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The results of a number of studies suggest that much of
the variance in individual speeded performance, at least on
laboratory tasks, may be explainedby a single general fac-
tor on which diverse tasks load approximately equally
(Hale & Jansen, 1994;Hale & Myerson, 1993;Zheng,My-
erson, & Hale, 2000; for further examples, see Table 1 in
Faust, Balota, Spieler, & Ferraro, 1999). This finding im-
plies that if a task is speeded, its other characteristics may
be much less important, at least for the purpose of pre-
dicting the position of an individual’s score in the overall
distribution of performances (i.e., for predicting perfor-
mance in standard deviation [SD] units). Even if most of

the variance in individual performance in SD units can be
explainedby a single factor, however, important questions
regarding individualdifferences still remain. For example,
what task characteristics determine how many seconds or
milliseconds will separate the performance of the fastest
and the slowest individuals,and what mechanism or mech-
anisms underlie the observed variations in the absolute
size of individual differences from task to task?

A recent study by Hale and Jansen (1994) provides an
important clue regarding the answers to these questions.
They tested 40 youngadultson seven different visuospatial
information-processing tasks, ranging in difficulty from
choice reaction time (choice RT) to mental paper folding.
All seven tasks loadedheavilyon a general speed factor (first
principal component) that accounted for nearly two thirds of
the total standardized variance. In order to examine how the
differences between the performance of fast, average, and
slow individuals changed across tasks, individuals were
ranked on the basis of their mean z scores, and the group
was divided into quartiles on the basis of these rankings.

When the fastest quartile’s mean response times (RTs)
for each of the 21 experimental conditionswere regressed
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A theory of diversity in speeded cognition, the difference engine, is proposed, in which information

processing is representedas a series of generic computational steps. Some individuals tend to perform
allof thesecomputations relativelyquickly and other individuals tend to perform them all relativelyslowly,

reflecting the existence of a general cognitive speed factor, but the time required for response selec-

tion and execution is assumed to be independent of cognitive speed. The difference engine correctly
predicts the positively acceleratedform of the relation between diversity of performance, as measured

by the standard deviation for the group, and task difficulty, as indexed by the mean response time (RT)

for the group. In addition, the difference engine correctly predicts approximately linear relations be-
tween the RTs of any individual and average performance for the group, with the regression lines for

fast individuals having slopes less than 1.0 (and positive intercepts) and the regression lines for slow

individuals having slopes greater than 1.0 (and negative intercepts). Similar predictions are made for
comparisons of slow, average, and fast subgroups, regardless of whether those subgroups are formed

on the basis of differencesin ability, age, or health status. These predictions are consistent with evidence

from studies of healthy young and older adults as well as from studies of depressed and age-matched
control groups.
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on the corresponding mean RTs for the group as a whole,
the regression line accounted for more than 98% of the
variance. Regressing the slowest quartile’s mean RTs on
the group mean RTs revealed an equally precise relation-
ship (Hale & Jansen, 1994). Similarly precise relationships
were observed when the mean RTs for the fastest and
slowest quartiles were regressed on average RTs as defined
by the mean for the two center quartiles; again, both r2s
were greater than .98. As may be seen in Figure 1, the con-
sequence of these linear relations is that the difference be-
tween the RTs of the subgroups of fast and slow proces-
sors increases with the average RT.

Because of the strong theoretical implications of these
findings,we followed the old adage, “measure twice—cut
once,” and assessed their reliability using another, larger,
data set. To this end, we combined the data from young
adult controls in previous unpublishedand publishedstud-
ies of cognitive aging and development. The RTs of 65
young adults, each of whom had been tested on four tasks
(i.e., choice RT, letter classification,visual search, and ab-
stract matching), were reanalyzed using the Hale and
Jansen (1994) approach. Again, we found that a principal
components analysis of RTs revealed a single general
speed factor on which all four tasks loaded heavily and

that accounted for a large proportion (75%) of the total
standardized variance (Hale & Myerson, 1993).

Following Hale and Jansen (1994), we selected fast and
slow subgroups (bottom and top quartiles) from these 65
subjects on the basis of their mean z scores. Notably, 15 of
the 16 members of the fast group were faster than average
on all four tasks (the other member was faster than aver-
age on three of the tasks), and 15 of the 16 slow group
members were slower than average on all four tasks (the
other member was slower than average on three tasks).
When the mean RTs from the two subgroups were re-
gressed on average RTs, extremely orderly linear relations
were observed. As was the case with the Hale and Jansen
data, this was true regardless of whether average was de-
fined as the mean for the group as a whole or as the mean
for the center quartiles. In fact, as may be seen in Figure 1,
the data points representing the Hale and Myerson (1993)
data set are collinearwith the points representing the Hale
and Jansen data set.

Further confirmation of this pattern comes from re-
analysis of a study by Vernon and Jensen (1984) that used
very different proceduresand samples. These authors stud-
ied two large samples recruited from students attending
either a vocationalcollegeor a university. All subjectswere
tested on eight different speeded information-processing
tasks, including choice RT, short-term memory scanning,

Figure 1. Response times (RTs) of fast and slow subgroups
plotted as a function of the group mean RTs. White and gray

symbols represent the data from Hale and Jansen (1994) and
Hale and Myerson (1993), respectively. Each point represents

performance by one subgroup in one experimental condition of
one study. In order of increasing task difficulty, the tasks were as

follows: inverted triangles, choice RT; octagons, line-length dis-
crimination; squares, letter classification; circles, mental rota-

tion; upright triangles, visual search; octagons, mental paper
folding; diamonds, abstract matching. Each regression line rep-

resents the fit to the RTs of the corresponding subgroups (i.e.,
both fast or both slow subgroups) in both studies. If a subgroup

mean RT for a particular task condition did not differ from the
corresponding group mean RT, the data point for that condition

would fall along the dashed diagonal line.

Figure 2. Response times (RTs) of university and vocational
college subgroups plotted as a function of the combined student

group mean RTs. White and gray symbols represent the data
from Vernon (1983) and Vernon and Jensen (1984), respectively.

Each point represents performance by one subgroup in one ex-
perimental condition of one study. In order of increasing task dif-

ficulty, the tasks were as follows: circles, choice RT (Jensen ap-
paratus); octagons, Sternberg memory scanning; squares, same/

different word judgment; diamonds, synonym/antonym judg-
ment. If a subgroup mean RT for a particular task condition did

not differ from the corresponding group mean RT, the data point
for that condition would fall along the dashed diagonal line.
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and same/different word and synonym/antonym judg-
ments. For purposes of clarifying the analogy to the two
studies consideredpreviously (Hale & Jansen, 1994;Hale
& Myerson, 1993), the two samples may be thought of as
subgroups of a larger group of young adult students. As
may be seen in Figure 2, when the RTs for each subgroup
are plotted as a function of the mean RT for the whole
group, the Vernon and Jensen results are strikingly simi-
lar to those of Hale and her colleagues (Figure 1).

Vernon and Jensen (1984) attributed the differences in
information-processing speed between the vocational and
university students to the fact that the two samples differ
in academic ability or psychometric g. In support of this
claim they noted that as task difficulty increases, the dif-
ference between the RTs of the two samples increases.
Figure 2 clearly illustrates this finding, assuming that the
mean RT for the whole group provides an index of task
difficulty. It should be noted, however, that Figure 1 shows
the same pattern of RT differences between fast and slow
subgroups of students, all of whom attended the same
highly competitive university. Regardless of the strength
or validity of the association between speed and intelli-
gence, the Vernon and Jensen data taken together with the
data from Hale and her colleagues (Hale & Jansen, 1994;
Hale & Myerson, 1993) suggest that the relationship we
have observed between the RTs of fast and slow sub-
groups is not peculiar to one particularbattery of RT tasks,
nor does it depend on a specific method for dividing a
group into slow and fast subgroups (e.g., top and bottom
quartilesor type of collegeattended)or a particularmethod
for estimating average performance (e.g., overall mean or
mean for center two quartiles).

We hypothesize that the observed orderly increase in
the difference between slow and fast RTs typifies the ef-
fect of task difficulty (indexed by the average RT for the
group) on the absolute size of individual differences in
performance of speeded tasks. In subsequent sections, we
will propose a model to explain this phenomenon and as-
sess its ability to account for both the differences between
fast and slow groups as well as differences in individual
performance. First, however, it is important to show that
even at the subgroup level, the Hale and Jansen (1994) and
Hale and Myerson (1993) results are not what would be
expected on the basis of the method of constructing sub-
groups alone, nor do they result simply from a positive re-
lationship between group mean RT and SD. To demon-
strate this and to examine the role of correlations between
RTs on different tasks, we conducted three series of com-
puter simulations.

With respect to the method by which we haveconstructed
subgroups, it is obvious, of course, that selecting fast and
slow individualson the basis of their mean z scores would
tend to produce mean RTs for each subgroup that would
be smaller and larger, respectively, than average RTs. How-
ever, this method would not necessarily lead to a system-
atic change in the difference between fast and slow RTs as
a function of task difficulty of the kind observed in actual
data (see Figures 1 and 2). To demonstrate that this is true,

we conducted10 simulations in which RTs were randomly
selected for 65 simulated subjects in 10 different task con-
ditions so as to produce the same conditionmeans as those
in the Hale and Myerson (1993) study. For all task condi-
tions, the SD was set at 148 msec (the median of the ac-
tual SDs for the 10 conditions), and RTs in different task
conditions were uncorrelated. Simulated subjects were
then sorted intoquartileson the basis of their mean z scores,
and the means for the top and bottom quartiles were re-
gressed on overall group means. Across the 10 simula-
tions in this series, the mean of the slopes for the simu-
lated fast quartiles was 1.00, and the mean of the slopes
for the simulated slow quartiles was also 1.00, with stan-
dard errors of 0.01 in both cases. Results for a typical sim-
ulation (the one with fast and slow slopes closest in value
to the means) are shown in the upper left panel of Figure 3.
As may be seen, the size of the difference between the RTs
of the fast and slow subgroups was very small and re-
mained approximately constant across tasks.

Notably, the method of selecting fast and slow quartiles
did not produce subgroups in which individual simulated
subjects were consistently fast or slow. In repeated simu-
lations, most simulated subjects from the top and bottom
quartiles were faster or slower than the mean in only 6 or
7 task conditions (mean for the representative simulation
depicted was 6.50), just slightly more than the 5 out of 10
expected for those of average speed. In contrast, the actual
fast and slow subjects in the Hale and Myerson (1993)
study were very consistent. Specifically, all but 1 subject
from the bottom or top quartile was faster or slower than
average in at least 9 out of 10 conditionsof the four tasks.

Further, the systematic increase in the difference be-
tween the RTs of fast and slow subgroups with task diffi-
culty observed in the Hale and Jansen (1994) and Hale and
Myerson (1993) data is not simply a consequenceof a pos-
itive relationship between mean and SD (Hale, Myerson,
Smith, & Poon, 1988). To demonstrate this, we performed
a second set of simulations similar to those just described
except that both the mean RTs and the SDs for the 10 task
conditionswere set equal to those in the corresponding10
conditions from the Hale and Myerson (1993) study. Be-
cause of the positive relationship between mean and SD,
this set of simulations will be referred to as the dependent

SD simulations to distinguish them from the previous set
of independent SD simulations. As in the independentSD

simulations, the correlationbetween RTs on different tasks
was set to zero, and the 65 simulated subjects were again
sorted into quartiles on the basis of their mean z scores.

With the observed relationship between mean RT and
SD incorporated into the simulation, the difference be-
tween the mean RTs for the fast and slow quartiles did in-
crease slightly with task difficulty. The rate of increase,
however, was substantially less than that observed in the
real data. To compare the actual and simulated results, we
conducted10 completesimulations in order to estimate the
slopes for the regression of RTs of the fast and slow quar-
tiles on the simulated group mean RTs. The mean of the
slopes for the simulated slow quartiles was 1.14 (with a
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standard error of 0.02), which is considerably less than the
slope of 1.45 observed for the slow subgroup in the Hale
and Myerson (1993) experiment. The mean of the slopes
for the simulated fast quartiles was 0.85 (standard error of
0.02), which is greater than the slope of 0.65 for the actual
fast subgroup.Thus, for every increase of 100 msec in task
difficulty (as measured by group mean RT), the difference
between the RTs of the actual fast and slow subgroups in-
creased by 80 msec. This is more than 2.5 times the rate of
increase in the difference between the simulated subgroups
(29 msec per 100 msec increase in difficulty). The results
for a representativedependentSD simulation (the one with
fast and slow slopes closest in value to the means for the
10 simulations) are shown in the lower left panel of Fig-
ure 3 and may be compared with the actual Hale and My-
erson results shown in the lower right panel.

As in our set of independentSD simulations, there was
relatively little consistency in performance at the individ-
ual level in the set of dependent SD simulations despite
the method of selecting fast and slow quartiles. Most sim-
ulated fast and slow subjects were faster than average or
slower than average, respectively, in only 6 or 7 task con-

ditions, just slightly more than the 5 out of 10 expected
for those of average speed. In the typical dependent SD

simulation depicted, the mean number of conditions with
RTs appropriately faster or slower than average was 6.75,
which may be compared with a mean of 9.66 out of 10 for
the actual fast and slow subjects in the Hale and Myerson
(1993) study.

We also conducteda third set of 10 simulationsin which
RTs in different conditions were correlated in order to as-
sess how individual consistency in performance affects
the pattern of differences between the RTs of fast and slow
subgroups. For these correlated RT simulations, correla-
tions between RTs for different task conditions were pro-
duced by adding condition-specific random variables to
an individual-specific random variable (for which indi-
vidual values were held constant across task conditions).
Conditionmean RTs were set equal to those observed in the
Hale and Myerson (1993) study, and SDs were set equal to
the median of the observed SDs. As was the case for the
actual subjects, most simulated fast or slow subjects were
consistently fast or slow (i.e., 9 or 10 conditions faster or
slower than average; for the most representative simula-

Figure 3. Simulated and actual fast and slow subgroups’ mean response times (RTs) plot-
ted as a function of group mean RTs. The two upper panels and the lower left panel present

data generated by three different computer simulations (see text for description). The lower
right panel presents the data from Hale and Myerson (1993) for comparison purposes. In all

panels, the white and gray circles represent the slow and fast subgroups, respectively.
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tion, M 5 9.39 out of 10). Unlike the results of the actual
study, however, the mean regression slopes for both the
simulated fast and the simulated slow subgroups were
1.00 (standard errors less than .01). The fast and slow sub-
group regression results for the most representative cor-
related RT simulation (i.e., the one whose regression slopes
were closest to the mean slopes) are shown in the upper
right panel of Figure 3.

Comparison of the Hale and Myerson (1993) results
(lower right panel of Figure 3) with the results from our
three sets of simulations (i.e., the independentSD, depen-
dent SD, and correlated RT simulations) clearly reveals
that none of the alternatives in question—the method of
creating fast and slow subgroups based on mean z scores,
the empirical relationshipbetween group means and SDs,
or the observed correlations between RTs—are sufficient
in and of themselves to explain the observed pattern of dif-
ferences between actual fast and slow subjects. The sim-
ulation results do suggest, however, possible roles for both
correlations between RTs in different task conditions and
a positive relationship between condition mean RT and
SD. It is possible, moreover, that consistently fast or slow
individual performance may enhance patterns of differ-
ences between fast and slow subgroups (compare the in-
dependentSD and correlated RT simulations), and that the
relationshipbetween group mean and SD may provide the
basic pattern to be enhanced (compare the independent
SD and dependent SD simulations). However, the exis-
tence of intertask correlations, on the one hand, and a pos-
itive relationship between mean RT and SD, on the other,
may not necessarily reflect separate empirical constraints.
Rather, as we will propose in subsequent sections, a gen-
eral cognitivespeed factor may play a fundamental role in
determining the relationship between mean and SD as
well as the difference between fast and slow subgroups or
individuals.This view is fundamental to our theoretical ac-
count of the mechanism that determines the absolute size
of individual differences on different tasks.

Before proceeding to the theoreticaldevelopment,how-
ever, we wish to point out that the present concern extends
beyonddifferences in cognitivespeed between healthy in-
dividuals of the same age. The present effort is also moti-
vated by the fact that a growing number of studies involv-
ing a variety of special populationshave reported findings
related to those just discussed, suggesting that the mech-
anism underlyingvariation in the absolute size of individ-
ual differences in RTs on various cognitive tasks may have
a great deal in common with the mechanism that governs
the size of group differences in RTs on such tasks.

More specifically, when group differences are assessed
across multiple tasks, the relations between the RTs of one
group and those of another (e.g., control) group are often
well described by linear functions similar to those we have
observed between the RTs of same-age individuals who
differ in ability. For example, such relations have been re-
ported when children and older adults are compared with
young adults (for a review, see Cerella & Hale, 1994). Re-
cently, similar results have been observed in studies com-

paring the performance of groups with a variety of condi-
tions, including mental retardation (Kail, 1992), clinical
depression (White, Myerson, & Hale, 1997), closed-head
injury (Ferraro, 1996), multiple sclerosis (Kail, 1997), and
Alzheimer’s disease (Myerson, Lawrence, Hale, Jenkins,
& Chen, 1998), with the performance of appropriate con-
trols. In all of the cited studies, the difference between the
RTs of affected groups and appropriate controls increased
systematicallywith task difficulty as indexed by the RT of
the control group.

The orderly functional relations seen in these studies of
the speeded cognitive performance of various groups ap-
pear to be strikingly similar to those seen in our studies of
the diversityof performance withingroups (Hale & Jansen,

Figure 4. Nonlexical and lexical response times (RTs) of young
and older adult groups plotted as a function of the correspond-

ing RTs of a middle-age group. Data are taken from Lawrence,
Myerson, and Hale (1998). In both the upper and lower panels,

white circles represent data from the older adult group (80- to 89-
year-olds), and gray circles represent data from the young adult

group (18- to 21-year-olds). The middle-age group consisted of
50- to 59-year-olds.
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1994; Hale & Myerson, 1993;Zheng et al., 2000). In both
cases, the RTs of one set of individuals tested on a num-
ber of quite different tasks can be predicted directly from
the RTs of another set of individuals without taking the
nature of the tasks into account (other than whether the in-
formation that was processed was verbal or spatial). The
parallel may be seen most clearly in Figure 4, in which the
group mean RTs of young adults and adults in their 80s
are each plotted as a function of a group of intermediate
age, adults in their 50s (data are taken from Lawrence,
Myerson, & Hale, 1998). In both the verbal and spatial do-
mains, group differences increased systematicallywith in-
creases in task difficulty.

Such findings suggest that, as with individual differ-
ences and differences between fast and slow subgroups,
there may be a general speed factor that underlies the dif-
ferences observed between the RTs of various groups, at
least within each processing domain (i.e., verbal or spa-
tial) (e.g., Cerella, 1985, 1990;Hale, Myerson, & Wagstaff,
1987; Kail, 1991). Although orderly relations between the
mean RTs of different groups can be misleading under
certain circumstances (Fisher & Glaser, 1996), such rela-
tions nevertheless raise the possibility that basic models
developed to explain individualdifferences in ability may
also apply to other individualdifference variables (e.g., age
and health status), and perhaps to the interaction of such
variables as well.

In this paper, we develop a model of the interaction be-
tween individual differences in the ability to process in-
formation rapidly, on the one hand, and the amount of pro-
cessing required by different tasks, on the other hand. We
then apply this model to the problem of how individual
ability and task difficulty interact with other individual
difference variables such as age and health status. There is
a rich database with respect to speeded cognition in young
and older adults that exemplifies the issues involved in
such interactions, and such data provide a test case with
which to evaluate our model. We would emphasize, how-
ever, that our ultimate claim is more general and applies
not just to individualdifferences and aging, but also to de-
velopmentalchanges in processing speed as well as to dif-
ferences between healthy individuals and those affected
by various health conditions.

In developing our model, we will employ simplifying
assumptions that ignore distinctionsthat may be the focus
of other theoreticaland experimentalefforts. We will do this
for two reasons: first, because of differences in purpose
between the present effort and other research, and second,
because of differences in scale. These two reasons are ob-
viously not mutually exclusive. After all, different pur-
poses may require measures and analyses that provide dif-
ferent degrees of resolution. For example, trying to draw
(or use) a full-scale map of the world (i.e., one in which
1 foot represents 1 foot) obviouslywould create problems.
There is usually a tradeoff between resolution and scope,
and people tend to select the type of map with the degree
of resolution appropriate for the purpose at hand, using
both more detailed maps of smaller areas (e.g., cities) and
less detailed maps of larger areas (e.g., countries).

The focus of the present effort is on predicting perfor-
mance over a range of task difficulty that spans an order
of magnitude (i.e., 500–5,000 msec), at least for some
groups (e.g., older adults), and differences of an order of
magnitudeor smaller (i.e., on the order of 50 msec or less)
may be neglected in the process. Just as makers and users
of maps of whole countries would not claim that maps of
individualcities are wrong, so our use of relatively low de-
grees of resolution in order to achieve greater scope
should not be taken to imply any disagreement with more
tightly focused theories and models that offer higher de-
grees of resolution.

Differences between the purposes of the present model
and those of other efforts also lead us to ignore certain gen-
erally accepteddistinctions.For example, the presentmodel
treats all information-processingstepsas if they were equiv-
alent even when we know that they involve different cog-
nitive operations (e.g., mental rotation vs. visual search).
Such distinctions, though clearly of fundamental impor-
tance for the purpose of understandinghow cognitive tasks
are accomplished, may be less important for purposes of
understanding how individuals differ in the efficiency
with which they accomplish these tasks.

Some of the simplifying assumptionsmade to facilitate
the mathematical development of the model will be re-
laxed in subsequent computer simulations. For example,
initiallywe will assume the existence of a “generic” com-
putational step, and that differences in the RTs for differ-
ent tasks or conditions reflect differences in the number
of computational steps involved. In simulations, these as-
sumptionswill be relaxed so that the different steps involved
in a given task may have different durations and so that
the correlations between steps from the same task may be
higher than those between steps from different tasks, re-
flecting possible task-specific abilities. Through the use
of such simulations, and more importantly, by comparing
the model’s predictions to experimental data, we will at-
tempt to show that, despite its deliberate simplificationof
the problem, our model is well suited to the task at hand:
explaining the linkage between a general speed factor and
the orderly increase in diversity of speeded performance
with task difficulty.

THEORETICAL DEVELOPMENT
Preliminary Considerations

As Cerella (1990) pointedout, orderly relations such as
those shown in Figures 1 and 2 imply correspondence be-
tween the processing of the individuals involved. That is,
such relations suggest that all (or most) individuals per-
forming the tasks in question are processing the same in-
formation in the same way. Thus, the major determinantof
the size of individualdifferences appears to be quantitative
rather than qualitative and involves something that all the
taskshave incommon,albeit somethingthatsome tasks (i.e.,
those associatedwith longerRTs) have more of thanothers.

More specifically, an orderly relation between perfor-
mances implies that these performances are functions of
a third variable (Cerella, 1994;Dunn & Kirsner, 1988;Hale
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et al., 1987). Further understandingof this implicationfol-
lows from an extension of ideas originally suggested by
Dunn and Kirsner (1988) and extended to age differences
in RTs by Cerella (1994). Dunn and Kirsner applied the
chain rule, familiar to calculus students, to all cases of or-
derly relationsbetween two typesof performance.Although
the chain rule is relevant in all such cases, it has special sig-
nificance for the specific case of approximately linear re-
lations observed here. In this case, the linear relation im-
plies that the performances of fast and slow individuals
are isomorphic functions of a third variable such that the
effect of changes in that third variable on the performance
of different individuals differs only proportionally. In ad-
dition, the fact that performance differences appear to be
relatively independent of the type of processing involved,
but increase with the average time required for task per-
formance, suggests that this third variable may be charac-
terized as a measure of the amount of processing required
by a task. This insight, taken together with evidence for a
general speed factor (e.g., Hale & Jansen, 1994; Vernon &
Jensen, 1984; Vernon, Nador, & Kantor, 1985; Zheng
et al., 2000), provides the basis for our model of group and
individual differences.

Diversity in performance is typically measured as the
SD for the group (rather than as the difference between
fast and slow subgroups), and statistical theory typically
treats variability in this form (and as the variance, or SD

squared). Therefore, we have recast the data represented in
Figure 1 in these terms. As may be seen in Figure 5, the
diversity of individual performances, measured as the
group (or between-subjects)SD, increases with the amount
of processing required in a task condition.

The fact that variability in RT tends to increase with the
mean may seem unremarkable. It should be noted, how-

ever, that in Figure 5 variability does not merely increase
with the mean, but rather increases in a very orderly and
highly specific manner. The approximately linear relation
between mean and SD accounts for more than 95% of the
variance. Importantly, both the form and the values of the
parameters appear to be robust characteristics of RT data.
A single regression line describes the data from two dif-
ferent studies (Hale & Jansen, 1994; Hale & Myerson,
1993). In addition, linear relations between SD and mean
RT with very similar parameters (slopes of 0.3 to 0.4 and
negative intercepts) were reported in a previous meta-
analysis comparing the diversity of speed of performance
in young and older adults (Hale et al., 1988). Even in the
meta-analysis, where the data came from many different
samples, the linear relation between SD and mean RT ac-
counted for more than 85% of the variance. Thus, the ob-
served approximately linear relationship is not peculiar to
data from one study, one laboratory, or even one age group.

Moreover, the form of the relation between the mean
and SD (or variance) can provide important information
about the nature of the underlying process. How this ap-
plies to the present problem may be seen by considering a
fundamental fact from elementary statistical theory.
Specifically, the variance (VAR) of the sum of n measures
with variances s1

2, s
2
2, . . . sn

2 is given by the equation

VAR 5 s1
2

1 s
2
2 1 . . . 1 sn

2 1 2r12s1s2

1 2r13 s1s3 1 . . . 1 2rn , n21snsn21. (1)

In the simple case where the means for the different mea-
sures are all equal, all of the variances are equal, and all of
the correlations between the measures are equal, then

VAR 5 ns
2 1 rn(n 2 1)s 2. (2)

(We do not suggest that these simple assumptions are cor-
rect. Rather, we wish to see what insights can be gained
from considering mathematically tractable cases before
considering cases of sufficient complexity to require com-
puter simulations.)

Inspection of Equation 2 reveals that if the measures are
uncorrelated (i.e., r 5 0), thenVAR 5 ns

2 and SD 5 s n1/2.
To apply this to RTs, we assume that each measure repre-
sents the time required to execute a single computation, or
one processing step. Thus, the mean RT for a given task
conditionwill be proportional to the number of processing
steps; that is, RT 5 an, where a is the average duration for
a single step. Substituting for n in the preceding equation
yields

SD 5 s (RT/a)1/2, (3)

where s is the SD of step durations across individuals.
Equation 3 implies that if the durationsof the steps are un-
correlated, then the relation between the mean RT for a
task condition and the SD of the RTs for that condition
will not be linear. Rather, it will be negatively accelerated
because SD is proportional to the square root of the mean
RT. In contrast, if the steps are perfectly correlated (i.e.,
r 5 1.0, so that the same individualswho are the fastest at
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Figure 5. Between-subjects standard deviation (SD) plotted as
a function of group mean response time (RT). As in Figure 1, the

data are taken from Hale and Jansen (1994) and Hale and My-
erson (1993). Each circle represents the SD and mean of the RTs

for one experimental condition of one study, and the dashed re-
gression line represents the fit to all of the data points. The solid

curve represents the prediction of the difference engine model
(Equation 7).
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one step will be the fastest at all other steps), then VAR 5

n2
s

2. Substituting RT/a for n and taking the square roots
of both sides of the equation yields

SD 5 sRT/a. (4)

Equation 4 reveals that if the durations of the steps are
perfectly correlated, then the relation between mean RT
and SD will be linear. In fact, the SD will be directly pro-
portional to the mean.

How correlated do they have to be to yield an approxi-

mately linear relation between RT and SD? To answer this
question,we may return to Equation2 and, taking the square
roots of both sides and rearranging, observe that for any r,

SD 5 s [n + n(n 2 1)r]1/2. (5)

This equation may be used to assess the effect of the cor-
relation between step durations on the relation between
the number of processing steps and the SD, and thuson the
relation between the number of steps and the SD of RTs
for a specific task condition.

Figure 6 illustrates what happens to the SD of the sum
of processing step durations as the number of steps and
the magnitude of the correlation between them are varied.
Although the figure depicts the simple case where the
steps are all equally correlated and also have equal means
and variances, the principle represented here undoubtedly
holds as long as these assumptions are at least approxi-
mately true. That is, as may be seen in Figure 6 (which for
simplicity also assumes unit variance), relatively low cor-
relations between processing steps may serve to linearize
the relationship between the number of steps and the SD.

As the correlation increases, so does the slope, whereas
the intercept decreases. Although at higher correlations
the SD is approximately proportional to the number of
steps, the general expectation based on Equation 5 is that
intercepts will tend to be positive. Thus, as a descriptive
model of RT data, Equation 5 suffers from an important
limitation. Although it may explain why the relation be-

tween SD and RT is linear, it fails to predict the negative
intercept clearly apparent in the present data (Figure 5) as
well as in previous meta-analyses (e.g., Hale et al., 1988).
As will be seen in the following section, this limitation is
easily corrected, yielding a model that is more in line with
intuitionas well as providinga better descriptionof the data.

THEORETICAL DEVELOPMENT
The Difference Engine

A Two-Compartment Model
of Within-Groups Variability

To understand how the observed negative intercept may
be accommodated within the present approach, recall that
Equation 5 assumes that any processing step is inter-
changeablewith any other step of the same task (at least for
the purpose of predicting individualdifferences). From the
usual cognitive perspective, steps are obviously not inter-
changeablebecause they involvedifferent computationsor
processing operations. In the present usage, however, steps
are merely arbitrary measures of the amount of processing.
Such generic steps serve the mathematically useful func-
tion of dividing what may, for other purposes, be thought
of as a continuous flow (McClelland, 1979) into discrete
units in the same way that a length may be divided into feet
or, reflecting the arbitrary natureof the division,intometers.

The negative intercept demonstrates a limit to the useful-
ness of the mathematical fiction of generic, completely in-
terchangeable steps, and accordingly, the strongest version
of this fiction will be abandoned here in favor of a dis-
tinction similar to the familiar one between sensorimotor
(or peripheral) and cognitive (or central) processing (e.g.,
Cerella, 1985). We assume a two-compartment model in
which the duration of the response portion of a task is rel-
atively uncorrelated with the duration of the central por-
tion of that task.

Evidence consistent with this assumption is presented
in Table 1, which reports the mean task RTs and intercor-
relations from Hale and Myerson (1993). Note that the
highest correlations are between the two easiest tasks
(choice RT and letter classification) and between the two
hardest tasks (visual search and abstract matching). This
pattern presumably reflects the fact that sensorimotor
speed plays a large role in easier tasks but makes a smaller
contribution in more difficult tasks, whereas cognitive
speed plays a large role in more difficult tasks but a smaller
role in easier tasks. Consistent with previous studies, prin-
cipal components analysis revealed that all tasks loaded
heavily on the first principal component,which explained
75% of the variance. However, the second, bipolar, com-
ponent explainedan additional12% of the variance. When
varimax rotation was used to eliminate negative loadings
and resolve a simple two-factor structure, the more diffi-
cult tasks (i.e., visual search and abstract matching)
loaded highly on one factor (which may be interpreted as
cognitive speed), whereas the easier tasks (i.e., choice RT
and letter classification) loaded highly on the other factor
(which may be interpreted as sensorimotor speed).

Figure 6. Standard deviation (SD) of the sum plotted as a func-

tion of the number of steps being summed. Each curve represents
the relation between SD and number of steps given a particular

correlation between the different measures. Calculations are
based on Equation 5, and the correlation used to calculate each

curve is given directly to the right of the curve.
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Similar patterns are seen in the correlations reported by
Zheng et al. (2000) and also in the Hale and Jansen (1994)
data. In the latter study, for example, the two easiest tasks
(i.e., line-lengthdiscrimination and choice RT) had a cor-
relation of .614, and the two most difficult tasks (i.e., ab-
stract matching and mental paper folding) had a correla-
tion of .646, whereas the correlation between the easiest
and hardest tasks was .397. The same pattern was also
seen in the correlations reported by Zheng et al. In both of
these studies, the second principal component was bipo-
lar, with loadings that covaried with task difficulty, and
varimax rotation yielded one factor that may be inter-
preted as cognitive speed, for which the loadings were
positively correlated with RT, and another factor that may
be interpreted as sensorimotor speed, for which the load-
ings were negativelycorrelated with RT. Moreover, for all
three studies, the correlations of both the cognitive and
sensorimotor speed factors with task mean RT were .75 or
stronger. With respect to the Hale and Jansen study, for
example, the loading of the easiest task (line-length dis-
crimination) on the sensorimotor speed factor was .906,
whereas its loadingon the cognitivespeed factor was .109.
In contrast, the loadings of the most difficult task (mental
paper folding) on the sensorimotor and cognitive speed
factors were .265 and .844, respectively.

Although the assumption of complete independencebe-
tween the cognitiveand response componentsof RT is ex-
treme, it greatly simplifies the mathematical develop-
ment. We will continue, however, to assume that within
the cognitive component, the durations of all processing
steps are correlated, and equivalently so. Thus, the model
developed in the previous section continues to apply to all
of the cognitive processing that goes into RTs. The pres-
ent model, which we have termed the difference engine,
may be summarized as follows:

1. Cognitive task architecture. It is assumed that tasks
and conditions that differ in difficulty also differ in the
amount of cognitive processing (i.e., in the number of el-
ementary computations or processing steps) that is re-
quired in order for an individual to make an accurate de-
cision.

2. Cognitivestep durationsand correlations. For any in-
dividual performing any task, the durations of the steps
that make up that task are correlated, and these correla-

tions are assumed, on average, to be the same for all indi-
viduals and all tasks. This assumption provides the basis
for the mathematicalmodeling that follows. Our computer
simulations incorporate an additional assumption. More
specifically, the correlations between steps of the same
task are assumed to be higher than are those between steps
of different tasks. Additionally, the within-tasks step du-
ration correlations are assumed, on average, to be equiva-
lent for all tasks, as are the lower, between-tasks step dura-
tion correlations.

3. Response step durations and correlations. The time
it takes to report a decision by selecting and executing a
minimal motor response (e.g., pushing a button) is as-
sumed to vary across individualsand to be independentof
the time they require to execute elementary cognitivepro-
cessing steps or to reach a correct decision (i.e., their total
cognitive processing times).

Before proceeding,we should note that we do not assert
that all experimental tasks have a serial architecture like
that assumed here, although many may. One could obvi-
ously find or devise tasks that do not satisfy this constraint,
and our model would not apply to such tasks. Similarly, we
do not assert that the time it takes an individual to report a
decision is the same on all cognitivetasks. Rather, we would
note that if one wants to study or manipulate processing
time, it makes sense to keep the response requirement min-
imal as well as to hold it constant, as in the present model.

The uncorrelated response componentmay be incorpo-
rated into the model as follows. According to Equation 1,
if there are only two, uncorrelated, items, VAR 5 s1

2
1

s2
2. In the present application,s1

2 represents the variance
of the duration of the response portion of a speeded task
and s2

2 represents the variance of the duration of the cog-
nitiveportion.As just noted, the cognitiveportion consists
of a number of correlated processing steps, and therefore
Equation 2 may be substituted for s2

2, yielding

VAR 5 sr
2 1 nsc

2 1 n(n 2 1)rs c
2, (6)

where sr
2 is the variance for the response component and

s c
2 is the variance for a single cognitive processing step.
In the present two-compartment model, the amount of

cognitiveprocessing time (i.e., the mean RT minus the du-
ration of the response component, tr) is proportional to the
number of processing steps (i.e., RT 2 tr 5 an, where a is

Table 1
Mean Response Times (RTs) and Standard Deviations (SDs) in Seconds, Intertask

Correlations, and Loadings on the First and Second Principal Components and First
and Second Rotated Factors Extracted From the Hale and Myerson (1993) Data

Intercorrelations Unrotated Rotated

Tasks M RT SD CRT LTR SRC PC1 PC2 RF1 RF2

CRT 0.405 0.061 .833 2.470 .292 .911

LTR 0.644 0.103 .701 .880 2.197 .512 .743
SRC 1.079 0.233 .583 .657 .863 .321 .879 .321

MAT 1.711 0.511 .608 .679 .740 .878 .287 .840 .385

Note—CRT, choice reaction time; LTR, letter classification; SRC, visual search; MAT, abstract match-
ing tasks; PC1 and PC2, loadings on the first and second principal components; RF1 and RF2, load-

ings on the first and second rotated factors.
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themean processingstep duration).Substituting(RT 2 tr) /a
for n and rearranging yields

VAR 5 s r
2 1 [(1 2 r)sc

2 ](RT 2 tr) /a

1 rsc
2[(RT 2 tr) /a]2, (7)

which is a second-order polynomial (i.e., VAR 5 b0 1

b1RT 1 b2RT 2). Therefore, the SD of the RTs is simply
the square root of a second-order polynomial, shown as a
solid curved line in Figure 5.

Although the fit here is only slightlybetter than that pro-
vided by the regression line, the theoretical equation (i.e.,
the square root of Equation 7) captures what turns out to
be a reliable initial positive acceleration.According to the
two-compartmentmodel, this acceleration reflects the fact
that as RTs get longer, the variance associated with the
correlated steps of their cognitive component represents
an increasingly larger proportion of the total variance. Un-
fortunately, although curve fitting provides estimates of
the polynomial coefficients, these estimates are difficult
to interpret because these coefficients represent compos-
ites of the parameters of Equation 7. Moreover, although
the parameters of Equation7 have specific interpretations,
these parameters are highly interdependent and therefore
difficult to estimate. Thus, although the very good fit and
intuitively reasonable form of our theoretical equation
provide support for the logic underlying this equation, an
alternative approach will be needed for some purposes.

One such approach capitalizes on the fact that as RT
grows larger, the rightmost expression (i.e., the one con-
taining the quadratic term) in Equation 7 comes to domi-
nate, and the variance is increasinglywell approximatedby

VAR 5 rs c
2[(RT 2 tr) /a ]2. (8)

Taking the square root of both sides yields

SD 5 (r 2 sc /a)(RT 2 tr). (9)

This equation provides a basis for understanding the pa-
rameters of the approximately linear relation between SD

and mean RT. The slope, m 5 r 2 sc /a, reflects both the
correlations among processing step durations within a task
and the coefficient of variation for cognitive processing
(i.e., the between-subjectsSD of processing step durations
divided by the mean duration). The y-intercept is simply
2mtr , and setting SD equal to zero and solving for RT re-
veals that the x-intercept is equal to the duration of the re-
sponse component, tr. As may be seen in Figure 5, the ob-
served x-intercept of approximately300 msec is in keeping
with values for simple and choice RTs to highly discrim-
inable stimuli reported in the literature (for a review, see
Teichner & Krebs, 1974) and is therefore consistent with
the two-compartment assumptionof our difference engine
model.

Extending the Model to Performance
of Individuals and Subgroups

To this point, the focus has been on the distribution of
speeded performance across individualsand how this dis-
tribution changes with task difficulty (i.e., with variations

in the number of processing steps). In the present section,
we focus on the performance of specific individuals or of
subgroupsof individualsof similar ability and follow their
performances from task to task. In subsequent sections,
we will show that the difference engine may be extended
further, enabling one not only to follow individuals from
task to task but also in principle to follow their perfor-
mance as they change with age and health status through-
out the adult life span.

We begin by considering the difference engine’s pre-
dictions regarding the interactionof individualdifferences

Figure 7. Graphical summary of the difference engine’s pre-

dictions regarding individual differences within a group. The top
panel illustrates the relation between standard deviation (SD)

and group mean response time (RT), the middle panel illustrates
the consequences of this relation for the RTs of subgroups 1 SD

faster and 1 SD slower than average, and the bottom panel de-
picts the consequences for the relations between the RTs of these

subgroups and the group mean RT.
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with task difficulty. The logic behind these predictions is
straightforward and is summarized graphically in Figure 7.
All of the hypothetical data depicted in the figure are cal-
culated assuming fast and slow subgroupswhose process-
ing times are, respectively, 1 SD shorter and 1 SD longer
than average, and also assuming that SD 5 0.3 RT 2 0.1
(consistent with both Equation 9 and the empirical data
presented previously in Figure 5).

As shown in the upper panel, the diversity of individual
performance (indexed by the between-subjects SD) in-

creases linearly with task difficulty (indexed by the mean
RT). Because the speed with which individuals execute
different processing steps is correlated, both within and
between tasks, the same individuals tend to have long (or
short) RTs on all cognitive tasks. The consequencesof this
tendency for the RTs of fast and slow subgroups may be
seen in the middle panel of Figure 7. Specifically, the pat-
tern of increasing diversity in the upper panel results in a
similar linear increase in the difference between slow and
average RTs. The difference between fast and average RTs

Figure 8. Response times (RTs) for representative individuals from Hale and
Myerson (1993) plotted as a function of group mean RT. Each data point rep-

resents performance in one experimental condition. In order of increasing task
difficulty, the tasks were as follows: inverted triangles, choice reaction time;

squares, letter classification; upright triangles, visual search; diamonds, ab-
stract matching. Data from the slowest and the fastest individuals are shown

(upper left panel and lower right panel), as well as data from individuals at the
10th, 33rd, 67th, and 90th percentiles (middle left, lower left, upper right, and

middle right panels, respectively). If an individual’s RT for a particular task
condition did not differ from the corresponding group mean RT, the data point

for that condition would fall along the dashed diagonal line.
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also increases linearly with task difficulty, althoughin this
case the difference is negative.

Finally, converting the differences shown in the middle
panel into mean RTs for each subgroup has the effect of
rotating the graph so as to produce the graph depicted in
the lower panel. Thus, as may be seen, combining a gen-
eral cognitive speed factor with an approximately linear
relation between SD and mean RT leads logically to the
correct prediction of linear relations between the RTs of
subgroups of fast and slow individuals and the average
RTs for the group as a whole (Figure 1).

Althoughplotsof difference scores (e.g., the middlepanel
of Figure 7) provide an intuitively accessible way to visu-
alize individualdifferences, for purposes of parameter es-
timation it is preferable to avoid difference scores and
conduct regressions using RTs in the manner diagrammed
in the bottom panel. Interpretation of the parameters of
such regressions is straightforward. Consider an individ-
ual (i) who is consistently slower than the mean by 1.0 SD

(i.e., RTi 5 RTavg 1 SD), and recall that SD is approxi-
mately equal to mRTavg 2 mtr (Equation 9, the linear ap-
proximation of the relation between SD and mean RT). It
follows directly that the RTs of such an individual will be
approximately equal to (1 1 m) RTavg 2 mtr. More gen-
erally, for any individual,

RTi 5 (1 1 zi m)RTavg 2 zimtr , (10)

where zi is a measure of individualprocessing speed in SD

units and m 5 r 2 sc /a (see Equation 9). This equation
provides a guide to interpretation of the regression para-
meters. Because fast individualshavenegativez scores, they
will have slopes less than 1.0 and positive y-intercepts.
Slow individuals, who have positive z scores, will have
slopes greater than 1.0 and negative y-intercepts. More-
over, individual regression lines will tend to cross the di-
agonal (i.e., RTi 5 RTavg) at a point where RTs are mini-
mal (i.e., when the task is simple and the RT consists
largely of sensorimotor time), although prediction at the
individuallevel is complicatedby both the nonlinearityof
the relation between SD and RT and the fact that sensori-
motor time varies between individuals.

The results of analyses of the individual data from the
65 subjects in the Hale and Myerson (1993) study are con-
sistent with predictions based on Equation 10. Strong lin-
ear relations were observed between individuals’ condi-
tion mean RTs and group condition means as evidenced
by very high individual r2s (median r2 5 .950). Individ-
ual examples (fastest and slowest as well as those at the
10th, 33rd, 67th, and 90th percentiles) are presented in
Figure 8. As predicted, regressions for slow individuals
tended to have negative intercepts whereas those for fast
individuals tended to have positive intercepts (for further
examples of individualdata, see Hale & Jansen, 1994, and
Zheng et al., 2000). In fact, 20 out of the 21 subjects with
regression slopes greater than 1.05 had negative inter-
cepts, and 34 of the 35 subjects with slopes less than 0.95
had positive intercepts. Moreover, individual regression
lines tended to cross the diagonal in the region where ex-
pected (median crossing point at RT 5 439 msec).

The use of Equations 9 and 10 for predicting the slopes
of the linear relation between an individual or subgroup’s
RTs and the group mean RT may be illustrated using the
data from the fast and slow subgroups in the Hale and My-
erson (1993) study. For the Hale and Myerson data, linear
regression of the group SD on RT yielded an estimate of
m 5 0.377 (Equation 9). According to Equation 10, the
formula for the slope (s) for an individual or subgroup is
given by s 5 1 1 zm. For the fast subgroup, the grand mean
z (i.e., the average of the mean z scores for the 16 mem-
bers of the subgroup) was 1.11. Thus, substituting for m

in preceding formula, the predicted slope for this sub-
group (i.e., 1 plus 1.11 times 0.377) equals 1.42, very
close to the observed slope of 1.45. For the fast subgroup,
the grand mean z was 21.01, and thus the predicted slope
(1 minus 1.01 times 0.377) equals 0.62, again very close
to the observed slope of 0.65.

The same method for predictingslopes was also applied
to the data from each of the 65 subjects in Hale and My-
erson (1993). With no free parameters, the formula si 5 1
1 0.377zi, where si and zi represent the slope and mean z
for the ith individual,accounted for nearly three fourths of
the variance in the observed slopes (r2 5 .726). Moreover,
when the observed slopes were regressed on the predicted
slopes, the slopeof the regressiondidnot differ significantly
from 1.0 and the intercept did not differ significantly from
0.0, suggesting that our prediction formula, based on
Equation 10, was an unbiased predictor of individual re-
gression lines.

What is important about the present effort is that it of-
fers a relatively simple theoretical mechanism to predict
and explain a whole set of empirical relationships.The ap-
proximately linear relation between SD and group mean
RT is explained as the consequence of correlations be-
tween processing step durations—faster individuals tak-
ing generally less time on all steps of a cognitive task and
slower individuals taking generally more time. Taken to-
gether with the strong general speed factor revealed by
principal component analysis, the relation between SD

and mean RT implies that the difference between fast and
slow individuals will increase with the task mean RT,
something not predicted by a general speed factor alone.
This increase in individual differences is reflected in the
specific form of the linear relation between individual
conditionmean RTs and group conditionmean RTs. Thus,
the difference engine appears to provide an integrated ac-
count of various aspects of RT data that are usually treated
as separate phenomena.

Computer Simulations of the Difference Engine
The mathematical development presented in the previ-

ous two sections necessitated many simplifying assump-
tions. In order to assess the consequences of relaxing
some of those assumptions and to set the stage for model-
ing performance in different groups, we next proceeded
to develop computer simulations that embodied the prin-
ciples of the difference engine. As before, RTs were as-
sumed to consist of two components,one sensorimotorand
the other cognitive.The cognitivecomponentwas assumed
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to represent the sum of the duration of individual pro-
cessing steps, and these step durations were assumed to
be correlated both within and between tasks. The sensori-
motor component was assumed to be 300 msec on aver-
age, with a SD of 50 msec across individuals. Processing
step durations were assumed to be 50 msec with a SD of
25 msec across individuals and tasks, and uncorrelated
with individuals’ sensorimotor component.

Across tasks, the correlation between an individual’s
processing steps was set at .35, on average, whereas within
tasks the correlation was set at .50. (These assumptions
only provided target values, both because of random vari-
ation per se and because such variationoccasionally, albeit
rarely, produced negative step durations that were auto-
matically replaced with zeros.) Correlations were pro-
duced by calculating each cognitive step duration as the
sum of three random variables. More specifically, each
simulated subject was randomly assigned a general cog-
nitive speed value as well as an independently chosen
task-specific speed for each task. Then each step duration
was assumed to be the sum of these first two random vari-
ables plus a third, independent, value. This third random

variable may be thought of as a combination of intrinsic
variation and measurement error. RTs were calculated as
the sum of the step durations plus a fourth random vari-
able that represented subjects’ sensorimotor speed. Cor-
relations between task steps reflected the shared general
and task-specific variables, whereas correlationsbetween
RTs for different tasks reflected the general cognitivespeed
variable and the sensorimotor speed variable.

Consider a typical simulation with parameters chosen
to approximate the tasks used by Hale and Jansen (1994)
and Hale and Myerson (1993). For each of 100 simulated
subjects, we generatedRTs for seven tasks consistingof 4,
8, 12, 16, 20, 24, and 28 processing steps. The mean RTs
for these tasks ranged from approximately 500 msec for
the 4-step task (300 msec of sensorimotor time plus
200 msec of informationprocessing) to 1,700 msec for the
28-step task. Characteristics of the simulated steps (i.e.,
mean durations, SDs, and intercorrelations) were reason-
ably close to target values, and the first principal compo-
nent accounted for 69% of the variance. As may be seen
in the upper left panel of Figure 9, the relationship of
between-subjects SD and task mean RT for this simula-

Figure 9. Between-subjects standard deviation (SD) for computer-simulated data plotted as a

function of group mean response time (RT). The upper left panel presents simulation results for a
mean step duration of 50 msec, and the upper right panel presents results for mean step durations

of 20, 100, and 200 msec. The lower left panel presents simulation results for tasks consisting of a
mixture of step durations, and the lower right panel presents results for simulations in which the

mean step duration was varied from 50 to 200 msec but the SD was held constant at 25 msec (see
text for details). For all step durations but those shown in the lower right panel, the coefficient of

variation was .5. Note that to facilitate comparisons, we made the ratio of the scale of the x-axis to
the scale of the y-axis the same as in Figure 5.
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tion closely approximated that seen in the actual data (see
Figure 5).

Additional simulations were conducted varying the
mean step duration while holding constant the target val-
ues for the step intercorrelationsand the ratio of mean step
duration to the step duration SD. Targets for task mean
RTs were also held constant. For example, with 20-msec
steps (SD = 10 msec) the easiest and hardest tasks consisted
of 10 and 70 steps, respectively, whereas with 200-msec
steps (SD = 100 msec) the corresponding tasks consisted
of 1 and 7 steps. Consistent with Equation 9, the relation-
ship between SD and mean RT generally was not affected
by these manipulations.This may be seen in the upper right
panel of Figure 9.

To examine the effect of mixing step durations, tasks
were simulated using 3, 4, 5, 6, 7, or 8 steps with RTs
being made up of randomly selected mixtures of 20-, 50-,
100-, and 200-msec step durations.There were 30 tasks in
all, five for each number of steps. Target values for step
duration, intercorrelations, and the ratio of mean step du-
ration to the step duration SD were the same as in previ-
ous simulations. As may be seen in the lower left panel of
Figure 9, the relationship between SD and mean RT for
simulations in which the steps making up a task had dif-
ferent mean durations was similar to the relationship be-
tween SD and mean RT for simulations in which the steps
making up a task had the same duration.

These simulation results suggest that the characteristics
of the difference engine are fairly robust as long as the in-
tercorrelations between step durations and the ratio of
mean step duration to the step duration SD are not varied.
Although we did not search the entire space for boundary
conditions, we did use simulations to evaluate those con-
straints predicted by the model (e.g., Equation 9). For ex-
ample, we examined the effect of increasingmean step du-
rations without increasing their variability. As may be
seen in the lower right-hand panel of Figure 9, increasing
the mean step duration from 50 to 100 to 200 msec while
holding the SD of step durations constant at 25 msec had
the predicted effects of decreasing the slope of the regres-
sion of between-subjects SD on mean RT and increasing
the intercept.As expectedon the basis of Equation 9, sim-
ilar effects were observed with different pairs of starting
values. That is, increasing the mean step duration while
holding variability constant resulted in regression lines
with parameters that diverged systematically from those
observed with real data. Also as expected on the basis of
Equation 9, decreasing the correlations between step du-
rations (with the target values for mean step duration and
SD held constant at 50 and 25 msec, respectively) had the
effect of decreasing slopes and increasing intercepts.

We conducted one further test of the robustness of the
difference engine model. Distributions of RTs across in-
dividuals typically are not normal (i.e., Gaussian), but in-
stead are positively skewed. That is, the difference be-
tween the RTs of the slowest individuals and the group
mean is much greater than the difference between the RTs
of the fastest individualsand the group mean. Because the
simulations just described assumed Gaussian distribu-

tions, additional simulationswere conducted to verify that
the present results do not depend on this assumption. Ac-
cordingly, skewed distributionswere created by taking the
correlated step durationsgenerated by our simulation pro-
gram and raising them to the 1.5 power. In addition to
skewing the distribution, this transformation also had the
effect of increasing the mean, and therefore all cognitive
step durations were decreased proportionally so that the
mean was approximately 50 msec.

The RTs for seven tasks were generated by adding 4, 8,
12, 16, 20, 24, and 28 processing steps, as in our initial
simulation, and the resulting task mean RTs ranged from
approximately 500 msec for the 4-step task (300 msec of
sensorimotor time plus 200 msec of information process-
ing) to approximately 1,700 msec for the 28-step task.
With correlationsbetween cognitive step durations as low
as .30, the distribution of RTs for each task, measured
across 100 simulated individuals, was positively skewed,
and more importantly, as predicted by the difference en-
gine, the relationshipof between-subjectsSD to task mean
RT was linear with a negative intercept. With lower cor-
relations, the relation between SD and mean RT was neg-
atively accelerated, also as predicted. Furthermore, for
correlations that produced linear relations between SD

and mean RT, the slope was an increasing function of the
correlationbetweenstep durations,againas predicted.These
simulation results obtained with skewed distributions of
step durations parallel those obtained with our mathemat-
ical model and with computer simulations that assumed
Gaussian distributions.

Taken together, the results of our simulations with both
normal and skewed step durationshelp confirm that the be-
havior of the difference engine, although robust across
certainmanipulations,does dependon the relationshipsbe-
tween certain parameters in the way predictedby the model
(see also further simulation results presented in the next
section). Importantly, simple assumptions about serial
processing other than those incorporated in the difference
engine, such as uncorrelated step durations or variability
in step durations independent of the mean duration, did
not result in simulations consistent with the patterns ob-
served with real data.

THE DIFFERENCE ENGINE
AND COGNITIVE SLOWING

Extending the Model to Performance
of Different Groups

We are now ready to consider the role of individualchar-
acteristics other than ability (i.e., age and health status).
Our basic assumptions regarding cognitive task architec-
ture, step durations, and correlations between steps re-
main unchanged. That is, tasks and conditions that differ
in difficulty are assumed to differ in the number of ele-
mentary processing steps required in order to make an ac-
curate decision, and cognitive step durations are assumed
to be correlated with each other but not with the duration
of the response step (see Assumptions 1, 2, and 3 of the
two-compartment model of within-groups variability). In
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extending the model to different groups, for simplicity’s
sake we assume that all individuals affected by the same
age or health status are affected to the same degree on all
speeded processing tasks, at least within broad cognitive
domains (e.g., the verbal domain and the visuospatial do-
main). More specifically, the difference engine incorpo-
rates the following assumptions in addition to the three al-
ready described:

4. Cognitive step durations and correlations. It is as-
sumed that aging and many health conditionsincrease the
average time that each affected individualrequires to com-
plete one step of cognitiveprocessing by some proportion,
sc, which is specific to the particular age or condition. As
a consequence, the between-subjectsSD of step durations
is increased by the same proportion so that the mean and
SD are sca and scsc , respectively. Other information-
processing parameters of the difference engine (e.g., the
magnitude of the intercorrelations) are unaffected by this
increase in step durations.

5. Response step durations and correlations. It is as-
sumed that aging and many health conditionsmay also in-
crease the time it takes to report a decision.The proportion,
sr, by which this component of performance is increased
is assumed to be specific to a particular age or condition
and may differ from the proportion by which cognitive
processing times are increased. Although the duration of
cognitive and response steps may covary across groups, it
is assumed that within a group the time it takes to select
and execute a minimal motor response is independent of
the duration of an elementary cognitive processing step.

It should be noted that the difference engine continues
to assumecorrespondence; that is, regardlessof ageor health
status, it is assumed that all (or most) individuals per-
forming speeded cognitive tasks are processing the same
information in the same way (Cerella, 1990). Thus, the
major determinantsof the size of individualand group dif-
ferences are assumed to be quantitative. It may be possi-
ble to find or devise tasks that do not satisfy this con-
straint; our model would not apply to such tasks. We
would point out, however, that in order to study group dif-
ferences in processing speed, as opposed to group differ-
ences in strategy, it would make sense to focus on tasks in
which there is correspondence in processing.

The preceding assumptions provide the basis for the
mathematical modeling and computer simulations that
follow. In order to make these efforts more concrete, we
will consider age to be the paradigmatic individual char-
acteristic and compare the performance of older adults
against a young adult standard. Assuming that aging af-
fects the duration of cognitive processing steps but not
their intercorrelations,we may derive the relation between
SD and mean RT for an older adult group using the same
logic as that used previously. To summarize, the difference
engine predicts a relation between SD and mean RT that
is described by the square root of a second-order polyno-
mial (Equation 7). Further, as the number of processing
steps increases, this equation becomes increasingly well
approximated by a linear function (Equation 9): SD 5

(r 2 sc /a)(RT 2 tr).

In the present case, where there is both cognitive slowing
(affecting the mean and SD of cognitive step durations
equally) and response slowing, this equation becomes

SD 5 r 2 (scsc /sca)(RT 2 sr tr). (11)

Figure 10. Graphical summary of the difference engine’s pre-

dictions for individual differences within different age groups.
The upper panel illustrates the relations between the standard

deviation (SD) and mean response time (RT) for groups of young
and older adults. The middle panel illustrates the consequences

of these relations for the RTs of young and older subgroups who
are 1 SD faster and 1 SD slower than average for their age group.

The lower panel depicts the further consequences for the rela-
tions between the RTs of these subgroups and the mean RTs of

the corresponding age groups (i.e., fast and slow young as a func-
tion of average young performance and fast and slow older as a

function of average older performance).
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It may be noted immediately that sc, the cognitive slowing
coefficient, cancels out. Thus, the slope parameter sim-
plifies to m 5 r 2 sc /a, which is the same as in Equa-
tion 9, and Equation 11 may be rewritten as

SD 5 mRT 2 msr tr. (12)

The strong and perhaps unexpected implication is that
identical slopes are predicted for young and older groups.
Setting SD equal to zero and solving Equation 11 for RT
reveals that the x-intercept for the older group is the young
adult intercept multiplied by sr , the coefficient that re-
flects the slowing of the response component with age.
Because the degreeof sensorimotor slowing in older adults
is typicallyquite small (Cerella, 1985), the age difference
in intercepts also will be quite small and, as a result, may
not be statistically reliable.

Moreover,because the relationshipbetweenSD and mean
RT is relatively unaffected by aging, the difference engine
predicts that the form of the regression of individual and
subgroup RTs on group mean RT will be the same for
youngand olderadults.The relationshipsbetween thesevar-
ious predictionsare summarized graphically in Figure 10,
which adds a hypothetical older group to the young adult
group previouslydepicted in Figure 7. For purposes of cal-
culating these hypotheticaldata, we assumed that in older
adults, information processing is slowed by a factor of 2.0,
typical of nonverbal cognitive tasks (e.g., Lima, Hale, &
Myerson, 1991; Sliwinski & Hall, 1998), whereas senso-
rimotor processing is slowed by a factor of only 1.15
(Cerella, 1985).

As may be seen in the upper panel of Figure 10, the di-
versity of individual performance (as indexed by the SD

for the group) increases linearly with task difficulty (as in-
dexed by the mean RT) for both groups. According to the
difference engine, the slope of the relation is identical for
both young and older adult groups, but the y-intercept for
the hypothetical older adult group is more negative, re-
flecting age differences in the response component. Re-
sponse selection and execution are only slightly (i.e., ap-
proximately 15%) slower in the older group, however, and
therefore the difference between the lines for the two
groups is barely discernible.

For both age groups, the speed with which individuals
execute different processing steps is correlated, so that the
same individualstend to have relatively long (or short) RTs
for their age on all tasks. Thus, the pattern of increasingdi-
versity in the top panel leads to linear increases in the dif-
ference between average RTs, on the one hand, and the RTs
of fast and slow subgroups, on the other hand (see the mid-
dle panel of Figure 10). Finally, the RTs for each subgroup
are equal to the mean for their age group plus the differ-
ence from the mean. Converting the differences depicted in
the middle panel into the subgroups’ mean RTs produces
the graph depicted in the lower panel, in which the differ-
ence between the regression lines for the fast older and
fast young subgroups, which have the same slopes but dif-
fer slightlywith respect to their intercepts, is hard to discern,
and the same is true for the difference between the regres-
sion lines for the slow older and slow young subgroups.

Zheng et al. (2000) recently reported results consistent
with the present model. The young adult and older adult
groups in the Zheng et al. study consisted of 40 subjects
each, all of whom were tested on seven visuospatial tasks:
choice RT, disjunctive choice RT, colored shape discrim-
ination, two-object same/different judgment, three-object
same/different judgment, and two different types of ab-
stract matching tasks. Zheng et al. reported that a general
speed factor accounted for 77% and 70% of the variance
in standard scores for the young and older groups, respec-
tively. Moreover, the composition of the general speed
factor was relatively age invariant, as implied by the dif-
ference engine’s assumption that aging does not affect the
intercorrelations between step durations. Specifically,
there was a correlation of .99 between the observed factor
scores for individualolder adults and the factor scores pre-

Figure 11. Between-subjects standard deviation (SD) plotted
as a function of group mean response time (RT). Data are taken

from Zheng, Myerson, and Hale (2000). Each circle represents
performance by one age group in one experimental condition.

Data from older and young adults are presented in the upper and
lower panels, respectively. Note that the scales in the two panels

are different, but that the ratios of the scale of the x-axis to the
scale of the y-axis are the same as in Figure 5. In each panel, the

dashed line represents the linear regression equation and the
solid curve represents the prediction of the difference engine

(Equation 7).
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dicted on the basis of the loadings from the young adults’
data. This finding suggests that the composition of the
general speed factor in the two age groups was highly sim-
ilar (Gorsuch, 1983). Furthermore, regression of the RTs of
the fast young and fast older adults on the average RTs for
their peers yieldedvirtually identical slopes and intercepts
and accounted for more than 98% of the variance in both
cases. Regression of the RTs of the slow young and slow
older adults on the average RTs for their peers also yielded
nearly equivalent slopes and intercepts, and again ac-
counted for more than 98% of the variance in both cases.

According to the difference engine, the necessary the-
oretical linkage between the factor analytic findings and
the regression analysis of fast and slow subgroups’ RTs is
provided by the effect of correlated step durations on the
relation between SD and mean RT. In order to test the
model’s predictionsregarding the relation between SD and
mean RT in young and older adults, we reanalyzed the
Zheng et al. (2000) data for each group separately. As may
be seen in Figure 11, the data from both the young and
older adult groups are well described by linear functions
(Equations9 and 11, respectively).Notably, the x-intercept
estimate of the response component for the older group
was 16% greater than that for the young group, very close
to Cerella’s (1985) meta-analytic estimate of 15% senso-
rimotor slowing. The slopes of the regression lines for the
young and older groups (.311 and .337, respectively) are
both very similar to those for the two large young adult
samples (Hale & Jansen, 1994; Hale & Myerson, 1993)
shown in Figure 3 as well as to those reported by Hale et al.
(1988) in their meta-analysis of published studies from a
number of different laboratories, further attesting to the
reliability of this phenomenon.

Because the Zheng et al. (2000) study tested subjects
on a number of fairly easy tasks that produced short RTs
as well as on tasks that produced fairly long RTs, the data
afford an opportunity to test for the positive acceleration
in the relation between SD and RT predicted by the dif-
ference engine. Both young and older adults showed sig-
nificant positive acceleration (i.e., in each case, polyno-
mial regression revealed the presence of a significant
quadratic term), as predictedby Equation7. Thus, these data
support the difference engine’s predictions regarding the
form of the relation between SD and mean RT as well as
beingconsistentwith the model’s assumption that the major
effect of aging on RTs results from simply increasing the
durations of the steps required to perform information-
processing tasks.

Extending the Model
to Domain-Specific Slowing

Lima et al. (1991) conducted a meta-analysis of studies
of age-related cognitive slowing, and they reported that
the degree of age-related slowing on visuospatial tasks
was considerably greater than that on verbal tasks of ap-
proximately the same degree of difficulty, as indexed by
the RTs of young adults. However, the studies analyzedby
Lima et al. used either verbal or visuospatial tasks, but not

both, so that the comparison of verbal and visuospatial
slowing necessarily involved different samples, and the
motor requirements were not always equivalent in differ-
ent studies. In an experimental validationof the Lima et al.
findings, Hale and Myerson (1996) tested the same 24
young and 24 older adults on both verbal and visuospatial
tasks, all of which had equivalent response requirements
(i.e., pressing the correct one of two response keys). There
were four different verbal tasks (i.e., single lexical deci-
sion, double lexical decision, category membership, and
synonym/antonym judgment) and four different visuo-
spatial tasks (i.e., line-lengthdiscrimination,shape classi-
fication, visual search, and abstract matching).

Analyses indicated that the older adult group was more
than 200% slower, on average, than the young adults at
processing visuospatial information, whereas they were
less than 50% slower than the young adults at processing
verbal information. Taken together, the correspondence
between these experimental results (Hale & Myerson,
1996) and the meta-analytic results reported by Lima et al.
(1991) attests to the robustness of the phenomenon(i.e., it
is not specific to a particular sample or to one specific lab-
oratory and its procedures). More specifically, the degree
of age-related slowing (i.e., the value of sc according to
the difference engine notation) is determined to a consid-
erable extent by the domain (i.e., verbal or visuospatial),
rather than by other specific task characteristics. Notably,
the degree of age-related slowing is much greater in the
visuospatial domain. This may be seen by comparing the
upper and lower panels of Figure 4: The differences be-
tween the RTs of the three age groups on visuospatial
tasks (upper panel) are much greater than the differences
on verbal tasks (lower panel).

The finding of greater age-related slowing in the visuo-
spatial than in the verbal domain observed at the group level
also appears to be a reliable characteristic of age-related
slowing at the individual level. When the RTs of individ-
ual subjects are regressed on the means for a young adult
control group, the percentage with greater visuospatial
than verbal slopes increases systematically with age from
50% of young adults to 98% of individuals more than
60 years of age (Lawrence et al., 1998). Because of the dif-
ferential effects of age on visuospatial and verbal speed at
both the individualand group levels, the two domains pro-
vide an important opportunity to test the present differ-
ence engine model.

The difference engine makes clear predictions for the
two domains regarding both the regression of SD on mean
RT and the regression of the RTs of fast and slow subgroups
on the mean RTs for their age group. That is, just as the
slope (m) of the regression of SD on mean RT is predicted
to be independent of age, so m is predicted to be indepen-
dent of domain. This is because, as already shown, the cog-
nitive slowingcoefficientcancelsout of the equationfor the
regression of SD on mean RT (Equation 12), and thus m is
independent of the degree of age-related cognitive slow-
ing. The degree of age-related cognitive slowing changes
from one domain to the other, but m does not change.
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Furthermore, because the equation for the regression of
individualand subgroup RTs on group mean RTs follows
directly from the regression of SD on mean RT, the cogni-
tive slowing coefficient does not enter into the relationship
between the RTs of an individualor subgroupand the mean
RTs for their age group. That is, it follows from Equa-
tion 12 that

RTi 5 (1 1 zim)RTavg 2 zimsr tr . (13)

As revealedby Equation13, the difference enginemakes the
surprising prediction that the slope of the regression of the
RTs of fast and slow individualsand subgroupson the RTs
of their peers depends on their z score relative to their age
group but is otherwise independent of both age and do-
main. In fact, the only difference between Equation13, the
general equation for all adult age groups, and Equation10,
the correspondingequation for young adults, is in the inter-
cept that in the general equation contains an age-specific
sensorimotor slowing term (sr).

Computer simulations of the difference engine that re-
laxed some of the assumptionsof the mathematical model
were used to test the prediction (Equation 12) that the
slope of the regression of SD on mean RT is independent
of both age and domain as well as the related prediction
regarding the regression of fast and slow RTs on average
RTs (Equation 13). To assess the robustness of the model,
we simulated groups of 100 young and 100 older adults

performing 30 verbal and 30 visuospatial tasks (one
young and one older group for each domain). Within each
domain, these tasks consisted of 3, 4, 5, 6, 7, or 8 steps,
with five tasks at each number of steps. For young adults,
each task was made up of a randomly selected mixture of
20-, 50-, 100-, and 200-msec step durations.The results for
the visuospatial simulations were presented previously in
Figure 9 (see lower left panel), and thus for present pur-
poses, we simulated another 30 verbal tasks using the
same target values as those in previous simulations.

Both young and older adults were simulated using tasks
with the same composition,but the degree of slowing was
different for the two domains. For example, if the easiest
visuospatial task had three steps with mean durations of
20, 20, and 50 msec for young adults, then the durations
of the steps for that task were 40, 40, and 100 msec for
older adults. Likewise, if the easiest verbal task had three
steps of 20, 50, and 200 msec for young adults, then the
durationsof those stepswere 30,75,and 300 for olderadults.
Thus, older adults were simulated to be 50% slower on ver-
bal tasks and 100% slower on visuospatial tasks, consis-
tent with Hale and Myerson (1996) and Lima et al. (1991).

As may be seen in Figure 12, the simulations resulted
in very similar relationshipsbetween SD and mean RT re-
gardless of the age group or cognitive domain being sim-
ulated. Each simulated age group was then divided into
four quartiles on the basis of individual speed factors, and

Figure 12. Between-subjects standard deviation (SD) plotted as a function of
group mean response time (RT). Data were generated by computer simulation

(see text). The graph presents data from simulated verbal and visuospatial
tasks consisting of a mixture of step durations. The older adult simulations as-

sumed that older verbal processing steps were 50% longer than young verbal
processing steps, whereas older visuospatial processing steps were twice as long

as young visuospatial processing steps. Note that to facilitate comparisons, we
made the ratio of the scale of the x-axis to the scale of the y-axis the same as in

Figure 5.
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the top and bottom quartiles were taken as the slow and
fast subgroups, respectively. Figure 13 shows the regres-
sions of subgroup RTs on the correspondingmean RTs for
each age group in each domain. In both figures, for the
sake of clarity and also so as to depict the same number
(i.e., 15) of task conditions as in comparable human data
from Hale and Myerson (1996), only data from the odd-
numbered tasks from each domain are shown.

As predicted by the mathematicalmodel, the regression
lines for the simulated slow subgroup RTs (fit to the white
circles) were highly similar regardless of age or domain,
and the same was true for simulated fast subgroup regres-
sion lines (fit to the gray circles). Notably, the perfor-
mance of simulated individual subjects was fairly consis-
tent across task conditions. On average, the simulated
young subjects in the fast and slow subgroups were faster
or slower than average in 13.6 out of 15 conditions,whereas
the simulated fast and slow older subjects were faster or
slower than average in 13.5 conditions.

The simulation results demonstrate that the difference
engine’s predictions regarding the effects (or the lack
thereof) of age and domain do not depend on the assump-
tion of equal mean step durations that expedited the math-

ematical development, but appear to be more robust and
hold for tasks that involve different mixtures of step dura-
tions as well. More specifically, regardless of variability in
step durations, the model predicts that neither the rela-
tionship between SD and group mean RT nor the relation-
ship between subgroup RT and group mean RT will be
substantially affected by the age group or by the domain
involved, even if different domains involve different de-
grees of age-related slowing.

In order to test these predictions, we conducted a re-
analysis of data from Hale and Myerson (1996). Figure 14
depicts the SDs of both the 24 young and the 24 older
adults on both the four verbal and the four visuospatialRT
tasks (15 task conditions in each domain), and Figure 15
depicts the performance of fast and slow subgroups in both
domains. The subgroups were selected to be the fastest
and slowest 6 individuals in each age group (i.e., the first
and fourth quartiles), determined using the same mean
z-score procedure as Hale and Jansen (1994) and Hale and
Myerson (1993).

As may be seen in Figure 14, there was an approximately
linear relation between the SD and group mean RT for both
age groups in both the verbal and visuospatialdomains.The

Figure 13. Response times (RTs) of fast and slow subgroups plotted as a function of
the group mean RTs. Data were taken from the same simulation as in Figure 12. The

left panels show simulated data from young adults, and the right panels show simu-
lated data from older adults. Fast subgroups are represented by gray circles; slow sub-

groups are represented by white circles.
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solid curve is the theoretical function based on Equation 7,
and the dashed line is the regression line.Tests over the same
range of RTs revealed no significant differences either be-
tween the verbal and visuospatial regressions or between
the regressions for the two age groups. These findingspro-
vide support for the present model because they are pre-
dicted directly by the fact that the cognitive slowing coef-
ficient cancels out in the derivationof Equation 11 (which
describes the relation between group SD and mean RT).

As may be seen in Figure 15, the RTs of the fast and
slow older adult subgroups were linear functions of aver-
age older adult RTs. Moreover, these relations were virtu-
ally collinear with those for the corresponding subgroups
of young adults. That is, there were no significant age dif-
ferences either between the regression parameters for the
older and young fast subgroupsor between the regression
parameters for the older and young slow subgroups. Most
importantly, equivalent results were observed in both the
verbal and visuospatial domains despite the much greater
degree of age-related slowing in the visuospatial domain.
That is, there were no significant differences either be-
tween the regression parameters for the older fast verbal
and fast spatial subgroups or between the regression pa-
rameters for older slow verbal and slow spatial subgroups.
These findings provide further support for the present
model because they are predicted directly by the fact that
the cognitive slowing coefficient cancels out of the relation
between older adult individual RTs and average perfor-
mance for an older adult group (Equation 13). As a con-
sequence, the relations between individual (or subgroup)
and average RTs are not affected by differences in the de-
gree of age-related slowing due to either age or domain.

Importantly, the subgroup data from Hale and Myerson
(1996) presented in Figure 15 accurately reflect the pat-
terns of fast and slow performances observed at the indi-
vidual level. This may be seen by comparing Figure 15
with Figure 16, which depicts data from individual fast
and slow older adults as well as fast and slow young adults
in each domain. In each case, subjects were selected so as
to be representative of their quartile in terms of the con-
sistency of their performance and also in terms of how
well their data were fit by a straight line (r 2). Overall, fast
and slow young adults were faster or slower than average
for their age group in 14.3 out of 15 task conditions, and
fast and slow older adults were faster or slower than aver-
age in 14.0 task conditions.

The results of the present analyses of the Hale and My-
erson (1996) data replicate the findings of Hale and her
colleagues (Hale & Jansen, 1994;Hale & Myerson, 1993)
with respect to the performance of subgroups of young
adults on visuospatial tasks (Figure 1) as well as Zheng
et al.’s (2000) findings regarding subgroupsof both young
and older adults on such tasks. The present results also ex-
tend these previous findings to bothyoungand older adults’
performance on verbal tasks. Importantly, the present re-
sults confirm the difference engine’s prediction that the
parameters of certain key relationships between various
aspects of speeded performance are independentof the in-
teractive effects of age and processing domain.

DISCUSSION

We have presented a model of diversity in speeded in-
formation processing. This model, the difference engine,

Figure 14. Between-subjects standard deviations (SDs) of young and older

adult groups plotted as a function of their respective group mean response
times (RTs). Data are taken from Hale and Myerson (1996). Each point repre-

sents performance by one age group in one experimental condition. In the panel
labeled “Detail,” the data are replotted over a truncated range in order to make

it easier to resolve individual data points. Note that to facilitate comparisons
with previous figures, we made the ratio of the scale of the x-axis to the scale of

the y-axis the same as in Figure 5.
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assumes that for purposes of analyzing individual differ-
ences (includingdifferences attributable to age and health
status as well as differences in ability), information pro-
cessing may be represented by a series of generic compu-
tational steps. Although an individual’s processing steps
may vary in duration, they are correlated in such a way
that all of the processing steps of some individualstend to
be relatively brief whereas all of the processing steps of
some other individuals tend to take longer than average.
As a consequence of these intercorrelations, the diversity
(as measured by the SD for the group) of the cognitive
component of RTs increases approximately linearly with
task difficulty (as indexedby the average RT for the group).
Because the duration of the cognitive component is un-
correlated with the response component, however, the re-
lation between SD and mean RT is actually positively ac-
celerated.

The difference engine does more, however, than explain
the form of the relation between SD and mean RT. It also
explains the approximately linear form of the regression
of the RTs of an individualor subgroupon the RTs of their
peers, and it provides specific interpretationsof the para-
meters of such regressions. Finally, the model may be gen-

eralized to differences in processing speed between groups
that differ in age and health status, as well as to the inter-
action of such differences with individual differences in
ability. This generalization follows directly from the as-
sumption that although groups differ, on average, in pro-
cessing speed, other relevant characteristics (i.e., the num-
ber of processing steps required to perform specific tasks
as well as the intercorrelationsbetween step durations)are
unaffected by age and health status. Support for the dif-
ference engine appears to be quite broad in that, as pre-
dicted, the same pattern of results was observed in both
young and older adults performing tasks from both the
verbal and visuospatial domains, despite the fact these do-
mains are differentiallyaffected by age-related changes in
processing speed.

Comparative Human Cognition
An important theme of the present effort, stripped of its

empirical and theoretical specifics, is that there exist cer-
tain phenomena(all having to do with the magnitudeof dif-
ferences in speeded cognition) that share common proper-
ties even though they manifest themselves in traditionally
distinct research areas (Hale, 1997).These phenomenasug-

Figure 15. Response times (RTs) of fast and slow subgroups of young and older

adults plotted as a function of their respective group mean RTs. Data are taken from
Hale and Myerson (1996). Each point represents performance by a subgroup of one

age group in one experimental condition.
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gest that there may be fundamental mechanisms underly-
ing individual differences in information processing that
operate in a similar fashion regardless of the cause of their
operation (e.g., whether they are enabled by developmen-
tal or health-related events). The difference engine repre-
sents an attempt to model such fundamental mechanisms.

These mechanismsare hypothesizedto underliethree sets
of findings. First, when examined across a range of tasks
that differ in difficulty, strikingly linear relations have
been observed between the RTs of selected individuals
(e.g., fast or slow subgroups) and the mean RTs for their
peers (e.g., Hale & Jansen, 1994;Zheng et al., 2000). Sec-
ond, orderly linear relations have been observed between
the RTs of different age groups (e.g., children and young
adults or older and younger adults) tested on the same
tasks (for a review, see Cerella & Hale, 1994). Third, lin-
ear relations between group mean RTs have also been re-
ported in experimental studies and meta-analyses that
compared the RTs of various special populationswith the
RTs of control groups. Included among these studies are
those that have examined individuals suffering from
Alzheimer’s disease (Myerson et al., 1998), brain injury
(Ferraro, 1996), depression (White et al., 1997), and mul-
tiple sclerosis (Kail, 1997).

Similar findings in different populationssuggest the pos-
sibility of similar explanations, and the difference engine
represents one possible, quite general, explanation.In order
to establish such generality, however, detailed analyses of
individual performance will be needed in each case be-
cause, as is well known, relations between group averages
do not necessarily reflect what is going on at the individ-
ual level.As a first step, examinationof the relationbetween
group SD, reflecting the diversity of individual perfor-
mance, and mean RT, reflecting task difficulty, may prove
quite useful.

For example, consider the data from a recent meta-
analysis of the effects of depression on speeded cognitive
performance (White et al., 1997). As may be seen in the
upper panel of Figure 17, there is a linear relation between
the RTs of depressed and control groups, which suggests
that the depressed were approximately 30% slower than
controls across a variety of information-processing tasks
(e.g., choice RT, Stroop color naming, and delayedmatch-
ing to sample). As may be seen in the lower panel, the re-
lationbetween SD and group mean RT was approximately
linear for both the depressed and control groups. Notably,
there were no significant group differences in either the
slope or intercept of this relation, and for both groups, the

Figure 16. Response times (RTs) of representative fast and slow young and older in-
dividuals plotted as a function of their respective group mean RTs. Data are taken

from Hale and Myerson (1996). Each point represents the performance of one indi-
vidual in one experimental condition.
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slopes and intercepts were similar to those for young and
older adults (Figures 3 and 10). In all cases, the slope of
the relation between SD and mean was between .30 and
.35 and the intercept was between 275 and 2100 msec.
These results support the difference engine, of course, but
more broadly, they are consistent with the idea that simi-
lar mechanisms may underlie the diversity of speeded per-
formance in groupsof depressed individualsand in groups
of both young and older healthy individuals,and the same
may be true for other populations as well.

There is a growing awareness among researchers that
there may be common phenomena, research questions, and
methodologicaland theoretical issues involvedin what have
been traditionally distinct research areas, each focused on
the cognitive abilities of a distinct population (e.g., Cerella

& Hale, 1994; Faust et al., 1999; Ferraro, 1996; Fisher &
Glaser, 1996; Kail, 1997; Nebes & Brady, 1992; Schatz,
1998;White et al., 1997). This growing awareness suggests
that a new research area may be emerging, one that focuses
on what may be termed the study of comparative human

cognition (Hale, 1997). The present theoretical effort exem-
plifies this trend toward the integration of findings regard-
ing different aspects of individual and group differences.

Comparisons With Other Approaches
The goals of the present effort are both broad and unique.

As a consequence, the opportunities to compare the pres-
ent approach with previous theoreticalmodels having sim-
ilar aims are somewhat limited.Recently, however, three ar-
ticles (Faust et al., 1999; Ratcliff, Spieler, & McKoon,
2000; Zheng et al., 2000) have touched on some of the
same basic theoretical issues considered here. We will
consider these recent efforts following a brief discussion
of the relevant older literature.

Thebasic approach takenhere to thevariabilityof speeded
performance (i.e., that of decomposing task performance
into a series of generic processing steps) is common in
mathematical models (Luce, 1986; Townsend & Ashby,
1983) and may be traced back to pioneering efforts by
McGill (1963). However, the variabilityof interest in such
models is typically the trial-to-trial variability of individ-
ual subjects (as reflected in RT distributions) rather than
the diversity of performance across individualsand tasks.
At least under certain circumstances, the SDs of such dis-
tributions are linear functions of the mean RT (e.g., Hale,
Fry, & Jessie, 1993; Myerson & Hale, 1993), raising the
possibility that the two forms of variability in RTs may be
more than superficially similar.

In fact, the relation of within-subjects SD (or semi-
interquartile range) to individual mean (or median) RT is
surprisingly similar to the relation of between-subjectsSD

to group mean RT in two respects. First, the relation tends
to hold across tasks; second, it tends to hold across age
groups (i.e., children, young adults, and older adults) with
little or no change in the value of either slope or intercept
(Hale et al., 1993; Myerson & Hale, 1993). It is possible
that trial-to-trial fluctuations in processing efficiency are
analogous to variations in efficiency from individualto in-
dividual or from group to group (Smith, Poon, Hale, &
Myerson, 1988) in that such trial-to-trial fluctuationsmay
also be based on correlated changes in the speed with
which processing steps are executed. If so, then this anal-
ogy leads directly to application of the present models.

However, analysis of the trial-to-trial variabilityof RTs,
unlike analysis of between-subjects variability, must con-
sider the problem of sequentialdependencies.Much of the
variation in RTs across trials is due to adjustments in de-
cision criteria following errors and to the effects of stim-
ulus and/or response repetition (e.g., Smith & Brewer,
1995; for a review, see Luce, 1986), whereas sequential
dependencies are obviously not an issue with respect to
variation across individuals.Because of this limitation on
the analogy between individual differences and trial-to-

Figure 17. Mean response times (RTs) of depressed groups
plotted as a function of the mean RT for healthy control groups

(upper panel) and between-subjects standard deviation (SD)
plotted as a function of group mean RT for both depressed and

control groups (lower panel). Data are taken from the meta-
analyses reported by White, Myerson, and Hale (1997). In the

upper panel, the solid line represents the regression of the RTs of
depressed groups on the RTs of control groups. In the bottom

panel, the solid line is the regression of SD on mean RT based on
the data from both depressed and control groups.
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trial fluctuations, we will postpone further consideration
of the parallels between them to another occasion.

Psychometric approaches. The decomposition of
RTs into processing steps has a direct psychometric ana-
logue in the decompositionof test scores into performance
on individual items or subtests. Despite the analogy be-
tween tests and tasks, the phenomena of interest from the
psychometric perspective are usually quite different from
those that are the focus here. In particular, the psycho-
metric approach tends to focus on the relative perfor-
mance of individuals (i.e., their positions in the overall
distribution), and psychometric research on speed has
been especiallyconcernedwith its relation to intelligence.
In contrast, the difference engine is concerned with pre-
dicting the absolute size of differences between individual
RTs, and we remain agnostic in regard to the relation be-
tween speed and intelligence.

Although the goals of psychometric research have been
quite different from those of the present effort, the differ-
ence engine incorporatesbasic psychometric findings.The
present assumptionof a general cognitivespeed factor and
a separate sensorimotor factor is consistent with the re-
sults of psychometric studies (Buckhalt,Whang, & Fisch-
man, 1998; Carroll, 1991; Kranzler & Jensen, 1991).
Moreover, the assumption that age does not change the
level of individuals’performance relative to their peers is
consistent with the results of longitudinal psychometric
research (Hertzog & Schaie, 1986).

Information-processing approaches. The goals of
the present model are obviouslyquite different from those
of a chronometric approach (e.g., Posner, 1978; Sanders,
1990) that seeks to decompose processing into qualita-
tively different cognitive operations. In contrast, the pri-
mary goal of the difference engine is to predict regulari-
ties in performance across tasks that differ substantially
with respect to the cognitive operations involved. For ex-
ample, what is critically important about visual search and
mental rotation from the chronometric perspective is that
they obviouslyinvolvedifferent cognitiveprocesses, yet the
present analyses suggest that individualdifferences in one
process are predictable from individual differences in
the other process. Moreover, aging appears to affect per-
formance on both types of tasks (and other visuospatial
tasks as well) to approximately the same degree. Equiva-
lent age-related slowing of visual search and mental rota-
tion was first shown in a multitask experiment in which
the same older and young adults performed both types of
tasks (Hale, Myerson,Faust, & Fristoe, 1995). This finding
has since been validated in a meta-analysis using standard
regression techniques (Myerson, Adams, Hale, & Jenkins,
2003) as well as with more refined meta-analyticmethods
based on hierarchical linear models (Sliwinski & Hall,
1998).

This surprisingly robust finding suggests that regard-
less of whether individuals are slow because of age, abil-
ity, or both, being slow at one process means that one will
tend to be slow at the other process. Thus, making a dis-
tinction between visual search and mental rotation, al-
though essential for some purposes, would not contribute

to the present effort. Indeed, the strength of the present ap-
proach is that it can reveal similarities precisely under
conditions where differences in the underlying cognitive
processes are known to exist. We raise these issues here in
order to reemphasize the fact that our simplifyingassump-
tions, which may conflict with some researchers’ strongly
held beliefs regarding the complicatednature of even sim-
ple information processing, need to be seen as the means
to an end. That end is to reveal and understand large-scale,
quantitative regularities in the patterns of individual and
group differences. To achieve that end, the present model
ignores processing distinctions that most cognitive psy-
chologists accept as valid, thereby potentially sacrificing
some degree of detail. Yet at the same time, the present
model strives to provide detail that is missing from other
accounts in that the difference engine is intended to pre-
dict both the magnitude and the distribution of individual
performances.

Other general slowing models. In the areas of cogni-
tive development and cognitive aging, the present theo-
retical effort is not alone in having sacrificed the usual
task and process distinctions of cognitive psychology
(e.g., Cerella, 1985;Kail, 1991). Of particular relevanceare
the models proposed by Cerella (1985) and Cerella and
Hale (1994), who divided processing into two compo-
nents, one cognitiveand one sensorimotor, for purposes of
analyzing age-related changes in RTs across the life span.
The difference engine may be viewed as an extension of
that approach to individual differences and to group dif-
ferences attributable to factors other than age. This exten-
sion is important because such ideas are not a necessary
part of a general slowing hypothesis, since general slow-
ing could be peculiar to the effects of age or it could de-
scribe changes at the group level but not those at the indi-
vidual level. To the best of our knowledge, Zheng et al.
(2000) were the first to take an explicit position on this
issue and to consider its theoretical implications. Their
magnification hypothesis, like the difference engine, as-
sumes that age-related slowing operates at the individual
level, magnifying everyone’s processing times and in-
creasing the size of individual differences by the same
task-independent factor. Their mathematical account was
highly simplified, however, and they called for further the-
oretical work along the lines of the present effort.

The diffusion model. Ratcliff et al. (2000)have recently
suggested applying the diffusion model (Ratcliff, 1978) to
the effects of aging on RT. The diffusion model describes
within-subjects RT distributions and speed/accuracy
tradeoff functions, but it has not previously been used to
study group differences. With respect to age-related differ-
ences, Ratcliff et al. suggested that what appear to be dif-
ferences in processing speed may be due to differences in
decision criteria (i.e., older adults may be more cautious
rather than slower). This hypothesis,however, has not gen-
erally been supported. As Cerella (1990) showed, in fact,
older adults tend to make more rather than fewer errors
than young adults. Moreover, as Myerson et al. (2003)
have pointed out, a number of recent studies have shown
that older adults continue to process information more



286 MYERSON, HALE, ZHENG, JENKINS, AND WIDAMAN

slowly than young adults even when stimulus-duration
threshold procedures are used to eliminate accuracy dif-
ferences (e.g., Mayr, Kliegl, & Krampe, 1994, 1996; Zacks
& Zacks, 1993).

In contrast to the difference engine, the diffusion model
makes no assumptions or predictions regarding the covari-
ation between individual RTs on different tasks, nor does
it predict or explain the form of the relation between SD

and mean RT. As Ratcliff et al. (2000) have specifically
pointed out, the diffusion model can accommodate in-
creases in between-subjectsSD as a function of the mean,
but it does not predict them. Moreover, the diffusion
model does not predict the approximately linear form of
the regression of the RTs of an individual or subgroup on
the RTs of their peers (althoughagain, the diffusion model
is not inconsistent with such results), and it provides no
specific interpretations of the parameters of such rela-
tions. Thus, although the diffusion model is not inconsis-
tent with the results of the analyses reported here, its treat-
ment of the present findings would be necessarily post
hoc. For example, the simulation of subgroup differences
in Ratcliff et al. merely shows that there exist some values
for the diffusion model’s parameters that emulate actual
data. However, Ratcliff et al. presented no principled treat-
ment of the way in which parameters do (or do not) change
across tasks, and thus they failed to come to grips with the
core of the theoretical question posed by the data.

The rate-amount model. Faust et al. (1999) have pro-
posed what they term a rate-amount model that predicts
linear relationships between the RTs of individuals and
groups and a linear relation between SD and mean RT. The
difference engine, too, may be thought of as a rate-amount
model, in which the amount of processing required to
reach a decision is represented by the number of process-
ing steps and individuals and groups differ in the rate at
which these steps are completed. Despite many similari-
ties, the two models differ in a number of respects, includ-
ing some of the fundamental assumptions and the mathe-
matical approach taken. These differences, in part, reflect
the different goals of the two efforts. The difference en-
gine is an explicitly theoretical model of the large-scale
structureof individualand groupdifferences in information-
processing speed, whereas the rate-amount model is in-
tended to provide a basis for statistical testing and isola-
tion of small-scale group differences, assuming that such
a large-scale structure exists.

In terms of generatingpredictions,it is important to note
that the model proposed by Faust et al. (1999) is explicitly
a one-compartment model, although they assume two sep-
arate individualdifference variables, one governing speed
and the other governing amount. In contrast, the difference
engine is a two-compartment model that distinguishes re-
sponse selection and execution from cognitiveprocessing.
The difference engine then further subdivides the cogni-
tive compartment into generic processing steps with
equivalent correlations between step durations. Although
the two models make a number of predictions in common,
as a consequence of these differences, only the difference
engine correctly predicts the initial positive acceleration

of the approximatelylinear relation between SD and mean
RT. The difference engine also provides an interpretation
of the x-intercept of the linear approximation of this rela-
tion in terms of the time required for response selection
and execution. Additionally, this interpretation—which
the rate-amount model specifically eschews (Faust et al.,
1999)—is consistent with observed estimates and cor-
rectly predicts the approximate point at which the regres-
sion of individualor subgroupRTs on group mean RT will
intersect the equality diagonal.

Faust et al. (1999) have suggested that their rate-amount
model providesa statisticalbasis for asking importantques-
tions such as whether all youngeradults become slowed to
the same degree as they grow older. Their model, however,
does not predict what the answer to this question will be.
In contrast, the difference engine does propose an answer
to this questionas well as other relatedquestions.Our model
specifically proposes that at least within broad cognitive
domains (e.g., verbal and visuospatial tasks), age-related
changes effectively multiply the speed coefficients of all
individuals, fast or slow, by an equivalent factor, without
affecting other aspects of processing. On the basis of this
theoretical assumption, the difference engine makes the
unique prediction that differences in slowing factors be-
tween domains or age groups will not affect other key re-
lationships. That is, such slowing factors will affect nei-
ther the slope of the relation of the group’s SD to mean RT
nor the relationships of individual and subgroup RTs to
the mean RT for their age group. The results of the pres-
ent analyses of the Zheng et al. (2000) and Hale and My-
erson (1996)data strongly support these uniquepredictions.

It may be noted that the precise details of the theoreti-
cal machinery that are the focus of the difference engine
may be largely irrelevant for the statistical purposes that
Faust et al. have in mind. The major goal of their effort
was to justify transforms that could facilitate the isolation
of small-scale group differences. The justificationof these
transforms depends on linear or approximately linear re-
lations between group SDs and individual RTs, and linear
relations between group mean RTs. The two models are in
agreement as to the approximate form of these relations,
and thus we see the efforts as complementary, one more
directed to solving theoretical problems in large-scale
structure and the other more directed to solving the statis-
tical problems raised by the existence of such a structure.
Whereas the transformations justified by the rate-amount
model may facilitate the identification of small-scale
group differences, the parameters of the equations for in-
dividual performance (Equations 10 and 13), easily inter-
pretable in terms of individual z scores, may facilitate the
identification of clinically significant individual differ-
ences (Schatz, Hale, & Myerson, 1998).

Conclusion
The most obvious potential limitation of the difference

engine model is that it relies on strong, simplifying as-
sumptions, although computer simulations suggest that
the model’s predictions are quite robust when some, but
not all, of these assumptions are relaxed. The important
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questionwith regard to the difference engine, of course, is
not whether the model’s assumptions are precisely true.
They are not. They are merely simplifying assumptions
intended to facilitate the mathematical development so
that we can examine the consequences of certain theoret-
ical ideas. Rather, the important question with respect to
the difference engine is whether it leads to an increase in
the ability to predict performance and to new insights into
why performance conforms to these predictions.

With respect to the accuracy of the difference engine’s
predictions, the results of a number of new analyses of
previously published data provide considerable support
for the present model. These analyses examined the inter-
correlations and factor structure of RTs as well as their
means and SDs, the relationship between these variables,
and the relations between the RTs of individuals and
groups that differ in age or ability. With respect to the in-
sight gained from the model, the difference engine’s most
important contributionmay be to provide theoretical link-
age between these seemingly disparate phenomena.Taken
together, the findings to date suggest that the theoretical
model presented here provides a uniquely integrated ac-
count of individualand group differences on speeded cog-
nitive tasks. Future research will be needed to establish the
generality of the difference engine’s predictions and their
applicabilityto additionalpopulations,includingchildren
and individuals with various health conditions.
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