|φdx dt =

∫ T

0

∫ xL+ε

xL−ε

γ′
1,ε(x) |b(c)|φ(x, t) dx dt

−
∫ T

0

∫ xR+ε

xR−ε

γ′
1,ε(x) |b(c)|φ(x, t) dx dt +

∫ T

0

∫ ε

−ε

γ′
2,ε(x) |c − uF)|φ(x, t) dx dt.

After three integrations by parts and subsequently sending ε to zero, we obtain

lim
ε→0

∫∫

ΠT

|f(γε(x), c)x|φdx dt =

∫ T

0

(γ1(xL+) − γ1(xL−)) |b(c)|φ(xL, t) dt

−
∫ T

0

(γ1(xR+) − γ1(xR−)) |b(c)|φ(xR, t) dt

+

∫ T

0

(γ2(0+) − γ2(0−)) |c − uF)|φ(0, t) dt.

=

∫ T

0

∑

m∈J

∣

∣f
(

γ(m+), c
)

− f
(

γ(m−), c
)∣

∣φ(m, t) dt.

In view of the previous calculations, we can send µ, ε → 0 in (4.10) to conclude that the limit
function u satisfies the entropy condition (4.5).

4.3.2. Status of the weak formulation (4.3). We point out that the entropy inequality (4.5) does
not imply the weak formulation (4.3). In fact, the usual procedure to derive the weak formulation
from the Kružkov entropy inequality consists in taking first c > ‖u‖∞ and then c < −‖u‖∞, and
then combining the resulting inequalities. This does not work here, since the term |f(γ(m+), c)−
f(γ(m−), c)| does not have compact support with respect to c, and therefore the sum over m ∈ J
in (4.5) will not disappear for these values of c. Consequently, we state the weak formulation (4.3)
and the entropy inequality (4.5) as independent ingredients of the solution concept.

4.3.3. Alternative entropy weak solution concepts. Section 4.3.1 shows that the (Kružkov) entropy
formulation (4.5) for the clarifier-thickener model can be derived from the parabolic regularization
(4.6) when the regularization parameter µ and the parameter ε that smoothes the flux disconti-
nuities tend to zero. In Section 1 we mentioned that the term µuxx corresponds to hydrodynamic
diffusion. Consequently, the entropy formulation (4.5), which eventually leads to uniqueness,
encodes that our ‘physically relevant’ solutions are those obtained in the limit of vanishing hydro-
dynamic diffusion.

Alternative entropy concepts for conservation laws with discontinuous flux, which equally lead
to unique solutions (that are, however, different from the ones constructed here) are possible.
For example, a mathematical model for two-phase flow in a one-dimensional porous medium that
changes its type at x = 0 can be written as the conservation law with discontinuous flux

ut +
(

H(x)f(u) + (1 − H(x))g(u)
)

x
= 0,(4.11)
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where u is the saturation of one of the phases, the functions f(u) and g(u) are the rock-type
dependent Darcy velocities for x > 0 and x < 0, respectively, and H(x) is the Heaviside function.
These models are usually based on the assumption that the capillary pressure is continuous across
heterogeneities of the porous medium. Consequently, the appropriate viscous regularization term
of (4.11) for this model is not given by µuε

xx, but by µ(λc(u
ε)pc(u

ε)), where λc and pc are the
mobility and capillary pressure functions for the phase considered and x < 0 (c = L) and x > 0
(c = R), respectively [51, 71]. Analyzing the limit ε → 0 for this regularization term, Kaasschieter
[51] shows that the corresponding viscosity limit produces an entropy condition for the limiting
equation (4.11) that excludes that characteristics leave the discontinuity at x = 0 from both sides.
In other words, the capillary pressure characterization does not allow undercompressive shocks
emerging from x = 0. This contrasts with the role of the flux discontinuity at x = 0 in the
clarifier-thickener model, in which material is injected at x = 0 and transported from both sides
of that source term location, which allows that characteristics emerge to both sides of x = 0.

Based on the properties of this two-phase flow in heterogeneous porous media model, Adimurthi,
Jaffré and Veerrappa Gowda propose in [1] an entropy formulation alternative to ours, which is
essentially based on the usual Kružkov entropy characterization away from flux discontinuities,
supplemented by an additional entropy jump condition that rules out undercompressive shocks.
In [1] it is shown that regular solutions satisfying these conditions are unique, and convergence
of a Godunov-type scheme to weak solutions of this type is proved. The entropy concepts of [1]
and [25] (to which the present treatment reduces for A ≡ 0) coincide if the ‘left’ and ‘right’ fluxes
f(u) and g(u) do not intersect, and in general yield different results if these fluxes intersect in an
‘undercompressive’ way. This means that if we suppose, for simplicity, that the functions f(u)
and g(u) intersect at only one point, called uχ here, then in the vicinity of uχ, we have g′(u) < 0
for u ≤ uχ and f ′(u) > 0 for u ≥ uχ. Such a situation frequently occurs in the two-phase flow in
porous media model, and is also possible in the clarifier-thickener model. For example, consider
the situation near the feed level x = 0, and assume that we take the parameters qL and qR as
used in Figure 2, but set uF = 0.8. Graphically, this situation corresponds to moving the two
curves in Figure 2 (d) further apart until they intersect at uχ = uF = 0.8. From the shape
of this curves it becomes clear that this is indeed a case of an ‘undercompressive’ intersection,
where f(u) = qR(u − uF) + b(u) and g(u) = qL(u − uF) + b(u). Furthermore, if we assume that
the clarifier-thickener is initially filled with suspension of that same concentration u0 = uF, we
expect that filling up the vessel with (strongly concentrated) suspension of concentration u = uF

produces a solution that is constant near x = 0 (for small times at least, until waves coming
from xL or xR start to interfere). In this scenario, however, the theory of [1], which excludes
undercompressive shocks, leads to a different solution, which includes one stationary oscillation
between solution values θf and θg such that f ′(θf ) ≤ 0 or g′(θg) ≥ 0, i.e., the resulting stationary
discontinuity is not undercompressive. In [20] we also present a numerical example for a similar
case showing that both entropy theories, along with the convergence of the respective associated
schemes, lead to different admissible solutions. Of course, these alternative theories mirror the
different physics involved, as the different viscous regularizations of the clarifier-thickener model
and of the two-phase flow in porous media model show. Finally, let us clarify that the problem
of whether the fluxes f(u) and g(u) intersect in an ‘undercompressive way’ is not equivalent to
the satisfaction of the so-called “crossing condition”, to which we appeal in Section 4.5 for the
uniqueness proof. See the comment following Lemma 4.11 for a discussion of this point in the
context of the clarifier-thickener model.

4.3.4. Motivation of condition (D.4). One consequence of this definition is that for a.e. t ∈ [0, T ],
A(u(x, t)) is absolutely continuous as a function of x on [xL, xR] and that A(u)x exists a.e. in
[xL, xR]. The point that deserves to be discussed extensively is, however, our explicit requirement
that A(u) be continuous across x = xL and x = xR. To justify this assumption, we follow the
analysis of van Duijn et al. [80] and Molenaar [71]. We consider the situation near xR (the jump
across xL is handled in the same way). We approximate the discontinuous coefficient γ1(x) by a
smooth function γε

1(x), where ε > 0 is a small smoothing parameter and γε
1(x) = γ1(x) outside

(xR − ε, xR + ε). The differential equation that should be satisfied by the limit function in this
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interval for ε → 0 provides an additional interface condition. We assume that vε is the solution of
Model 1 with γ1(x) replaced by γε

1 , and introduce the the rescaled space variable y := (x− xR)/ε.
Inside (xR − ε, xR + ε), our equation can be written as εvε

t + (f ε(y, vε))y = 0 with

fε(y, vε) = qR(vε − uF) + γε
1b(v

ε) − γε
1

1

ε
A(vε)y .

We assume that vε with 0 ≤ vε ≤ 1 converges to a function v as ε → 0, and that the total flux f ε

remains bounded uniformly in ε as ε → 0. Then the limit function v should satisfy A(v)y = 0 for
−1 < y < 1. Integrating this equation yields the following relation between v(−1, t) and v(1, t),
which are identified with the limits of u to the left and to right of x = xR, u(xR−, t) and u(xR+, t):

A
(

u(xR+, t)
)

− A
(

u(xR−, t)
)

= A
(

v(1, t)
)

− A
(

v(−1, t)
)

=

∫ 1

−1

A(v)y dy = 0,

which motivates our condition (D.4).
To highlight the status of condition (D.4), we first mention that (D.4) is the analogue of the

‘extended pressure condition’ postulated in problems of multiphase flow in heterogeneous porous
media [71, 80, 85]. These problems lead to equations with discontinuous flux and discontinuous
(with respect to the space variable) diffusion, which require an additional jump condition across
jumps of the diffusion coefficient (apart from the appropriate Rankine-Hugoniot condition) to
ensure uniqueness. This analogy, and the observation that in our case, the diffusion terms are not
present at all for x < xL and x > xR and it is therefore unlikely to obtain control on the limits
of A(u)x for x ↓ xL and x ↑ xR, strongly support the necessity to postulate (D.4) as a separate
ingredient of the definition of an entropy weak solution. This view is also supported by the fact
that our uniqueness proof relies on (D.4). In other words, (D.4) is necessary to ensure uniqueness.

It should be mentioned, however, that it is currently unclear how to prove that the numerical
scheme converges to a solution that satisfies (D.4). In fact, we will prove that the scheme converges
to a limit u that satisfies all components of Definition 4.1 except (D.4). However, our numerical
results support that A(u) is continuous across x = xL and x = xR. In particular, transient
numerical simulations converge (for large times) to steady-state solutions. These are x-dependent
piecewise continuous functions that are defined by a time-independent version of Definition 4.1
which does not include a postulate of continuity of A(u), since satisfaction of this condition can
be derived in the ODE context.

4.4. Existence of traces. In what follows, we often use the notation

(4.12) F (γ, u, c) := sgn(u − c)
(

f(γ, u) − f(γ, c)
)

for the Kružkov entropy flux appearing in (4.5). Here, the sign function is defined by sgn(w) :=
w/|w| for w 6= 0 and sgn(0) := 0. It is sometimes convenient to work with the function f̂(γ, u) :=
f(γ, u)+ γ2uF, and to use the identity F (γ, u, c) = sgn(u− c)(f̂(γ, u)− f̂(γ, c)). We will also find
the following notation useful: a∨ b := max{a, b}, a∧ b := min{a, b}, a+ := a∨ 0, and a− := a∧ 0.

Our analysis makes use of certain jump conditions that relate limits from the right and left of
the entropy weak solution u at jumps in the spatially varying coefficient γ(x). Thus, we need a
notion of one-sided limits (from both the right and left) at the points x ∈ J .

Definition 4.2 (Traces). Let W ∈ L∞(ΠT ) be a real function. By the right and left traces of
W (·, t) at a point x = x0 ∈ R we understand functions t 7→ W (x0±, t) ∈ L∞(0, T ) that satisfy

ess lim
x↓x0

∣

∣W (x, t) − W (x0+, t)
∣

∣ = 0 for a.e. t ∈ (0, T ),

ess lim
x↑x0

∣

∣W (x, t) − W (x0−, t)
∣

∣ = 0 for a.e. t ∈ (0, T ).

As in [25, 56], we now derive the existence of the required traces from our definition of BVt

entropy weak solution. To this end, we introduce the so-called singular mapping. Let S(w) denote
the characteristic function of the interval [0, uc], where A′(u) = 0, and recall that

f
(

γ(w), u
)

= γ1(x)b(u) + γ2(x)(u − uF).
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The singular mapping is defined by

Ψ(γ, u) := F(γ, u) + γ1A(u), F(γ, u) :=

∫ u

0

(

γ1S(w) + 1 − γ1

)

|fu(γ, w)| dw.(4.13)

Following [55], we have broken the singular mapping into two parts, F for the hyperbolic spatial
operator and γ1A for the parabolic operator. Note that if γ1 = 0, which means that x /∈ [xL, xR],
the parabolic term will not be present and the singular mapping simplifies to Ψ(γ, u) = F(γ, u) =
∫ u

0
|fu(γ, w)| dw. If x ∈ (xL, xR), then γ1 = 1, and

Ψ(γ, u) = F(γ, u) + A(u), F(γ, u) =

∫ u

0

S(w)|fu(γ, w)| dw.

Thus, for x ∈ (xL, xR),

∂uΨ(γ, u) =

{

|fu(γ, u)| for u ≤ uc,

A′(u) for u > uc.

Thus, we see that for any fixed value of x (and hence γ) and u, exactly one of the mappings
u 7→ F(γ, u), u 7→ γ1A(u) is increasing, and the other is constant. This allows us to separate
the hyperbolic and parabolic terms somewhat in our analysis, and is the motivation behind the
particular form of the singular mapping given by (4.13).

The following lemma records some easily verified properties of Ψ. We omit the elementary
proofs.

Lemma 4.1. The mapping u 7→ Ψ(γ, u) is Lipschitz continuous on [0, 1], uniformly for γ ∈ G.
In addition, u 7→ Ψ(γ, u) is strictly increasing on [0, 1] for each fixed vector γ ∈ G.

The proof of the following lemma is easily adapted to the present situation from that of
Lemma 3.1 of [56]. The key ingredients are (4.3), (4.5) and the fact that ut ∈ M(ΠT ).

Lemma 4.2. Suppose u is a BVt entropy weak solution. Then, for any c ∈ R,
(

f
(

γ(x), u
)

− f
(

γ(x), c
)

− γ1(x)
(

A(u) − A(c)
)

x

)

x
∈ M(ΠT ),(4.14)

(

sgn(u − c)
[

f
(

γ(x), u
)

− f
(

γ(x), c
)]

− γ1(x)
∣

∣A(u) − A(c)
∣

∣

x

)

x
∈ M(ΠT ).(4.15)

Lemma 4.3. Let u be a BVt entropy weak solution of (4.1), and consider the transformed function
z(x, t) := Ψ(γ(x), u(x, t)). Then

∫ T

0
TV(z(·, t)) dt < C for some finite constant C > 0. In other

words, zx ∈ M(ΠT ).

Proof. For A ≡ 0, the proof of Lemma 2.2 of [25] applies unchanged up to minor differences
in notation. We here modify that proof to account for the presence of A(u). Let TV(z(·, t)|I)
denote the spatial variation of z(·, t) measured over the interval I. Then it suffices to show that
∫ T

0
TV(z(·, t)|I) dt is bounded for each of the open intervals I = (−∞, xL), (xL, 0), (0, xR), and

(xR,∞). Due to the factor γ1(x), the singular mapping Ψ simplifies to Ψ(γ, u) =
∫ u

0 |fu(γ, w)| dw
when I = (−∞, xL) or I = (xR,∞), and so the proof of Lemma 2.2 of [25] applies to those
intervals without any modifications. We will focus on the interval I = (0, xR), and the omit the
proof for (xL, 0) since it is similar. Thus, we now set out to show that

(4.16)

∫ T

0

TV
(

z(·, t)|{x| 0<x<xR}

)

dt < ∞.

To this end, recall that for x ∈ (0, xR), we have γ = (1, qR), and

f(γ, u) = qRu + b(u) − qRuF = f̂(γ, u) − qRuF,

Ψ(γ, u) =

∫ u

0

S(w)
∣

∣f̂u(γ, w)
∣

∣ dw + A(u) =

∫ u

0

S(w)
∣

∣qR + b′(w)
∣

∣ dw + A(u),

F (γ, u, c) = sgn(u − c)
(

f(γ, u) − f(γ, c)
)

= sgn(u − c)
(

f̂(γ, u) − f̂(γ, c)
)

.

Let ΠR
T := (0, xR) × (0, T ) ⊂ ΠT . Since A(u)x ∈ L∞((xL, xR) × (0, T )), we have

A(u)x ∈ M(ΠR
T ),

(

A(u) − A(c)
)

x
∈ M(ΠR

T ),
∣

∣A(u) − A(c)
∣

∣

x
∈ M(ΠR

T ).
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Thus, it suffices to show that F(γ, u)x ∈ M(ΠR
T ). Note that

F
(

γ(x), u(x, t)
)

=

∫ u(x,t)

0

S(w)
∣

∣f̂u(γ, w)
∣

∣ dw for (x, t) ∈ ΠR
T .

Due to the assumptions on qR and b(u), the function f̂ has at most two extrema for u ∈ (0, 1). We
assume that qR is chosen such that there are exactly two extrema u∗

1 < u∗
2. The cases with one or

no extremum, will be omitted; they are handled in a similar manner. It is clear that u 7→ f̂(γ, u) is
strictly monotone on intervals not containing extrema. We need the following fact, which follows
by subtracting (4.14) from (4.15), and then dividing by 2.

(4.17)
(

χl(w; c)
(

f(γR, u) − f(γR, c)
)

− γ1(x)
(

(A(u) − A(c))−
)

x

)

x
∈ M(ΠR

T ), ∀c ∈ R.

Here χl(w; c) is the characteristic function for [0, c], and we have restricted our attention to the
smaller domain ΠR

T . Finally, we have used the fact that γ(x) ≡ γR for x ∈ (0, xR).
Next, note that for c ≤ uc in (4.17), the term (A(u) − A(c))− vanishes. This is easy to see by

considering the two possible cases u > c, and u ≤ c. In the first case, A(u) − A(c) ≥ 0, since A(·)
is nondecreasing, and in the second case A(u) − A(c) = 0, since A(·) is constant on [0, uc]. Also,
f̂(γ, u) − f̂(γ, c) = f(γ, u) − f(γ, c). Thus, we conclude from (4.17) that

(4.18)
(

χl(w; c)
(

f̂(γR, u) − f̂(γR, c)
)

)

x
∈ M(ΠR

T ) for c ≤ uc.

In (4.18), we now take c1 := u∗
1 ∧ uc, c2 := u∗

2 ∧ uc, c3 := 1 ∧ uc, and letting

Pi(γR, u) := χl(w; ci)
(

f̂(γR, u) − f̂(γR, ci)
)

, i = 1, 2, 3,

we have ∂xPi ∈ M(ΠR
T ). It is a straightforward exercise to verify that

(4.19) F(γ, u) = P3(γR, u) − 2P2(γR, u) + 2P1(γR, u) + f̂(γR, c3) − 2f̂(γR, c2) + 2f̂(γR, c1),

from which it follows immediately that F(γ, u)x ∈ M(ΠR
T ). �

The proof of the following lemma is a direct application of Lemma 4.3. Its proof follows from
the proofs of Lemmas 3.3 and 3.4 of [56].

Lemma 4.4. A BVt entropy solution u and the quantities γ1A(u), γ1A(u)x, γ1 |A(u) − A(c)|x
admit right and left traces at each jump in γ.

4.5. Entropy jump conditions and uniqueness of entropy solutions. Our objective in this
section is to prove the L1 stability of entropy weak solutions, which is stated in Theorem 4.1. If
we had in our problem (4.1) the parabolic term A(u)xx instead of (γ1(x)A(u)x)x, i.e., if γ1 ≡ 1,
Section 2 of [56] would apply verbatim, and we could simply appeal to Theorem 2.1 of that paper.
Thus we will follow closely Section 2 of [56]. Since the spatially varying parameter γ1 plays a
key role here, we remind the reader that γ1 is simply the characteristic function for the interval
(xL, xR).

As in [56], it is convenient, and sufficient, to work with limits in the sense of Lebesgue. Specif-
ically, let W = W (x) be any function on R, and fix a point x0 ∈ R. We define Lebesgue type
one-sided limits as follows:

L lim
x↓x0

W (x) := lim
ǫ↓0

1

ǫ

∫ x0+ǫ

x0

W (x) dx, L lim
x↑x0

W (x) := lim
ǫ↓0

1

ǫ

∫ x0

x0−ǫ

W (x) dx.

The key fact here (see Lemma 2.1 of [56]) is the following.

Lemma 4.5. Let W ∈ L∞(ΠT ), and fix a point x0 ∈ R. If the right and left traces t 7→ W (x0±, t)
exist in the sense of Definition 4.2, then for a.e. t ∈ (0, T ) they also exist as right and left traces
in the sense of Lebesgue points in L1:

L lim
x↓x0

W (x, t) = W (x0+, t), L lim
x↑x0

W (x, t) = W (x0−, t).

Next, we record the versions of Lemmas 2.2 and 2.3 of [56] that account for the coefficient γ1(x)
multiplying A(u)x. The proofs in [56] are easily modified to deal with γ1, and are omitted here.
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Lemma 4.6. Let u and v be a pair of BVt entropy weak solutions. Let F be the Kružkov entropy
flux defined in (4.12). Fix one of the jumps in γ located at m ∈ J . Then for a.e. t ∈ (0, T )

L lim
x↓m

F
(

γ(x), u(x, t), v(x, t)
)

= F
(

γ(m+), u(m+, t), v(m+, t)
)

,

L lim
x↑m

F
(

γ(x), u(x, t), v(x, t)
)

= F
(

γ(m−), u(m−, t), v(m−, t)
)

,
(4.20)

L lim
x↓m

(

γ1(x)
∣

∣A(u) − A(v)
∣

∣

x

)

(x, t)

=

{

γ1(m+)σ(m+, t)
(

A(u)x(m+, t) − A(v)x(m+, t)
)

if A(u(m+, t)) 6= A(v(m+, t)),

γ1(m+)
∣

∣A(u)x(m+, t) − A(v)x(m+, t)
∣

∣ otherwise,

(4.21)

L lim
x↑m

(

γ1(x)
∣

∣A(u) − A(v)
∣

∣

x

)

(x, t)

=

{

γ1(m−)σ(m−, t)
(

A(u)x(m−, t) − A(v)x(m−, t)
)

if A(u(m−, t)) 6= A(v(m−, t)),

−γ1(m−)
∣

∣A(u)x(m−, t) − A(v)x(m−, t)
∣

∣ otherwise,

(4.22)

where σ(m+, t) := sgn(u(m+, t) − v(m+, t)) and σ(m−, t) := sgn(u(m−, t) − v(m−, t)).

Lemma 4.7. Let u be a BVt entropy weak solution. Let F be the Kružkov entropy flux defined in
(4.12). Fix one of the jumps in γ located at m ∈ J . For any c ∈ R, we have for a.e. t ∈ (0, T ).

L lim
x↓m

F
(

γ(x), u(x, t), c
)

= F
(

γ(m+), u(m+, t), c
)

,

L lim
x↑m

F
(

γ(x), u(x, t), c
)

= F
(

γ(m−), u(m−, t), c
)

,
(4.23)

L lim
x↓m

(

γ1(x)
∣

∣A(u) − A(c)
∣

∣

x

)

(x, t) =

{

γ1(m+)σ(m+, t)A(u)x(m+, t) if u(m+, t) 6= c,

γ1(m+) |A(u)x(m+, t)| if u(m+, t) = c,
(4.24)

L lim
x↑m

(

γ1(x)
∣

∣A(u) − A(c)
∣

∣

x

)

(x, t) =

{

γ1(m−)σ(m−, t)A(u)x(m−, t) if u(m−, t) 6= c,

−γ1(m−)
∣

∣A(u)x(m−, t)
∣

∣ if u(m−, t) = c,
(4.25)

where σ(m−, t) := sgn(u(m−, t) − c) and σ(m+, t) := sgn(u(m+, t) − c).

Before continuing, we introduce a notational convention that we hope will simplify the appear-
ance of the formulas that follow. Whenever we are discussing a fixed element m ∈ J , and the
time is fixed at t ∈ [0, T ] where all of the relevant right and left limits exist, we use the notation
u± = u±(t) = u(m±, t), γ± = γ(m±) and (γ1A(ux))± = (γ1A(u)x)(m±, t).

We collect in the following lemma several properties of a BVt entropy weak solution near a jump
in γ. The relationship (4.26) is the Rankine-Hugoniot condition for this problem, while (4.28) is
an entropy condition. The relationship (4.27) restricts the sign of A(u)x at a jump in γ.

Remark 4.1. To highlight once again the significance of assumption (D.4), we mention that the
proof of (4.27) requires the hypothesis that A(u) is continuous across the jumps in γ at xL and
xR. Thus, (D.4) is crucial for the uniqueness of entropy weak solutions of Model 1.

Lemma 4.8. Let u be a BVt entropy weak solution. Fix one of the jumps in m ∈ J . Then the
following relationships hold across the jump for a.e. t ∈ (0, T ):

f
(

γ+, u+

)

− (γ1A(u)x)+ = f
(

γ−, u−

)

− (γ1A(u)x)− ,(4.26)

sgn(u+ − u−) sgn
(

(A(u)x)+
)

≥ 0, sgn(u+ − u−) sgn
(

(A(u)x)−
)

≥ 0,(4.27)

and for u−(t) 6= u+(t):
[

F
(

γ+, u+, c
)

− sgn(u+ − c) (γ1A(u)x)+
]

−
[

F
(

γ−, u−, c
)

− sgn(u− − c) (γ1A(u)x)−
]

≤
∣

∣f(γ+, c) − f(γ−, c)
∣

∣ ∀c ∈ R,
(4.28)

where F is the Kružkov entropy flux function defined in (4.12). In addition, the appropriate
inequality in Table 1 holds for all c between u− and u+.
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f(γ−, c) ≤ f(γ+, c) f(γ−, c) ≥ f(γ+, c)

u− ≤ c ≤ u+ f(γ+, u+) − (γ1A(u)x)+ ≤ f(γ+, c) f(γ−, u−) − (γ1A(u)x)− ≤ f(γ−, c)

u+ ≤ c ≤ u− f(γ−, u−) − (γ1A(u)x)− ≥ f(γ−, c) f(γ+, u+) − (γ1A(u)x)+ ≥ f(γ+, c)

Table 1. Entropy jump conditions.

Proof. The proofs of these assertions are similar to the proofs of Lemmas 2.4, 2.5, 2.6, and 2.7 of
[56]. Since the proof of (4.27) relies on the assumption (D.4), we will review its proof, but will
not repeat the proofs of the other assertions. We start by fixing a time t ∈ (0, T ) where all of the
relevant right and left spatial (essential) limits exist at x = m. We only prove the first inequality
in (4.27); the proof of the other inequality is similar. Let us suppress the dependence on t for the
remainder of the proof. If u+ = u−, the inequality is obvious, so assume that u+ > u−. We must
show that (A(u)x)+ ≥ 0. From

ess lim
ε↓0

u(m + ε) =: u+ > u−,

it is clear that u(m + ε) > u− for a.e. sufficiently small ε > 0. Next, we apply A to both sides
of u(m + ε) > u−. Since A is nondecreasing, we obtain A(u(m + ε)) ≥ A(u−) for a.e. sufficiently
small ε > 0. If the jump point is at the origin, i.e., m = 0, then continuity of A(u) follows from
assumption (D.1). If m = xL or m = xR, then assumption (D.4) gives us continuity of A(u). In
either case, we have A(u−) = A(u+). Thus,

(4.29)
1

ε

∫ m+ε

m

A(u)x dx =
1

ε
(A(u(m + ε)) − A(u+)) ≥ 0,

for a.e. sufficiently small ε > 0. Letting ε ↓ 0 (along a subsequence for which (4.29) holds) yields
(A(u)x)+ ≥ 0. The proof is completed by showing via a similar argument that if u+ < u−, then
(A(u)x)+ ≤ 0. �

Remark 4.2. Since A is nondecreasing, we can write the entropy condition (4.28) in the alter-
native form

(4.30) Φ(γ, u, c)+ − Φ(γ, u, c)− ≤
∣

∣f(γ+, c) − f(γ−, c)
∣

∣ for all c ∈ R,

where Φ(γ, u, c) := F (γ, u, c) − γ1|A(u) − A(c)|x. Note that the entropy jump condition (4.28) is
the same as the one stated in Lemma 2.6 of [56], with the exception that γ1 = γ1(x) is not present
in [56]. Similarly, this is the only difference between Table 1 of [56] and our Table 1.

The next lemma is basically Lemma 2.8 of [56], adapted to the present setup.

Lemma 4.9. Let u be a BVt entropy weak solution. Fix the jump in γ located at m = 0, and a
time t ∈ [0, T ] where all of the relevant right and left limits exist. If u− 6= u+, then A′(w) = 0 for
w between u− and u+, and thus A(·) is constant on the interval connecting u− to u+, that is,

(4.31) A(w) = A(u−) = A(u+) for w between u− and u+.

Taken together, Lemma 4.9 and assumption (D.4) guarantee continuity of x 7→ A(u(x, t)) for
a.e. t ∈ [0, T ] at each of the jumps m ∈ {xL, 0, xR}. Using this fact, along with the relationships
in Table 1, it is possible to prove the following lemma, whose proof we omit, since it is essentially
the same as the proof of Lemma 2.9 of [56].

Lemma 4.10. Let u and v be a pair of BVt entropy weak solutions. Fix a jump in γ located at
m ∈ J and a time t ∈ (0, T ) where all of the relevant right and left traces exist. Assume that
u− > v−, u+ < v+. If u+ ≤ u−, then

v− ∈ [u+, u−), f(γ+, v−) ≥ f(γ−, v−)

=⇒ f(γ−, v−) −
(

γ1A(v)x

)

−
≤ f(γ−, u−) −

(

γ1A(u)x

)

−
,

v+ ∈ (u+, u−], f(γ−, v+) ≥ f(γ+, v+)

=⇒ f(γ+, v+) −
(

γ1A(v)x

)

+
≤ f(γ+, u+) −

(

γ1A(u)x

)

+
.

(4.32)
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If v− ≤ v+, then

u− ∈ (v−, v+], f(γ+, u−) ≤ f(γ−, u−)

=⇒ f(γ−, v−) −
(

γ1A(v)x

)

−
≤ f(γ−, u−) −

(

γ1A(u)x

)

−
,

u+ ∈ [v−, v+), f(γ+, u+) ≥ f(γ−, u+)

=⇒ f(γ+, v+) −
(

γ1A(v)x

)

+
≤ f(γ+, u+) −

(

γ1A(u)x

)

+
.

(4.33)

Before proceeding to our main uniqueness theorem, let us recall the so-called crossing condition
that we introduced in [56].

Definition 4.3 (Crossing condition). For any jump in γ with associated left and right limits
(γ−, γ+), we say that the crossing condition holds, if for any states u and v,

(4.34) f(γ+, u) − f(γ−, u) < 0 < f(γ+, v) − f(γ−, v) implies u < v.

The geometric interpretation of this condition is that if the graphs of u 7→ f(γ−, u) and u 7→
f(γ+, u) cross, then there can be at most one crossing, say at u = uχ, and in this case the
graph of f(γ−, u) lies above (below) the graph of f(γ+, u) for u < uχ (u > uχ). The crossing
condition is satisfied automatically if there is no crossing. Figure 2(d) shows an example of a flux
crossing that satisfies the crossing condition, with crossing point uχ = uF. A motivation for the
crossing condition in the present context is given by the following lemma, whose elementary proof
is provided in [25]. See also Figure 2.

Lemma 4.11. With our assumptions on b, qL and qR, the crossing condition is satisfied at each
jump m ∈ J . Specifically, there are no flux crossings associated with the jumps x = xL, x = xR.
There may be a single crossing at the jump x = 0, but it satisfies the crossing condition.

Satisfaction of the crossing condition at the nontrivial crossing at x = 0 may be traced to the
fact that a source is located there, and thus the flow diverges from the origin. This is most easily
understood by ignoring for a moment the batch flux b(u) and the parabolic term. It is easy to
check that these terms do not affect the crossing relationship at x = 0. Then, if we use δ(x) to
denote the delta function, our model simplifies to

ut + q(x)ux = (qR − qL)uF δ(x), q(x) =

{

qL for x < 0,

qR for x > 0.

Since qL < 0 < qR, we have diverging flows, balanced by a source term on the right side. Notice
that in this case the flux curves are the straight lines u 7→ qL(u − uF) and u 7→ qR(u − uF), and
the crossing condition is satisfied. On the other hand, if we had qL > 0 > qR, then our simplified
model would result in converging flows, balanced by a sink term, and the crossing condition would
be violated. Thus, from a physical point of view, our assumption that the crossing condition is
satisfied is a natural one, and follows directly from the fact that the clarifier thickener model has
a source term (as opposed to a sink term).

If any of the jumps in γ violated the crossing condition, our definition of entropy solution would
not be strong enough to rule out so-called “expansion shocks” (see [56] for a detailed explanation),
and our uniqueness theory would break down. It turns out that additional entropy conditions are
required when the crossing condition is not satisfied; we defer further discussion of this issue to a
future paper since the crossing condition is satisfied in the present context.

We are finally able to prove our main uniqueness theorem.

Theorem 4.1 (L1 stability and uniqueness). Let v and u be two BVt entropy weak solutions to
the initial value problem (4.1). For a.e. t ∈ (0, T ),

(4.35)
∥

∥v(·, t) − u(·, t)
∥

∥

L1(R)
≤ ‖v0 − u0‖L1(R).

Proof. For BVt entropy weak solutions u and v, a “doubling of variables” argument appearing in
Appendix A of [56] yields

−
∫∫

ΠT

(

|v − u|ϕt + F (γ(x), v, u)ϕx + |γ1A(v) − γ1A(u)|ϕxx

)

dt dx ≤ 0(4.36)
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for any 0 ≤ ϕ ∈ D (ΠT \ J ). Next, via a limiting argument (see the proof of Theorem 2.1 of [56])
we extend this inequality to the larger class of test functions which do not vanish near x ∈ J .
Specifically, we obtain for any 0 ≤ φ ∈ D(ΠT )

−
∫∫

ΠT

(

|v − u|φt + F (γ(x), v, u)φx − |γ1A(v) − γ1A(u)|φxx

)

dt dx

≤
∑

m∈J

∫ T

0

[

F (γ(x), v, u) − |γ1A(v) − γ1A(u)|x
]x=m+

x=m−
φ(m, t) dt,

(4.37)

where the notation indicates limits from the right and left at x = m.
We wish to show that each term in the sum on the right side of (4.37) is nonpositive. If we fix

a jump point m ∈ J , then the contribution to this sum from the jump point m is given by

(4.38) R := Φ
(

γ(m+), v(m+, t), u(m+, t)
)

− Φ
(

γ(m−), v(m−, t), u(m−, t)
)

.

Here Φ is defined in Remark 4.2, and appears in the entropy condition (4.30). Our goal is now
to show that R is nonpositive. Let us fix a time t ∈ (0, T ) where all of the relevant essential
right and left limits exist. If m = 0, then since γ1 = 1 on the interval (xL, xR) containing x = 0,
R ≤ 0 is immediate by repeating the relevant portion (the 7 cases) of the proof of Theorem 2.1
of [56]. (Note that in [56] we used the symbol S for the quantity known as R here.) We will not
reproduce that proof here, but we emphasize that this (m = 0) is the only case where a nontrivial
flux crossing occurs, and thus we rely on the fact that the crossing condition is satisfied.

If x = xL or x = xR, then because of the jump in γ1, we cannot appeal directly to [56], which
did not address the case of spatially varying parabolic term. We will focus on the case x = xR, and
omit the similar case x = xL. The approach is to verify that R ≤ 0 in each of the 7 cases identified
in [56]. The assumptions on b(u) ensure that at x = xR, we will always have f(γ−, u) ≥ f(γ+, u).
In particular, there are no flux crossings, which simplifies the proofs of Cases 6 and 7.

Case 1 (v− = u−, v+ = u+). Then F (γ+, v+, u+) = 0 and F (γ−, v−, u−) = 0, and by Lemma
4.6, and the fact that γ1(xR+) = 0, R reduces to

R = −
∣

∣

(

γ1A(u)x

)

−
−

(

γ1A(v)x

)

−

∣

∣ ≤ 0.

Case 2 (v− = u−, u+ 6= v+). Assume that v+ > u+. In this case

(4.39) R = f(γ+, v+) − f(γ+, u+) −
(

γ1A(v)x

)

+
+

(

γ1A(u)x

)

+
−

∣

∣

(

γ1A(v)x

)

−
−

(

γ1A(u)x

)

−

∣

∣,

where we have used the equality f(γ−, v−) = f(γ−, u−). Via the Rankine-Hugoniot condition,
and another application of f(γ−, u−) = f(γ−, v−), we get

f(γ+, v+) − f(γ+, u+) = −
(

γ1A(v)x

)

−
+

(

γ1A(u)x

)

−
.

We have again used the fact that γ1(xR+) = 0. Substituting this into (4.39) gives

R = −
∣

∣

(

γ1A(v)x

)

−
−

(

γ1A(u)x

)

−

∣

∣ ≤ 0.

The situation where v+ < u+ is handled similarly.
Case 3 (v+ = u+, u− 6= v−). The proof of this case is similar to that of Case 2, and therefore

omitted.
Case 4 (u− < v−, u+ < v+). In this case, using γ1(xR+) = 0, we obtain from (4.38)

(4.40) R =
(

f(γ+, v+) − f(γ+, u+)
)

−
[

f(γ−, v−) − f(γ+, u+) −
(

γ1A(v)x

)

−
+

(

γ1A(u)x

)

−

]

,

which equals zero, by the Rankine-Hugoniot condition (4.26).
Case 5 (u− > v−, u+ > v+). As in the preceding case, R = 0 due to a similar calculation.
Case 6 (u− > v−, u+ < v+). In this case, (4.38) becomes

R = f(γ−, v−) + f(γ+, v+) − f(γ−, u−) − f(γ+, u+) −
(

γ1A(v)x

)

−
+

(

γ1A(u)x

)

−

= 2f(γ+, v+) − 2f(γ+, u+)(4.41)

= 2
[

f(γ−, v−) −
(

γ1A(v)x

)

−

]

− 2
[

f(γ−, u−) −
(

γ1A(u)x

)

−

]

,(4.42)

where (4.41) and (4.42) follow from the Rankine-Hugoniot condition (4.26). In (4.41) we have
used again the fact that γ1(xR+) = 0. It follows from the assumption u− > v−, u+ < v+ that
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u+ < v+ ≤ u− or v− < u− ≤ v+ must hold. Take the case where u+ < v+ ≤ u−. Recalling
that at m = xR we always have f(γ−, ·) ≥ f(γ+, ·), we can apply (4.32) of Lemma 4.10, giving
us f(γ+, v+) ≤ f(γ+, u+). With (4.41) in mind, we see that that R ≤ 0. In the case where
v− < u− ≤ v+, (4.33) of Lemma 4.10 yields f(γ−, v−) − (γ1A(v)x)− ≤ f(γ−, u−) − (γ1A(u)x)−,
again implying that R ≤ 0, this time using (4.42)

Case 7 (u− < v−, u+ > v+). The proof is identical to that of Case 6; we switch the roles of u
and v, and use the version of Lemma 4.10 that results by also switching the roles of u and v.

We have established that for any 0 ≤ φ ∈ D(ΠT )

−
∫∫

ΠT

(

|v − u|φt + F (γ(x), v, u)φx − |γ1A(v) − γ1A(u)| φxx

)

dt dx ≤ 0.(4.43)

The proof is concluded via a standard test function argument which is outlined in the proof of
Theorem 2.1 of [56]. �

4.6. Convergence of the numerical approximations. In the sequel, let us denote by ∆ the
pair ∆ := (∆t, ∆x). Our purpose in this section is to prove convergence (along a subsequence)
of the numerical approximations as ∆ ↓ 0, i.e., as ∆t, ∆x → 0 with ∆t, ∆x > 0. For the sake of
simplicity, we will concentrate on the explicit version of the algorithm.

Let (γ∆, u∆) be the finite difference approximation defined in (3.3). A significant part of the
convergence analysis consists of establishing a spatial total variation estimate for the approximate
solution u∆, measured with respect to a particular transformed variable. More precisely, we prove
that u∆ converges (along a subsequence) to a weak solution by introducing a singular mapping
Ψ : (γ, u) 7→ (γ, z) such that strong compactness of z∆ = Ψ(γ∆, u∆) can be obtained. As always
in problems involving resonance phenomena, one should measure the space translates with respect
to a nonlinear transformation; as already mentioned in the introduction, there is generally no
spatial total variation bound for the conserved variable u itself. The singular mapping approach
has been used for many years in the purely hyperbolic setting, starting with the paper [76].

On the other hand, the construction of a suitable singular mapping Ψ for second order equations
is more recent, and was done first in [55]. The idea is to construct a singular mapping that includes
a contribution both from the convective flux and the diffusion function. We first prove compactness
for the two parts of the singular mapping separately. We then combine the two portions to recover
the original singular mapping and conclude that since the mapping is strictly increasing as a
function of the conserved variable u, convergence of the transformed variable implies convergence
of u.

Since we are applying the scheme described in Section 3 to Model 1 (constant cross section), we
can simplify the analysis by taking Sj ≡ 1, and then λj =: λ = ∆t/∆x. To simplify the notation
a little further, let µ = λ/∆x, hn

j+1/2 = h(γj+1/2, U
n
j+1, U

n
j ), γ1j+1/2 = sj+1/2, and An

j = A(Un
j ).

The marching formula (3.1) then takes the form

(4.44) Un+1
j = Un

j − λ∆+hn
j−1/2 + µ∆+

(

sj−1/2∆−An
j

)

The EO numerical flux is consistent with the actual flux, i.e., h(γ, u, u) = f(γ, u). In addition,
for fixed γ, h(γ, v, u) is a two-point monotone flux, meaning that it is nonincreasing with respect
to v, and nondecreasing with respect to u. Due to the regularity assumptions on f , the numerical
flux h is Lipschitz continuous with respect to each of its arguments, and in fact satisfies

(4.45) f−
u (γ, v) = hv(γ, v, u) ≤ 0 ≤ hu(γ, v, u) = f+

u (γ, u),

where f−
u (γ, u) := min{0, fu(γ, u)} and f+

u (γ, u) := max{0, fu(γ, u)} denote the negative and
positive parts of fu. Thus, whenever the flux u 7→ f(γ, u) is C1, the numerical flux is also C1 as
a function of the conserved variables u and v. The following bound is easily checked:

‖h‖ := max
{

∣

∣h(γ, v, u)
∣

∣

∣

∣

∣
γ ∈ G, v, u ∈ [0, 1]

}

≤ ||f || + 1

2
‖fu‖.

From formula (4.45) it is clear that ‖fu‖ is a Lipschitz constant for the numerical flux h with
respect to the conserved variables u and v.
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We assume that the discretization parameters (∆x, ∆t) are chosen so that the following CFL
(Courant-Friedrichs-Lewy [35]) condition holds:

(4.46) λ
(

max{−qL, qR} + max
u∈[0,1]

|b′(u)|
)

+ µ max
u∈[0,1]

A′(u) ≤ 1/2.

In our case, the stability analysis relies very much on the monotonicity property of the scheme,
where we recall that a finite difference scheme such as (4.44) is monotone [36] if

(4.47) Un
j ≤ V n

j ∀j =⇒ Un+1
j ≤ V n+1

j ∀j.

The following lemma and its proof illustrate how the CFL condition (4.46) is derived from the
requirement that our scheme (4.44) be monotone.

Lemma 4.12. If the initial data {U 0
j }j∈Z lies in the interval [0, 1], and the CFL condition (4.46)

is satisfied, then the solution {Un
j }j∈Z computed by the explicit scheme (4.44) also belongs to the

interval [0, 1] for each n ≥ 0. Moreover, the difference scheme (4.44) remains monotone at each
time level n ≥ 0.

Proof. Let us first rewrite (4.44) as Un+1
j = Gj(U

n
j+1, U

n
j , Un

j−1, γj+1/2, γj−1/2) for j ∈ Z. Then
the scheme is monotone, i.e., satisfies (4.47), if

∂Un+1
j /∂Un

j+1 ≥ 0, ∂Un+1
j /∂Un

j ≥ 0, ∂Un+1
j /∂Un

j−1 ≥ 0, j ∈ Z.(4.48)

However, in our case we have for j ∈ Z

∂Un+1
j /∂Un

j+1 = −λf−
u

(

γj+1/2, U
n
j+1

)

+ µγ1j+1/2A
′
(

Un
j+1

)

,(4.49)

∂Un+1
j /∂Un

j−1 = λf+
u

(

γj−1/2, U
n
j−1

)

+ µγ1j−1/2A
′
(

Un
j−1

)

,(4.50)

∂Un+1
j /∂Un

j = 1 + λf−
u

(

γj+1/2, U
n
j

)

− λf+
u

(

γj−1/2, U
n
j

)

(4.51)

− µ
(

γ1j−1/2 + γ1j+1/2

)

A′
(

Un
j

)

.

Since f−
u ≤ 0, f+

u ≥ 0 and A′(u) ≥ 0 by definition, we see that the right-hand sides of (4.49)
and (4.50) are always nonnegative. If Un

j ∈ [0, 1], then it is easy to deduce from (4.51) and from

γ1 ∈ [0, 1] that also ∂Un+1
j /∂Un

j ≥ 0 if the CFL condition (4.46) is satisfied. Precisely speaking,

Un
j ∈ [0, 1] and the CFL condition (4.46) ensure that the scheme is monotone at time tn.

It remains to prove that if we have Un
j ∈ [0, 1], then the quantities Un+1

j calculated by the
scheme also satisfy Un+1

j ∈ [0, 1] for j ∈ Z. To this end, we now apply the scheme (4.44) to the
initial data V 0

j ≡ 0. The parabolic terms vanish, since the data is constant, and at time level 1
we get V 1

j = V 0
j −λ∆−h(γj+1/2, V

0
j+1, V

0
j ). Since b(u) = 0 for u = 0 and u = 1, it is easy to check

that V 1
0 = λ(qR − qL)uF and V 1

j = 0 for j 6= 0. The CFL condition implies 0 ≤ λ(−qL) ≤ 1/2 and
0 ≤ λqR ≤ 1/2, which yields 0 ≤ λ(qR − qL) ≤ 1, and thus V 1

j ∈ [0, 1].
Next, we apply the scheme (4.44) to the initial data W 0

j ≡ 1, yielding at time level 1 W 1
j =

W 0
j −λ∆−h(γj+1/2, W

0
j+1, W

0
j ). This time we find that W 1

0 = 1−λ(qR − qL)(1−uF) and W 1
j = 1

for j 6= 0. The CFL condition again guarantees that W 1
j ∈ [0, 1]. Thus, 0 ≤ V 1

j , W 1
j ≤ 1, the CFL

condition remains valid for {Vj
1}j∈Z and {W 1

j }j∈Z, and monotonicity implies that V 1
j ≤ U1

j ≤ W 1
j .

Continuing inductively, we see that 0 ≤ V n
j ≤ Un

j ≤ Wn
j ≤ 1, the CFL condition remains satisfied

at each successive time step, and we continue to have monotonicity for each n ≥ 0. �

When sending ∆ ↓ 0, as we will do in the analysis of the explicit scheme (3.1), the ratio
µ = λ/∆x = ∆t/∆x2 will be kept constant, which means that λ = µ∆x is variable with λ → 0 as
∆ ↓ 0.

The CFL condition for the semi-implicit scheme (3.4), which we do not analyze here but use
for some of the numerical examples, is

(4.52) λ
(

max{−qL, qR} + max
u∈[0,1]

|b′(u)|
)

≤ 1/2.

Consequently, the semi-implicit scheme behaves stably for ∆ ↓ 0 if we fix λ = ∆t/∆x such that
(4.52) is satisfied. The semi-implicit scheme (3.4) allows a faster computation than the explicit
scheme (3.1), since ∆t needs to be chosen proportional to ∆x, not ∆x2 (as for the explicit scheme).
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Again, the CFL condition (4.52) accrues from the requirement that the scheme be monotone, as
we shall see in the following version of Lemma 4.12 for the semi-implicit scheme (3.4). This lemma
can be considered as a motivation for the CFL condition (4.52).

Lemma 4.13. If the initial data {U 0
j }j∈Z lies in the interval [0, 1], and the CFL condition (4.52)

is satisfied, then the solution {Un
j }j∈Z computed by the semi-implicit scheme (3.4) also belongs to

the interval [0, 1] for each n ≥ 0. Moreover, the difference scheme (3.4) remains monotone at each
time level n ≥ 0.

Proof. Let V n := {V n
j }j∈Z and Wn := {W n

j }j∈Z satisfy V n
j , Wn

j ∈ [0, 1] for all j ∈ Z. If we
compute V n+1 and Wn+1 using the implicit scheme, then with the help of (4.45) we can write
their difference as

Wn+1
j − V n+1

j =Wn
j − V n

j + αj+1/2

(

Wn
j+1 − V n

j+1

)

− βj+1/2

(

Wn
j − V n

j

)

− αj−1/2

(

Wn
j − V n

j

)

+ βj−1/2

(

Wn
j−1 − V n

j−1

)

+ sj+1/2θj+1

(

Wn+1
j+1 − V n+1

j+1

)

− (sj+1/2 + sj−1/2)θj

(

Wn+1
j − V n+1

j

)

+ sj−1/2θj−1

(

Wn+1
j−1 − V n+1

j−1

)

,

(4.53)

where we define for j ∈ Z

αj+1/2 := −λ

∫ 1

0

f−
u

(

γ
j+1/2

, V n
j+1 + φ(W n

j+1 − V n
j+1)

)

dφ ≥ 0,

βj+1/2 := λ

∫ 1

0

f+
u

(

γ
j+1/2

, V n
j + φ(W n

j − V n
j )

)

dφ ≥ 0,

(4.54)

and

(4.55) θj := µ
A(Wn+1

j ) − A(V n+1
j )

Wn+1
j − V n+1

j

≥ 0.

Let us abbreviate Dn
j := Wn

j − V n
j , and rearrange (4.53) into the form

(

1 + (sj+1/2 + sj−1/2)θj

)

Dn+1
j =(1 − βj+1/2 − αj−1/2)D

n
j + αj+1/2D

n
j+1

+ βj−1/2D
n
j−1 + sj+1/2θj+1D

n+1
j+1 + sj−1/2θj−1D

n+1
j−1 .

(4.56)

Thanks to the CFL condition (4.52), we have 1− βj+1/2 −αj−1/2 ≥ 0. Thus all of the coefficients
appearing in (4.56) are nonnegative, and taking absolute values results in

(

1 + (sj+1/2 + sj−1/2)θj

)
∣

∣Dn+1
j

∣

∣ ≤(1 − βj+1/2 − αj−1/2)
∣

∣Dn
j

∣

∣

+ αj+1/2

∣

∣Dn
j+1

∣

∣ + βj−1/2

∣

∣Dn
j−1

∣

∣

+ sj+1/2θj+1

∣

∣Dn+1
j+1

∣

∣ + sj−1/2θj−1

∣

∣Dn+1
j−1

∣

∣.

(4.57)

Summing (4.57) over j ∈ Z, cancelling wherever possible, and recalling the definition of Dn
j , we

find that

(4.58)
∑

j∈Z

∣

∣Wn+1
j − V n+1

j

∣

∣ ≤
∑

j∈Z

∣

∣Wn
j − V n

j

∣

∣ ,

indicating that the semi-implicit scheme is L1-contractive on data that is constrained to the interval
[0, 1]. It now follows from the Crandall-Tartar lemma [37] that the scheme is also monotone (on
data that is constrained to the interval [0, 1]).

We still must show that the solution remains in [0, 1]. First, observe that the L1-contraction
property (4.58) implies that the solution to the implicit scheme is unique. Referring back to the
portion of the proof of Lemma 4.12 where we used the specific data V 0

j ≡ 0, and W 0
j ≡ 1, we see

that the solutions V 1
j and W 1

j are also (the unique) solutions to the implicit scheme at time level 1.
With these observations in mind, it is clear that the relevant portion of the proof of Lemma 4.12
also shows invariance of the interval [0, 1] for the semi-implicit scheme. �

We now continue our analysis of the explicit scheme (3.1).
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Lemma 4.14. Our numerical approximation satisfies the following discrete time continuity esti-
mate (which is uniform in n and ∆):

(4.59) ∆x
∑

j∈Z

∣

∣Un+1
j − Un

j

∣

∣ ≤ ∆x
∑

j∈Z

∣

∣U1
j − U0

j

∣

∣ ≤ C∆t,

as well as a uniform (in n and ∆) L1 bound:

(4.60) ‖u∆(·, tn)‖L1(R) ≤ CT.

Proof. The proof of Lemma 3.3 of [55] is almost entirely applicable to (4.59), the only possible
complication arising when we have to bound the quantity

∑

j∈Z

∣

∣

∣

∣

∆−
1

∆x
sj+1/2∆+A(U0

j )

∣

∣

∣

∣

.

One finds that the proof of the analogous bound in [55] can be modified to accommodate the
present situation. The key ingredients are the assumption that γ1A(u0)x ∈ BV (R), along with
the pointwise discretization of u0. For the proof of (4.60), see Lemma 3.4 of [55]. �

In what follows, it will be convenient to have available the notation O (1) to denote a quantity
that is bounded uniformly in n and ∆.

Lemma 4.15. The following bound holds independently of ∆ and the time level n:

(4.61)
∑

j∈Z

sj−1/2

∣

∣∆−An
j

∣

∣ ≤ C.

Proof. Let ρn
j−1/2 := hn

j−1/2 − sj−1/2∆−An
j /∆x. By substituting Un+1

j − Un
j = −λ∆+ρn

j−1/2 into

(4.59) we find that

(4.62)
∑

j∈Z

|∆+ρn
j−1/2| = O (1) .

At the same time, if j is so large that xj > xR + 2∆x, then ρn
j−1/2 = qRUn

j . From Lemma 4.12,
we get that |ρn

j−1/2| ≤ qR. This bound, together with the bound (4.62), implies a uniform bound
of the form |ρn

j−1/2| = O (1). Since the convective numerical flux h(γ, v, u) is continuous, the
quantity hn

j−1/2 is also uniformly bounded, and so we have the bound sj−1/2|∆−An
j |/∆x = O (1).

The proof is completed by multiplying both sides of this relationship by ∆x, summing over j, and
recalling that sj−1/2 vanishes for xj outside of the interval [xL − ∆x, xR]. �

Let z∆(x, t) := Ψ(γ(x), u∆(x, t)). Defining (see (4.13) for the definition of F)

F∆(x, t) := F(γ(x), u∆(x, t)), A∆(x, t) := A(u∆(x, t)),

we can separate z∆ into its hyperbolic and parabolic contributions:

(4.63) z∆(x, t) = F∆(x, t) + γ1(x)A∆(x, t).

To prove that the difference scheme converges, we follow [25] and first prove compactness for the
transformed quantity z∆. We establish spatial variation bounds separately for each of the intervals
(−∞, xL), (xL, 0), (0, xR), (xR,∞). The jumps in z∆ where these intervals meet are bounded, and
so we can ignore them. Indeed consider the jump in z∆(x, tn) that occurs at x = m ∈ {xL, 0, xR},
which is given by

z∆(m+, tn) − z∆(m−, tn) = Ψ
(

γ+, u∆(m+, tn)
)

− Ψ
(

γ−, u∆(m−, tn)
)

.

Since u∆ is bounded uniformly (by Lemma 4.12), γ is bounded by assumption, and the transfor-
mation Ψ is Lipschitz continuous with respect to all variables, it is clear that the magnitude of
this jump is uniformly bounded also.

In the intervals (−∞, xL) and (xR,∞), the parabolic term is not present, and (4.63) simplifies to
z∆(x, t) = γ2u

∆(x, t). This makes it clear that the proof of the variation bound for these intervals
is the same as the proof of Lemma 3.5 of [25]. We record this fact in the following lemma.
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Lemma 4.16. We have the following bounds, which are independent of ∆ and n:

(4.64) TV
(

z∆(·, tn)|{x|x<xL}

)

≤ C, TV
(

z∆(·, tn)|{x|x>xR}

)

≤ C.

We now address the variation bound for the remaining intervals, (xL, 0) and (0, xR). As in
[25], we will focus on (0, xR), omitting the proof for the other interval, since it is similar. Let
γR := (qR, 1), i.e., let γR denote the value that γ takes on (0, xR). Recalling the definition (4.13),
we see that γ1 = 1 for x ∈ (0, xR), and so Ψ simplifies to

(4.65) Ψ(γ, u) = F(γR, u) + A(u), F(γR, u) =

∫ u

0

S(w)|fu(γR, w)| dw.

Let J− be the largest index j such that xj − ∆x/2 ≤ 0, and let J+ be the smallest index j such
that xj + ∆x/2 ≥ xR. Thus 0 ∈ IJ− , xR ∈ IJ+ , and [0, xR] ⊆ [xJ− − ∆x/2, xJ+ + ∆x/2].

The following lemma records a discrete entropy inequality. It can be proved via a slight modi-
fication (to account for sj−1/2) of the proof of Lemma 4.1 of [56].

Lemma 4.17. For any c ∈ R, the following cell entropy inequality is satisfied by approximate
solutions Un

j generated by the scheme (4.44):

∣

∣Un+1
j − c

∣

∣ ≤
∣

∣Un
j − c

∣

∣ − λ∆−Hn
j+1/2 + µ∆+

(

sj−1/2∆−

∣

∣A
(

Un
j

)

− A(c)
∣

∣

)

− λ sgn
(

Un+1
j − c

)

∆+f (γj−1/2, c),
(4.66)

where the numerical entropy flux Hj+1/2 is defined by

(4.67) Hn
j+1/2 := h

(

γj+1/2, U
n
j+1 ∨ c, Un

j ∨ c
)

− h
(

γj+1/2, U
n
j+1 ∧ c, Un

j ∧ c
)

.

Formally, the cell entropy inequality (4.66) can be motivated by assuming that the function u in
the integrand of (4.5) is piecewise constant on the rectangle Rn

j := (xj−1/2, xj+1/2)×(tn, tn+1), and
by choosing a sequence of test functions φ with support on Rn

j that approximate the characteristic
function χn

j of Rn
j . Moreover, the exact entropy flux defined in (4.12) is replaced by the numerical

entropy flux (4.67). In this sense, the discrete entropy inequality (4.66) is consistent to the entropy
inequality (4.5) for the exact solution, but observe that the term in the second line of (4.66), which
mirrors the sum over m ∈ J in (4.5), is evaluated at time level tn+1.

Let χl(w; c) := H(c−w), where H(·) is the Heaviside function, and χr(w; c) := 1−χl(w; c). The
following lemma is easily established using the calculations used in Lemma 3.9 of [25], adapted to
the cell entropy inequality (4.66) appearing in Lemma 4.17.

Lemma 4.18. Fix c ∈ R and γ ∈ G. The following inequalities are valid for J− ≤ j ≤ J+:

−
∫ Un

j+1

Un
j

χl(w; c)f−
u (γ, w) dw −

∫ Un
j

Un
j−1

χl(w; c)f+
u (γ, w) dw

≤ −1

λ

(

Un
j − Un+1

j

)

−
− 1

∆x
∆+

(

sj−1/2∆−(A(Un+1
j ) − A(c))−

)

+ αn
j ,

(4.68)

∫ Un
j+1

Un
j

χr(w; c)f−
u (γ, w) dw +

∫ Un
j

Un
j−1

χr(w; c)f+
u (γ, w) dw

≤ 1

λ

(

Un
j − Un+1

j

)

+
− 1

∆x
∆+

(

sj−1/2∆−(A(Un+1
j ) − A(c))+

)

+ βn
j .

(4.69)

The quantities αn
j and βn

j are bounded independently of n and ∆. In fact, αn
j = βn

j = 0 for

J− + 2 ≤ j ≤ J+ − 2.

With the help of these entropy inequalities, we can prove the following lemma.

Lemma 4.19. The following spatial variation bounds are satisfied, independent of ∆ and n:

TV
(

F∆(·, tn)|{x|xL<x<0}

)

≤ C, TV
(

F∆(·, tn)|{x|0<x<xR}

)

≤ C.
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Proof. We only prove the second assertion; the proof of the first is similar. We follow closely the
proof of Lemma 3.10 of [25]. First, observe that if the term

1

∆x
∆−

(

∆+sj−1/2(A(Un
j ) − A(c))−

)

was not present in (4.68), the proof of Lemma 3.10 of [25] would apply verbatim. Next, recall
from the proof of Lemma 4.3 that if c ≤ uc, then (A(Un

j ) − A(c))− = 0. Thus, when c ≤ uc, the
parabolic term in (4.68) disappears, giving us

(4.70) −
∫ Un

j+1

Un
j

χl(w; c)f−
u (γ, w) dw −

∫ Un
j

Un
j−1

χl(w; c)f+
u (γ, w) dw ≤ −1

λ

(

Un
j − Un+1

j

)

−
+ αn

j .

When x ∈ (0, xR), (γ1(x), γ2(x)) = (qR, 1) ≡ γR, and by the assumptions on b and qR, u 7→
f(γR, u) has at most two extrema for u ∈ (0, 1). For the sake of argument, we assume that
there are exactly two extrema. It will become clear that a simplified version of the following
proof will suffice if there are fewer than two. So assume that there is one maximum located at
u∗

1 ∈ (0, 1), and one minimum located at u∗
2 ∈ (0, 1), with u∗

1 < u∗
2. The flux u 7→ f(γR, u)

is strictly monotone away from these critical points. Let u∗
0 := 0, u∗

3 := 1 and for ν = 0, 1, 2,
let χν(u) be the characteristic function of the interval [min{u∗

ν , uc}, min{u∗
ν+1, uc}). Each of the

intervals [min{u∗
ν, uc}, min{u∗

ν+1, uc}) is either empty (if the left endpoint happens to equal uc),
or f(γR, u) is strictly monotone in its interior. Define

φν(γR, u) :=

∫ u

0

χν(w)
∣

∣fu(γR, w)
∣

∣ dw, ν = 0, 1, 2.

Clearly, S(u) = χ0(u) + χ1(u) + χ2(u), so that F(γR, ·) has the decomposition

(4.71) F(γR, u) = φ0(γR, u) + φ1(γR, u) + φ2(γR, u).

We now use the entropy inequality (4.70) three times, just as in the proof of Lemma 3.10 of [25],
except that now instead of c = uν , ν = 1, 2, 3, we take c = min{u∗

ν, uc}, ν = 1, 2, 3. In order to
keep the analysis somewhat self-contained, let us review the calculation appearing in [25] when
c = u∗

1. We start by setting c = u∗
1 in inequality (4.70), and observe that u 7→ f(γR, u) is strictly

increasing on (0, u∗
1). Then (4.70) simplifies to

(4.72) −
∫ Un

j

Un
j−1

χl(w; u∗
1)f

+
u (γR, w) dw ≤ −1

λ

(

Un
j − Un+1

j

)

−
+ αn

j .

Since f+
u (γR, u) = |fu(γR, u)| for u ∈ (0, u∗

1), we find that

∫ Un
j

Un
j−1

χl(w; u∗
1)f

+
u (γR, w) dw =

∫ Un
j

Un
j−1

χ0(w)
∣

∣fu(γR, w)
∣

∣dw = φ0
(

γR, Un
j

)

− φ0
(

γR, Un
j−1

)

.

Combining this last relationship with (4.72), we have the inequality

φ0
(

γR, Un
j−1

)

− φ0
(

γR, Un
j

)

≤ 1

λ

∣

∣Un+1
j − Un

j

∣

∣ + αn
j ,

and, since the right side of this inequality is nonnegative, we also have

−
(

φ0
(

γR, Un
j

)

− φ0
(

γR, Un
j−1

)

)

−
≤ 1

λ

∣

∣Un+1
j − Un

j

∣

∣ + αn
j .(4.73)

Next, we sum (4.73) over j and invoke Lemmas 4.18 and 4.14 to obtain

−
J+

∑

j=J−

(

φ0
(

γR, Un
j

)

− φ0
(

γR, Un
j−1

)

)

−
≤

J+

∑

j=J−

(

1

λ

∣

∣Un+1
j − Un

j

∣

∣+
∣

∣αn
j

∣

∣

)

≤
∑

j∈Z

1

λ

∣

∣Un+1
j − Un

j

∣

∣ +
∣

∣αn
J+

∣

∣ +
∣

∣αn
J+−1

∣

∣ +
∣

∣αn
J−

∣

∣ +
∣

∣αn
J−+1

∣

∣ = O(1).
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Finally, we observe that since φ0 is bounded uniformly in ∆ and n, it follows from this bound
on the negative variation that φ0 also has uniformly bounded total variation. Similar calculations
(see [25]) result in uniform bounds on the total variation of φ1 and φ2, i.e., we have

J+

∑

j=J−

∣

∣

∣
φν

(

γR, Un
j

)

− φν
(

γR, Un
j−1

)

∣

∣

∣
= O(1), ν = 0, 1, 2.

In view of (4.71), the proof is completed by combining these three bounds. �

With this spatial variation bound established, we can prove the following lemma. We omit the
proof, which is not essentially different from the proof of Lemma 3.8 of [55].

Lemma 4.20. There exists a subsequence of {F∆}, also denoted by {F∆}, and a function F ∈
L1(ΠT ) ∩ L∞(ΠT ) such that F∆ → F in L1

loc(ΠT ) and a.e. in ΠT . Furthermore, F(·, t) ∈ L1(R)
for all t ∈ [0, T ].

The following lemma establishes convergence (along a subsequence) of the discrete diffusion
term A∆. The proof is similar to the proofs of Lemmas 3.9, 3.10, 3.11, and 3.12 of [55].

Lemma 4.21. The following bounds are satisfied, independent of n and ∆:
{

∆t ∆x
∑

n≥0

∑

j∈Z

sj+1/2

(

∆+A(Un
j )

)2
}1/2

≤ C∆x,(4.74)

∥

∥A
(

u∆(· + y, ·)
)

− A
(

u∆(·, ·)
)∥

∥

L2(Ωy)
≤ C

√

|y|(|y| + ∆x), ∀y ∈ (xL, xR),
∥

∥A
(

u∆(·, · + τ)
)

− A
(

u∆(·, ·)
)
∥

∥

L2(Ωτ )
≤ C

√
τ + ∆t, ∀τ ∈ (0, T ),(4.75)

where Ωy consists of all (x, t) ∈ ΠT such that x and x + y belong to (xL, xR) × (0, T ) and Ωτ :=
(xL, xR) × (0, T − τ)). Finally, we have that there exists a subsequence of {A∆}, also denoted by
{A∆}, and a function A ∈ L2(0, T ; H1(xL, xR)) such that A∆ → A in L2((xL, xR) × (0, T ) and
boundedly a.e. in (xL, xR) × (0, T ). Furthermore, A = A(u) a.e. in (xL, xR) × (0, T ), where u
denotes the L∞ weak-∗ limit of u∆.

It is possible to establish more regularity of the diffusion function than displayed in Lemma
4.21. This additional regularity, which is stated in the lemma below, will be used later in the proof
of Theorem 4.2.

Lemma 4.22. There exists a constant C, independent of ∆, such that
∣

∣A(Un
j ) − A(Un

i )
∣

∣ ≤ C|j − i|∆x,
∣

∣A(Un
j ) − A(Um

j )
∣

∣ ≤ C
√

|n − m|∆t

for all i, j, n, m such that (xi, tn), (xj , tn), and (xj , tm) belong to (xL, xR) × (0, T ).

Define Ãn(x) as

Ãn(x) =
1

∆x

(

(x − xj−1)A(Un
j ) + (xj − x)A(Un

j−1)
)

, x ∈ [xj−1, xj ].

Then define

Ã∆(x, t) =
1

∆t

(

(t − tn) Ãn+1(x) + (tn+1 − t) Ãn(x)
)

, t ∈ [tn, tn+1].

Then there exists a subsequence of Ã∆, also denoted by Ã∆, and a function

Ã ∈ C1,1/2
(

(xL, xR) × (0, T )
)

such that Ã∆ → Ā in L∞((xL, xR)×(0, T )). Moreover, there holds (Ã∆)x
⋆
⇀ Ãx in L∞((xL, xR)×

(0, T )).

This lemma can be proved by a straightforward adaptation of the proofs of Lemmas 4.1 and
4.2 and Theorem 4.1 in [55].

We can now prove our main convergence theorem.
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Theorem 4.2. Assume that the hypotheses concerning the data stated in Section 4.1 are satisfied.
Then there exists a BVt weak solution of the initial value problem (4.1) that satisfies the entropy
condition (D.5). Let u∆ be defined by (3.3) and the scheme (4.44), with the parameters ∆x and ∆t
chosen so that the CFL condition (4.46) holds. Then, along a subsequence, u∆ → u in L1

loc(ΠT )
and a.e. in ΠT , where u is a BVt weak solution.

Proof. The proof of convergence (along a subsequence) to a function u : ΠT → R is essentially the
same as the proof of Theorem 3.1 of [55]. The main idea is to observe that z∆ = Ψ(γ∆, u∆) =
F∆ + γ1A

∆. Convergence (along a subsequence) of {z∆} then follows from compactness for
the sequences F∆ and γ1A

∆ (Lemmas 4.20 and 4.21). Letting z(x, t) denote lim∆→0 z∆(x, t),
one then recovers the conserved quantity u via u(x, t) = Ψ−1(γ(x), z(x, t)). The arguments in
[55] also (with some slight modifications to account for γ1 multiplying A(u)x) show that u ∈
L1(ΠT ) ∩ L∞(ΠT ) ∩ C(0, T ; L1(R)) and A(u) ∈ L2(0, T ; H1(xL, xR)). It follows readily from the
discrete time continuity estimate (4.59) that u ∈ BVt(ΠT ) (see the proof of Theorem 3.1 of [25]),
and that the initial data is assumed in the strong L1 sense, i.e, (4.4) is satisfied.

To show that the limit u is a BVt weak solution, it remains to verify that the weak formulation
(4.3) is satisfied, for which a a Lax-Wendroff type calculation is required. The proof of Theorem
3.1 of [55] applies in the present situation, with the exception that the spatially varying coefficient
sj−1/2 multiplying the parabolic term causes some new complications. We can lay this matter to
rest if we can show that for φ ∈ D(ΠT ), and with φn

j := φ(xj , tn),

(4.76) ∆x∆t
∑

n≥0

∑

j∈Z

1

∆x2
∆+

(

sj−1/2∆−An
j

)

φn
j → −

∫∫

ΠT

γ1(x)A(u)xφx dx dt.

Summing by parts, we get the following expression for the left-hand side of (4.76):

(4.77) −∆x∆t
∑

n≥0

∑

j∈Z

1

∆x

(

sj−1/2∆−An
j

) (

∆−φn
j /∆x

)

.

Let Ã∆ be the interpolant defined in Lemma 4.22. Observe that (Ã∆)x = ∆+A(Un
j ) on the

parallelogram P n
j with vertices (xj , t

n−1), (xj , t
n), (xj+1, t

n), and (xj+1, t
n+1).

We now have

− ∆x∆t
∑

n≥0

∑

j∈Z

1

∆x

(

sj−1/2∆−An
j

) (

∆−φn
j /∆x

)

=
∑

n≥0

∑

j∈Z

∫∫

P n+1

j

γ1(x)(Ã∆)xφx dx dt + O(∆x + ∆t)

=

∫∫

ΠT

γ1(x)(Ã∆)xφx dx dt + O(∆x + ∆t).

(4.78)

According to Lemma 4.22 we can assume that Ã∆ → Ā in L∞((xL, xR) × (0, T )). Since

u∆ → u a.e. in ΠT , we can repeat the proof of Theorem 4.1 in [55] to show that Ã = A(u) a.e. in
(xL, xR) × (0, T ). Recall that the parameter γ1(x) takes the value 1 for x ∈ (xL, xR) and is zero

elsewhere. Using this and the convergence (Ã∆)x
⋆
⇀ A(u)x in L∞((xL, xR)× (0, T )) when sending

∆ → 0 in (4.78), we get (4.76).
The proof that u satisfies the entropy inequality (4.5) requires another Lax-Wendroff type

calculation, this time based on the cell entropy inequality (4.66). The proof of Theorem 5.1
of [55], or Lemma 4.1 of [56], suffices for the situation at hand, again with the exception of the
parabolic terms, due to the presence of sj−1/2. It is possible to resolve this matter by an argument
(which we omit) similar to the one above. �

Remark 4.3. In this proof, we have verified all but condition (D.4) of Definition 4.1. Thus, if
we one were able to prove that (D.4) is satisfied, then the limit u of Theorem 4.2 would be the
BVt entropy solution whose uniqueness is guaranteed by Theorem 4.1. Although our numerical
results suggest that this condition is satisfied by the limit of the sequence of approximate solutions,
a rigorous proof of this property is still left as an open problem.
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5. Steady-state solutions

The construction of steady states is based on the stationary version of (2.16) or (2.21). We do
not present here a thorough analysis of all steady states but identify some stationary solutions
in order to motivate the choices of the control parameters for the transient simulations. Our
construction of steady states will follow a procedure similar to that of the simpler continuous
thickening models treated in [16, 17]. Specifically, we fix the material model, the vessel geometry,
and assume that the clarifier-thickener is to be operated at given values of QL, QF and uF, and
is supposed to produce a thickened sediment of a discharge concentration uD > uc. Although the
construction given below can be extended in a straightforward manner to vessels with varying cross-
sectional area, there are some subtle details that require that we restrict the rigorous discussion
to vessels with constant cross-sectional interior area, so that we limit the discussion to Model 1.

Our notation is consistent to Section 4, i.e., we refer to the space variable by x (instead of w),
to the solution by u (instead of v) and to the integrated diffusion coefficient by A (instead of A).

Definition 5.1. A piecewise twice differentiable function u : R → [0, umax] is a steady-state en-
tropy weak solution of Model 1 if the following conditions are satisfied: (a) the function γ1(x)A(u)′

is bounded, where ′ = d/dx; (b) the function u is a weak solution to the following ordinary differ-
ential equation that arises from (2.21), and where g(x, u) is given by (2.23):

g(x, u)′ =
(

γ1(x)A(u)′
)′

,(5.1)

i.e., for every test function φ ∈ C2
0 (R) with compact support we have

∫

R

(

f
(

γ(x), u(x)
)

− γ1(x)A
(

u(x)
)′

)

φ′(x) dx = 0,(5.2)

and (c) the following entropy inequality holds for all test functions φ ∈ C2
0 (R), φ ≥ 0 and k ∈ R:

∫

R

(

sgn
(

u(ξ) − k
)(

f(γ(ξ), u(ξ)) − f(γ(ξ), k)
)

− γ1(ξ)A(u)′
)

φ′(ξ)dξ

+
∑

m∈J

∣

∣f
(

γ(m+), k
)

− f
(

γ(m−), k
)
∣

∣φ(m) ≥ 0.
(5.3)

It is standard to conclude from (5.2) that the following jump condition has to be satisfied across
any discontinuity of the steady-state solution, where u(x+) and u(x−) refer to limits of u(ξ) taken
for ξ → x with ξ > x and ξ < x, respectively:

f
(

γ(x−), u(x−)
)

− γ1(x
−)A′(u)|x=x− = f

(

γ(x+), u(x+)
)

− γ1(x
+)A′(u)|x=x+ .(5.4)

It is easy to see that this condition implies that steady-state solutions are constant for x < xL and
x > xR.

Lemma 5.1. Inequality (5.3) implies the following entropy jump condition:

∀k ∈ R : sgn
(

u(x+) − k
)[

f
(

γ(x+), u(x+)
)

− f
(

γ(x+), k
)

− γ1(x
+)A′(u)|x=x+

]

− sgn
(

u(x−) − k
)[

f
(

γ(x−), u(x−)
)

− f
(

γ(x−), k
)

− γ1(x
−)A′(u)|x=x−

]

≤
∣

∣f
(

γ(x+), k
)

− f
(

γ(x−), k
)
∣

∣.

(5.5)

(Note that the right-hand part of (5.5) is zero for x 6∈ J .)

Proof. The proof is a simpler variant of the proof of Lemma 2.6 of [56]. To outline it, let us fix
m ∈ J = {xL, 0, xR}, and define the function

θε(x) :=











(ε + x)/ε if x ∈ [−ε, 0],

(ε − x)/ε if x ∈ [0, ε],

0 otherwise
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with a parameter ε > 0. A density argument will reveal that we may choose the compactly
supported Lipschitz continuous function θε(x − m) as a test function in (5.3). This yields

1

ε

∫ m

m−ε

(

F
(

γ(ξ), u(ξ), k
)

− γ1(x)
∣

∣A(u) − A(k)
∣

∣

′
)

dx

−1

ε

∫ m+ε

m

(

F
(

γ(ξ), u(ξ), k
)

− γ1(x)
∣

∣A(u) − A(k)
∣

∣

′
)

dx

+
∣

∣f
(

γ(m+), k
)

− f
(

γ(m−), k
)
∣

∣ ≥ 0,

(5.6)

where we recall the notation (4.12). Since the solution u(x) is piecewise smooth, we may apply a
time-independent version of Lemma 4.7 to conclude that for ε → 0, we obtain from (5.6)

F
(

γ(m+), u(m+), k
)

− L lim
ξ↓m

(

γ1(ξ)
∣

∣A(u) − A(k)
∣

∣

′)

− F
(

γ(m−), u(m−), k
)

+ L lim
ξ↑m

(

γ1(ξ)
∣

∣A(u) − A(k)
∣

∣

′) ≤
∣

∣f
(

γ(m+), k
)

− f
(

γ(m−), k
)
∣

∣.
(5.7)

Assume for the moment that u(m+) 6= k and u(m−) 6= k. Then Lemma 4.7 implies

L lim
ξ↓m

(

γ1(ξ)
∣

∣A(u) − A(k)
∣

∣

′)
= sgn

(

u(m+) − k
)

γ1(m
+)A′(u)|x=m+ ,

L lim
ξ↑m

(

γ1(ξ)
∣

∣A(u) − A(k)
∣

∣

′)
= sgn

(

u(m−) − k
)

γ1(m
−)A′(u)|x=m− ,

such that (5.7) already implies (5.5). To remove this restriction, assume that k = u(m−) (the
other case is similar). Then the left-hand side of (5.5) is just

L := sgn
(

u(m+) − u(m−)
)[

f
(

γ(m+), u(m+)
)

− f
(

γ(m+), u(m−)
)

− γ1(m
+)A′(u)

∣

∣

x=m+

]

.

Using the jump condition (5.4), we obtain

L = sgn
(

u(m+) − u(m−)
)[

f
(

γ(m−), u(m−)
)

− f
(

γ(m+), u(m−)
)

− γ1(m
−)A′(u)

∣

∣

x=m−

]

≤
∣

∣f
(

γ(m−), u(m−)
)

− f
(

γ(m+), u(m−)
)∣

∣ − sgn
(

u(m+) − u(m−)
)

γ1(m
−)A′(u)

∣

∣

x=m−
,

and finally applying a steady-state variant of the right inequality of (4.27) in Lemma 4.8, we get

L ≤
∣

∣f
(

γ(m−), u(m−)
)

− f
(

γ(m+), u(m−)
)
∣

∣,

which is the inequality (5.5). Finally, since we are dealing with time-independent solutions, in-
equality (5.6) and the remaining discussion remain valid if we replace m ∈ J by x ∈ R. �

The following lemma states a useful continuity result.

Lemma 5.2. Let u(x) be a piecewise differentiable steady-state entropy weak solution of Model 1.
Then A(u(x+)) = A(u(x−)) for all x ∈ R.

Proof. We consider first a point x ∈ (xL, xR), at which γ1 is continuous. Then the boundedness
of γ1(x)A(u)′ implies that

0 = lim
ε→0

∫ x+ε

x−ε

γ1(ξ)A
(

u(ξ)
)′

dξ = lim
ε→0

∫ x+ε

x−ε

A
(

u(ξ)
)′

dξ = A
(

u(x+)
)

− A
(

u(x−)
)

.

Furthermore, consider that boundedness of γ1(x)A(u)′ implies that A(u)′ is uniformly bounded
on [xL, xR]. On the other hand, for x < xL and x > xR, the jump condition (5.4) reduces
to qLu(x−) = qL(x+) and qRu(x+) = qRu(x+), respectively, which implies u(x−) = u(x+) and
therefore no jumps are possible for x < xL and x > xR. We conclude that piecewise smooth
steady-state solutions are constant on (−∞, xL) and (xR,∞), and therefore we have A(u)′ = 0 on
(−∞, xL) ∪ (xR,∞). Thus A(u)′ is uniformly bounded, and therefore has a continuous primitive
A(u), which implies that A(u(x+)) = A(u(x−)) for all x ∈ R. �

Remark 5.1. We point out that the continuity property established by Lemma 5.2 includes the
steady-state analogue of condition (D.4) stated for the time-dependent Model 1. However, we see
that for our class of steady-state solutions, the continuity of A(u) across x = xL and x = xR is a
result of a more general regularity property, and need not be postulated separately.
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Constructively, we proceed by selecting the discharge concentration uD = u(x)|x>xR
, integrate

the ODE arising from the steady-state version of Model 1 upwards, by obeying jump conditions
wherever necessary. In doing so, we shall establish the limitations the entropy condition imposes
on the choice of control parameters. Thus, the one-sided boundary condition is

u(x−
R) = uD > uc.(5.8)

The discussion will be limited to those cases where the compression zone does not reach the
overflow level. In addition, to further simplify the discussion, we assume that the functions
gL(u) := qLu + b(u) and gR(u) := qRu + b(u) are monotone on the interval [0, uc], i.e.,

qL + b′(u) > 0, qR + b′(u) > 0 for u ∈ [0, uc].(5.9)

Moreover, we limit ourselves to steady-state solutions for which the overflow or effluent concen-
tration uE := u(x)|x<xL

is zero, that is, we choose the parameters uD and uF such that

QFuF = (QR − QL)uF = QRuD − QLuE(5.10)

is satisfied with uE = 0, or, equivalently, and since we consider Model 1 only,

uF(qR − qL)/qR = uD.(5.11)

These steady states represent either the conventional or the high-rate mode of continuous operation
shown in Figure 1 (a) and Figure 1 (b), respectively.

At this point it should be emphasized that our steady-state problem is in general overdeter-
mined. In fact, fixing uD and integrating (5.1) upwards and obeying entropy and jump conditions,
we will in general not achieve a solution with u|x<xL

= uE = 0. All profiles with u|w<xL
6= uE = 0

have to be rejected as candidates for steady-state entropy solutions, since the global mass balance
(5.10) is a consequence of the weak formulation (5.2). To make the analysis transparent, we will
in some instances write out the symbol uE in manipulations before setting it to zero. One result of
this procedure is that under our model assumptions, no steady states with the compression region
completely contained in the thickening zone but with a non-zero effluent concentration exist.

To determine a steady-state entropy weak solution that satisfies the global mass balance, it is
in general necessary, say, to fix uF, choose uD, solve (5.1), to verify whether (5.10) is satisfied
with uE replaced by u(x−

L ), and to iterate this solution procedure (for example, by varying uD)
until the global mass balance (5.10) is attained. However, under the simplifying assumption (5.9),
it turns out that solutions with uE = 0 can easily be characterized: these are those steady-state
entropy weak solutions for which the compression region is strictly contained in the container, i.e.,
for which inf{x ∈ R : u(x) > uc} > xL. This is the most important subclass of steady states, since
they are the most desired mode of operation (see Figure 1). Moreover, it turns out that these
steady-state entropy weak solutions are strictly increasing.

5.1. Steady-state solution in the discharge zone. Before proceeding to integrate the ODE
(5.1) upwards from x = xR, we consider the discharge zone x > xR. Since we are seeking solutions
for which for which A(v) is continuous, we conclude that A(u(x+

R)) = A(u(x−
R)) = A(uD) and

therefore u(x+
R) = uD. On the other hand, from (5.1) we infer that the steady-state solution must

be constant for x > xR. We conclude that u(x) = uD for x > xR.

5.2. Steady-state solution in the thickening zone. Now that the steady-state solution has
been determined in the interval (xR,∞), we determine the solution in the interval (0, xR). To this
end, note first that as a consequence of the jump condition (5.4), the steady state solution must
satisfy the condition qRuD + b(uD) − A(u)′|x=x+

R

= qRuD, which means

b(uD) − A(u)′|x=x+

R

= 0.(5.12)

Assume now that v(x) is a continuously differentiable solution of the following one-sided boundary
value problem, which is the subcase of (5.1) occurring for the interval (0, xR]:

qR(u − uD) + b(u) − A(u)′ = 0 for x < xR, u(xR) = uD.(5.13)
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Note that we have used (5.12) to reduce the second-order ODE (5.1) to the first-order ODE (5.13).
We consider the solution of (5.13) on the interval [xc, xR], where

xc := inf
{

x ∈ (0, xR] |u(x) is the solution of (5.13) and u(x) > uc

}

.(5.14)

However, not every solution of (5.13) is an acceptable steady state solution. Rather, the following
lemma shows that the entropy condition (5.3) imposes an additional admissibility condition. This
condition imposes a restriction on the choice of qR and uD for a given flux density function b(u).

Lemma 5.3. Any steady-state entropy solution u(x) of the one-sided boundary value problem
(5.13) on the interval (xc, xR) is monotonically increasing, i.e. u′(x) ≥ 0 for x ∈ [xc, xR]. This
statement is equivalent to the requirement

qRuD ≤ qRk + b(k) for all k between u(x) and uD for x ∈ [xc, xR].(5.15)

Proof. In view of (5.12), we obtain from (5.5) the inequality

∀k ∈ R : ∀x ∈ (xc, xR) : sgn(uD − k)
(

qR(uD − k) − b(k)
)

− sgn
(

u(x) − k
)[

qR

(

u(x) − k
)

+ b
(

u(x)
)

− b(k) − A(u)′
]

≤ 0.
(5.16)

We now fix x ∈ (xc, xR) and evaluate (5.16) for different values of k. Setting k < min{u(x), uD}
and k > max{u(x), uD}, we obtain ±[qDuD − qRu − b(u) + A(u)′] ≤ 0, which in view of (5.13)
is no new information. The choices k = u(x) and k = uD are covered as limiting cases in the
subsequent discussion of the two alternatives in which k is located strictly between u(x) and uD.

Assume first that uD < k < u(x). Then (5.16) leads to the inequality

2
(

qRk + b(k)
)

− qRuD − qRu(x) − b
(

u(x)
)

+ A(u)′ ≤ 0 for all k ∈ (uD, u(x)).(5.17)

Using that −qRu(x) − b(u(x)) + A(u)′ = −qRuD, we obtain from (5.17)

qR(k − uD) + b(k) ≤ 0 for all k ∈ (uD, u(x)).(5.18)

However, (5.18) can never be satisfied, since qR > 0, k > uD, and we assume b ≥ 0.
The remaining case is the assumption u(x) < k < uD, which leads to the inequality

−2
(

qRk + b(k)
)

+ qRuD + qRu(x) + b
(

u(x)
)

− A(u)′ ≤ 0 for all k ∈ (u(x), uD).(5.19)

Using that qRu(x) + b(u(x)) − A(u)′ = qRuD and that b(uD) > 0, we obtain from (5.19)

qRuD ≤ qRk + b(k) for all k ∈ [u(x), uD].(5.20)

Since (5.13) can be rearranged to give

u′(x) =
qR(u(x) − uD) + b(u(x))

a(u(x))
,(5.21)

we see that (5.20) implies u′(x) ≥ 0 for x ∈ [xc, xR]. �

Remark 5.2. Note that (5.20) has a useful graphical interpretation: namely, the graph of gR(u) =
qRu + b(u) must lie above the horizontal line f = qRuD fixed by the desired operation data. This
condition implies a limitation of the attainable solids throughput for given material and vessel.

To proceed with the discussion, we distinguish between three cases: xc > 0 (Case 1), xc = 0
and u(0+) > uc (Case 2), and xc = 0 and u(0+) = uc (Case 3).

Case 1 (xc > 0). The Rankine-Hugoniot and entropy jump conditions across x = xc are

qRu(x−
c ) + b

(

u(x−
c )

)

− A(u)′|x=x−c
= qRu(x+

c ) + b
(

u(x+
c )

)

− A(u)′|x=x+
c
,(5.22)

∀k ∈ R : sgn
(

u(x+
c ) − k

)[

qR

(

u(x+
c ) − k

)

+ b
(

u(x+
c )

)

− b(k) − A(u)′|x=x+
c

]

− sgn
(

u(x−
c ) − k

)[

qR

(

u(x−
c ) − k

)

+ b
(

u(x−
c )

)

− b(k) − A(u)′|x=x−c

]

≤ 0,
(5.23)

respectively. Moreover, from Lemma 5.2 it follows that A(u(x−
c )) = A(u(x+

c )) = A(uc) = 0, so
that 0 ≤ u(x−

c ) ≤ uc. From (5.13) and the definition of xc it follows that qRu(x+
c ) + b(u(x+

c )) −
A(u)′|x=x+

c
= qRuD. Inserting this into (5.22), we get

qRu(x−
c ) + b

(

u(x−
c )

)

− A(u)′|x=x−c
= qRuD.(5.24)
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Inserting (5.13), (5.24) and u(x+
c ) = uc into (5.23) yields

∀k ∈ R : sgn(uc − k)
(

qRuD − qRk − b(k)
)

− sgn
(

u(x−
c ) − k

)(

qRuD − qRk − b(k)
)

≤ 0.

Obviously, the unique non-trivial case that needs to be discussed here is u(x−
c ) < k < uc. Then

we have sgn(uc − k) = 1, sgn(u(x−
c ) − k) = −1, and the inequality is reduced to

qRuD ≤ gR(k) = qRk + b(k) for all k ∈ (u(x−
c ), uc).(5.25)

On the other hand, from (5.15) we infer that qRuD ≤ qRuc + b(uc). This means that at u = uc,
the graph of gR(u) lies above or intersects the horizontal line f = qRuD. Consequently, u(x−

c ) is
the largest intersection of gR(u) with the horizontal line f = qRuD that is smaller or equal to uc:

u(x−
c ) = inf

{

u ∈ [0, uc]
∣

∣∀ξ ∈ [u, uc] : gR(ξ) = qRξ + b(ξ) ≥ qRuD

}

.

Since gR(0) = 0 < qRuD and gR(uc) > qRuD by assumption, it is ensured that the curve u 7→ gR(u)
and the horizontal line u 7→ qRuD always intersect on [0, uc], and thus u(x−

c ) is well defined. Note
that for a function b(u) with exactly one inflection point, the infimum is taken over at most three
solutions of the equation qRu+b(u) = qRuD. It is not difficult to see that the steady-state solution
in the interval (xc, 0) is given by the constant u(x−

c ), which is uniquely constructed here.
It is at this point that assumption (5.9) turns out to be convenient in order to reduce the

number of possible cases occurring in the continuation of the solution into the clarification zone.
There would be no difficulty associated with relaxing this assumption.

Cases 2 and 3 (xc = 0, v(0+) ≥ uc) The construction of the steady-state solution in the
thickening zone (0, xR] is completed. The differentiable solution profile is given by the solution of
the one-sided boundary value problem (5.13).

5.3. Steady-state solution in the clarification zone.
Case 1 (xc > 0). At x = 0, the next flux discontinuity has to be dealt with. However, since

the solution for x > 0 is a constant not exceeding uc and since A(u) is continuous across x = 0, we
have to treat a transition between two fluxes of a hyperbolic conservation law. The entropy weak
solution to this problem has been determined in several papers [19, 39, 40, 41, 46, 47, 48, 58, 75].
The basic complication is that if the fluxes adjacent to x = 0 are non-monotone, then there might
be several possibilities to satisfy the Rankine-Hugoniot condition if u(0+) is given, and an entropy
condition is necessary to single out the unique entropy-satisfying solution. This will in general
generate a multitude of cases here, depending on the flux parameters, properties of the function b,
and on which solution of the equation qRu + b(u) = qDuD yields the relevant state u(0+).

All these cases can be handled by the recent theory of conservation laws with discontinuous
flux. However, assumption (5.9) helps to avoid this complication since it ensures that to a given
value u(0+) there corresponds a unique value u(0−) such that the jump condition across x = 0,

qR(u(0+) − uF) + b
(

u(0+)
)

= qL(u(0−) − uF) + b
(

u(0−)
)

(5.26)

is satisfied. To see this, recall that the constancy of u on (0, xc) and (5.24) imply qRu(0+) +
b(u(0+)) = qRuD. Inserting this into (5.26), we get

−(qR − qL)uF + qRuD = qLu(0−) + b
(

u(0−)
)

.(5.27)

However, the left-hand side of (5.27) is just qLuE ≤ 0. On the other hand, due to (5.9) and since
we seek a solution 0 ≤ u(0−) ≤ uc, the right-hand part of (5.27) is nonnegative, and is zero only
for u(0−) = 0. Thus, the only solution is uE = 0, u(0−) = 0, which implies u(x) = 0 for all x ≥ 0.

Consequently, under the assumption (5.9) the only steady-state entropy weak solutions for
which the sediment level x = xc is located strictly below the feed level x = 0 are solutions for
which there is only clear liquid in the clarification and overflow zones (x ≥ 0). For these solutions,
the feed and discharge concentrations uF and uD are linked by (qR − qL)uF = qRuD.

Case 2 (xc = 0, u(0+) > uc). Lemma 5.2 implies that u(0−) = u(0+) if u+ > uc. Thus, we
can continue to solve (5.1) in the clarification zone x ∈ (xL, 0). Integrating this ODE over the
interval (x, 0), we obtain the following one-sided boundary value problem for a first-order ODE:

qL

(

u(x) − u(0−)
)

+ b(u) − b
(

u(0−)
)

− A(u)′|x=0− = 0 for x < 0, u(0) = u(0−).(5.28)
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To determine u′(0−), we use the Rankine-Hugoniot condition (5.4) across x = 0,

qL

(

u(0−) − uF

)

+ b
(

u(0−)
)

− A(u)′|x=0− = qR

(

u(0+) − uF

)

+ b
(

u(0+)
)

− A(u)′|x=0+ .(5.29)

Recalling that we already know that u(0−) = u(0+), we get

A(u)′|x=0− = (qL − qR)
(

u(0−) − uF

)

+ A(u)′|x=0+ .(5.30)

On the other hand, in the present case we know that A(u)′|x=0+ = qR(u(0+) − uD) + b(u(0+)).
Inserting this into (5.30) and replacing u(0+) by u(0−), we get

A(u)′|x=0− = qLu(0−) − qRuD − (qL − qR)uF + b
(

u(0−)
)

.(5.31)

Finally, we insert (5.31) into (5.28), and obtain the one-sided boundary value problem

qLu(x) + b(u) − A(u)′ − qRuD − (qL − qR)uF = 0, x < 0; v(0) = v(0−).(5.32)

We now define

x̃c := inf
{

x ∈ [xL, 0) |u(x) is the solution of (5.28) and umax ≥ u(x) > uc

}

(5.33)

and recall from (5.32) and (5.31) that we have

b
(

u(x)
)

− A(u)′ = −qLu(x) + qRuD + (qL − qR)uF for x ∈ (x̃c, 0],

as well as that we obtain from (5.5) the inequality
[

sgn
(

u(0−) − k
)

− sgn
(

u(x) − k
)](

−qLk − b(k) + qRuD + (qL − qR)uF

)

≤ 0

for all x ∈ (x̃c, 0) and for all k ∈ R.
(5.34)

We observe that qRuD + (qL − qR)uF = qLuE. Then, the solution in the interval (x̃c, 0) is given by
the solution of the one-sided boundary problem (which is a slight rearrangement of (5.32))

u′(x) =
qLu(x) + b(u(x)) − qLuE

a(u(x))
, x < 0, u(0) = u(0−).(5.35)

Due to our assumption (5.9), since gL(0) = 0, and b(u) and therefore gL(u) has exactly one
inflection point, we know that gL(u) has exactly one positive maximum uM > uc, and that gL(u)
is monotonically decreasing between uM and umax = 1 with gL(umax) = qLumax < 0. Consequently,
there exists exactly one point u∗ with uc < u∗ < umax such that qLu∗ + b(u∗) = qLuE. Since the
maximum of gL is positive but qLuE ≤ 0, we know that u∗ > uM and therefore

gL(u) < gL(u∗) for u > u∗, u ≤ umax.(5.36)

We first assume that u(0+) = u(0−) > u∗. Our immediate goal is to show that u(0−) > u∗

does not lead to an admissible steady-state solution. Note that by the discussion of the solution
in the thickening zone, we know that u(0−) < uD.

By the definition of u∗, we may rewrite the ODE (5.35) as

u′(x) =
gL(u(x)) − gL(u∗)

a(u(x))
, x < 0, u(0) = u(0−).

In light of (5.36), we see that inserting u(0−) > u∗ will cause the right-hand part of the ODE
in (5.35) to be negative at x = 0, and this right-hand part remains negative if we proceed with
the integration of (5.35), since we produce a solution that is monotonically decreasing (increasing
upwards). This integration may be continued upwards until either u = umax = 1 is attained or
x = xL is reached. In the first case, however, there is no valid way to continue the solution to the
remaining interval (xL, x̃c) other than setting u = umax = 1 for x ∈ (xL, x̃c). This means that at
x = xL, the jump condition implies that qLumax = quE, that is uE = umax, in contradiction to the
assumption uE < umax. In the other case, in which x = xL is reached by integrating (5.35), we
have the following Rankine-Hugoniot condition across x = xL:

qLu(x+
L ) + b

(

u(x+
L )

)

− A(u)′|w=x+

L

= qLu(x−
L ).(5.37)

On the other hand, since u(x+
L ) ≥ u(0−) > uc, we have A(u(x+

L )) > 0 and thus, due to Lemma 5.2,

u(x+
L ) = u(x−

L ), and therefore (5.37) reduces to b(u(x+
L )) = A(u)′|x=x+

L
. However, since by as-

sumption u′(x+
L ) < 0, we have that A′(u)|x=x+

L
< 0, which in turn implies b(u(x+

L )) < 0. This
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is a contradiction to the nonnegativity of b. Thus, no admissible steady-state solution can be
constructed if u(0−) > u∗.

The case u(0−) = u∗ equally leads to an inadmissible solution, since integrating (5.35) leads
to the constant solution u ≡ u∗ on (xL, 0). Similarly to the discussion of the previous case, the
jump condition (5.37) and Lemma 5.2 imply b(u∗) = A(u)′|x=x+

L
. However, the constancy of u

along x ∈ (xL, 0) implies A(u)′|x=x+

L
= 0 and therefore b(u∗) = 0, in contradiction to the assumed

properties of b. Another reason to reject the profiles with u(0−) ≥ u∗ as candidates for steady-
state entropy weak solutions is the violation of the global conservation principle (5.10), since we
have chosen uD and uF such that uE = 0, but in these cases our integration yields positive values
of u(x−

L ), which should equal uE.
We now look at the remaining case u(0−) < u∗. Then the right-hand side of the ODE in (5.35) is

always positive, which implies a monotonically increasing (decreasing upwards) solution u(x) until
x = x̃c is reached. This solution also satisfies the entropy condition. In fact, for any x ∈ (x̃c, 0)
with u(x) < u(0−) and for all k ∈ (u(x), u(0−)), condition (5.34) (which is void for all other values
of k and for u(x) = u(0−)) implies 2(−qLk − b(k) + qLuE) ≤ 0, i.e.,

qLk + b(k) − qLuE ≥ 0 for all k ∈ (u(x), u(0−)),(5.38)

which in view of (5.35) is satisfied if u(x) is a monotonically increasing solution on (x̃c, 0).
We summarize our discussion of Case 2 in the clarification zone by the following lemma.

Lemma 5.4. Any admissible steady-state entropy solution u = u(x) of Model 1 with u(0−) =
u(0+) > uc must satisfy u(0−) < u∗, where u∗ is the unique point in (uc, umax) satisfying gL(u∗) ≡
qLu∗ + b(u∗) = qLuE. This solution is monotonically increasing on the interval (x̃c, 0), where x̃c

is defined by (5.33).

Remark 5.3. The statement of Lemma 5.4 also has an obvious graphical interpretation. However,
this condition requires knowledge of the value u(0+) = u(0−). Thus, it can be evaluated only after
the solution in the thickening zone has been determined. Furthermore, combining this finding with
Lemma 5.3 for the thickening zone, we see that in any of the Cases 1, 2 or 3, the entropy condition
and jump conditions enforce that u′(x) ≥ 0 in the compression region.

With the present discussion, we have constructed a steady-state solution up to x̃c, provided that
u(x) > uc in the thickening zone x ∈ (0, xR). To finish the steady-state construction, let us first
recall that for sake of brevity and being well aware of the incompleteness of the treatment in the
present paper, we limit the discussion to those steady states for which x̃c > xL. In this case, there
is a jump located at x = x̃c. We now seek the constant solution value u = u(x̃−

c ) in the interval
(xL, x̃c). This value must satisfy 0 ≤ u(x̃−

c ) ≤ uc. From the Rankine-Hugoniot condition that
follows from (5.4), qLu(x̃−

c )+b(x̃−
c ) = qLuc+b(uc)−A(u)′|x=x̃+

c
, we see that the constant u(x̃−

c ) =
uc is not a solution. Consequently, we look for a constant 0 ≤ u(x̃−

c ) < uc. To this end, note that
the steady-state jump condition at x = xL is gL(u(x+

L )) = qLu(x+
L )+ b(u(x+

L )) = qLu(x−
L ) = qLuE.

Taking into account that gL(u) is a non-negative monotonically increasing function on [0, uc], while
the right-hand side is a non-positive constant, we conclude (similar as in the discussion of Case 1)
that uE = 0 and u(x̃−

c ) = 0, i.e., the solution is zero on (xL, x̃c).

Remark 5.4. The last result means that the mathematical model correctly describes the elimina-
tion of the hindered settling region in steady-state operation when the sediment level (where u = uc)
is allowed to rise above the feed level, as drawn in Figure 1 (b). No particles are elutriated from
the compression region into the overflow. This supports the physical explanation that above the
feed level, the sediment bed acts as a filter medium for the portion of the feed flow that is directed
into the clarification zone.

If we added a small amount of hydrodynamic diffusion and used a strictly positive diffusion
coefficient a(u) such that the resulting model were strictly parabolic, then there would be no upper
limit for the integration of ODEs like (5.28), and under the preconditions of Case 2 discussed here,
the quantity x̃c defined by (5.33) would always assume the value xL (corresponding to the overflow
level) with u(x+

L ) > 0. In other words, there would be a small but positive volume fraction of solids
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in the overflow. Steady-state concentration profiles for a clarifier-thickener model with a strictly
positive diffusion coefficient that illustrate this situation are plotted, for example, in [81].

Finally, we mention that Lev et al. [64] use a steady-state clarifier-thickener model without
compression effects, but with a hydrodynamic diffusion term instead. A discussion of possible
concentration extrema at steady state leads them to the conclusion that the concentration must
increase downwards. Our analysis shows that by applying the entropy concept to the steady-state
ODE, this characterization remains valid even when hydrodynamic diffusion vanishes.

Case 3 (xc = 0, u(0+) = uc). In this case, we have A(u(0+)) = 0 and due to the continuity of
A(u) across x = 0, A(u(0−)) = 0, which means u(0−) ∈ [0, uc]. Since in the present case, it has
been possible to integrate (5.13) up to x = 0+, we can replace the Rankine-Hugoniot condition
across x = 0, (5.29), by qLu(0−) + b(u(0−)) − A(u)′|x=0− = (qL − qR)uF + qRuD. On the other
hand, the following entropy jump condition follows by evaluating (5.5) for x = 0:

∀k ∈ R : sgn
(

u(0+) − k)
[

qR

(

u(0+) − k
)

+ b
(

u(0+)
)

− b(k) − A(u)′|x=0+

]

− sgn
(

u(0−) − k
)[

qL

(

u(0−) − k
)

+ b
(

u(0−)
)

− b(k) − A(u)′|x=0−
]

≤
∣

∣qR(k − uF) − qL(k − uF)
∣

∣.

(5.39)

Inserting (5.29), using once again (5.13) and that u(0+) = uc, we get

∀k ∈ R : sgn
(

uc − k)
(

−qRk − b(k) + qRuD

)

− sgn
(

u(0−) − k
)(

−qLk − b(k) + (qL − qR)uF + qRuD

)

≤
∣

∣(qR − qL)(k − uF)
∣

∣.

Choosing k = 0 and exploiting that b(k) = 0, we get

sgn(uc)qRuD − sgn
(

u(0−)
)(

(qL − qR)uF + qRuD

)

≤
∣

∣(qR − qL)(−uF)
∣

∣,(5.40)

which in view of uc > 0, uF > 0 and qR − qL ≥ 0 implies

qRuD + sgn
(

u(0−)
)

(qR − qL)uF + sgn
(

v(0−)
)

qRuD ≤ (qR − qL)uF.(5.41)

If sgn(u(0−)) = 1, then the left-hand side of (5.41) equals 2qRuD + (qR − qL)uF. Thus, inequality
(5.41) cannot be satisfied. The unique remaining option is sgn(u(0−)) = 0, i.e. u(0−) = 0. It is
then easily seen that the solution for x < 0, including also the section x < xL, vanishes identically.
Thus, the solution of Case 3 is the limiting case of Cases 1 and 2 for u(0+) → uc.

Remark 5.5. The condition u′(x) ≥ 0 is in full agreement with engineering intuition, since one
expects that in a clarifier-thickener operating properly at steady state, the concentration increases
downwards. In fact, in several previous papers dealing with a simpler model of an ideal continuous
thickener [13, 16], which basically consists only of the thickening zone of the model discussed
here, the condition u′(x) ≥ 0 was postulated as a separate requirement for the determination
of admissible steady states following just from this intuition, and the graphical condition (5.20)
was derived by using this assumption in (5.21). We now clearly see that the natural requirement
that a steady state should be an entropy weak solution implies this monotonicity property in the
thickening zone, and it is therefore unnecessary to introduce it as an additional condition.

Observe that in contrast to our analysis of the thickening zone, we do not apply the entropy
condition to construct the restrictions on the parameters (expressed by Lemma 5.4) in the clarifi-
cation and overflow zones); rather, we exploit the jump conditions to establish these restrictions,
and then check that the admissible solution satisfies the entropy condition.

5.4. Examples of steady states. Here and in the numerical examples, the flocculated suspension
is characterized by the functions b(u) and σe(u) given by (2.6) and (2.9), respectively, with v∞ =
10−4 m/s, C = 5, σ0 = 1.0 Pa, uc = 0.1 and k = 6. The remaining parameters are ∆̺ =
1500 kg/m3 and g = 9.81 m/s2. These values are fairly realistic and are also used in [14, 16].

Moreover, we assume the bulk velocities qR = 2.5× 10−6 m/s and qL = −1.0× 10−5 m/s. Thus,
we are interested in steady states for which uD = uF(qR−qL)/qR = 5uF, and these parameters have
been chosen so that assumption (5.9) is satisfied. The relevant flux functions for the thickening
and clarification zone, gR(u) and gL(u), are plotted in Figure 3.
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❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋❋❋❋❋ ❋❋❋❋❋❋ ❋❋❋❋ ❋❋❋❋
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Figure 3. The flux functions qRu + b(u) (left) and qL + b(u) (right). The left
diagram also shows the constant lines qRuD for some values of uD.

We start the steady-state construction by fixing values of uD, and determine the corresponding
value xc. We limit ourselves to those values uD that ensure that the entropy condition (5.15) is
satisfied. To this end, we consider the plot of gR(u) and draw horizontal line segments f = qRuD

for a selection of values of uD and for uc ≤ u ≤ uD, as has been done in the left plot of Figure 3.
We see that these lines remain strictly below the graph of gR(u) for those values of uD for which

qRuD < min
uc≤u≤1

gR(u) = gR(0.703) ≈ 1.92 × 10−6 m/s.

This implies that the entropy condition (5.15) is satisfied a priori (i.e., independently of the depth
of the thickening zone xR) for all uD with

uc ≤ uD < uDmax :=
1

qR
min

uc≤u≤1
gR(u) =

1.92 × 10−6 m/s

2.5 × 10−6 m/s
= 0.768.

For all other values of uD, it would be necessary to determine a solution to (5.13), and to check
whether this is monotone on [xc, xR]. We will not pursue this here.

Given this limitation on uD, we choose the profiles for uD = 0.3, 0.35, 0.4, 0.405, 0.41, . . . , 0.455
for closer inspection. Solving (5.13) with a standard numerical ODE method, we obtain that for
uD ≤ 0.41, we have xc > 0 and therefore steady states of Case 1, while all other values lead to
candidates for Case 2. Solving the equation qRu(x−

c ) + b(u(x−
c )) = qRuD numerically yields the

following values of u(x−
c ), which are the constant values each entropy weak solution assumes on

[0, xc]:

uD 0.3 0.35 0.4 0.405 0.41
u(x−

c ) 0.00759 0.00892 0.01026 0.01039 0.01053

For these values of uD, the steady-state entropy weak solution in the clarification and overflow
zones is zero. Figure 4 includes plots of these profiles.

It remains to deal with uD = 0.415, 0.42, . . . , 0.455, the candidates for Case 2, for which the
clarification zone has to be examined. We have just found out that all of these concentration
values admit an entropy-satisfying steady-state solution in the thickening zone. However, with the
present parameters we have uE = 0, which implies u∗ = 0.369. This point is marked in Figures 3
and 4. We see that integrating (5.13) from uD = 0.455 leads to a profile with u(0+) > u∗, which
does not lead to an admissible solution in the clarification zone. The tentative profile for this case
is the rightmost dotted profile in Figure 4. For uD = 0.445 and uD = 0.45, we obtain admissible
profiles in the clarification zone, which, however, reach the overflow level x = xL, and will produce
an effluent with uE > 0. These profiles are no admissible entropy steady-state solutions since the
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Figure 4. Steady-state concentration profiles in Vessel 1. The dotted curves
show solutions of (5.13) and (5.28) that do not lead to admissible steady states
with zero overflow concentration.

global conservation principle is violated. The values uD = 0.415, 0.42, . . . , 0.435 lead to admissible
steady-state profiles with x̃c > xL, and, as a consequence of our analysis, uE = 0.

6. Numerical examples

6.1. Preliminary remarks. Note that for k ∈ N, as chosen here, standard calculus yields that
the function A(u) has the explicit representation A(u) = A(u) − A(uc) for u > uc with

A(u) := − v∞σ0

∆̺guk
c

(1 − u)Cuk
k

∑

j=1

cj

(

1

u
− 1

)j

, cj =

j
∏

l=1

k + 1 − l

C + l
, j = 1, . . . , k;

it is straightforward to verify by differentiating A(u) that

dA(u)

du
= v∞u(1 − u)C · 1

∆̺gu
· d

du

(

σ0

(

(u/uc)
k − 1

))

=
v∞σ0

∆̺guk
c

(1 − u)Ckuk−1,

so that the function A(u) defined here indeed satisfies (2.10).
We consider two units, a cylindrical one (Vessel 1) and one with discontinuously varying cross-

sectional area (Vessel 2), see Figure 5. The interior of Vessel 1 is Sint = 1 m2 (recall that the outer
pipe diameter S0 can always be transformed away). The piecewise constant cross-sectional area
function S(x) of the non-cylindrical one, Vessel 2, is defined in Figure 5.

The motivation of the choice of S(x) for Vessel 2 is that most clarifier-thickeners have a conically
shaped bottom to facilitate transport of material to the discharge outlet, and that we assume that
one quarter of the cross-sectional area in the clarification zone is occupied by installations related
to the feed mechanisms. Observe that in the second case, both parameters γ1 and γ2 accounting
for the cross-sectional area and the bulk flow, respectively, have a discontinuity at x = 0.
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Figure 5. The cylindrical clarifier-thickener (left) and the unit with discontinu-
ously varying cross-sectional area (right) used for numerical simulations.
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Figure 6. Example 1: Simulation of batch settling of an initially homogeneous
suspension with u0 = 0.02 (left), u0 = 0.08 (middle) and u0 = 0.20.

6.2. Example 1: Batch settling. To illustrate the material behaviour of the suspension, we
present in Figure 6 three simulations of the settling of an initially homogeneous suspension at
initial concentrations u0 = 0.02, 0.08 and 0.2 in a closed column (for which all Q’s and q’s vanish)
of height L = 1 m. We employ the explicit numerical method (3.1), ∆x = L/500, and λ = 20 s/m.
In the first two cases, we have a(u0) = 0, and the suspension-clear liquid interface propagates
as a sharp shock and the transition between the region of initial concentration and the sediment
rising from below is sharp, while in the third case transitions are continuous. In all three cases, a
stationary sediment is forming. In Figure 6 and all subsequent three-dimensional plots, the visual
grid used to represent the solution is much coarser than the computational.

6.3. Numerical simulations of Model 1.

6.3.1. Example 2: Variation of discharge and overflow rates. The four simulations shown in Fig-
ure 7 have been computed using the unique feed flux qFuF = (qR−qL)uF with qF = 1.25×10−5 m/s
and uF = 0.08, but by using four different “splits” of the feed rate into the discharge and overflow
rates attained by varying the parameter ν ∈ [0, 1] in qR = νqF and qL = −(1 − ν)qF. In all
four simulations, solving the transient equations for sufficiently large times apparently leads to a
stationary solution. The numerical scheme is the explicit one (3.1) with λ = 40 s/m, and for this
and all other numerical simulations of Model 1, we choose ∆x = 1/300 m.

In the upper left plot of Figure 7, we set ν = 1, i.e. the vessel is closed at the top and opened
at the bottom, with the volume feed rate equalling the discharge rate. We see that the feed
suspension is immediately diluted upon entering the vessel but attains its original concentration,
0.08, again when passing the discharge level. No compression region occurs.
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Figure 7. Example 2: Simulation of filling up a cylindrical clarifier-thickener
with uF = 0.08, qF = 1.25 × 10−5m/s, qR = νqF and qL = −(1 − ν)qF for ν = 1
(top left), ν = 0.5 (top right), ν = 0.25 (bottom left) and ν = 0 (bottom right).

For ν = 0.5 (top right plot of Figure 7), we obtain a very thin sediment layer at the bottom, and
the discharge concentration is 0.16, twice the feed concentration. The solution qualitatively agrees
with that for ν = 0.25 (bottom left plot of Figure 7). However, for ν = 0.25 the final discharge
concentration is 0.32 = 4uF, and the sediment layer is appreciable. The stationary solutions
attained in these cases correspond to steady-state solutions of Case 1 (conventional operation).

Finally, we take ν = 0, i.e., the vessel is closed at its bottom. The corresponding solution is
shown in the bottom right plot of Figure 7. We observe that the feed suspension is at first immedi-
ately diluted upon entering the thickening zone. The material forms a compressible sediment layer
at the bottom. This layer rises at nearly constant speed, breaks into the clarification zone, and
finally produces an overflow at constant concentration 0.08, which is just the feed concentration.
(Note that this kind of steady state is not included in the analysis of Section 5.)

6.3.2. Example 3: Transitions between approximate steady states. We now utilize the examples
of Section 5.4 to design a long-time numerical example in which the parameters for the time-
dependent Model 1 are chosen in such a way that the pre-determined steady states may be attained.
This example and Example 4 (for Model 2) are solved by the semi-implicit method (3.4) with λ =
4000 s/m. We consider the constant flow velocities qR = 2.5×10−6 m/s and qL = −1.0×10−5 m/s.
The feed concentration uF is varied in a stepwise fashion as follows:

uF(t) =

{

0.086 for 0 ≤ t ≤ t1 := 4.0 × 107 s,

0.08 for t1 < t ≤ t2 := 6.0 × 107 s,

0.088 for t2 < t ≤ t3 := 9.5 × 107 s,

0 for t > t3.
(6.1)

The initial stage of the fill-up process is shown in the top left plot of Figure 8, while the complete
solution for the first time interval [0, t1] is plotted in the top right plot of Figure 8. We observe that
the feed propagates as a rarefaction wave into the thickening zone, and that a sediment layer is built
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Figure 8. Example 3: Simulations of the fillup and transitions between steady
states in a cylindrical clarifier-thickener (Vessel 1): filling up a cylindrical clarifier-
thickener up to steady state with uF = 0.086 (initial stages: top left, complete
process: top right), and two different views of the complete simulation with suc-
cessive changes of uF from 0.086 to 0.08, 0.088 and 0 (bottom plots).

up, which rises above the feed level. The interesting point is that the numerical solution becomes
stationary after the very long simulated time of about 3.0 × 107 s, which corresponds to roughly
one year, and the stationary solution closely approximates the steady-state profile corresponding
to the same values of qL, qR and uF plotted in Figure 4. In particular, the numerical value of the
overflow concentration remains zero, and the solution value assumed at w = xR equals 0.42997.
Thus, we have reason to believe that this steady-state solution is indeed the limit attained by
the entropy weak solution for these parameters, at least for t → ∞; whether the steady state is
reached even in finite time would be a further going question.

At the simulated time t = t1, we reduce uF to a value that in combination with those of qL and
qR once again corresponds to a steady state plotted in Figure 4, but this time to one of conventional
operation. The bottom left and right plots of Figure 8 indicate that also this steady state seems to
be attained by the transient solution. In particular, the hindered settling region becomes visible
again. Shortly before t = t2, the numerical solution value at x = xR equals 0.40001.

At t = t2, we increase uF to 0.088, and we observe that the simulation converges again to the
corresponding steady state of Figure 4. Shortly before the solution becomes stationary, at t = t3,
we switch off the feed by setting uF = 0, and the clarifier-thickener unit empties rapidly.

Although the operations involved in this run—filling up, transitions between steady states
and emptying of a clarifier-thickener—are typical control actions, practitioners would, of course,
accelerate the fill-up by closing the unit [15, 16]. The main intention behind our example is,
however, to illustrate that the model apparently converges to steady-state solutions.
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Figure 9. Example 4: Simulation of transitions between steady states in Vessel 2:
plot of the initial fill-up stage (left) and long-time simulation (right).

t = 200000 s t = 1000000 s t = 2000000 s
J = 1 m

∆x L1 error conv. rate L1 error conv. rate L1 error conv. rate

10 1.429e−2 2.301e−2 2.857e−2
20 7.092e−3 1.010 1.115e−2 1.004 1.424e−2 1.005
40 3.475e−3 1.029 5.666e−3 1.017 7.026e−3 1.019
80 1.691e−3 1.039 2.758e−3 1.038 3.425e−3 1.037

100 1.338e−3 1.048 2.176e−3 1.063 2.704e−3 1.059
160 8.004e−4 1.094 1.306e−3 1.087 1.623e−3 1.085
200 6.225e−4 1.126 1.015e−3 1.129 1.263e−3 1.124

Table 2. Approximate L1 errors for the numerical solution of Example 3.

6.4. Example 4: Numerical simulation of Model 2. Finally, we repeat the simulation of
Example 3, that is, we use again the function uF(t) defined by (6.1), but now we consider Model 2,
Vessel 2 drawn in Figure 5, and select QL = −1.0×10−5m3/s and QR = 2.5×10−6m3/s. Model 2
enforces a CFL condition involving a factor max S(x)/ min S(x), which equals 25 here, so we have
to decrease accuracy to maintain acceptable computation time. We here chose λ = 100 s/m and
∆x = 1/50 m for the long-time run shown in the right plot of Figure 9 but ∆x = 1/300 m for the
short simulated period in the left plot.

We observe that the concentration profiles slightly reflects the thickener geometry, although due
to the diffusion term, this effect is less pronounced than for the same model without compression
(i.e., for A ≡ 0), see [23, 24]. First, observe the difference between the left plot of Figure 9 and
the corresponding simulation for Model 1 and Vessel 1 in the upper left plot of Figure 8. The
conical cross-section of the lower part of the thickening zone causes a continuous variation of the
concentration in the initial hindered settling region and accelerates the fill-up process.

Of course, a variable cross-sectional area S(x) complicates the discussion of steady states but
also offers new design opportunities [16]. Here, Vessel 2 does no longer admit a steady state for
uF = 0.088 with uE = 0. In fact, we observe in the right plot of Figure 9 that a stationary profile is
attained with non-zero overflow concentration. Rather, the numerical values attained are overflow
and underflow concentrations u(x−

L ) = 0.00121 and u(x+
R) = 0.43293. The stationary profile is

probably a steady state with non-zero effluent concentration (which is not included in the analysis
of Section 5, as aren’t any other steady states for Model 2).

6.5. Comments on the numerical results. First of all, we mention that our numerical re-
sults, including test runs with coarser discretizations (not shown here), suggest that the scheme
indeed converges to solutions for which A(u) is continuous across xL and xR, as required by
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condition (D.4). However, it should be emphasized that our scheme does not possess a built-in
mechanism to enforce this property. As emphasized before, a rigorous proof for the convergence of
the scheme towards a solution satisfying (D.4) is still an open problem, and it might be that one
even has to modify the scheme to ensure this property. This requires a deeper numerical analysis,
which we defer to another paper.

Furthermore, the accuracy and convergence rate of the numerical scheme used herein may be
of interest. To this end, we measured approximate L1 errors for the simulation of Example 3
by measuring the difference ‖u∆(·, t) − uref(·, t)‖L1(−1.1m,1.1m) for a number of discretizations

(∆x, ∆t = λ∆x) at t = 200000 s, t = 1000000 s, and t = 2000000 s, where u∆ is the numerical
solution obtained with ∆x = 1 m/J , J = 10, 20, 40, 80, 100, 160, 200, and uref is a high-accuracy
reference solution with J = 1600, see Table 2. In all cases, the semi-implicit scheme (3.4) with
the parameter λ = 4000 s/m was used.

We observe that the approximate L1 convergence rates are slightly larger than but close to
one. This is consistent with the formal first-order accuracy of the time discretization and of
the discretization of the convective fluxes. Similar approximately linear convergence has been
observed for the explicit version (3.1) of the scheme applied to a slightly simpler equation that
does not involve a discontinuous parameter in the diffusion term in [55], and for the application
of the explicit scheme to the initial-boundary value problem of batch settling of a flocculated
suspension in [18], which does not involve a discontinuous parameter at all. It should be pointed out
that observed convergence rates substantially depend on the parameters and numerical examples
chosen. For example, similar approximate L1 tables for the explicit scheme (3.1) applied to the
first-order clarifier-thickener model (obtained by setting A ≡ 0) are presented in [25]. It turns
out that when approximate L1 errors are measured at times when the solution includes non-
stationary ‘hyperbolic’ discontinuities (shocks), then the observed L1 convergence rate measured
on a succession of grids may fall substantially below one.

To put these observations into the proper perspective, let us mention that a theoretical estimate
of the rate of convergence of the numerical scheme presented herein is outside current theory, even
in the case of smooth coefficients. However, our prime motivation behind advancing the scheme
(3.1) (and its semi-implicit variant (3.4)) was to use it as a constructive tool for the well-posedness
analysis, and to employ it for simulations to illustrate the mathematical analysis. Clearly, we do
not propose (3.1) or (3.4) as the optimal scheme for simulations in practice. For that purpose the
scheme should be upgraded to formal second-order both in time and in space accuracy, which can
be attained, for example, by combining flux correction and Strang-type operator splitting between
the hyperbolic and parabolic portions of the problem. We pursue this further in [26].

Finally, there are conceivable alternative schemes for the clarifier-thickener model that seem
worth exploring. For example, one could combine the very efficient front tracking method intro-
duced in [19] for the hyperbolic portion and combine it with finite differencing of the diffusion
term in an operator splitting procedure. Alternatively, the relaxation scheme used in [21] for the
simulation of the first-order clarifier-thickener model could be extended to handle the second-order
degenerate diffusion term accounting for sediment compressibility (as in [29]). Recent numerical
schemes for strongly degenerate parabolic equations that can possibly be extended to the clarifier-
thickener model also include the local discontinuous Galerkin method [33] and diffusive kinetic
BGK approximations [3, 11].
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[1] Adimurthi, J. Jaffré, and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux
function discontinuous in space, SIAM J. Numer. Anal., 42 (2004), pp. 179–208.

[2] D. Amadori, L. Gosse, and G. Guerrac, Godunov-type approximation for a general resonant balance law
with large data, J. Diff. Eqns., 198 (2004), pp. 233–274.

[3] D. Aregba-Driollet, R. Natalini, and S. Tang, Explicit diffusive kinetic schemes for nonlinear degenerate
parabolic systems, Math. Comp., 73 (2004), pp. 63–94.

[4] A.A.A. Aziz, R.G. de Kretser, D.R. Dixon, and P.J. Scales, The characterisation of slurry dewatering,
Wat. Sci. Tech., 41 (8) (2000), pp. 9–16.

[5] P. Baiti and H.K. Jenssen, Well-posedness for a class of 2 × 2 conservation laws with L∞ data, J. Diff.
Eqns., 140 (1997), pp. 161–185.

[6] N.G. Barton, C.-H. Li, and S.J. Spencer, Control of a surface of discontinuity in continuous thickeners, J.
Austral. Math. Soc. Ser. B, 33 (1992), pp. 269–289.

[7] M. Bendahmane and K.H. Karlsen, Renormalized entropy solutions for quasilinear anisotropic degenerate
parabolic equations, SIAM J. Math. Anal., 36 (2) (2004), pp. 405-422.
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