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ABSTRACT 

A model of evolutionary base substitutions that can incorporate different 
substitutional rates between the four bases and that takes into account unequal 
composition of bases in DNA sequences is proposed. Using this model, we de- 
rived formulae that enable us to estimate the evolutionary distances in terms 
of the number of nucleotide substitutions through comparative studies of nu- 
cleotide sequences. In order to check the validity of various formulae, Monte 
Carlo experiments were performed. These formulae were applied to analyze 
data on DNA sequences from diverse organisms. Particular attention was paid 
to problems concerning a globin pseudogene in the mouse and the time of its 
origin through duplication. We obtained a result suggesting that the evolu- 
tionary rates of substitution in  the first and second codon positions of the 
pseudogene were roughly 10 times faster than those in  the normal globin 
genes; whereas, the rate in the third position remained almost unchanged. 
Application of our formulae to histone genes H2B and H3 of the sea urchin 
showed that, in each of these genes, the rate in the third codon position is 
tremendously higher than that in the second position. All of these observa- 
tions can easily and consistently be interpreted by the neutral theory of mo- 
lecular evolution. 

R E C E N T  developments in DNA-sequencing techniques ( MAXAM and GILBERT 
1977; SANGER, NICKLEN and COULSON 1977), together with methods for 

amplifying gene copies in a bacterial plasmid, have made possible rapid deter- 
minations of DNA sequences of genes. Because data on DNA sequences are 
obtainable only from living organisms, it is necessary to develop mathematical 
models to estimate the number of evolutionary nucleotide substitutions through 
comparison of DNA sequences of homologous genes in related species. 

Prior to a recent flood of data on nucleotide sequences, there already existed 
a large body of data on amino acid sequences in diverse organisms, and many 
mathematical models have been proposed to treat protein evolution in terms 
of amino acid substitutions, (see, for example, ZUCKERKANDL and PAULING 
1965; FITCH and MARGOLIASH 1967; JUKES and CANTOR 1969; OHTA and 
KIMURA 1971; NEI 1975 for review). However, for comparative studies of 
nucleotide sequences, different mathematical models have to be employed. Sev- 
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era1 authors have considered the problem of estimating the evolutionary distance 
of the homologous part of the genome between related species (JUBES and 
CANTOR 1969; KIMURA and OHTA 1972; MIYATA and YASUNAGA 1980; HOLM- 
QUIST 1980; HOLMQUIST and PEARL 1980). 

Recently, KIMURA (1980; 1981) developed three different models that can 
partially incorporate different substitutional rates between four bases and ap- 
plied them to analyze data on various nucleotide sequences from several organ- 
isms. He showed that a preponderance of synonymous and other silent nucleotide 
substitutions is a general feature of molecular evolution and that this is consis- 
tent with the neutral theory (KIMURA 1968; see KIMURA 1979 for review). 

In this paper, we extend the mathematical models of KIMURA (1980. 1981), 
and we derive appropriate formulae for  estimating evolutionary distances in 
terms of the number of nucleotide substitutions per site. In addition to an an- 
alytical treatment, we used simulation methods to check the validity of the 
formulae and determine their range of applicability. This is necessarj- because 
formulae for estimating evolutionary distances generally do not have high 
resolving power when they are applied to evolutionarily distant organisms; they 
are accompanied by large error variances. Therefore, we conducted extensive 
Monte Carlo experiments in which the values of the parameters involved were 
greatly altered. 

We have applied our formulae to analyze actual data on nucleotide sequences. 
Particular attention was paid to the evolution of the globin pseudogene in the 
mouse ( NISHIOKA, LEDER and LEDER 1980; VANIN et al. 1980). Although similar 
analyses have recently been carried out by KIMURA (1980), PROUDFOOT and 
MANIATIS (1980) and, in more detail, by MIYATA and YASUNAGA (1981 ) , we 
re-examined the problem to estimate the time of its origin and to discuss the 
evolutionary implications. 

M O D E L  A N D  ANALYSIS 

Let us consider a model of base substitutions, as shown in Figure 1, in which 
the four bases are represented by the letters U, A, C and G in terms of mRNA 
codes. The rates of base substitutions per unit time (say, year) between the four 
bases are designated by a, 8, y, 6 and E .  For instance, a! is the rate of transition- 
type substitutions from U to C or A to G, while p is the rate for the reverse direc- 
tions. The rates of transversion-type substitutions are denoted by y, 6 and E .  In 
comparing two homologous sequences, there are 16 combinations of base pairs 
at each site. The possible combinations and their relative frequencies (prob- 
abilities) are listed in Table 1. They represent the expected relative frequencies 
of their occurrence in two homologous sequences. For example, S (the sum of 
Si’s) stands for the probability that the bases at a homologous site are identical 
and P (= 2P, + 2P,) the probability of their showing transition-type differences, 
while Q (= 2Q1 + 24,) and R (= 2R, 4- 2R,) are the probabilities of transver- 
sion-type differences. 

We denote the probabilities at time T of the four bases by U ( T )  , A ( T )  . C ( T )  
and G ( T ) .  Starting from a common ancestor (T  = 0), we can express these 
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FIGURE 1.-Scheme of base substitutions and their rates per unit time. 

probabilities at time T + AT, using their probabilities at time T ,  and the rates of 
base substitutions, where AT stands for  a short time interval. Neglecting small 
quantities involving (AT)  and higher order terms, we have, for example, 

U(Tl+AT) = (1 - (a+S + y ) ~ T } U ( T )  +@ATC(T) +sATC(T) f y s l T A ( T ) .  

As seen from Figure 1, the first term in the right-hand side of this equation 
corresponds to the probability of no change, and the last three terms are the 
probabilities that U came from the remaining three bases during the short time 
interval AT. The corresponding probabilities for other bases can be obtained in 
a similar manner, and we get the following set of ordinary differential equations 
by letting AT -+ 0; 

--__ m(T) - - - ( a  + S + y ) U ( T )  +,8C(T) + EG(T)  -I- y A ( T )  , 
dT 

dT d A ( T )  = - ( a  + S f y ) A ( T )  4- ,8G(T) 4- & ( T )  4- y U ( T )  , 

d C ( T )  = -(,8 4- E + y )C(T)  + aU(T)  + SA(T)  + yG(T) , dT 

d G ( T )  - -(,8 4- E 4- y )G(T)  + aA(T)  + SU(T) 4- yC(T) . dT 

Likewise, we can derive the equations for changes of probabilities of the base 

TABLE 1 

Types of nucleotide base pnirs occurring at homologous sites in two sequences and 
their probabilities (relative frequencies) 

U C  A G  U C A G  U A C G  U G A C  
U C A G C U G A  A U G C  G U C A  Types 

SI S, S, S, 2P, 2P, 2Q, ZQ, 2R, ZR, 

S P Q R 
---- Probabilities 
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pairs listed in Table 1 ,  although the procedures involved are more complicated. 
As an example. let us consider the change of base pair UC. Noting that the prob- 
ability of UC is equal to that of CU. i.e., P,, we first get the probability of no 
change occurring in either nucleotide. This is [l - ( a  + y f ,)AT] [l - 
( p  + y + s ) A T ] ,  s3 that the contribution from this class is [ 1 - ( (Y f y + &)AT]  X 

[l - ( p + y +  S ) A T ] P , ( T ) .  UC is also derived from UU and CC with prob- 
abilities [ 1 - ( a  + y + F )  AT]  AT and [ 1 - ( ,L? + y + 8 )  AT],L?AT. respectively. 
Then, the contribution from these classes is [ 1 - (a + y -k E )  AT]aATS, ( T )  f 
[ 1 - ( p  + y + 8 )  AT]/?ATS2( T )  , Additional contributions come from pairs UA 
and GC with probabilities [ 1 - (a + y + &)AT] SATQ, ( T )  and [ 1 - ( p  + Y + 8)  
~ T ] F A T Q , ( T ) ,  and also from pairs UG and AC with probabilities [I - 
( (Y f y + E )  A T ]  y A T R ,  ( T )  and [ 1 - ( p  + y + 6)  AT] yATR,  ( T )  . Combining all 
these contributions, and neglecting (AT)' and higher order terms, as before, 
we have 

P,(T f AT) = [ l  - (a +/3 + 2 y  f 8 + E ) A > ' ] P , ( T )  f aATS,(T)  

Continuing these calculations for other base pairs and taking the limit AT -+ 0, 
we get a complete set of differential equations (equations 1). It is interesting to 
note that a more convenient derivation of equations (1 ) is possible if we use the 
differential equations for U(T),  A ( T ) ,  C(T) and G ( T )  and combine them 

through relationships such as 

P , ( T )  = U(T)C(T) for the case of the UC pair. This is true because bases 
in one species change independently €rom those in other species. We can verify 
by direct calculation that both derivations give the same set of equations. Thus, 
we obtain a complete set of differential equations as follows: 

d S 1 ( T )  1 -2(a  f y f S)S1(T) f 2PP1(T) -t 2yQ1(T) f 2ER1(T) 

d S z ( T )  = - 2 ( p  + y + E ) S ~ ( T )  + 2aP1(T) + 2yQ,(T)  + 2SR2(7') 

32 = -2 (a  f y f S)S , (T)  f 2/3P2(T) + 2yQ1(T) + 2ER?(T) 

ds4(T)  = -2(p + y + E)S4(T) + %P,(T) + 2yQn(T) + 26R1(T) 

d P 1 ( T )  = -(a + P f 27 + 6 + E)Pl(T) $- aS , (T)  -f PS?(T) 

f /3ATS,( T )  + SATQ, ( T )  + EATQ,( T )  + y A T { R i  ( T )  f RL ( T )  } e  

dU(T) and d C ( T )  +C(T)--- dT = U ( T )  ___ 
dPi ( T )  

dT dT 

dT 

dT 

dT 

dT 

dT + 6Ql(T)  + E Q ~ ( T )  -k y [RI (T)  + Rz(T)I 

(1) d P z ( T )  = -(a f p + 27 + 6 + E)Pz(T) + IrS,(T) + PS,(T) 
+ SQ,(T) f ~ Q 2 ( 7 ' )  + y [ R i ( T )  +R2(T)I  dT 

d Q 1 ( T )  = -2(a  + y + ~ ) Q , ( T )  + Y [ S , ( T )  + s . , (T)I  
+ E [ P ~ ( T )  + P 2 ( T ) ]  fP[Ri(T)  + R r ( T ) I  A dT 
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dR1(T)  = -(a f p + 2y t 8 f E)Rl (T)  f 8Si(T) f ESI(T) 
+ y[P i (T )  + P2(T)I + + PQ2(T) 

dT 

d R z ( T )  = -(a + p + 2y + 8 + E)R,(T)  + 8S,(T) + ESZ(T) 

+y[P , (T )  +P2(T)I +aQi(T) +PQ2(T).  dT 

To solve equations ( 1 ) , we define six variables 1 ( 2 )  
X + ( T )  = S i ( T )  + S s ( T )  2Q1(T) 
Y, (T )  =SZ(T)  t S , ( T )  * 2Q2(T) 
Z,(T)  = P ( T )  * R ( T )  , 

where we take the same sign for the subscripts of X ,  Y and 2 as that in the right- 
hand side. Then, from ( 1 ), we can derive two sets of equations. 

x+ (TI -2(a + 8 )  0 

z+ ( T )  2(a + 8 )  2(p  + E )  -(a + 
- (Y+(T))=( dT 0 -2 (P+&)  l Y f 8  

and 

In these equations, the transformation matrices have a common form 

( 5 )  
- ( c + d )  9 . -2c 0 

M = (  0 -2d 
2a 2b 

Note that a = c and b = d hold in (3). As we can easily calculate the eigenvalues 
and projection operators for the matrix of ( 5 ) ,  we can solve the initial value 
problems of equations ( 3 )  and (4). Let hi’s ( (i = 1,2 and 3) be the eigenvalues 
and pi’s  be the corresponding projection operators. Then, we have 

hl = - ( c  + d ) ,  h2 = - (c + d - g )  and h, = - (c + d + g ) :  (6) 

and 

2ab -2b2 -b(d-c) 

2ab a(d-c) 
-2a ( d-C) 2b ( d-C) (d-c)  
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4ab 

( d - C )  (d-c+g) f2ab  2b2 

2a‘ (d-c) (d-c-g) f 2 a b  -a (d-c-g)  
2a (d-cfg) 2b (-dfcfg) 

4ab 

(d-c) (d-c-g)  +2ab 2bZ 

P3 = 2gz 2a2 (d-c)  (d-cfg) f2ab  -a( d-c+g) 

2a ( d - c f g )  2 b ( d - ~ - g )  

where g = d ( d  - c ) ~  + 4ab. 

arbitrary initial condition of X (0). Thus, 
By using these formulae, we obtain the solutions X ( T )  at time T under an 

(8) X ( T )  = {eXFPl f eX,T”, -k eXPp3)X ( 0 )  

where X( ) is a column vector that can be either ( X + ,  Y + ,  2,) or ( X - .  Y-, 2-) t ,  

in which the superscript t denotes the transpose. 
We assume that the frequency (U) of U + A does not change with time, and 

also ihat U ( T )  = A ( T )  and C ( T )  = G ( T )  for all T. Then, S i ( T ) ,  P i ( T ) ,  Qi 
( T )  and Ri ( T )  can all be expressed in terms of X ,  (7’) , Y ,  ( T )  and Zr ( T )  . The 
evolutionary rate of base substitutions per unit time is 

k r ( a + y + 6 ) W f  ( p + y + E ) ( 1 - 0 ) )  (9) 

(9a) 

or 

k 7 f %I( 1 - W) (.Y f p + 6 f E )  . 
These equations are derived from the consideration that U or A each with the 
irequency 0/2 changes to the other bases at the rate of a f y + 6 ,  and C or G each 
with (1 - 0 ) / 2  changes at the rate of ,8 + y f E .  Note that we have w = (P f E ) /  

(a + ,8 4- 6 f E ) .  Therefore, the expected number of substitutions per site between 
two species with divergence time Tis  given by 

K = 2 T k .  

If we use formula (9a) for k, then 

K =2yT +40(1 - 0 )  ( a  +/3 f 6 f E ) T .  ( 1 0 )  
Before deriving an expression for K in terms of X , ,  Y ,  and Z , ,  we shall ob- 

tain the explicit expression for the eigenvalues and the functional forms of those 
quantities under the assumption of the steady state of U f A content. As the 
initial conditions are now 

( 1 1 )  X,(O) = (a, 1 - W , O ) f  

for both cases, the solutions for X+ ( T )  are expressed in a simple form, 

X + ( T )  =U{,+ ( 1  -w)eV} 
Y + ( T )  = ( 1  - 0 ) ( 1  -0++V) 
Z + ( T )  = 2 0 ( 1 - w ) ( 1  - d o ’ )  
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where 

Ao.=-2(a+pfS+E) . (13) 
On the other hand, the eigenvalues of equation (4) are 

A 1  = -(,a + p  + 6 + E  + 4y) 
A, = A I +  g 
k3 = A 1  - g 

where g 2 = { a + S -  ( @ + ~ ) } ~ + 4 ( a - 6 ) ( @ - ~ ) .  Using (7 )  and (le), the 
solutions for X-( T )  are, for g # 0, 

1 X - ( T )  =- [2b{aw-b(1 --0)}eV’+ {.$-0++’(l --0)}eV 
gz + { 7-0 + b2 (1  - 0 )  } e V ]  
1 Y - ( T )  =- [-2a{aw-b(1 --w)}eX1* f {a% + q ( 1  - -0))eV 
gL 

+{a2-0+.$(1 -W)}eX3*] 
1 

2-( T )  = - [-2 ( d  - c )  {ao - b (1 - 0 )  }eX,* + {a(d - c + g )  -0 

g’ 
- b(d - c - g )  ( 1 - -0) }ehT + {a(d - c - g ) m  

- b(d  - c + g )  ( 1 - -0) }exs*] 
in which u = a - 6 ,  b = p - E ,  c = a f 6 + 2 y ,  d=p+E+2y ,  [=1 / ( (d-c)  
(d - c + g )  +ab and 7 = 1/ ( d  - c) ( d  - c - g )  + ab. In this case. however, it 
does not seem feasible to derive a simple formula for 2A,T = ( A 2  + A,)T = -2 
(a 4- p 4- 6 -k E + 4y) as a function of X-(T) and Q. 

A great simplification is possible if we assume that 6 = Ba and E = 8~3, where B 
is a constant. Then, equations (15 )  are much simplified (see 15a below), al- 
though equations (12) remain the same. Furthermore, 2yT in (10) can be ex- 
pressed in terms of X - ( T ) ,  Y _ ( T ) ,  Z ( T )  and -0, which can be estimated from 
observations. The solutions for X ( T )  become, for a # p and 8 # 1, 

where -0 = - Note that, under the above assumption, if a = p ,  the model 

reduces to the “three-substitution-type” (3ST) model of KIMURA (1981). Using 
equations (15a), we get 

a + p *  
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Combining this with equations ( 12) and (13), we get 

X ( T ) Y . ( T )  - (w)] 
o ( l  -0) - (-- z+ ( T I )  I- 2 

? 

and therefore we obtain an appropriate equation for K as follows. - 

or more explicitly 

7 (1  8a) 

where w is the fraction of the sum of two bases U and A, and SI, etc., are as 
defined in Table 1. I n  addition, we can estimate the unknown parameter 0 by 
using the relationship 

3 (S, f S, f 2Q1) (S, 4- S, - 24,) - (P-A)” 2 - 
“(1 - w )  

1 
4 

K=--1n 

while the ratio of /3 to 
change with time and that 

can be determined from the assumption that w does not 

Formula (19) may be verified by substituting equations (15a) for the right- 
hand side of equation (19), noting at  the same time equations (2). Estimated 
evolutionary distances (denoted by K )  for several comparisons are shown in 
Table 2 together with values of 6 and The table also contains the estimates of 
the standard error of K that were obtained using a procedure similar to the one 
used by KIMURA (1980,1981) but assuming that the estimation of Cr) is not accom- 
panied by sampling error. It is also based on the assumption of a multinomial 
distribution of the variables in the right-hand side of (18). This seems to give a 
good estimate in the light of the results of Monte Carlo experiments. 

- 

- 

M O N T E  CARLO EXPERIMENTS 

In  order io check the validity and the range of applicability of our formula 
(18). we performed Monte Carlo experiments. The procedures were as follows. 
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TABLE 2 

649 

Euolutionary distances per nucleotide site at the first, second and third codcn position estimated 
b y  using the 3ST and the present model (TK) 

Comparison 

Erolutionary distances per nucleotide site - - - 
Kl K2 K ,  

(3ST) 0.300 
(TK) 0.299 

f 0.044 
Chicken /3 us. Rabbit p 

w 0.384 
0 0.489 

(3ST) 0.265 
(TK) 0.269 

i 0.038 

0.195 0.636 
0.237 0.691 

f 0.037 i 0.160 

0.637 0.267 
1.048 - 0.079 

.__-__-- 

0.177 0.531 
0.178 0.692 

f 0.032 f 0.121 
Human us. Rat pregrowth hormone 

w 0.430 0.609 0.258 
e 0.592 0.135 0.468 

(3.w 0.182 0.274 0.947 
(TK) 0.1 78 0.289 

i 0.273 f 0.104 
‘32 

Human us. Rat insulin C peptide 
w 0.081 0.581 0.226 
e 2.63 0.821 1 .oo --_- 

(3ST) 0.040 0.000 0.461 
(TK) 0.042 0.000 0.786 

f 0.026 i 0.019 * 0.300 
Human us. Rat insulin A + B peptide 

w 0.480 0.628 0.275 
6 0.964 1 .oo 0.535 

(3ST) 0.160 0.127 0.427 
(TK) 0.171 0.135 0.463 

i 0.031 i 0.030 f 0.080 
Rabbit p us. Mouse p 

61 0.373 0.6% 0.339 
e 0.954 0.757 0.398 

(3ST) 0.600 0.437 0.903 
(TK) 0.600 0.51 7 1.29 

i 0.087 f 0.062 f 1.05 
Rabbit 01 us. Rabbit p 

w 0.389 0.633 0.234 
e 0.071 1.09 0.290 

(3ST) 0.124 0.115 0.544 
(TK) 0.126 0.131 0.774 

i 0.029 i 0.027 i 0.205 
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TABLE 2-Continued 

Comparison 

Evolutionary distances per nucleotide site - - - 
El K? 4 

Mouse a-1 us. Rabbit a (Exons 1 ,2  and .3) 
w 0.390 0.575 0.231 
e 0.539 0.966 0.182 

(3ST) 0.008 0.008 0.470 
0.008 0.008 0.470 

f 0.013 t 0.008 ? 0.088 

____ -- 

S. purpuratus us. P. miliaris H3 
w 0.380 0.493 0.530 
e O.OOO 0.000 -0.160 

(3ST) 0.086 
(W 0.087 

t 0.032 

w 0.303 
S. purpuratus us. P. miliaris H2B 

e 1.00 

Mouse +a us. Rabbit O/ 

Mouse a-1 us. Rabbit (Y 

Mouse a-I us. Mouse pa 

(3ST) 0.307 
(TK) 0.303 

t 0.062 

0.020 0.479 
0.020 0.484 

+- 0.016 i- 0.104 

0.436 0.535 
0.000 0.536 

0.371 0.768 
0.374 0.862 

+- 0.060 i 0.259 

-- 

w 0.381 0.587 0.258 
e - 0.458 0.867 0.115 

(3ST) 0.133 0.121 
(TK) 0.129 0.138 

w 0.383 0.576 
e - 9.22 0.952 

(3ST) 0.209 0.300 
--_ 

(TK) 0.207 0.294 
t 0.045 t 0.114 

o 0.352 0.5M 
e 0.527 2.57 

0.658 
0.883 

0.232 
0.009 

0.337 
0.358 

i: 0.074 

___- 

0.376 
1.18 

First, we prepared a random nucleotide sequence to be used as a commmon an- 
cestor. It consisted of n sites, with frequencies of U, A. C and G being given by 
0/2,0/2, ( 1 - 0 )  / 2  and ( 1  - O )  /2. From this sequence, two descendent sequences 
were derived by independent nucleotide substitutions according to the scheme 
shown in the previous section. In simulation experiments, we assigned values of 
substitutional rates so that k in equation (9) is of the order of l t 3 .  The experi- 
ments were continued until one substitution per site had occurred on the average 
in each lineage. We compared the two sequences through time and counted the 
actual number of nucleotide substitutions involved in two lineages. The total 



BASE SUBSTITUTIONS IN EVOLUTION 65 1 

number of nucleotide substitutions, K ,  was monit,ored by summing the actual 
numbers of substitutions observed until a given time T. On the other hand, the 
expected number of nucleotide substitutions over T ,  as denoted by K E ,  was calcu- 
lated by 2kT for a given value of k. Note that, strictly speaking, K E  is different 
from K ,  although no significant differences between these two were observed in 
the simulations experiments. We also observed the relative frequencies of the 
various classes in Table 1 at specified times and calculated the estimtaed evolu- 
tionary distances using equation (1 8) or (1 8a). In a similar way, we obtained 

the estimate KJc = - - In( 1 - -h) as a reference point; where h is the fraction 

of different sites between two nucleotide sequence; (see JUKES and CANTOR 
1969; KIMURA and OHTA 1972). These processes were repeated 100 times, as- 
suming n = 100. Each quantity of concern was obtained by taking the average. 

The results are illustrated through Figures 2 to 4. As typical situations, we 
assigned the parameter values similar to the ones derived from comparisons of 
DNA sequences of exons 1 and 2 in the mouse and the rabbit #@-globin genes, to- 
gether with a mouse pseudogene. The parameters are determined separately at 
different codon positions. Figures 2, 3 and 4. respectively, represent situations at 

3 4 
4 3 

- 

1.2 - 
1.1 - 

w1.0- 

:9- 

ZI .8- a 
5 .7 -  

tu 

ca 
.- .6- 

5 .5- 
Ls 

CI 
3 

e = 0.1 2 
U= 0.37 
ro= 0.59d 
r=0 .17d  

Evolutionary Distance K 
FIGURE 2 to 4.-Relationship between the actual evolutionary distance K and the estimated 

evolutionary distance K based on the formula (18) (the broken lines). Th- solid lines represent 

K = K. The parameters used in  these figures are determined by taking the average for the data 
on nucleotide sequences of the ,(li globin gene and the a pseudogene (a3) of the mouse, and the 
a-globin gene of the rabbit. FIGURE 2: First codon position. 

- 
- 
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1.2 - 
1.1 - e = 1.02 

w = 0.58 
lJ .0  - P=1.36d 

T =  2.1 9d 8 .9- 
J 8 -  
is 
2 

c 
U) 

.7 - 

.6- 
rrr 
.- c 
3 .5- 
I3 

I I I I , ,  

0 .l .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 
Evolutionary Distance K 

FIGURE 3.--Second codon position. 

FIGURE 4.-Third codon position. 
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the first, second and third positions of codons within the above two exons. The 
abscissa stands for the actual evolutionary distance K (in terms of the number of 
base substitutions) , while the ordinate represents the estimated evolutionary 
distance K .  Because the difference between K and K ,  turned out to be quite small 
in all experiments, we will not discriminate between them. Estimates obtained 
by using equation (18) are marked by open circles, while those estimated by 
using the fomula of JUKES and CANTOR (1969) are indicated open triangles. It is 
evident from Figure 3 that both sets of estimaies are close to each other when 6‘ is 
near 1 and 0 is about 0.5 and that they need appropriate corrections when K is 
large. Such a discrepancy for the second codon position seems to have been caused 
by the relatively high transversion type substitution rate y assumed. On the 
other hand, when 6’ and o are, respectively, less than 1 and 0.5, marked difference 
between the two sets of estimators occur (see Figures 2 and 4). Fortunately, equa- 
tion (18) provides good estimates of the actual evolutionary distance if K does not 
exceed unity, and the linearity is almost completely preserved in this range of K 
values. The simulation experiments show that the present formula (18) is useful, 
especially when the rates of transversion-type subsiitutions are low and the fre- 
quencies of two classes of bases differ greatly from each other. Although not per- 
fectly proven, if the real pattern of base substitutions is something like this. the 
present method is the most accurate, followed by the 3ST (KIMURA 1981) and 
JUKES and CANTOR methods. On the other hand, if substitution rates are equal in 
all directions, all three methods of these give almost the same result. 

Note that cases arise in which we cannot estimate the evolutionary distances 
from these formulae. This occurs when arguments of logarithms become zero or 
negative. Such situations should occur frequently when a great many substitu- 
tions are involved. Because we excluded such-inapplicable cases from our calcula- 
tions, the estimated evolutionary distance K gives an underestimate for K.  In  
some cases, the fraction of such inapplicable cases for formula (1 8) became more 
than 50% if K 2 1. When we analyze actual data, this difficulty often arises if we 
compare the sequences in which many substitutions have occurred. One example 
is afforded by the third position of codons in the C peptide of insulin when compar- 
ison is made between human and rat (see Table 2). Such a problem arises because 
the true nature of substitutional processes is stochastic; whereas, our present treat- 
ment is deterministic. As the number of nucleotide sites actually compared is 
finite, sometimes less than 100, the small sample size creates a large sampling 
error. Particularly, when K > 2, no estimator seems to provide good information 
on the actual evolutionary distance, as simulation experiments show. We also 
note that in such cases K has a very large error variance. 

- 

- 

RESULTS A N D  DISCUSSION 

Using equation (1 8) ,  we calculated the evolutionary distances between various 
DNA sequences, as shown in Table 2. This table also contains evolutionary dis- 
tances estimated using the “three-substitution-type” (3ST) model of KIMURA 
(1981) for the purpose of comparison (this corresponds to the case where a = /3 
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and E = 6 in Figure 1 ) . It can be seen from this table, that equation (18) often 
provides larger estimates than the corresponding estimates obtained from the 
3ST model. Particularly, when the estimated value of 0 from equation (19) is 
small and that of from (20) differs noticeably from 0.5, the discrepancy between 
the two sets of estimates becomes large. Such a dependence of equation (18) on 
w seems to represent a favorable property as an estimator of evolusionary dis- 
ance because, as pointed out by Kimura (1981 ), the U and A content, particularly 
at the third position of codons, is often much less than 0.5. For instance, the value 
of w is about 0.23 at the third codon positions in rabbit (Y and /3 globins. This bias 
often results in unreliable estimates of the evolutionary distance, as we men- 
tioned before. 

On the other hand, the value of 0 is quite sensitive to changes of observed values 
of various classes involved in equation (19). In most cases, 0 is less than unity, 
but, in some cases, it happens to be negative or exceed unity. The estimated value 
of 0 for each case may not be reliable, but the results suggest that transition-type 
substitutions can occur more frequently than those of transversion types (i.e., 
from U to G and A to C. or uice uersa) . It is fortunate that equation (18) does not 
contain 0. 

It may be clear from Table 2 that evolutionary base substitution is faster 
(roughly 2.5 - 5.9 times) at the third position of codons than at the second posi- 
tions in the functional globin genes. This characteristic is particularly conspicuous 
in histone genes. The ratio per site of the rates of third to the second positions is 
about 59 for the comparison of S. purpuratus and P. miliaris H3 sequences, while 
it is about 24 for the H2B sequences in the same comparison (for data, see SURES, 
LOWRY and KEDES 1978; SCHAFFNER et al. 1978). These species probably di- 
verged between 6 X 10' and 16 x 10: years ago (DURHAM 1966; KEDES 1979); 
therefore, the rate k, per site per year is (1.5 - 3.9) x for the H3 sequences 
and (1.5 - 4.0) x for the H2B sequences. These values are very similar; 
moreover, the rates k, estimated for other genes using several other comparisons 
show roughly the same values. For example, we have 4.3 x for the human 
and rat pregrowth hormone comparison (with the divergence time T = 8 x lo7 
years) and 1.2 x for the chicken and rabbit p globin comparison (T  = 3 x 
1 Os years). In some cases, formula (1 8) gives 1.4 to 1.7 times higher estimates for 
k, than does the 3ST model. but whether or not the model can decrease the esti- 
mated variance of k, is still uncertain until more data are available. The rough 
equality of the evoluticnary rates at the third position of codons among genes is in 
sharp contrast to wide differences of the rate at the second position, where most 
substitutions alter amino acids. At any rate, we can confirm the conclusion of 
KIMURA (1980, 1981) and MIYATA, YASUNAGA and NISHIDA (1980) that the 
rates of nucleotide substitutions at the third position of codons are not only very 
high but also roughly equal to each other between genes even when amino acid 
altering substitutional rates are quite different. 

Now, let us examine the history of the a globin pseudogene in the mouse, as 
studied by VANIN et al. (1980) and NISHIOKA, LEDER and LEDER (1980). We 
apply equation (1 8) to estimate evolutionary distances. The sequences of the 
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normal a-globin genes, including the noncoding regions, have also been deter- 
mined in the mouse and the rabbit (see KONKEL, MAIZEL and LEDER 1979; HARDI- 
SON et aZ. 1979, and references therein). Thus, we can compare DNA sequences of 
these three genes. Our aim is to estimate the time of occurrence of duplication 
leading to the a pseudogene in the mouse line and the relative evolutionary rates 
at each codon position in the pseudogene relative to those in the normal a-globin 
genes. Although several models concerning the appearance of pseudogenes are 
conceivable (see for example PROUDFOOT and MANIATIS 1980; MIYATA and 
YASUNAGA 1981; LI, personal communicatim), we assume here a simple one. 

Let us assume that the duplication occurred Td years ago, and thereafter a 
duplicated gene became “dead” and started to evolve at the rate k’i instead of ki, 
where i (= 1,2 or 3) denotes the codon position. At the incipient stage, the mouse 
population must have been polymorphic with respect to the number of a-globin 
genes per individual. However, it is likely that the duplicate gene could accumu- 
late mutations at a higher rate than the normal gene, due to its-multiplicity. Let 
To be the divergence time of the mouse and the rabbit, and let Ki ( X  - Y )  be the 
evolutionary distance in the ith_ codon position of homologous genes between 
species X and Y .  For example, Ki (M$a-Ra) denotes the evolutionary distance 
in the ith position between the mouse LY psEdogene and the rabbit a gene. In  the 
following study, we make no correction for K and compare only the part including 
exon 1 and 2, excluding the exon 3 region from the calculation because of an un- 
usual characteristic of this region, as pointed out by MIYATA and YASUNAGA 
(1981). Then, Td and ki’, relative to To and ki. can be calculated for each codon 
position by 

- - - 
T d  - Ki(Ma-M$a) - Ki(M$a--Ra) K ~ ( M ( Y - R o L )  -- ____ 
T - 

Ki (Ma-Ra) 1 0  

and 

-- - - 
ki K ~ ( M ~ - M + ~ )  - K ~ ( M $ ~ - R ~ )  + K ~ ( M ~ - R ~ )  . 

Substituting the values of Table 2 in the above equations, the ratios of Td/To are 
respectively, 0.26, 0.42 and 0.43 for the first, second and third codon positions, 
while k,‘/k, = 11.5, k,’/k2 = 13.9 and k3‘/k3 = 0.9. Roughly speaking, this means 
that the duplication responsible for the mouse (Y pseudogene occurred about (0.3 - 
0.4)T0 years ago. If we take 8.0 x 10’ as To, Td becomes about 20 - 30 million 
years. On the other hand, the rates in the first and second positions in the pseudo- 
gene turn out to be roughly 10 times faster than those of normal genes; whereas, 
the rate in the third positions remain unaltered. The estimated values of 2k,’T, 
(= 1.48) and 2k2’T, (= 1.92) are both about 2 times greater than the estimated 
value of 2k3T, (= 0.883). This might indicate that there are some selective con- 
straints even against the changes in the third positions in the normal gene. An- 
other possibility is that equation (18) still gives an underestimate for the evolu- 
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tionary distance. Considering the fact that estimated values of k, and k,' are 
similar, the latter might be more probable in the light of the results of Monte 

Carlo experiments. We could make some correction for the values of K based on 
Monte Carlo experiments, but we did not take such an approach here because it 
seemed unlikely that we can get more precise estimates of these values because 
of the inevitable large sampling errors. 

In  the above analysis, we have tacitly assumed that the (Y pseudogene is fixed in 
the mouse population. In fact, it is likely that several million years are sufficient 
for such a nonfunctional pseudogene to become fixed in a population (see MARU- 
YAMA and TAKAHATA 1981 ; TAKAHATA 1981). Therefore, it is highly probable that 
the pseudogene is fixed in the mouse population. This conclusion, however, is 
tentative in the sense that we ignored the effect of recurrent unequal crossing 
over. As pointed out by OHTA (1981), it is possible that unequal crossing over 
plays a prominent role in the evolution of duplicate genes, even when a small 
number of them are tightly linked (i.e., multigene family of small size). If un- 
equal crossing over occurs frequently in the course of evolution, the fixation of a 
pseudogene at a specific locus may be considered transient. However, a prelimi- 
nary study incorporating such a mechanism still supports the view that all indi- 
viduals carry a pseudogene in their genome for several million years, although 
its location on a chromosome may vary from individual to individual or in time, 
(the details will be published elsewhere). 

We conclude that a duplicate gene leading to the (Y pseudogene in the mouse 
line was introduced 20 - 30 million years ago by unequal crossing over and 
became fixed in the population several million years after the duplication oc- 
curred, and that many nucleotide substitutions have accumulated at a high rate, 
irrespective of codon position, due to the loss of selective constraints. 

- 

We thank K. AOKI for his helpful comments in composing the manuscript and T. OHTA for 
stimulating discussion. 
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