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Abstract

Living adherent cells change their orientation in response to substrate
stretching such that their cytoskeletal components reorganize in a new
direction. To study this phenomenon, we model the cytoskeleton as
a planar system of elastic cables and struts both pinned at their end-
points to a flat flexible substrate. Tensed (pre-strained) cables represent
actin stress fibers, whereas compression-bearing struts represent micro-
tubules. We assume that in response to uniaxial substrate stretching
the model reorients and deforms into a new configuration that mini-
mizes its total potential energy. Using the Maxwell’s global stability
criterion, we find global minima configurations during static extension
and compression of the substrate. Based on these results, we predict
reorientation during cyclic stretching of the substrate. We find that in
response to cyclic stretching cells either reorient transversely to the di-
rection of stretching, or exhibit multiple configurations symmetrically
distributed relative to the direction of stretching. These predictions are
consistent with experimental data on living cells from the literature.
Keywords: biomechanics, cytoskeleton, actin, microtubules, total po-
tential, global minimum, stability, substrate stretching, reorientation

1 Introduction

It is well documented in a variety of adherent cell types that cell orientation
changes in response to substrate stretching; cells tend to orient either away
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from the direction of the principle substrate strain [1-10], or parallel with the
direction of the principle substrate strain [11-14]. Generally, in response to
static or quasi-static substrate extension cells orient parallel with the direction
of the principal substrate strain [11,12,14], whereas in response to dynamic
(cyclic) substrate stretching, cells align perpendicular to the direction of the
principal substrate strain [1-10].

Bischofs and co-workers [15,16] proposed a theoretical model of cell reori-
entation. A key premise of their model is that the cell favors the orientation
entailing the smallest mechanical work invested by the cell’s contractile ma-
chinery to build up a certain contractile force. Their model predicts that in
response to small static substrate extension, the cell always aligns parallel with
the direction of extension, whereas in response to substrate compression the
cell orients perpendicularly to the direction of compression. It has been also
observed that during cell reorientation, its cytoskeleton (CSK) – an intracel-
lular network of filamentous biopolymers – also undergoes reorganization such
that cytoskeletal filaments align in the direction consistent with the orientation
of the whole cell [5-8,10].

In our previous work, we described cell reorientation as an elastic stability
problem [17]. Using the global (Maxwell’s) stability criterion, we showed that
in response to static uniaxial substrate stretching cells tend to reorient in the
direction or away from the direction of the principal substrate strain in order
to attain a stable equilibrium configuration, depending whether the elastic
properties of the cell are described as a linear Hookean or as a non-convex
Mooney-Rivlin material. More recently, Lazopoulos and Pirentis [18] used a
similar approach to model reorientation of single actin stress fibers, which are
major tension-supporting stress-bearing components of the CSK. Assuming
a non-convex strain energy function of stress fibers, they showed that fibers
would reorient away from the direction of the principal substrate strain. If,
on the other hand, stress fibers were assumed to be linearly elastic, then they
would reorient parallel with the direction of applied strain [19].

While all those models have elucidated mechanisms that govern cell reori-
entation, it is not known how other components of the CSK, most prominently
compression-supporting microtubules, contribute to this phenomenon. More
importantly, none of the existing models have been used to predict cell reori-
entation during cyclic substrate stretching. This is important since in their
natural habitat many cell types adhere to substrates that undergo cyclic load-
ing (e.g., pulmonary cells during breathing or vascular endothelium during
pulsatile blood flow).

Here we propose a microstructural model of the CSK, including both actin
stress fibers and microtubules, to study cell reorientation using the stability
approach that we used before [17,18]. We first analyze stability of the model
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during its reorientation in response to static extension and compression of the
substrate. Then we use such obtained results to predict cell orientation during
cyclic stretching. We find that predictions are consistent with experimental
data on living cells from the literature.

2 Model

To understand basic mechanisms that govern cell reorientation, we propose
simple conceptual models of the CSK as follows. We consider two-dimensional
planar networks of a rectangular shape (Fig. 1a) and a rhombic shape (Fig.
1b), where the sides (AB, BC, CD, DA) are tensile elements – cables which
mimic actin stress fibers, and the diagonals (AC, BD) are compressive elements
– struts, which mimic microtubules. The cables and struts are connected to

Figure 1: a) Rectangular and b) rhombic models of the cytoskeleton composed
of four cables (AB, BC, CD, and DA) and two struts (AC and BD).

the substrate via frictionless pin joints (A, B, C, D); the struts are not joined
at their intersection. Interfaces between cables, struts and the substrate are
frictionless. We assume that the cables and struts are elastic and that the
substrate is flexible (but we do not need to specify its material characteristics).
Our key premise is that in response to substrate stretching the CSK assumes
a configuration which minimizes its total potential and therefore it is stable.
Since steps in the energy minimization procedure for the rectangular and the
rhombic model are similar, we give detailed description only for the rectangular
model and results for both models.

Model geometry
The origin of the X1X2 coordinate system is placed at the intersection

of the struts (Fig. 2a). The cables are initially tensed such that the initial
strain (pre-strain) in the cables is equal. This initial cable tension mimics the
presence of pre-existing tensile stress (prestress) in the actin filaments of living
cells. The pre-tension in the cables is entirely balanced by the reaction forces
at the nodes, implying that the struts are initially unstressed.
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The substrate is stretched uniaxially in the direction defined by angle β
relative to the X1-coordinate axis (Fig. 2a). Since data from the literature
show that in response to substrate stretching the CSK of living cells reori-
ents and deforms [5-8,10], we assume that in response to substrate stretching
our model also reorients and deforms. We view this as a two-step process:
first reorientation defined by angle θ relative to the X1-axis (Fig. 2b) and
then stretching-induced deformation superimposed to the rotated configura-
tion (Fig. 2c). Our objective is to show that this new configuration minimizes
the potential energy of the model.

Figure 2: a) The rectangular model of the cytoskeleton is attached to a flexible
substrate at the nodes A, B, C and D. The substrate is stretched uniaxially by
strain εβ at angle β elative to the X1-axis. As a result, the model b) reorients
through angle θ relative to the X1 axis and c) deforms.

2.1 Deformation fields

The initial deformation gradient tensor of a structural component of the model
due to pre-strain is F0. Following substrate stretching, the deformation gradi-
ent is

F = FβFθ (1)

where

Fθ = RT
θ F0Rθ (2)

is the component of F due to reorientation through angle θ , with the rotation
matrix Rθ given as

Rθ =

[
cos θ sin θ
− sin θ cos θ

]
(3)
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relative to the X1X2 coordinate system, and

Fβ = RT
β

[
1 + εβ 0
0 1

]
Rβ (4)

is the component of F due to substrate stretching in the direction defined by
angle β, where εβ is strain (i.e., displacement gradient) of the substrate and
Rβ is the rotation matrix

Rβ =

[
cos β sin β
− sin β cos β

]
(5)

relative to the X1X2 coordinate system.
Let the resting and the pre-strained lengths of cables AB and CD be ar and

a0, respectively, and of cables BC and DA br and b0, respectively. Assuming
that all cables carry the same pre-strain, i.e., same displacement gradient (ε0),
it follows that

ε0 =
a0 − ar

ar

=
b0 − br

br

(6)

The corresponding deformation gradient matrices of the cables are

FAB
0 = FCD

0 =

[
1 + ε0 0
0 1

]
and FBC

0 = FDA
0 =

[
1 0
0 1 + ε0

]
(7)

The initial deformation gradient for the struts is an identity matrix, FAC
0 =

FBD
0 = I, since the struts are assumed initially to be free of strain.

Unit vector n in the direction of each cable and strut in the rotated con-
figuration (Fig. 2b), defined relative to the X1X2 coordinate system, is

n =

[
cos τ
sin τ

]
, (8)

where τ = θ for cables AB and CD, τ = θ + π/2 for cables BC and DA,
τ = θ + φ for strut AC and τ = θ − φ for strut BD, where φ is defined by,

ϕ = tan−1(a0/b0). (9)

The Lagrangean strain en of a cable or a strut is

en = nTEn, (10)

where

E =
1

2
(FTF− I). (11)
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On the other hand, en is also given as

en = un +
1

2
u2

n, (12)

where un is the displacement gradient of a cable or a strut. We use the non-
linear, Lagrangean strain as a metric of deformation of a structural element
since in experimental studies the substrate strains are relatively large (≥ 10%)
[5-8,10] and thus the Lagrangean strain is more appropriate for describing
stretching-induced deformation than the linear strain, which equals un. By
combining (8)-(12) with (1)-(7), we obtain displacement gradients for cables
AB and CD

uAB = uCD = −1 +
1√
2
(1 + ε0)

√
[2 + 2εβ + (εβ)2 + εβ(2 + εβ) cos 2(β − θ)],

(13)
for cables BC and DA

uBC = uDA = −1 +
1√
2
(1 + ε0)

√
[2 + 2εβ + (εβ)2 − εβ(2 + εβ) cos 2(β − θ)],

(14)
for strut AC

uAC = −1 +
1√
2

√
[2 + 2εβ + (εβ)2 + εβ(2 + εβ) cos 2(β − θ − ϕ)], (15)

and for strut BD

uBD = −1 +
1√
2

√
[2 + 2εβ + (εβ)2 + εβ(2 + εβ) cos 2(β − θ + ϕ)]. (16)

2.2 Stability analysis

The strain energy per unit resting length for each structural member is given
as

Wn =
1

2
EAe2

n, (17)

where E is the Young’s modulus and A is the cross-section area of a structural
member; E is assumed to be equal for the cables and the struts, whereas cross-
section area is assumed to be eight times greater for the struts than for the
cables. Those assumptions are based on data from the literature [20]. Equa-
tion (17) implies a linear relationship between stress and strain en, although en

itself is a nonlinear. This is a generalization of the Hooke’s law and is known
as a St. Venant-Kirchhoff material. We choose a simple convex strain energy
function for structural elements (17) in order to show that it is not necessary
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to assume a non-convex strain energy function, as we did previously [17,18], in
order to obtain multiple equilibrium configurations. However, a more realistic
assumption would be that cables are nonlinearly elastic since they represent
actin stress fibers which are known to exhibit a nonlinear behavior [21]. Fur-
thermore, CSK-based microtubules buckle under compression, which is also a
non-linear behavior [22].

By substituting (12) into (17), we obtain force (Tn) in each member as
follows,

Tn =
∂Wn

∂un

= EA

(
un +

3

2
u2

n +
1

2
u3

n

)
. (18)

The total potential of the model is defined as

V =
6∑

n=1

(Wn − Tnun)ln, (19)

where, ln is the resting length of a structural member; n = 1, 2 correspond
to cables AB and CD with the resting length ar = a0/(1 + ε0) and the cross-
sectional area equal to A; n = 3, 4 correspond to the cables BC and DA with
the resting length equal to br = b0/(1 + ε0) and cross-section area equal to A;
n = 5, 6 correspond to the struts AC and BD with resting length

√
a2

0 + b2
0

and cross-section area equal to 8A. According to (13)-(19), V is a function
of cable pre-strain ε0, substrate strain εβ, and the difference β − θ between
the angles of the direction of stretching and of cell reorientation. Stability
demands that at equilibrium V attains minimum, i.e., the following conditions
must be satisfied

∂V

∂θ
= 0 and

∂2V

∂θ2
> 0. (20)

By combining (19) and (20), we can obtain equilibrium values for θ. It
is clear from the above formulation that there may exist many equilibrium
configurations and that only some of them are stable. We adopt the Maxwell’s
global stability criterion according to which a configuration of a system is
stable if it globally minimizes the total potential [23]. We consider static
substrate stretching for the cases when εβ > 0, i.e., the cell is under tension
and when εβ < 0, i.e., the cell is under compression. Based on this analysis,
we predict cell orientation during of cyclic stretching of the substrate when the
cell undergoes periodic tension and compression. In that case, we assume that
the stable configuration is the one which yields the smallest difference between
the total potentials obtained for tension and compression. This difference may
account for energy losses associated with irreversible processes within the cell
(see Discussion).
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We first assume the following parameter values for the rectangular model:
cable reference length a0 = 1; ratio b0/a0 = 0.05, 0.1, 0.25, 0.50, 0.75 and
1.0 which is indicative of shape; the cross-sectional area of the cables A = 1
and of the struts equals 8; the Young modulus of cables and struts E = 1;
cable pre-strain ε0 = 0.01, 0.03, 0.05; direction of substrate stretch β = 0.5,
1.0, and 2.5 rad; and the substrate strain εβ = ±0.1 and ±0.2. In the case of
the rhombic model, the shape ratio b0/a0 = 0.05, 0.1, 0.25, 0.50, 0.75 and 1.0
represents the ratio of the lengths of the diagonal struts (Fig. 1b), whereas
the reference (pre-strained) cable length equals 0.5

√
a2

0 + b2
0 = 1. All other

parameters have the same meaning and the same values as in the case of the
rectangular model. All computations are carried out numerically, using the
Mathematica computerized algebra pack.

3 Results

It is found that during extension and compression of the substrate V has
multiple global minima which do not depend on the direction of stretching β
and pre-strain ε0 while depend on the shape of the model (i.e., the ratio b0/a0)
and on the magnitude and the sign of the substrate strain εβ. Illustrative
examples of the stability analysis are given below.

We first consider stability of the rectangular model. For b0/a0 = 0.1, ε0 =
0.03, β = 0.5 rad and εβ = ±0.1, during extension (Fig. 3, solid curve), global
minima correspond to θ = 0.5 ± 2kπ (k = 0, 1, 2 . . .), which is parallel with
the direction of εβ. During compression (Fig. 3, dashed curve), global minima
correspond to θ = 0.5 ± (2k + 1)π/2 (k = 0, 1, 2 . . .), which is perpendicular
to the direction of εβ. The smallest differences between the total potentials
for extension and compression correspond to θ = 0.5 ± (2k + 1)π/2 (Fig. 3),
which is perpendicular to the direction of εβ. Thus, during cyclic stretching
the model would orient in the perpendicular direction. Other examples for
the rectangular model are given in Table 1 and Figs. 1-7 and for the rhombic
model in Table 2 and figs 8-12.

A special case is the situation where b0/a0 = 1 when the reference shape of
both the rectangular and the rhombic models is square. In that case, global
minima during extension and compression coincide and are either parallel or
perpendicular to the direction of εβ in the rectangular model (Fig. 7), or
at ±π/4 relative to the direction perpendicular to the direction of εβ in the
rhombic model (Fig. 12). Thus the smallest differences between the total
potentials for extension and compression also correspond to either parallel or
perpendicular orientation in the rectangular model (Fig. 7) or to ±π/4 relative
to the direction perpendicular to the direction of εβ in the rhombic model (Fig.
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12). This, in turn, implies that if b0/a0 = 1, during cyclic stretching the model
would have no preferential orientation. This may be explained by the fact
that the since reference shape of the models is square, it cannot create bias for
either the parallel or the perpendicular orientation.

Table 1: Predicted values of orientation of the rhombic model following ex-
tension, compression and cyclic stretching of the substrate for different sets of
parameters b0/a0, ε0, εβ and β. Orientations are given relative to the direc-
tion of stretching (i.e., relative to the direction of εβ); || = parallel with the
direction of stretching, ⊥ = perpendicular to the direction of stretching. The
last column indicates numbers of the corresponding figures.

b0/a0 ε0 εβ β Orientation Fig.#
(rad) extension compression cyclic

0.1 0.03 ±0.1 0.5 ‖ ⊥ ⊥ 3
0.25 0.05 ±0.2 2.5 ±π/4 ⊥ ⊥ 4
0.5 0.01 ±0.2 1 ⊥ ⊥ ⊥ 5
0.75 0.03 ±0.1 0.5 ‖ ⊥ ⊥ 6
1 0.03 ±0.1 2.5 ‖,⊥ ‖,⊥ ‖,⊥ 7

Figure 3: Rectangular model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.1, ε0 = 0.03, β = 0.5 rad, εβ = 0.1 during extension (solid
curve), and εβ = −0.1 during compression (dashed curve). Global minima
during extension correspond to θ = 0.5 ± 2kπ and during compression to
θ = 0.5 ± (2k + 1)π/2 (k = 0, 1, 2 . . .). The smallest differences between the
total potentials for extension and compression correspond to θ = 0.5±(2k+1)π.
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Figure 4: Rectangular model: the total potential energy (V ) vs. angle of
orientation (θ) for b0/a0 = 0.25, ε0 = 0.05, β = 2.5 rad, εβ = 0.2 during
extension (solid curve), and εβ = –0.2 during compression (dashed curve).
Global minima during extension correspond to θ = (2.5± kπ)± π/4 and during
compression to θ = 2.5 ± (2k + 1)π/2 (k = 0,1,2. . . ). The smallest differences
between the total potentials for extension and compression correspond to θ =
2.5 ± (2k + 1)π/2.

Figure 5: Rectangular model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.5, ε0 = 0.01, β = 1 rad, εβ = 0.2 during extension (solid
curve), and εβ = –0.2 during compression (dashed curve). Global minima
during extension and compression correspond to θ = 1 ± (2k + 1)π/2 (k =
0,1,2. . . ). The smallest differences between the total potentials for extension
and compression correspond to θ = 1 ± (2k + 1)π/2.
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Figure 6: Rectangular model: the total potential energy (V ) vs. angle of ori-
entation (θ) for b0/a0 = 0.75, ε0 = 0.03, β = 0.5 rad, εβ = 0.1 during extension
(solid curve), and εβ = –0.1 during compression (dashed curve). Global min-
ima during extension correspond to θ = 0.5 ± kπ and during compression to
θ = 0.5±(2k+1)π/2 (k = 0, 1, 2 . . .). The smallest differences between the total
potentials for extension and compression correspond to θ = 0.5± (2k + 1)π/2.

Figure 7: Rectangular model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 1, ε0 = 0.03, β = 2.5 rad, εβ = 0.1 during extension (solid curve),
and εβ = –0.1 during compression (dashed curve). Global minima during
extension and compression correspond to θ = 2.5 ± kπ/2 (k = 0,1,2. . . ). The
smallest differences between the total potentials for extension and compression
correspond to θ = 2.5 ± kπ/2.
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Table 2: Predicted values of orientation of the rectangular model following
extension, compression and cyclic stretching of the substrate for different sets of
parameters b0/a0, ε0, εβ and β. Orientations are given relative to the direction
of stretching (i.e., relative to the direction of εβ); || = parallel with the direction
of stretching, ⊥= perpendicular to the direction of stretching. The last column
indicates numbers of the corresponding figures.

b0/a0 ε0 εβ β Orientation Fig.#
(rad) extens. compression cyclic

0.1 0.03 ±0.1 0.5 ‖ ⊥ ⊥ 8
0.25 0.05 ±0.2 2.5 ‖ ⊥ ⊥ 9
0.5 0.01 ±0.2 1 ±0.65 ±0.65 + π/2 ±0.65 + π/2 10
0.75 0.03 ±0.1 0.5 ±0.65 ±0.65 + π/2 ±0.65 + π/2 11
1 0.03 ±0.1 2.5 ±π//4 ±π//4 ±π//4 12

Figure 8: Rhombic model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.1, ε0 = 0.03, β = 0.5 rad, εβ = 0.1 during extension (solid
curve), and εβ = –0.1 during compression (dashed curve). Global minima
during extension correspond to θ = 0.5 ± 2kπ and during compression to θ =
0.5 ± (2k + 1)π/2 (k = 0,1,2. . . ). The smallest differences between the total
potentials for extension and compression correspond to θ = 0.5 ± (2k + 1)π.
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Figure 9: Rhombic model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.25, ε0 = 0.05, β = 2.5 rad, εβ = 0.2 during extension (solid
curve), and εβ = –0.2 during compression (dashed curve). Global minima
during extension correspond to θ = 2.5 ± 2kπ and during compression to θ =
2.5 ± (2k + 1)π/2 (k = 0,1,2. . . ). The smallest differences between the total
potentials for extension and compression correspond to θ = 2.5 ± (2k + 1)π.

Figure 10: Rhombic model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.5, ε0 = 0.01, β = 1 rad, εβ = 0.2 during extension (solid
curve), and εβ = –0.2 during compression (dashed curve). Global minima
during extension correspond to θ = (1 ± kπ)± 0.65 and during compression
to θ = [1 ± (2k + 1)π/2] ± 0.65 (k = 0,1,2. . . ). The smallest differences
between the total potentials for extension and compression correspond to θ =
[1 ± (2k + 1)π/2] ± 0.65.
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Figure 11: Rhombic model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 0.75, ε0 = 0.03, β = 0.5 rad, εβ = 0.1 during extension (solid
curve), and εβ = –0.1 during compression (dashed curve). Global minima
during extension correspond to θ = (0.5 ± kπ) ± 0.65 and during compression
to θ = [0.5 ± (2k + 1)π/2] ± 0.65 (k = 0,1,2. . . ). The smallest differences
between the total potentials for extension and compression correspond to θ =
[0.5 ± (2k + 1)π/2] ± 0.65.

Figure 12: Rhombic model: the total potential (V ) vs. angle of orientation
(θ) for b0/a0 = 1, ε0 = 0.03, β = 2.5 rad, εβ = 0.1 during extension (solid
curve), and εβ = –0.1 during compression (dashed curve). Global minima
during extension and compression correspond to θ = 2.5 ± (2k+ 1)π/4 (k =
0,1,2. . . ).. The smallest differences between the total potentials for extension
and compression correspond to θ = 2.5 ± (2k+ 1)π/4.
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4 Discussion

The most significant results of this study is that simple microstructural models
of the CSK can predict cell orientation in response to static and cyclic stretch-
ing that are consistent with experimental data from the literature; namely that
during static extension cells align in the direction parallel with the direction
of stretching and that during cyclic stretching they align perpendicular to the
direction of stretching [1-14]. The analysis also shows that for certain set of
parameter values multiple equilibrium configurations are possible. This is also
consistent with previously reported experimental data [5].

The results of the stability analysis are dependent on the shape of the
model. In the case of the rhombic model, more elongated shapes (i.e., smaller
ratio b0/a0), are stable when aligned parallel with the direction of stretch-
ing during extension and perpendicular to the direction of stretching during
compression and during cyclic loading. In the case of the rectangular model,
there is no such systematic dependence of cell orientation on the b0/a0 ratio.
Our analysis also shows that reorientation depends on the magnitude of the
substrate strain, but there is no systematic dependence. This differs from ex-
perimental studies which show that the greater the substrate strain, the closer
the cell alignment with the perpendicular direction during cyclic stretching
[3,5]. A possible explanation for this discrepancy could be the assumption that
the cables and struts are linearly elastic. In our previous non-linearly elastic
models, we obtained a dependence on substrate strain that is consistent with
experimental observations [17,18].

Stability analysis shows that global minima do not depend on the direction
β of stretching and on the pre-strain ε0 in the cable elements. The former is
consistent with experimental data which show that initially randomly oriented
cells eventually reorient in the same direction following stretching [1-14]. The
latter is not consistent with experiments which show that a decrease in pre-
stress in actin filaments, and presumably a decrease in pre-strain, leads to a
closer alignment with the direction of stretching [6,8]. Again, this discrepancy
may reflect the material linearity assumption for cables and struts; in our pre-
vious nonlinear models we obtained that orientation depends on the pre-strain
in a manner consistent with the experiments [17,18].

Predictions of reorientation during cyclic stretching are based on the as-
sumption that the stable configurations are those for which the differences in
the total potential between tension and compression are the smallest. In living
cells, this difference may account for the energy losses per stretching cycle due
to irreversible processes within cells (e.g., cytoskeletal viscoelasticity, remod-
eling, etc.) [24,25]. However, energy losses reduce cell’s functional efficiency,
and therefore the cell would tend to attain configurations which minimize those
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loses.

Our choice of the simple quadratic strain energy function for structural ele-
ments (17) shows that it is not necessary to invoke a non-convex strain energy
function in order to obtain multiple equilibrium configurations [17,18]. On the
other hand, experimental data [21] suggest that a non-quadratic convex strain
energy function for actin stress fibers is more realistic (e.g., adding a quartic
term strain in equation (17)). We believe that such an equation would only
make calculations more complex while not providing a deeper physical insight.
Moreover, for strains that do not exceed ∼ 40%, the stress-strain behavior of
the stress fibers is linear [21], whereas in our examples we considered strains
that do not exceed 5% (see Tables 1 and 2). Thus, our assumption of the
quadratic strain energy function is justified.

We do not consider in our model the possibility that microtubules may
buckle under compression. However, buckling of microtubules does occur in
cells. Incorporating this buckling into our model would certainly provide a
more realistic depiction of the cellular events [22], while increasing the model’s
complexity at the expense of its mathematical transparency. Considering that
the model is capable of describing cell reorientation that is consistent with
experimental data, we believe that inclusion of buckling of microtubules into
the model is not essential.

We do not consider the contribution of material properties of the substrate
to stability. Bischofs and colleagues [15,16] showed that cell tend to orient in
the direction higher effective substrate stiffness. This, in turn, suggests that
including the contribution of substrate elasticity into our model may further
bias its reorientation.

From a biological point of view, this study can provide a framework for
better understanding of physiological functions of adherent cells. For example,
pulmonary airways in vivo undergo non-uniform cyclic stretching [26], which
is the likely cause that sets the orientation of smooth muscle cells around
the airway. Smooth muscle orientation is a very important determinant of
airway responsiveness in health and disease [27,28]. Second, healthy vascular
endothelial cells change their orientation in response to stretching of the blood
vessel. While this reorientation is linked to a coupling between mechanical
signals from the environment and biochemical signals within the cell [8], it is
not clear how mechanical signals from the environment and mechanical signals
within the cell cooperate and drive the cell to a new orientation.

In summary, the stability analysis of the simple models of the CSK can
predict reorientation of cells during both static and cyclic stretching of the
substrate that is consistent with experimental data from the literature. While
these models represent an overly simplified and crude representation of the
CSK, the good agreements between model predictions and experimental data
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from the literature suggest that the proposed approach can provide a useful
framework for more complex studies of mechanical interactions between cell
and the substrate.
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Model reorijentacije citoskeleta usled mehaničkog
istezanja substrata ćelije

Žive ćelije menjaju svoju orijentaciju usled mehaničkog istezanja substrata
za koji ćelije prianjaju, pri čemu se komponente ćelijskog citoskeleta reorga-
nizuju u pravcu nove orijentacije. U ovom radu razmatrali smo ovaj fenomen
modelirajući citoskelet kao planarni sistem elastičnih užadi i štapova koji su
na svojim krajevima prikačeni za elastični substrat. Užad su zategnuta i
predstavljaju aktinska vlakna, dok štapovi nose pritisne sile i predstavljaju
mikrotubule. Naša radna pretpostavka je da se usled istezanja substrata
model deformǐse i menja svoju početnu orijentaciju tako što zauzima novu
konfiguraciju koja minimizira njegovu totalnu potencijalnu energiju. Koristeći
Maksvelov globalni kriterijum elastične stabilnosti, izračunali smo globalne
minimume potencijalne energije modela za slučajeve jednoosnog istezanja i
kompresije substrata. Koristeći ove rezultate, predvideli smo ćelijsku reori-
jentaciju u uslovima cikličnog istezanja-kompresije substrata. Dobili smo da
se u ovom slučaju ćelije orijentǐsu ili upravno na pravac glavne deformacije,
ili da zauzimaju vǐsestruke konfiguracije simetrično rasporedjene u odnosu na
pravac glavne deformacije. Ova predvidjanja su saglasna sa eksperimentalnim
podacima iz literature.
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