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How are numerical values mentally represented? The
obvious way in which to investigate this issue behav-
iorally is to use tasks that rely critically on number mag-
nitude, the most straightforward task being numerical
comparison. This approach dates back at least to Moyer
and Landauer’s (1967) seminal article that described two
critical factors determining number comparison perfor-
mance: the distance effect and the size effect. Most cur-
rent theories are rooted in this work.

The distance effect reflects the fact that comparison
times are shorter for a larger numerical distance between
two numbers that have to be compared. For example, com-
parison is faster for 2 and 6 than for 2 and 3. The second
factor is the size of the numbers: For a given distance, com-
parison is faster for smaller numbers (e.g., 2 and 4) than for
larger numbers (e.g., 7 and 9). The distance and size effects
affect not only processing speed but also accuracy. The size
and distance effects are robust phenomena and occur with
numbers presented in various formats—for example, Ara-
bic notation (Banks, Fujii, & Kayra-Stuart, 1976; Dehaene,
Dupoux, & Mehler, 1990; Sekuler, Rubin, & Armstrong,
1971), verbal notation (Koechlin, Naccache, Block, & De-
haene, 1999), and nonsymbolic notation, such as collec-
tions of dots (Buckley & Gillman, 1974).

Together, the two effects put crucial constraints on
how number magnitude is represented and processed in
various tasks. A generally accepted idea is that mental
number representations can be seen as organized along a
mental number line—that is, a set of units in which close

numbers are represented with overlapping distributions
of activation. This number line assumption can explain
the distance effect, because numbers close to each other
(e.g., 1 and 2) have more distributional overlap than do
numbers that are more distant (e.g., 1 and 4), and it will
be more difficult to discriminate the closer numbers.

To account for the size effect, additional assumptions
are needed. One assumption that makes it possible to ex-
plain the size effect is magnitude coding. This means that
the mental code for a number is analogous to the magni-
tude it represents. For instance, if a given number acti-
vates a set of units on the mental number line, this set of
activated units is a subset of the units activated for a
larger number (e.g., Zorzi & Butterworth, 1999; see Fig-
ure 1A for a graphical representation). With magnitude
coding, number comparison is similar to physical mag-
nitude discrimination, which is robustly characterized by
distance and size effects, as has long been known from
psychophysics (e.g., Weber’s law; Festinger, 1943). An-
other possible assumption that makes it possible to account
for the size effect is compressed scaling (e.g., logarith-
mic) of numbers. With compressed scaling, the distances
between numerical representations on the number line
are smaller for larger numbers (e.g., Brysbaert, 1995;
Dehaene, 1992; see Figure 1B for a graphical illustra-
tion). Compressed scaling can explain the size effect, be-
cause small numbers are represented as being further
apart from each other than larger numbers (for a fixed
numerical distance). Therefore, small numbers are easier
to disambiguate than large numbers. A third possible as-
sumption regarding the source of the size effect is increas-
ing variability. Consider the Gaussian curves depicted in
Figure 1C: Units close to the maximally activated unit
(the unit over which the curve is centered) are also acti-
vated, and the amount of activation depends on the dis-
tance between the two units. This may be interpreted in
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To account for the size effect in numerical comparison, three assumptions about the internal struc-
ture of the mental number line (e.g., Dehaene, 1992) have been proposed. These are magnitude coding
(e.g., Zorzi & Butterworth, 1999), compressed scaling (e.g., Dehaene, 1992), and increasing variability
(e.g., Gallistel & Gelman, 1992). However, there are other tasks besides numerical comparison for
which there is clear evidence that the mental number line is accessed, and no size effect has been ob-
served in these tasks. This is contrary to the predictions of these three assumptions. Moreover, all three
assumptions have difficulties explaining certain symmetries in priming studies of number naming and
parity judgment. We propose a neural network model that avoids these three assumptions but, instead,
uses place coding, linear scaling, and constant variability on the mental number line. We train the model
on naming, parity judgment, and comparison and show that the size effect appears in comparison, but
not in naming or parity judgment. Moreover, no asymmetries appear in primed naming or primed par-
ity judgment with this model, in line with empirical data. Implications of our findings are discussed.
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either a stochastic sense (units further away are activated
with smaller probability) or a deterministic sense (units
further away are activated less strongly). The assumption
of increasing variability entails that the standard devia-
tion of these Gaussian curves increases with increases in
the size of the number. This also leads to a size effect,
since larger numbers have larger variability and, hence,
the activation distributions overlap more than for smaller
numbers. In existing models and theories of numerical
cognition, one or more of these principles are used to ac-
count for the size effect—for example, magnitude cod-
ing (Zorzi & Butterworth, 1999), compressed scaling
(Dehaene, 1992), and magnitude coding and increasing
variability (Gallistel & Gelman, 1992).

Importantly, these three assumptions would seem to
imply an asymmetry between small and large numbers
not only in the case of number comparison (as reflected
in the size effect), but also whenever the number line is
involved in the task. With compressed coding and in-
creasing variability, this is attributable to inferior dis-
crimination of large numbers relative to small numbers.
With magnitude coding, there is also an asymmetry on
the number line, in that a representation of a larger num-
ber implies the representations of all the smaller numbers,
whereas a smaller number does not imply the full repre-
sentation of a larger number (see Figure 1A).

However, the prediction of generalized asymmetry be-
tween processing small and large numbers is inconsistent
with two empirical findings. The first finding relates to

distance-related priming, which reflects prime–target in-
teractions at the level of the number line (Dehaene, 2004).
The finding is that equal prime–target distances lead to
equal priming effects. In particular, a prime that is n
units smaller than a target leads to the same amount of
priming as a prime that is n units larger than the target
(e.g., prime 3 with target 5 vs. prime 7 with target 5). In
this sense, priming is symmetric. This means that, for ex-
ample, the response time (RT) to name the target number
5 is the same whether it has been primed by 3 or by 7
(Reynvoet & Brysbaert, 1999, 2004; Reynvoet, Brys-
baert, & Fias, 2002). Besides number naming, a similar
phenomenon is observed in parity judgment (judging 5
to be odd takes the same amount of time whether it has
been primed by 3 or 7; Reynvoet & Brysbaert, 1999,
2004; Reynvoet, Caessens, & Brysbaert, 2002). Impor-
tantly, symmetric priming has been observed in various
combinations of prime–target modalities (Arabic–Arabic,
Arabic–verbal, verbal–Arabic, and verbal–verbal; see,
e.g., Reynvoet, Brysbaert, & Fias, 2002; Reynvoet, Caes-
sens, & Brysbaert, 2002). The cross-modal priming pat-
tern refutes the interpretation that the priming effects de-
rive from a format-specific processing stage and provides
additional evidence that distance-related priming origi-
nates from a modality-independent mental number line
(Dehaene, 2004).

The second finding that raises problems for the as-
sumption of generalized asymmetry is that a size effect is
predicted whenever the number line is involved. Again,

Figure 1. Graphical representation of (A) magnitude coding, (B) compressed scal-
ing, and (C) increasing variability.
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this conflicts with empirical observations. Whereas a size
effect is routinely observed in number comparison, this
is not the case for number naming (at least for numbers
up to 20; see Butterworth, Zorzi, Girelli, & Jonckheere,
2001; Reynvoet, Brysbaert, & Fias, 2002) or parity judg-
ment (Dehaene, Bossini, & Giraux, 1993; Fias, Brysbaert,
Geypens, & d’Ydewalle, 1996; Reynvoet, Caessens, &
Brysbaert, 2002). Despite the fact that these tasks are
subject to distance-related priming effects, indicating the
involvement of the mental number line, processing time
does not increase with increases in number size. This
raises problems for magnitude coding, compressed scal-
ing, and increasing variability, because all of these pre-
dict a size effect whenever the mental number line is in-
volved. Indeed, the size effect is the rationale behind
these assumptions.

Hence, magnitude coding, compressed scaling, and
scalar variability have difficulty accounting for sym-
metric priming in number naming and parity judgment,
in conjunction with a size effect in comparison, but not
in naming or parity judgment. Four arguments could be
raised against this view. First, one could argue that nam-
ing and parity judgment are not semantically mediated.
However, as was noted by Dehaene (2004), the distance
dependency of the priming effect (primes further away
from the target gradually lead to smaller priming) is in it-
self convincing evidence that these two tasks are seman-
tically mediated. Second, one could argue that there is
not only a semantic route to name Arabic numbers, but
also an asemantic route, and that the asemantic route is
dominant. As a consequence, the distance-related prim-
ing would be attributed to automatic activation of the se-
mantic route without the critical transcoding processes
explicitly relying on it. However, it is unclear why the dis-
tance effect, but not the size effect, from this asemantic
route would influence naming times. Moreover, it then re-
mains to be explained why the priming effects observed
in number comparison (e.g., Koechlin et al., 1999), where
the semantic route is the only one available, are of the
same order of magnitude as the effects observed in nam-
ing and parity judgment. Moreover, this still does not
solve the issue involved in the fact that the priming pat-
tern is symmetric. As a third counterargument, one could
invoke additional processing mechanisms that straighten
out the asymmetric priming effects. However, such ad-
ditional mechanisms can be considered valid only if they
do not lead to a size effect. For instance, from the per-
spective of magnitude counting, one could postulate that
larger numbers take more time to settle on the number
line. The settling times could then be chosen so that the
inherently smaller priming effects for smaller numbers
(as predicted by magnitude coding) are compensated by
the fact that settling is faster for smaller numbers. As a
result, the priming effects in number naming and parity
judgment would be (approximately) symmetric. How-
ever, it then has to be demonstrated that this delicate bal-
ancing can work for all targets simultaneously, since the

symmetry is observed in all the targets (Reynvoet, Brys-
baert, & Fias, 2002; see below). Furthermore, a problem
that is introduced with this procedure is that one has to
predict that RTs are longer for larger targets (i.e., a size
effect), and, as was discussed above, this has not been
observed empirically. It is precisely the combination of
symmetry in distance-related priming and the absence of
a size effect in the same task that poses a serious prob-
lem for magnitude coding. And finally, a fourth coun-
terargument consistent with increasing variability and/or
compressed scaling is to assume that the increase in vari-
ability or the compression factor is negligibly low for
small numbers and that, therefore, (approximate) sym-
metries are obtained in priming studies. However, if the
increase in variability or in the amount of compression is
too small to be detected, why then is the size effect ob-
tained so robustly in number comparison? After all, in-
creasing (scalar) variability and compression were intro-
duced precisely to account for the size effect.

In sum, none of the four counterarguments explains
why number priming is symmetric and why no size effect
is observed in tasks that nevertheless show involvement of
the mental number line. Therefore, in order to accommo-
date these findings in a unified framework, one needs a
model that lacks number line compression, magnitude
coding, and increasing variability. Below, we will propose
such a model. It assumes a linear (i.e., noncompressed)
place-coding representation with fixed variability. It will
be shown that this model generates symmetric patterns
of distance-related priming. We will further argue that
the size effect is a consequence of nonlinear mappings
from the number line to the comparison output system
and that these nonlinear mappings derive from the lower
frequency of larger numbers, observed in daily life (De-
haene & Mehler, 1992).

In the following section, we first will outline the struc-
ture of our model. We then will train the model in num-
ber naming, parity judgment, and number comparison
and will show that nonlinear mappings (which can gen-
erate a size effect) develop from the mental number line
to the comparison output system, but not to the naming
or the parity output system. Thereafter, performance of
the model will be described in primed number naming,
in primed parity judgment, and in number comparison.

A MODEL OF SMALL-NUMBER
REPRESENTATION

From the Input to the Number Line Field
The input field consists of units each of which repre-

sents an Arabic number; unit 1 in the input f ield re-
sponds to presentation of the (Arabic) number 1, unit 2
to number 2, and so on (see Figures 2A, 2B, and 2C for
a graphical illustration). It is important to note that there
is no further internal organization (e.g., lateral connec-
tions) at this level. Activation in the input field is prop-
agated to the number line field.
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The number line field consists of a set of units, one
for each number, and is characterized by the following
principles. It uses a place-coding system (as opposed to
magnitude coding), so each number activates an equal
amount of units on the number line (see the activation
curves in Figures 2A, 2B, and 2C). There is also linear
scaling in the mapping from the input field to the num-
ber line, meaning that the distance between numbers on
the number line is equal for all the numbers with a fixed
distance. The model is further characterized by constant
variability in the mapping: When a number is presented,
it activates its corresponding unit on the number line
with maximal strength, but it also activates neighboring
units with gradually decreasing strength as a function of
distance. Importantly, the activation functions express-
ing this spreading of activation are constant over num-
bers. In other words, the activation curves have the same
width for each number. This is called a model of exact
number representation, because it preserves distances of
the integer number line (e.g., after mapping onto the
mental number line, the distance between 8 and 7 is the
same as the distance between 2 and 1).

The input and number line properties, as described
above, were formally implemented as follows. The acti-
vation of the ith unit in the input field (with subscript A
for Arabic) is denoted xAi(t), and it obeys the following
equation:

(1)

in which IAi (t) is a function equal to 1 if Arabic number i
is presented at time point t and is 0 otherwise. Equation 1
implies that if Arabic number i is not presented (so IAi � 0),
the activation xAi decreases, because then d/(dt) x � �x,
which implies exponential decrease toward zero. Hence
�x in the right-hand side of Equation 1 is a decay term.
On the other hand, if the number i is presented (IAi � 1),
it follows that d/(dt) x � �x � 1, and x tends toward its
asymptotic value of 1.

The amount of activation received by unit j in the
number field from a unit i in the input field depends on
the connection strength cij between these two units. Note
that each input number activates exactly one of the num-
ber line units with maximal strength: In this sense, this
number line unit may be considered as the unit corre-
sponding to that particular number.

We assume that processing is thresholded in the sense
that a unit sends activation to another unit only if the ac-
tivation of the first unit exceeds a fixed threshold q. The
relevant equation for a number line unit j with activation
xN j(t) is as follows:

(2)

where ÈA˘� denotes the maximum of zero and A (this is
thresholded processing). The reason for this assumption

will be explained later. As in Equation 1, �xN j in the
right-hand side of Equation 2 functions as a decay term.
Concerning the summation in the right-hand side of Equa-
tion 2, note that only the term in this summation corre-
sponding to the active input unit i can become positive. For
other input units, the factor Èx�q˘� equals zero. The factor
exp(� | i � j |) formalizes the activation curves depicted
in the number line fields of Figures 2A, 2B, and 2C. Due
to this factor, (active) input units i have a strong influence
on number field units j that are of similar size (e.g., if j �
i) but have much less influence if i and j are far apart. For
example, the activation of Arabic input 3 (i.e., xA3) has a
large impact on number field unit 3 (which has activation
xNj � xN3), because ÈxA3(t) �q˘� in Equation 2 is multi-
plied by the (large) factor exp(� | 3 � 3 |) � 1. On the
other hand, xA3 has much less influence on number field
unit 6, because in this case ÈxA3(t) �q˘� in Equation 2 is
multiplied by the (small) factor exp(� | 3 � 6 |) � 0.05.
This difference leads to the activation curves in Figure 2.
The fact that exp(� | i � j |) depends only on the absolute
distance | i � j |, and not on the individual numbers i or j,
leads to constant variability. The parameter q was arbi-
trarily set at 0.08.

The number line started from 1, rather than from 0,
because it has been argued on empirical grounds that 0
has a special status and is not represented on the number
line (Brysbaert, 1995; Butterworth et al., 2001). The
endpoint was set at 15, for the following reasons. But-
terworth et al. (2001) explicitly demonstrated that there
is no size effect in the naming of numbers from 1 to 18,
even after partialing out possible noise-inducing vari-
ables. For larger numbers, on the other hand, there does
appear to be a size effect in number naming (Brysbaert,
1995). Hence, only small numbers are modeled. Another
relevant finding is that of Reynvoet and Brysbaert (1999),
who showed that distance-related priming extends over
the 10s decade (e.g., with target 11, the effect of prime 9
is the same as the effect of prime 13). On the basis of the
above, we decided to put the boundary somewhere be-
tween 10 and 20. The choice of 15 was then arbitrary,
but it should be noted that the precise extension does not
matter very much beyond a certain point. Due to the ex-
ponential function used in Equation 2, if a small number
is presented (e.g., 5), number field units corresponding
to large numbers will be activated extremely weakly. If
only numbers up to 12 are used (as in the experiments we
describe in this article), it is immaterial whether the
number line is extended to 15, 16, or some other, higher
number. The issue of processing large numbers is taken
up in the General Discussion section.

From Number Lines to Output Fields
The basic model must be extended for each task, de-

pending on the set of output components that are needed.
These components will be described next.

Naming. For number naming, there is one output unit
for each possible number (corresponding to phonologi-

d
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cal lexical units one, two, and so on; see Figure 2A). The
equation for the activation xS j(t) of unit j (ranging from
1 to 15) in the naming output field, is

(3)

where we use the index S (for spoken) to index both nam-
ing field units and weights going to the naming field.
The right-hand side of Equation 3 should be understood
in a way similar to Equations 1 and 2. For example, if the
connection between number line unit i and naming unit
j is strong (wSij is large), the term ÈxNi(t) �q˘� is multi-
plied by a large factor, and hence, the activation of num-
ber line unit i has a strong influence on naming unit j.
An appropriate choice of the weights wSij ensures that the
correct response will be given by the model. The connec-
tion values were determined by training the mappings
from the number line to the naming output field. The train-
ing procedure and resulting weight values are described

in the Training Connection Weights From Number Lines
to Output Fields section.

Parity judgment. For parity judgment, there is an
output unit for the even response and an output unit for
the odd response (see Figure 2B). Otherwise, the rea-
soning is exactly the same as that for number naming.
The equation for activation xEven(t), the activation of the
even unit in the parity field, is

The equation for the odd response is similar. As in nam-
ing, the weights wPi,Even and wPi,Odd ensure that a correct
response will be given, and they are determined by train-
ing (see the Training Connection Weights From Number
Lines to Output Fields section).

Comparison. In the case of number comparison, there
are two number fields, one for each number (see Fig-
ure 2C). The output components depend on the task in-

d
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Figure 2. Input fields and number line fields with the output fields for (A) naming, (B) parity judgment,
and (C) number comparison.
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structions (choose larger or choose smaller). For definite-
ness, we assume the choose larger instruction. Results
are similar for other numerical comparison designs. Hence,
the relevant units are for left-larger and right-larger re-
sponses, and the equation for the left-larger unit is

(4)

In this equation, a summation is taken over the two copies
of the number line (indicated by M and N, respectively).
A similar equation applies to the right-larger unit. Ap-
propriate weight values (e.g., wMi,Left, wMi,Right) were
again determined by training the model on this task (see
the Training Connection Weights From Number Lines to
Output Fields section).

Model Dynamics
Upon presentation of a stimulus, all the activation val-

ues x(t) of the network start changing according to the
relevant equation (e.g., Equations 1 and 2). When the ac-
tivation value of one of the output field units reaches a
fixed threshold, the corresponding response is assumed
to be chosen by the model. This threshold parameter was
set at 0.5. The response chosen and the time taken to
reach that choice are recorded. The procedure for train-
ing the model on the three tasks and the weights obtained
from this training will be described in the next section.

TRAINING CONNECTION WEIGHTS
FROM NUMBER LINES TO 

OUTPUT FIELDS

Procedure
Initial weights were sampled from a uniform distribu-

tion between zero and one. They were adjusted with a su-
pervised learning rule. For this purpose, the Widrow–Hoff
learning rule (Widrow & Lehr, 1990) can be used if all
the equations are in a stable state (i.e., if all derivatives
dx/dt are zero), which is the case if time t is sufficiently
large. Hence, we assumed that during learning, partici-
pants first respond quickly with the response whose unit
reaches threshold first and then wait until all the activa-
tion values are stable, at which point the weights are
changed. The learning rate parameter was set at 0.02.

For each task, there were 30,000 learning trials in every
simulation round. Ten simulation rounds were performed
for each task. Importantly, the training regime took into ac-
count the frequencies with which numbers occur in daily
life. Dehaene and Mehler (1992) observed that the fre-
quencies of numbers decrease strongly with increases in
number. Depending on language and input format (Arabic
or verbal), they found either an exponential decrease (fre-
quency of number i proportional to e�ai) or a power de-
crease (frequency of number i proportional to 1/ia), with a
larger than zero in both cases. On the basis of frequencies
plotted in Dehaene and Mehler, we used exponential de-

crease and estimated the coefficient a to be equal to about
0.2. However, the results were very similar with different
values of a or with a power decrease function.

A squared error function on the difference between
teacher output values and actual values was used. The
teacher value was 1 for the correct response unit and 0
for the other response units. However, it is not necessary
that activation values be exactly zero for the other re-
sponse units, as long as they are below the value of the
correct unit. We therefore made the difference between
teacher and actual response values zero, if this difference
was smaller than .5. For example, if the teacher value
was zero and the actual output value was .3 (�.5), this
was considered “good enough,” and the deviation be-
tween teacher and output values was set to zero.

Results
Figure 3 shows the weights from number line to out-

put, for each task separately (naming, parity, and com-
parison), with weight states at three points during train-
ing (after 100, 1,000, and 30,000 trials).

Number naming. We plot the direct connection
weights from each number line unit to its corresponding
naming output field unit (e.g., from number line unit 2
to output unit 2), averaged over the 10 simulation rounds
(Figures 3A, 3B, and 3C). As can be seen, the connec-
tions from the smaller numbers to their output units are
adapted first by the learning algorithm (Figure 3B). This
is because smaller numbers are more frequent in the
training regime. Nevertheless, after 30,000 trials, all the
weights have reached asymptote, and the connection val-
ues are the same for each number (see Figure 3C).

Parity judgment. Connection weights from each num-
ber line unit to the even response unit, averaged over the
10 simulation rounds, are plotted in the second row of
Figure 3 (Figures 3D, 3E, and 3F). At the end of training
(Figure 3F), there is an alternating pattern, so that all the
number line units corresponding to even numbers have a
large weight to the even response unit and all the other
number line units have a small weight. This ensures that
the task will be solved correctly. It is again the case that
the weights for small numbers are adapted first (see Fig-
ure 3E). Most important, however, at the end of training,
all the weights for even number line units are the same.
There is also a small end effect, in the sense that number
line units for the end points, 1 and 15, have a slightly dif-
ferent weight than do the other odd numbers. This is due
to the fact that these end points have fewer immediate
neighbors than the other units have. However, this endpoint
discrepancy does not substantially influence any of the
results. The results are similar for the odd response unit.

Number comparison. Weights from the number line
corresponding to the left number, going to each response
unit (left larger and right larger), are plotted in the third
row of Figure 3 (Figures 3G, 3H, and 3I). Values are
again averaged over the 10 simulation rounds. The two
patterns of weights gradually diverge over trials, and at
the end of training, the weights to the left-larger response
unit are increasing and the weights to the right-larger re-
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sponse unit are decreasing. Weights to the left-larger unit
are increasing because large numbers presented on the
left should activate the left-larger unit more strongly than
small numbers presented on the left do. A similar rea-
soning holds for the right-larger weights and for the
weights coming from the right number line (not shown).
These increasing and decreasing trends ensure that the
correct response will be given by the model.

It is important to note that the pattern of weights is
compressive: The differences between weights are smaller
for larger numbers (Figure 3I; e.g., the difference in con-
nection weight from number line units 1 and 2 to left
larger is larger than the difference in connection weight
from number line units 6 and 7 to left larger). This com-
pressive pattern of weights (and increasing or decreasing
weights, depending on the specific number line and out-
put unit) is able to generate a size effect, as will be shown
below. Moreover, the pattern is obtained for a large num-
ber of settings of the training parameters: For example,
it does not matter whether or not there is variability on
the number line(s), thresholding is not necessary, and the
value of the learning rate parameter is also unimportant.
The only crucial factor appears to be the decreasing fre-
quencies for increasing numbers during learning: If this
assumption is dropped, no compressive pattern occurs
(but rather, linear increases and decreases), and the model
still generates a correct response and still generates a
distance effect, but the size effect disappears.

To conclude, the differential frequencies of numbers in
the training regime cause nonlinearities in the connection
weights between the number line and the comparison

field (Figure 3I), but not in the connection weights be-
tween the number line and the naming and parity output
fields (Figures 3C and 3F). As will be demonstrated
below, these differential number-line-to-output map-
pings, in conjunction with the model’s basic assumptions
of place coding, linear scaling, and constant variability,
make it possible to account for the symmetric pattern of
distance-related priming and the lack of a size effect in
naming and parity judgment and, at the same time, account
for the presence of a size effect in number comparison.

In the following, we first will show statistically that
priming is symmetric and that there is no size effect in
the primed number-naming data in Reynvoet, Brysbaert,
and Fias (2002). We then will show that the model sim-
ulation yields the same pattern of results. Subsequently,
we will apply the same analyses to the primed parity
judgment data in Reynvoet, Caessens, and Brysbaert
(2002) and will show that here, also, priming is sym-
metric and there is no size effect. This is again in line
with the performance of our model. Finally, we will de-
scribe how the model fares in accounting for the distance
and size effects in number comparison by comparing its
performance with behavioral data obtained by Schwarz
and Stein (1998).

NUMBER NAMING

For number-naming data to bear on the issue of number
line representations, it is, of course, crucial that naming
be semantically mediated (i.e., mediated by the mental
number line). Although semantic mediation in general

Figure 3. (A, B, and C) Evolution of weights for number naming. (D, E, and F) Evolution
of weights for parity judgment. (G, H, and I) Evolution of weights for number comparison.
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word naming is a controversial issue, semantic medi-
ation in number naming is attested by the presence of
distance-related priming effects in overt number naming
(Brysbaert, 1995; Reynvoet & Brysbaert, 1999; Reyn-
voet, Brysbaert, & Fias, 2002). There are some neuro-
psychological data suggesting that an asemantic route
might exist (Cipolotti & Butterworth, 1995) and can be
damaged selectively. However, the experimental evi-
dence in healthy participants suggests that such an ase-
mantic route is slow and not influential in normal num-
ber naming.

In verbal number naming, it is less clear whether nam-
ing is predominantly semantically mediated (Fias, 2001;
Fias, Reynvoet, & Brysbaert, 2001). Therefore, in the fol-
lowing, we will address only the processing of Arabic nu-
merals and will make no explicit claims regarding the pro-
cessing of verbal numerals (although for prime–target
combinations involving the verbal modality, the results are
highly similar; see Reynvoet, Brysbaert, & Fias, 2002).

Behavioral Data: Additional Analyses of
Reynvoet, Brysbaert, and Fias (2002)

The experiment of Reynvoet, Brysbaert, and Fias (2002)
will now be described in some detail, because new analy-
ses of these data will be described. Targets ranged from
4 to 9. Primes were chosen from the target minus 3 to the
target plus 3 (e.g., from 2 to 8 for target 5). On each trial,
a prime was presented for 57 msec, preceded and fol-
lowed by a mask of 57 msec. Immediately after the post-
mask, the target was presented until response. Ten per-
sons participated in this condition. RTs aggregated over

targets are plotted in Figure 4A (suggesting symmetric
priming), and RTs aggregated over primes are plotted in
Figure 4B (suggesting absence of size effect). The re-
sults are similar for individual targets, as the statistical
analysis below will illustrate.

Symmetric priming. Figure 4A (full line) shows the
mean RTs as a function of prime–target distance. Apart
from a large identity effect, a reliable distance-related
priming effect can be observed [difference between prime–
target distance 0 and 1, F(1,9) � 36.807, p � .001; dif-
ference between distance 1 and 2, F(1,9) � 15.662, p �
.003; difference between distance 2 and 3, F(1,9) �
6.000, p � .037].

To investigate the symmetry (V shape) of the curve in
Figure 4A statistically, we performed a linear regression
with RT as a dependent variable and predictor X � �1
for primes smaller than the target and X � �1 for primes
larger than the target (Lorch & Myers, 1990). Targets
were not aggregated in this analysis. A significant effect
of X indicates that the smaller-than-target priming curves
have a different intercept than the larger-than-target prim-
ing curves. A second predictor Y coded the distance be-
tween the prime and the target (ranging from �3 to �3).
This predictor tests the difference in slope between primes
smaller and larger than the targets. If there is no effect of
either X or Y, this indicates that the two (optimal) re-
gression lines through the observed data (left and right
of the target) are equal. It turned out that the effects ob-
tained were very small [F(1,9) � 1 for the intercept vari-
able X, and F(1,9) � 1.227, p � .297, for the slope vari-
able Y ], which confirms symmetry. As was noted in the

Figure 4. Number naming. (A) Response times (RTs) for fixed prime–target differences.
(B) Mean RTs corrected for voice-onset time, and predicted RTs.
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introduction, magnitude coding, compressed scaling,
and increasing variability lead to difficulties in account-
ing for this finding.

Absence of a size effect. A second relevant feature of
the naming data is that RTs for larger targets are not
longer. Figure 4B (full line) shows mean RTs for each
target separately. This figure suggests that if anything,
RTs are shorter for larger targets. The decreasing (linear)
trend is significant [F(1,9) � 14.129, p � .004] and is due
to the shorter RTs to target 9 (without target 9, F � 1).
This again raises problems for the three assumptions, be-
cause all three entail that the size effect in comparison
originates from less discriminability for larger numbers
on the mental number line, and this should occur for any
task that accesses it.

Delayed-naming experiment. One concern with the
argument that RTs do not get longer over targets is that
there could be a measurement artifact due to differential
sensitivity of the voice key to different phonological on-
sets for the different number words. To correct for such
effects, we performed a separate delayed-naming exper-
iment. RTs from this experiment were then used to cor-
rect the Reynvoet, Brysbaert, and Fias’s (2002) data for
possible voice key artifacts, and the analyses were per-
formed anew on the corrected RTs from Reynvoet, Brys-
baert, and Fias.

In the delayed-naming experiment, a fixation cross
was first presented for 1 sec, followed by a number, also
presented for 1 sec. Then a blank appeared for a period
of 200 � T msec, where T was a random number from an
exponential distribution with a mean of 1,000 msec. In
this way, anticipatory responses were avoided, because
the end period of the blank was unpredictable. Then a
question mark appeared, at which point the number had
to be named. In this way, all the number line effects were
presumably “faded out.” For example, Gallistel and Gel-
man (1992) assumed that the standard deviation of noise
in the mapping process decreases over time (Gallistel &
Gelman, 1992, p. 57). If one waits long enough, the map-
ping should have become noise free, and all the differ-
ences between numbers should have largely disappeared.
Seven research assistants participated, all naive as to the
purpose of the experiment. Each participant received tar-
gets 1 to 9, each target presented 40 times in random
order. The experiment took about 35 min.

No naming errors were made; 5.1% of the data were
discarded due to voice key failures. A linear regression
was performed with delayed-naming RT (from this ex-
periment) as an independent variable and naming RT
(from Reynvoet, Brysbaert, & Fias, 2002) as a dependent
variable; the residual RT from this regression was then
used as the dependent variable in the same analyses as
those performed previously on the uncorrected RTs.

The corrected RT data were given the same mean as
the original RT data, and the resulting RTs are plotted in
Figure 4B. As can be seen, there is also no size effect in
the corrected data. Statistically also, the results were
similar. With respect to prime–target distances (analo-

gous to the results in Figure 4A), the distances 0 versus
1, 1 versus 2, and 2 versus 3 differed significantly from
each other [0 vs.1, F(1,9) � 36.809, p � .001; 1 vs. 2,
F(1,9) � 10.443, p � .010; 2 vs. 3, F(1,9) � 5.982, p �
.037]. Primes smaller and larger than the target did not
lead to a different absolute level of RT (variable X, dis-
cussed above; F � 1), and the absolute slope values of
the priming curve for primes smaller and larger than the
target were not significantly different [variable Y, dis-
cussed above; F(1,9) � 1.340, p � .277]. Most impor-
tant, with respect to Figure 4B, the linear trend was not
significant (F � 1), indicating that RTs were not larger
for larger numbers. This rules out the explanation that
phonological artifacts obscure relevant effects—in par-
ticular, the size effect—in number naming.

Model Performance
The model was tested in primed number naming, using

the connection weights from each of the 10 simulation
rounds of the learning phase. For each set of connection
weights, each prime–target pair was presented once.
Each prime was presented from t � 0 to 0.3 (expressed
in arbitrary model time units); then nothing was pre-
sented for another time interval of size 0.3 (so the prime
and the postmask had the same length, as in the proce-
dure of Reynvoet, Brysbaert, & Fias, 2002). To model
the disruptive effect of the postmask, activation in the
input field was decreased by a factor of 12 at the end of
the prime interval. Because RTs were about 3 time units,
prime duration was about 10% of the total simulated RT,
in line with the data from these authors. After the post-
mask, the target was presented, and RT and correctness
of the response were recorded.

The model achieved 100% accuracy. We performed a
linear regression from the simulated RTs on the observed
RTs (six targets with seven distances � 42 data points).
The intercept may be considered a motor constant in which
all peripheral processing is aggregated. The slope scales
the arbitrary model time units with the observed RTs.

Simulated RTs for each prime–target distance are shown
in Figure 4A (dotted line). RT profiles are similar for in-
dividual targets. As can be seen, the symmetry holds in
the model, even though the sampling frequencies in the
learning phase were from an exponential distribution
and, hence, asymmetric over numbers. The correlation
between the observed and the predicted data points in
Figure 4A was .99 ( p � .01).

Figure 4B (dotted line) shows the mean RTs for each
target separately. There is no indication of a size effect:
The differences that occur are random deviations due to
the inherent stochasticity in the learning algorithm.

The priming effect is obtained in the model because a
prime is presented before a target and this prime already
generates some activation in the network. The priming
effect is distance related because primes closer to the tar-
get lead to more activation in the target number field
units (e.g., prime 3 leads to more activation in number
line unit 4 than prime does 2). The priming effect is sym-
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metric because the activation curves are symmetric (see
Equation 2; Figure 2).

There is no size effect because each number line unit
maps to its output (naming) unit with approximately
equal strength (see Figure 3C). However, Figure 3B shows
that this absence of a size effect only holds asymptoti-
cally: With a small number of training trials, a size effect
is obtained. Hence, we make the prediction that there
should be a naming size effect in children (i.e., in par-
ticipants with fewer learning trials). This prediction re-
mains to be tested.

To conclude, the model naturally captures both trends
(symmetric priming and absence of a size effect). Note
that the connection weights were not adjusted to fit the
data, because the training procedure only tries to make
the model generate the correct response. In the next sec-
tion, we will analyze primed parity judgment data with
respect to the same aspects and, again, will see whether
the model accounts for the findings.

PARITY JUDGMENT

Behavioral Data: Additional Analyses of
Reynvoet, Caessens, and Brysbaert (2002)

Here, we will use the data in Reynvoet, Caessens, and
Brysbaert (2002, Experiment 1). Targets ranged from 5
to 10, and primes ranged from target �4 to target �4.
The participants were required to judge the parity of a
target number as quickly and accurately as possible by
pressing one of two buttons. Otherwise, the design was
similar to that for the number-naming experiment de-
scribed in the previous section.

Symmetric priming. Figure 5A (full line) shows mean
RTs aggregated over targets, as a function of prime–target
distance. Primes that were incongruent with the targets
(e.g., prime 2, target 3) resulted in longer RTs than did
the congruent pairs (e.g., prime 1, target 3) and are not
plotted.1 Again, the distance-related priming is signifi-
cant [distance 0 vs. 2, F(1,15) � 109.082; distance 2 vs.
4, F(1,15) � 16.061; both ps � .01]. The priming curves
are again symmetrical [slope difference Y, F(1,15) �
1.388, p � .257; intercept difference X, F(1,15) � 1].

Absence of size effect. Figure 5B (full line) shows
mean RTs for each target separately. The effect of target
on RT was reliable [F(1,15) � 16.191, p � .001], but in
the direction opposite to that predicted by a size effect
(larger targets lead to shorter RTs). This was again due
mainly to the largest targets [without targets 9 and 10,
F(1,15) � 3.75, p � .05].

Model Performance
The same sequence of steps (prime, postmask, and tar-

get) was presented to the model as before, in line with the
procedure followed by Reynvoet, Caessens, and Brysbaert
(2002). Accuracy of the model was 100%. Again, we
performed a linear regression from the simulated RTs on
the observed RTs. For this purpose, only congruent prime–
target pairs were used, making six targets and five dis-
tances, or 30 data points.

Predicted RTs appear in Figures 5A and 5B (dotted
lines). In Figure 5A, symmetric priming is again appar-
ent. The correlation between the data and the predictions
in Figure 5A is .97 ( p � .01). Figure 5B shows that the
model exhibits no size effect in parity judgment, in line

Figure 5. Parity judgment. (A) Response times (RTs) for fixed prime–target differences.
(B) RTs for fixed target.
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with the data, and despite asymmetric sampling of num-
bers in the learning phase. Hence, the same trends are
observed as in number naming.

As with number naming, there is symmetric, distance-
related priming, because the activation curves on the
number line are symmetric, and there is no size effect,
because each number line unit maps to its output unit
with approximately equal strength (Figure 3F). However,
just as for number naming, we do predict a size effect for
parity judgments in children (see Figure 3E). This pre-
diction also is not yet tested. In the next section, we will
check whether the model can account for the distance
and size effects in number comparison.

NUMBER COMPARISON

In the most common number comparison design, two
numbers are presented simultaneously on each trial, and
participants have to select the larger (or smaller) of the
two. As elaborated by Schwarz and Stein (1998), the
problem with this design is that it is difficult to distin-
guish size effects from bias. Bias occurs if a response is
already prepared after processing only one of the two
numbers. For example, if the numbers from 1 to 9 are
used, the left number is 2, and only this number is pro-
cessed, the right-larger response may already be partially
prepared, because the probability that the other (right)
number is larger (than 2) is high. In their Experiment 2,
Schwarz and Stein used a design in which such bias ef-

fects were effectively removed by presenting the two
numbers sequentially and making sure that the probabil-
ity of the second number’s being larger than the first was
.5. The authors reported size and distance effects with
this design. Interestingly, they found that, if simultane-
ous trials were intermixed with bias-free sequential tri-
als, the bias effect also disappeared in the simultaneous
trials.

In this article, we are not interested in such bias effects,
and we wish to investigate the distance and size effects
without ambiguity with respect to bias. Hence, to evalu-
ate how the model fares in generating the size effect, the
data for the simultaneous trials in Schwarz and Stein’s
(1988) Experiment 2 (reported in their Figure 8), were
used. These data are plotted in Figure 6 (full lines). From
this plot, the number pairs corresponding to a data point
in Figure 6 can be unambiguously determined: For ex-
ample, the second data point on the dist � 1 curve is the
mean RT for the number pair 4 and 5 (aggregated over
both orders). The distance effect is apparent from the
fact that RTs are longer for a smaller distance between
the members of a pair (and a fixed size, as indexed by the
smaller number). The size effect is apparent from the
fact that RTs are longer for a larger size (and a fixed dis-
tance; for statistical details, see Schwarz & Stein, 1998).

Model Performance
The two relevant output units were defined as left

larger and right larger, in correspondence to the task in-

Figure 6. Number comparison: Response times (RTs) for different number pairs as
a function of the smallest digit. A curve is depicted for each of the distances from 1 to
4 between digits.
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structions. After learning, accuracy (over the 10 simula-
tion rounds) was 98.5%. In one simulation round, an
error was made on the pair 6 and 7, and in another sim-
ulation round, an error was made on the pair 5 and 6 and
the pair 7 and 6. This was due to stochasticity in the
learning rule, which does not guarantee a correct re-
sponse after the learning phase.

As before, a linear regression was performed to put
the model and the data RTs on the same scale. The pre-
dicted RTs are depicted with dotted lines in Figure 6. It
is clear that both the distance and the size effects are
present in the model simulations; the correlation be-
tween the observed and the model data is .99 ( p � .01).

The model generates a correct response because the
weight pattern is monotonic (either increasing or decreas-
ing). For example, the weight from unit 7 on the left-
hand number line to the left-larger response unit is larger
than the same weight coming from unit 6, which is larger
than the weight coming from unit 5, and so on (see Fig-
ure 3I). This pattern is required to generate a correct re-
sponse for each pair of numbers, and, hence, the error
correction learning algorithm generates such a pattern.
A consequence of this monotonicity is that the distance
effect is obtained. For example, suppose 3 is presented
left and 7 right: Both number lines will send strong acti-
vation to the right-larger response. However, if 3 is pre-
sented left and 8 right, this tendency will be even stronger
(right-hand number line unit 8 has a stronger connection
to the right-larger response than number line unit 7 does),
and hence, RT will be shorter with the number pair 3 and
8. Hence, as long as the model responds correctly, a dis-
tance effect will be obtained.

The size effect is obtained because of the compressive
monotonic pattern of weights depicted in Figure 3I. Why
do compressive weights lead to a size effect? To see this,
let us suppose the pattern of weights from the left num-
ber line to the right-larger response is described by the
decreasing and compressive exponential function e�i;
from the right number line to the right-larger response,
weights are described by the increasing and compressive
function C � e�i. Suppose, then, that the numbers 1 and
2 are shown left and right, respectively; for simplicity,
we will ignore the spread on the number line and will as-
sume that activation of the corresponding number line
units (1 and 2 for left and right, respectively) is 1. The
input to the right-larger response unit is then e�1 � (C �
e�2). On the other hand, if the numbers 7 and 8 are shown
left and right respectively, the input to right larger is
e�7 � (C � e�8). Due to compression, e�1 � e�2 �
e�7 � e�8, and so C � (e�1 � e�2) � C � (e�7 � e�8),
and the RT to the pair 1 and 2 will be faster, leading to a
size effect. It is clear that the argument is easily extended
to an arbitrary compressive function f (i). In contrast to
what was the case in number naming or parity judgment,
this is predicted to be an asymptotic effect. As long as
numbers are presented with decreasing frequencies (as
reported in Dehaene & Mehler, 1992, and used in our
simulations), a size effect should remain.

GENERAL DISCUSSION

To account for the size effect in number comparison,
various assumptions have been proposed in the litera-
ture, the most popular being magnitude coding, com-
pressed scaling, and increasing variability on the mental
number line. We have outlined difficulties with these as-
sumptions when they are applied to other tasks, such as
naming and parity judgment. Of primary concern are the
symmetric pattern of distance-related priming and the
absence of a size effect in these tasks.

Next, we developed a new model of numerical cogni-
tion that does not rely on these principles. Place coding,
linear scaling, and fixed variability are the key features
of this model. This leads to a model of exact small-number
representation, in the sense that distances between num-
bers are preserved after mapping onto the mental number
line. For example, the represented distance between the
integers 1 and 2 is equal to the distance between 5 and 6.
This model was applied to number naming, parity judg-
ment, and number comparison. The weights from the
number line to different output components were obtained
by a training procedure. Note that the model and its train-
ing procedure have no knowledge of the observed RTs;
the weights are chosen with the sole goal of making the
model perform as accurately as possible. Nevertheless,
the model successfully accounts for the distance and size
effects in number comparison and, at the same time, ac-
commodates the symmetric pattern of distance-related
priming and semantic activation without a size effect in
number naming and parity judgment.

A number of relevant issues have not been dealt with
yet. First, we will discuss whether and how the model can
account for error data. Second, the model can be extended
to nonsymbolic input formats (Verguts & Fias, 2004),
and this extension will be briefly reviewed. And finally,
we will discuss how large approximate and large exact
numbers would be treated in the present framework.

Accounting for Error Data
Size and distance effects are often observed not only

in RTs, but also in error data. For example, in numerical
comparison, errors decrease for larger distances and
smaller numbers (distance and size effect, respectively).
Although the absolute number of errors is generally low,
these two effects in numerical comparison are estab-
lished reliably (e.g., Link, 1990; Moyer & Landauer,
1967). If the model is extended with a stochastic com-
ponent, it can handle these error patterns as well. Recall
that in number comparison, the left-larger response is
chosen if xLeft reaches a fixed threshold earlier than xRight;
if xRight reaches the threshold first, the right-larger re-
sponse is chosen. If the left number is larger than the right
(e.g., 7 and 6, respectively), in the model it was almost al-
ways the case that xLeft was larger than xRight, so xLeft
reached the threshold first. However, for targets with
smaller distance, the difference between activations
(xLeft � xRight) was smaller. In the present deterministic sit-
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uation, this difference is immaterial. However, if one adds
a stochastic component to the equations, this difference
will become important, and larger differences will lead to
higher probabilities of success. As a rough approximation,
we have assumed that probability of success is not 1 but,
rather, p � xLeft/(xLeft � xRight) in the case in which left
larger was the correct response and 1 � p � xRight/(xLeft �
xRight) otherwise. Size and distance effects were obtained
with this extension. This suggests that error data do not
pose a significant challenge to the model.

Nonsymbolic Input Formats
Recent single-cell recording data provide direct evi-

dence on some characteristics of the mental number line
(Nieder, Freedman, & Miller, 2002; Nieder & Miller,
2003). Nieder et al. trained monkeys to respond to visual
displays on a numerical basis: Two displays were shown
consecutively, and the monkey was required to answer
whether the second contained a smaller or a larger num-
ber of objects than the first. The authors recorded in the
prefrontal cortex and found neurons that were selective
to a specific number (presented as collections of dots).
These number-selective neurons showed a typical num-
ber line characteristic, in the sense that if a neuron was
most sensitive to number x, it was also somewhat (but
less) sensitive to x � 1 and x � 1, still less sensitive to
x � 2 and x � 2, and so on. Hence, numbers with a small
distance (e.g., 2 and 3) lead to more overlapping activa-
tion distributions over the set of nodes than do numbers
with a larger distance (e.g., 2 and 5). Note that this im-
plies a place-coding system. Also, the neurons were
found to have increasing variability: Activation distrib-
utions were more broadly tuned (larger variance) for
larger numbers. These two properties are consistent ei-
ther with linear scaling in combination with increasing
variability on the number line or with compressed scaling
in combination with constant variability on the number
line (in the follow-up article, Nieder and Miller found
evidence in favor of compressed scaling). In either case,
these findings at first seem incompatible with the model
postulated here. A crucial factor, however, is the input
format of the stimuli. Numbers were presented in Arabic
(symbolic) format in the data modeled in the present ar-
ticle, whereas numbers were presented as nonsymbolic
numerosities in the studies of Nieder and colleagues (in
particular, as collections of dots). In a recent article
(Verguts & Fias, 2004), we showed how a number line
can develop spontaneously under unsupervised learning
conditions when a neural network is presented numbers
as numerosities (e.g., numbers as collections of dots, as
in Nieder et al.’s, 2002, study). After the neural network
was trained, the properties of the resultant number line
were strikingly similar to those observed by Nieder et al.
and by Nieder and Miller. Moreover, we showed that if
this network then learned to represent the meaning of
numbers in a symbolic format (e.g., verbal or Arabic),
the same number line that reacted to nonsymbolic stim-
uli also came to act as a number line for the symbolic
format. Hence, this number line was sensitive to both

input formats, symbolic and nonsymbolic. But impor-
tantly, we also showed that this number line exhibited
different properties, depending on which kind of input it
was presented. For both input formats, it was the case
that if a certain node preferred digit x, it also reacted
more weakly to x � 1 and x � 1, still more weakly to x �
2 and x � 2, and so on. However, there was no increas-
ing variability for the symbolic format, in contrast to the
nonsymbolic format. Hence, with symbolic input, the
number line developed exactly those properties (place
coding and constant variability) that have been postu-
lated in the present article. On the other hand, the repre-
sentation of nonsymbolic quantities is characterized by
place coding and increasing variability. Note that this
implies that with nonsymbolic stimuli, size effects are
expected in tasks other than comparison. This prediction
has been confirmed by results obtained in subitizing
(e.g., Trick & Pylyshyn, 1994), estimation of the nu-
merosity of a set of stimuli (e.g., van Oeffelen & Vos,
1982), and the production of an estimated number of
keypresses (e.g., Whalen, Gallistel, & Gelman, 1999).
Moreover, in comparison tasks, we predict larger size ef-
fects with nonsymbolic stimuli than with symbolic stim-
uli, because nonsymbolic stimuli bear a double genera-
tor of a size effect (increasing variability and nonlinear
mappings), whereas with symbolic stimuli there is only
one source (nonlinear mappings). This prediction is sup-
ported by a study from Buckley and Gillman (1974),
who found larger size effects when collections of dots
were compared than when Arabic digits were compared.

Small and Large Numbers
Our model incorporates numbers up to 15, but obvi-

ously, humans can work with numbers beyond that number.
The most straightforward generalization of the model
would be simply to extend the number line toward larger
numbers. With a training regime in which small numbers
are more frequent than large numbers, the resultant num-
ber line would be one in which small numbers are repre-
sented exactly but representations become fuzzier for
larger numbers. A first reason why representations would
become fuzzier for larger numbers is that frequency in-
fluences the mappings from number line to output. This
is clear in Figure 3, which shows that weights of less fre-
quent numbers are adapted more slowly (although all
reach the same asymptote). If even less frequent num-
bers (beyond 15) had been used, the weights for those
numbers would not yet have reached asymptote at the
end of training (30,000 trials) and, hence, they would
have been represented less accurately than smaller num-
bers. A second reason why large number representations
would be fuzzier is that fewer number line units would be
dedicated to larger numbers because of their low fre-
quency (Verguts & Fias, 2004). Hence, one number line
would represent both small and large numbers—small
numbers in an exact manner, due to their high frequency,
and large numbers increasingly fuzzier. Hence, the prop-
erties of compressed scaling and increasing variability
may well hold for large numbers.
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However, this one-number-line account cannot be the
complete story of the processing of large numbers, for
two reasons. First, a large number such as 4,653 may in-
voke the impression of a large number with an approxi-
mate value; but if one is to compare this number with
4,654, it makes little sense to use fuzzy number repre-
sentations (Carey, 2001). Second, neuroscientific evi-
dence suggests that the brain circuits involved in the pro-
cessing of small numbers may (partly) differ from those
involved in the processing of large numbers. For in-
stance, disruption of the processing of small and of large
numbers after transcranial magnetic stimulation occurs
after stimulation of different brain areas (Göbel, Rush-
worth, & Walsh, 2001; Göbel, Walsh, & Rushworth,
2001). Furthermore, using brain imaging during the com-
parison of two-digit numbers and nonsymbolic magni-
tudes (line lengths and angle sizes), Fias, Lammertyn,
Reynvoet, Dupont, and Orban (2003) observed common
activation for quantitative comparison, irrespective of
type of input. This was found in parietal regions that
were more posterior than the horizontal segment of the
intraparietal sulcus; the latter has been taken to be a cru-
cial brain region for the processing of number magni-
tude, on the basis of studies predominantly involving
single-digit numbers (Dehaene, Piazza, Pinel, & Cohen,
2003). Using event-related potentials measured during
number comparison, Whalen and Morelli (2002) came
to the same conclusion of different processing circuits
for small and large numbers.

In light of this evidence, we propose that there might
actually be two numerical systems; one corresponds to
the system described in this article and is used for exact
small and approximate large numbers. The other system
represents multidigit numbers. It decomposes multidigit
numbers in its base-10 representation on different num-
ber lines, so that one number line represents the unit
value, one number line represents the decade value, and
so on. Recent data support such a decomposition for
multidigit numbers (Nürk, Weger, & Willmes, 2001;
Ratinckx, Brysbaert, & Fias, 2005). The first system ac-
cepts both symbolic and nonsymbolic input, the second
only symbolic input. The decomposition property of the
exact system links numerical representations and lan-
guage (see Spelke & Tsivkin, 2001, for a related two-
system proposal). The explicit predictions laid out in the
present article may provide a starting point for charting
in detail the plausibility of such multiple-system views,
the characteristics of and differences between the sys-
tems, how they cooperate, and how they interact.
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NOTE

1. In parity judgment, the model predicts that incongruent prime–target
pairs are as slow as congruent prime–target pairs with large distance
(e.g., 3 and 4, and 3 and 7). However, longer RTs for incongruent pairs
can easily be accommodated in the model by incorporating lateral inhi-
bition at the response level. Since this would add complexity to the
model and is of no other use in the simulations described here, we chose
not to incorporate lateral inhibition.
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