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Abstract

I present a new method of interpreting voter preferences in settings where policy remains in effect until

replaced by new legislation. In such settings voters consider not only the utility they receive from a

given policy today, but also the utility they will receive from policies likely to replace that policy in the

future. The model can be used to both characterize long-termpreferences and distributions over policy

outcomes in situations where policy is ongoing and voters are farsighted.
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“[W]e’re unprepared for the consequences of winning. Winning in court too soon could mean

losing in the court of public opinion, in Congress and under the United States Constitution.”

—Matt Coles, Director of the ACLU Lesbian and Gay Rights Project, quoted in The New York

Times on November 12, 2004. [14]

1 Introduction

Following the 2004 elections in which eleven states passed constitutional amendments banning gay mar-

riage, gay rights groups began a concerted public effort to change their political strategy. The groups de-

cided to temporarily retreat from what they had previously claimed to be their most important goal: winning

the right for same-sex marriages. The reason for this move was simple. The groups realized that a chal-

lenge to such amendments in federal court was a risky proposition, regardless of whether the challenge was

successful or not. An unfavorable court decision would establish a legal precedent that could be invoked in

future cases. A favorable court decision could easily accelerate public and legislative support for a federal

constitutional amendment banning same-sex marriage outright.

Political choice in the short term often involves long-termconsiderations because, as the above story

demonstrates, decisions made today can greatly affect the types of decisions that are feasible tomorrow.

Given the importance that individuals place on long-term outcomes, an essential step in understanding

strategic voting behavior is understanding the future consequences of policy choice. These consequences

are particularly relevant when policies remain in effect for an indefinite period of time, or are continuing.

A continuing program, as opposed to a once-and-for-all program, is a policy that continues in effect until

it is changed by new legislation.1 When such a policy is enacted we can think of it as producing a path-

1The terms “continuing program” and “once-and-for-all program” are used in Baron [3].
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dependent stream of future legislation, with the status quoat any given time being the extant legislation at

that time. Because of the long-term nature of these programsthey are often of particular interest to legis-

lators, activists and voters. Such programs include entitlements, social policy, and redistributive programs,

with specific examples being minimum wage laws, social security benefits, the regulation of public health

concerns such as air quality and automobile safety, and eligibility requirements for social welfare programs.

Decisions over continuing programs frequently affect the future choices that are available to a group;

for example, it can be politically difficult to reinstate a tax once it has been repealed, to lower levels of

entitlement spending, or to revoke a law concerning public safety. When legislators evaluate such policies

they do so with an eye toward what the policy is likely to produce over time. There is therefore no reason

to expect that legislative bargaining over a continuing program will be similar to legislative bargaining

over a once-and-for-all program. While the behavior of a legislator may depend largely on his immediate

preferences, it may also depend on how he sees today’s choiceas affecting future decisions. This tension

between short and long-term interests is my primary focus.

In this paper I develop a model of bargaining over continuingprograms in which individuals rank poli-

cies not only on the basis of the utility they yield today, butalso with respect to the types of alternatives

they will likely lead to in the future. The model differs frommuch of the bargaining literature in that the

bargaining process does not end once a policy has been agreedupon, as in Baron and Ferejohn [4]. Instead,

the chosen policy becomes the reversion point of the next round of bargaining, and remains in effect until it

is replaced by a new alternative.2 The model is used to both characterize voting behavior when individuals

are farsighted and to characterize the types of policies that will emerge when programs are continuing.

2Baron [3], Kalandrakis [12], Riboni [20], and Bernheim et al. [7] also examine repeated bargaining games with endogenous

reversion points. These papers will be discussed in Section2.1.
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The theory developed here captures several important features of politics that may not be captured

in a one-shot model of bargaining. First, farsighted votersare not indifferent between different policies

that provide them with the same level of utility. This is because the space of alternatives that defeat each

policy, and that each policy defeats, are substantively different. This model demonstrates that in dynamic

environments, the space of alternatives that can and cannotdefeat a policy may have as much impact on

individual decisionmaking as the substance of the policy itself. And second, farsighted voters will take the

preferences of others into account when voting, not becauseof a behavioral assumption such as altruism or

inequality aversion, but because the preferences of otherswill matter when passing future legislation. This

implies that changing the preferences of a single voter willchange the strategic behavior of every other voter

in a predictable way. While both of these features hold true in any dynamic game, the goal of this paper

is to not only characterize individual behavior on an equilibrium path, but also to characterize farsighted

individual preferences in general. Most importantly,this model calculates a general induced utility function

for each player that captures his evaluation of every policyin terms of what it is likely to produce over time.

The paper begins with several general existence results. I then apply the model to a number of stan-

dard legislative settings, including a one-dimensional spatial model, a divide-the-dollar game, and a two-

dimensional spatial model in which players have either circular or elliptical preferences. I find that the theory

is capable of making sharp predictions in each of these legislative settings, with the predicted outcomes fre-

quently corresponding to policies that divide benefits fairly between like-minded individuals. Thus, while

the model is intended specifically to analyze individual vote choice, it could also be interpreted as a model

of endogenous party, or coalition, formation. The coalitions that tend to emerge consist of those individuals

whose preferences are most similar, either in terms of spatial distance or intensity of preference. Further-

more, farsighted individuals tend to favor policies that yield equitable distributions of payoffs, and frequently
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vote for certain normatively “fair” alternatives over their own ideal points. Relatedly, farsighted voters may

shy away from implementing an inefficient Condorcet winner in favor of implementing a more efficient cy-

cle of alternatives over time; thus farsighted voters may willingly concede utility in the short term for more

beneficial policy outcomes later on.

The paper proceeds as follows: Section 2 describes the notation used and presents the model. Section 2.1

describes the path of play in more detail and discusses related literature. Section 2.2 presents the notion of

a dynamically stable voting equilibrium, the equilibrium concept used in the analysis of the model. Section

3 presents several results about equilibrium existence that constitute the main theoretical contribution of

the paper. When the policy space is finite I show that there always exists an equilibrium. When the policy

space is infinite then there exists an equilibrium under certain conditions, and when the number of players

is large the equilibrium is unique. Furthermore, I demonstrate that equilibrium behavior in this model is

consistent with Bayesian Markov-perfect equilibrium behavior. Section 3.1 provides two analytic examples

of the model in the setting of a finite policy space, and shows that Condorcet winners may not arise as policy

outcomes when voters are farsighted. Section 4 discusses the specific applications of the model in greater

detail and presents numerical results concerning these applications in continuous policy spaces. Section 5

concludes.

2 The Model

There is a collection ofvotersN = {1, 2, ..., n} and a compact setX ⊂ R
m of alternatives, or policies.

X can be either finite or infinite. For each voteri ∈ N , preferences are represented by a real-valuedutility

function, ui : X → R. When the set of policies is infinite I also assume that these utility functions are

differentiable, and that their derivatives are uniformly bounded by some constantU .
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A subsetC ⊆ N is called acoalition of voters. Coalitions that are large enough to enact a policy

are calleddecisive, or winning. The collection of winning coalitions isW . It is simply assumed that this

collectionW is monotonicandproper. Monotonicity implies that ifC ∈ W andC ⊂ C ′, thenC ′ ∈ W ,

or that adding people to a decisive coalition yields anotherdecisive coalition. Properness implies that if

C ∈ W , thenN \C 6∈ W , or that any two decisive coalitions must have at least one individual in common.

2.1 Path of Play and Related Literature

The legislative process is modeled as a sequence of sessionsin which votes on policy occur. In each round

the status quo is determined by the bargaining outcome of theprevious round. A policy to be pitted against

the status quo arises exogenously in each round. This policyis drawn from a probability densityQ. A vote

then occurs between this policy and the status quo. Every voter receives a payoff from the winning policy

and this policy then becomes the status quo of the next round of bargaining. This process is pictured in the

figure below.

[FIGURE 1 HERE]

The probabilistic and exogenous nature of the proposal process distinguishes this model from Baron

[3], Kalandrakis [12], Riboni [20], and Berhneim et al. [7],and warrants a short discussion. Both Baron

and Kalandrakis analyze infinitely repeated bargaining games with endogenous reversion points. In these

papers a player is selected at random to make a proposal in each round. The proposal is pitted against the

status quo, with the winner becoming the status quo in the next round of bargaining. Baron looks at the case

of a unidimensional policy space, and finds that outcomes converge to the ideal point of the median voter.

Kalandrakis examines a three-player divide-the-dollar game and finds that a Markov perfect equilibrium

of the game is characterized by a situation where the proposer in every round proposes the entire dollar
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for himself, and this allocation is approved by a majority ofplayers. Riboni considers a similar model in

which policy changes are proposed by a strategic agenda setter (who is not a member of the voting body),

and then voted upon by a committee. Bernheim et al. also consider a similar model in which legislators

are recognized sequentially to make proposals and a finite number of proposals are made. Under weak

conditions they find a result similar in spirit to Kalandrakis’s, in which the final proposer receives the entire

dollar in a divide-the-dollar setting.3

The focus of these papers differs from my paper in an important respect. While these papers are con-

cerned primarily with predicting equilibrium policy outcomes and voter behavior on the path of play, the

goal of this paper is to model voter preferences overall alternatives when voters evaluate policies in terms of

what they are likely to produce over time. By separating voting strategies from the proposal process, results

about farsighted preferences and behavior are easier to interpret. For example, in Penn [18] I endogenize

the proposal process in this model by allowing players to make proposals themselves. The results I find are

similar to those found by Kalandrakis and Bernheim et al. Thus, Kalandrakis’s result that a legislative dic-

tator emerges with certainty in every round is likely an effect of the particular endogenous proposal process

assumed.4

The assumption of an exogenous and probabilistic process bywhich future proposals are generated

reflects the notion that legislators are not certain of the policy proposals that will be brought to the floor in the

3Also worth noting are recent papers by Battaglini and Coate [5, 6] that examine the dynamics of taxation and public spending.

In these papers, policy-making periods are linked by endogenous levels of public goods and public debt, respectively.
4Kalandrakis has different work [13] that specifically examines the importance of proposal rights in determining political power.

He obtains the interesting result thatanydistribution of power can be obtained by simply manipulating proposal rights in a particular

bargaining environment. The same is not true when manipulating other institutional features of the bargaining game such as voting

rights.
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future, but are aware of the current political climate and have priors over the distribution of future proposals.

While “endogenous” is frequently interpreted as being morerealistic than “exogenous” in any game theoretic

model, the assumption of an exogenous agenda here makes the model easier to interpret, easier to apply to

different situations, and, I argue, more realistic. This isbecause an agenda in this setting will depend on a

number of complex factors (recognition rules, special interest and constituency pressures, the ordering of

the legislative calendar, party control, etc.) that are beyond the scope of this model. For example, in game-

theoretic models it is generally assumed that legislators are randomly recognized to propose alternatives to

the floor via a particular recognition rule. This assumptionyields a very specific kind of strategic agenda-

setting process that is separate from the goal of this paper,which is simply to model voter preferences in an

environment where policies are replaced by new policies over time.

Roberts [21] and Compte and Jehiel [9] study similar bargaining problems with randomly generated

offers. Roberts considers a setting where policymaking is continuing and every alternative is equally likely

to be brought to the floor. Compte and Jehiel assume the bargaining process ends when a certain number of

players accept the random offer. They examine the effect of patience, the number of players and the majority

requirement, and find that as the majority requirement increases more efficient outcomes are generated,

but that it also takes longer to reach agreement. They motivate their random proposal process with the

argument that it is rare for any individual or group to have full control over an agenda-setting process, and

that even if a person did have full control over proposals, itwould be difficult for him to perfectly target

a collection of specific payoffs for the other players. They also find that simplifying the proposal process

in such a way enables them to better analyze many empirical regularities that have not been supported by

previous bargaining problems; for example, the fact that agreement is frequently more difficult to obtain

when unanimous consent is required.
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2.2 Dynamically stable voting equilibria

This section presents the model of farsighted voter preferences. Utility functionui(x) represents Playeri’s

one-shot payoff from policyx whenx is enacted today. However, if Playeri is farsighted then he not only

cares about his payoff from havingx enacted today, but also his future payoffs from the policiesthat will

ultimately replacex.

Let Playeri’s value functionbe denotedvi, wherevi : X → R. This function represents the discounted

sum of utility Playeri can expect to receive from having policyx enacted today, given that a stream of

policies will be enacted afterx. Let v = {vi}i∈N be the collection of all voter value functions, withVn

being the space of all value functions (so thatv ∈ Vn). In equilibrium each voter will assign a “true” long-

term value to every policy. This means that players will votebased on their equilibrium value functions and

by voting this way they ultimately generate those same functions.

In equilibrium, value functions capture a consistency between beliefs and behavior; when a player be-

haves according to such a function, the value he assigns to a policy equals the true future expected value of

that policy. When this holds forall players, then the vote strategies of players generate valuefunctions that

generate those same vote strategies. Thus, beliefs and behavior are entirely consistent with each other. The

following equilibrium concept captures this idea.

Definition: A dynamically stable voting equilibriumis a collection of value functions,v∗ = {v∗i }i∈N , such

that for alli ∈ N andx ∈ X,

v∗i (x) = ui(x) + δ
∑

y∈X

[v∗i (y)p(v∗(x), v∗(y)) + v∗i (x)(p(v∗(y), v∗(x)))]Q(y).

The case of an infiniteX is defined analogously.5

5As the value function depends on the distribution from whichproposals are drawn, orQ, v∗

i (x) could also be writtenv∗

i (x|Q).
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The functionui(x) equals the utility playeri receives from alternativex in one period. The probability

that policyy will defeat status quox is denotedp(v(x), v(y)). This function is simply assumed to be the

probability that a winning coalition votes fory overx, given that every voter knows that policy selection

will continue into the future. Thus voting decisions are made based on voters’ value functions and not their

utility functions (i.e. voters are farsighted). The specific functional form ofp(v(x), v(y)) can be found in

Appendix A; it is simply the probability of victory ofy overx.

Q is the probability mass from which alternativesy to be pitted against the status quo are drawn. As

discussed in Section 2.1,Q represents the fixed beliefs that voters have over the types of alternatives that will

be brought to the floor in the future. These beliefs could be uniform over all alternatives (uninformative),

or could be generated by fixed external pressures from political parties, special interests, constituencies, or

simply the current political climate. WhileQ is assumed to be independent of the current status quox, a

similar model could be constructed whereQ is conditioned onx. This construction would not dramatically

change the analytic results of the model, but is omitted for ease of exposition.6 When the setX is infiniteQ

is instead a density. In this case,Q is assumed to have full support, and to be differentiable iny.

δ ∈ [0, 1) is a discount factor that represents players’ time preferences. Whenδ is high, voters place

greater relative weight on the future. For notational simplicity δ is assumed to be common for all players,

but this assumption does not affect any of the analytic results.

One feature of this model that differentiates it from an endogenous proposal model is that the probability

of victory of y overx, or p(v(x), v(y)), is averaged over all decisive coalitions. Alternatively,when pro-

posals are endogenous the proposer does two things: he chooses an alternative to propose, and he identifies

6It would require a stronger assumption than Assumption 2 in order to prove existence whenX is infinite (Proposition 2).
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a particular decisive coalition to target his proposal to. Therefore, when proposals are endogenous policy

outcomes will typically change at every round of voting unless the status quo is the proposer’s ideal point.

However, in this model, because winning coalitions are no longer uniquely determined but instead are aver-

aged over, a consequence is that universalistic, or close touniversalistic, majorities can arise given particular

policy pairings. Thus, policy will remain at more desirablestatus quos for longer, and undesirable policies

will be replaced quickly.

To summarize this section, the above model characterizes long-term individual preferences in a setting

where policies are repeatedly being challenged and replaced by new alternatives. In a given round a tran-

sition from status quox to new policyy is dependent upon two factors. First, policyy must be chosen to

be pitted against status quox from densityQ. Second, voters must choose policyy over status quox, and

the probability thaty defeatsx when infinitely more rounds remain is denotedp(v(x), v(y)). The function

vi(x) representsi’s discounted expected sum of utility whenx is enacted today, given that infinitely more

rounds of policy selection will occur. This equalsui(x), or i’s utility from x today, plus the discounted

expected value of whatx will ultimately lead to in the future.

3 Analytic results and examples

In the sections that follow, I will provide examples of dynamically stable voting equilibria in specific set-

tings. The goal of this section is to provide more general results about the types of environments in which

we can expect dynamically stable voting equilibria to existand to be unique. Recall that an equilibrium in

this setting is a collection of value functions such that, when individuals vote according to these functions,

individual valuations of policies equal the true future expected values of those policies. Therefore, we are

looking for fixed points in a mapping from one value function into another. Mathematically, this is different
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than a more standard game theoretic setup in which we look forfixed points in action profiles. The differ-

ence stems from the fact that while value functions (which are necessarily cardinal) will yield action profiles,

action profiles do not provide us with enough information to give us back cardinal valuations. Therefore,

stronger conditions are required in order to obtain equilibrium existence in this setup than in a standard game

theoretic setup.7

Propositions 1, 2, and 3 all focus on the problem of equilibrium existence. Although the voting behavior

of players is purposefully left unspecified in this model, individual behavior is implicit in the definition of the

functionp(v(x), v(y)), or the probability of victory ofy overx. While p is defined formally in Appendix A,

let the probability that individuali (with value functionvi) votes fory overx be denotedpi(vi(x), vi(y)).

The three existence results all require that this probability be a continuous function for all individuals, or

that individuals vote probabilistically.

Many authors have invoked the assumption of probabilistic behavior on the part of voters (see [16], [22],

[1], and [10]), with the implication being that models of behavior are incapable of perfectly predicting vote

choice, and that this reality should be incorporated into the calculations of voters. This model is consistent

with the more game-theoretic formulation of probabilisticvoting adopted by McKelvey and Patty [16]. As

in their setup, and opposed to some more classic models of probabilistic voting, the expected payoff of

casting a vote is represented correctly for each voter.8 In other words, individuals vote with the knowledge

that other voters are also behaving probabilistically. As in other recent work on the topic, the assumption

of probabilistic voting in this model is consistent with pure strategy equilibrium behavior in a Bayesian

7In particular, the difficulties with equilibrium existencehere are mathematically similar to difficulties in obtaining existence in

games with continuous action spaces.
8Relatedly, McKelvey and Patty also require the size of the electorate to be “large enough” in order to characterize theirequi-

librium.
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framework in which individuals receive privately observedpayoff shocks for each possible action, or vote.

This formulation of probabilistic voting, and in particular, the effect of these random payoff disturbances on

individual vote functionspi, is presented in Appendix A.

The three existence results require different and nested sets of conditions on individual vote functions

pi.9 Proposition 1 simply proves that when the alternative spaceX is finite and individuals vote probabilis-

tically, an equilibrium exists. Proposition 3 proves that if individual vote functions are differentiable and the

derivatives are uniformly bounded byanyconstant, then a unique equilibrium will exist when the number of

players is large enough, regardless of whetherX is finite or infinite. Proposition 2 proves existence whenX

is infinite for any number of players, but requires that the derivative ofp be bounded by a particular constant.

In Appendix A this constant is defined both generally (Assumption 2) and more specifically for the case of

a logit agent quantal response equilibrium. All proofs of the propositions can be found in Appendix B.

Proposition 1 If X is finite, then there exists a dynamically stable voting equilibrium whenp is continuous.

Proposition 2 If X is infinite, then there exists a dynamically stable voting equilibrium when the derivative

of p is bounded by a particular constant.

Proposition 3 Whenn is large then there always exists a unique dynamically stable equilibrium when the

derivatives ofpi are uniformly bounded, regardless of whetherX is finite or infinite.

To understand why additional requirements on transition probabilitiesp are needed to prove existence

whenX is infinite, note that the set of all functions over a finite alternative space is a vector space, while the

set of all functions over an infinite and compact subset ofR
m is a function space. Compactness of the space

9Alternatively, as discussed in Appendix A, these assumptions can be thought of as requirements on the distribution of individ-

uals’ privately observed random payoff disturbances.
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of value functions is generally needed in order to find a fixed point. While any closed and bounded subset

of a finite-dimensional vector space is compact, closed and bounded sets of functions are rarely compact.

Proposition 2 is proved by showing that the set of value functions is equicontinuous, and thus compact, when

a certain restriction (Assumption 2 described above) on thederivative of transition probabilityp holds.

Proposition 3 proves existence differently, by showing that when the total number of players is suffi-

ciently large we can construct an iterative definition of a dynamically stable voting equilibrium that is a

contraction mapping. This definition (Equation 2 in Appendix B) is also used to perform the numerical

estimations that follow in Section 4, and is discussed in greater detail in that section. Furthermore, this

definition can be easily utilized to calculate farsighted evaluations of policy when only a finite number of

rounds of policymaking will occur. The extension of this model to the setting of a finite number of rounds

is discussed in Appendix B.

Last, it is important to note that under different specifications of the functionspi a dynamically stable

voting equilibrium is equivalent to other commonly used equilibrium concepts. For the final proposition

and corollary of the paper I construct a game,Γ, in which equilibrium behavior is consistent with behavior

generated by dynamically stable voting equilibria. In particular, I show that when individuals vote prob-

abilistically, behavior in a dynamically stable voting equilibrium is equivalent to pure strategy Bayesian

Markov-perfect Nash equilibrium behavior in the constructed game (Proposition 4). As a corollary it fol-

lows that when individuals vote deterministically, so thatpi(vi(x), vi(y)) = 1 if vi(y) ≥ vi(x) and zero

otherwise, then at a dynamically stable voting equilibriumthe collection of functionspi constitute a Markov-

perfect equilibrium. In both cases, thev∗ vector represents the expected utility functions of the players, and

strategies as specified by the functionspi are consistent with the maximization of these expected utility

functions. The proofs and the construction ofΓ are relegated to Appendix B.
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Proposition 4 If individuals vote probabilistically and payoff disturbances are admissible, then at a dy-

namically stable voting equilibrium,v∗, the collection of functionspi are consistent with behavior in a pure

strategy Bayesian Markov-perfect Nash equilibrium of a game,Γ.

3.1 A One-Dimensional Example: The Federal Marriage Amendment and Gay Rights

When the policy space is finite and small it is not difficult to solve for equilibria analytically. In this section

and the next I will present simple analytic examples of dynamically stable voting equilibria. This first

example depicts a one-dimensional spatial model, the second depicts a setting in which there is a majority

preference cycle over a subset of the alternative space. In both examples I assume that discount factorδ = .9

and that voting is deterministic, with

pi(vit(x), vit(y)) =































1 if vit(y) > vit(x)

0 if vit(y) < vit(x)

1
2 otherwise.

To motivate this first example, consider the story presentedin the introduction about the political strate-

gies of gay rights groups after the 2004 elections. Suppose that there are three political actors in the model:

a gay rights activist (R), a defense-of-marriage activist (D), and a neutral voter (N). Also, suppose that there

are three possible political outcomes: a court-mandated overturn of state constitutional amendments ban-

ning gay marriage (“court mandate,” for short), legalization of civil unions and benefits for same-sex partners

(“civil unions”), and a federal constitutional amendment banning gay marriage (“marriage amendment”).

Last, assume that the “marriage amendment” outcome is currently being strongly forwarded by special

interests, and is three times more likely to arise as a policyproposal than the other two policy alternatives.

Thus,Q(Marriage amendment) = 3
5 , andQ(Civil unions) = Q(Court mandate) = 1

5 .
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The following figure depicts the hypothetical spatial location of the ideal points of the three players and

the locations of the three policies.

Gay rights activist (R) Neutral voter (N) Defense-of-marriage activist (D)

v v v

Court mandate Civil unions Marriage amendment

The above figure generates the following two tables, which show the utility functions of the three players and

the sum of expected utility each policy yields in the long term, at a dynamically stable voting equilibrium.

One-shot Utility Farsighted (Equilibrium) Valuations

i ui

( Court
mandate

)

ui

( Civil
unions

)

ui

(Marriage
amend.

)

i vi

( Court
mandate

)

vi

( Civil
unions

)

vi

(Marriage
amend.

)

R 1 3
4

1
4 R 4.512 4.565 3.478

N 1
2

3
4

3
4 N 7.195 7.5 7.5

D 0 1
4

3
4 D 5.488 5.435 6.522

The following table summarizes the above information by depicting individuals’ rankings over the alterna-

tives when individuals are both myopic and farsighted. If Playeri strictly prefers policyx to policy y, it is

writtenx ≻ y. If Playeri is indifferent between the two, it is writtenx ∼ y.
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Individuals’ Rankings of Alternatives

i One-shot rankings Farsighted rankings

Gay rights
activist (R)

Court
mandate≻

Civil
unions≻

Marriage
amendment

Civil
unions≻

Court
mandate≻

Marriage
amendment

Neutral
voter (N)

Civil
unions∼

Marriage
amendment≻

Court
mandate

Civil
unions∼

Marriage
amendment≻

Court
mandate

Defense-of-marriage
activist (D)

Marriage
amendment≻

Civil
unions≻

Court
mandate

Marriage
amendment≻

Court
mandate≻

Civil
unions

As is consistent with a traditional spatial model, the neutral voter is always indifferent between legalized

civil unions and a constitutional marriage amendment, and strictly prefers both of these policies to a court

mandate legalizing gay marriage. However, the gay rights activist, with ideal point “court mandate,” will

strictly prefer to implement “civil unions” rather than hisown ideal point when he is farsighted. This is

because when “marriage amendment” is more politically salient than the other two policies (i.e. is brought

to the voters’ attention more often by densityQ) the policy that makes the gay rights activist best off over

time is not his ideal point, but the policy closest to his ideal point that can defeat a constitutional marriage

amendment. Thus, it is in the activist’s best interest to concede some utility in the current round in order to

prevent his least favorite policy from being quickly implemented. Finally, the defense-of-marriage activist

strictly prefers “court mandate” to “civil unions” when he is farsighted, even though “civil unions” is closer

to his ideal point. Loosely speaking, this is because at “court mandate” there is a 60 percent chance of

transitioning to “marriage amendment,” the defense-of-marriage activist’s favorite policy, while at “civil

unions” this chance drops to 30 percent.

The purpose of this example is to demonstrate several key features of this model. First, all three players
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care both about the policy chosen today and about the types ofpolicies that will replace it in the future.

Second, farsightedness requires taking into account institutional particularities at any given time. In this

example this is reflected in the exogenousQ term, which captures the fact that there is currently considerable

pressure from interest groups to enact gay marriage bans at the federal level. And third, farsightedness also

requires taking into account the preferences of other political actors. In the absence of a defense-of-marriage

activist, the gay rights activist would have pursued a different political strategy. While this example is

obviously highly stylized, it provides a clear picture of how this model works, and demonstrates that the

predictions that this model yields are often quite intuitive.

A final point to note is that the “farsighted preferences” conceived of in this model are only farsighted

with respect to the current political climate, orQ term. In this sense, the model predicts short-term behavior

when individuals care about policy in the long run. In this example a strategic gay rights activist will not

challenge state-level bans of gay marriage in the federal courtsgiven the current political climate.Clearly

the political climate will change over time, and these changes will necessarily change the predictions of the

model.

3.2 A Condorcet Winner-Turned-Loser

In this next example there are three voters and four alternatives, X = {c, x, y, z}, with one alternative,c,

being a Condorcet winner. The other three alternatives forma majority preference cycle, withx ≻ y, y ≻ z,

andz ≻ x. The Condorcet winner gives each voter a one-shot payoff of 2, while the expected value of an

alternative in the majority preference cycle is 3. Thus, while every player is better off cycling through the

alternativesx, y, z than remaining at Condorcet winnerc, c always gives two players strictly greater utility

in the short term than they would receive at any other policy.The following tables present players’ utility
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functions and their farsighted valuations whenQ is uniform over all alternatives (i.e. when every alternative

is equally likely to be brought to the floor for a vote).

One-shot Utility Farsighted (Equilibrium) Valuations

i ui(c) ui(x) ui(y) ui(z) i vi(c) vi(x) vi(y) vi(z)

1 2 8 1 0 1 28.7097 39.0463 30.109 20.8447

2 2 1 0 8 2 28.7097 30.109 20.8447 39.0463

3 2 0 8 1 3 28.7097 20.8447 39.0463 30.109

The following table depicts individuals’ rankings over thealternatives when individuals are both shortsighted

and farsighted. As in the previous example, a preference reversal occurs. This reversal changes Condorcet

winnerc into a Condorcetloser in farsighted valuations, or a policy that is majority-defeated by every other

policy.10

Individuals’ Rankings of Alternatives

i One-shot rankings Farsighted rankings

1 x ≻ c ≻ y ≻ z x ≻ y ≻ c ≻ z

2 z ≻ c ≻ x ≻ y z ≻ x ≻ c ≻ y

3 y ≻ c ≻ z ≻ x y ≻ z ≻ c ≻ x

The logic behind why the preference reversal occurs takes two steps to reveal. First note that in the short run

Player 1 prefersc to y, but in the long run this preference is reversed. However,c andy both lead to similar

payoffs in the subsequent round for Player 1: since every alternative beatsc when voters are farsighted, the

10Roberts [21] provides an interesting refinement of Condorcet winners to intertemporal settings that captures those policies that

can also defeat cycles of alternatives. This example works precisely because the Condorcet winner here does not satisfyRoberts’s

stronger criterion of being a “generalized Condorcet winner.”
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expected payoff to Player 1 in a round following the implementation ofc is 1
4(2 + 8 + 1 + 0) = 11

4 . Player

1’s expected payoff aftery is implemented is the same:y is only defeated byx, and so Player 1’s expected

payoff in the round following implementation ofy is 1
4 (8) + 3

4 (1) = 11
4 . However,c andy lead to different

expected payoffs for Player 1 two rounds out. Whiley andc both lead to an expected payoff of11
4 in a

subsequent round,y leads to an expected payoff of57
16 two rounds out, whilec leads to an expected payoff of

47
16 two rounds out.11 Thus, while equilibrium evaluations in this framework capture expected payoffs for an

infinite stream of future policies, the intuition behind whypreference reversals occur can be seen in settings

with a finite (and even small) number of periods.

This example demonstrates that, when voters are farsighted, outcomes will not necessarily coincide with

many commonly known tournament solution concepts including the uncovered set, minimal covering set,

tournament equilibrium set, Banks set, largest consistentset, and von Neumann-Morgenstern stable set, as

all of these sets reduce to the core, if one exists.12 In the spatial settings considered in the following section,

outcomes do appear to coincide with elements of the von Neumann-Morgenstern stable set. However, this

observation cannot be extended to a general preference environment. The relevant issue is that cardinality of

preferences matters in this setting, whereas tournament solution concepts only require ordinal preferences.

This same issue distinguishes this model from sophisticated voting (the standard definition of which is pre-

sented in [24]), which is defined solely with respect to ordinal preferences. Sophisticated voting will always

11To see the logic of this, lety be implemented today, att = 0. Tomorrow att = 1 y will lead to eitherx (with probability 1
4
)

or y (with probability 3
4
), for an expected payoff to Player 1 of11

4
. At t = 2 there is a1

4
chance we will have been atx at t = 1,

which will lead tox with probability 3
4

andz with probability 1
4
, for an expected payoff of24

4
. Similarly, there is a3

4
chance we

will have been aty in the previous round, for an expected payoff att = 2 of 11
4

. Thus the expected payoff att = 2 wheny was

implemented att = 0 is 1
4
( 24

4
) + 3

4
( 11

4
) = 57

16
.

12These six sets are defined in [17], [11], [23], [2], [8], and [25], respectively.
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yield a Condorcet winner as the unique voting outcome, if a Condorcet winner exists. Here a Condorcet

winner exists, but it is chosen with probability zero as an equilibrium policy outcome.

More generally, this example of a Condorcet winner-turned-loser provides a good basis of comparison

between this model and the standard sophisticated voting setup that is frequently used to analyze forward-

looking behavior in legislative settings. Sophisticated voting describes strategic voting behavior over a

finite, predetermined sequence of alternatives. As in this model, sophisticated voters may seemingly exhibit

“preference reversals,” in that they may vote in favor of alternatives that give them lower utility in order

to beneficially affect the future path of play. However, under sophisticated voting, voters do not actually

concede anything; individuals may vote against policies that they like, but only because they know that what

they like cannot win. In this model, farsighted voters may take short term losses in order to dobetter in

expectation than they could have in a one-shot game.13

4 Numerical examples in two-dimensional spaces

What follows is a look at several numerical estimations of this model in settings where the policy space

is two-dimensional. The first setting is that of a three-player constant sum game and the second setting is

that of a three-player spatial model where players have convex preferences. The graphs that follow depict

both the equilibrium value functions of one of the players and the equilibrium distribution over observed

13This model also considers a different agenda framework thanthe amendment agendas considered under sophisticated voting.

Not only is the proposal process in this model probabilistic, but agendas move “forward” in that the status quo is replaced at

every round of voting. The standard sophisticated voting setup considers agendas as fixed orderings of alternatives, with policies

sequentially eliminated through a planned series of pairwise votes. These agendas are commonly voted on “backward,” with a fixed

status quo considered last.
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outcomes.14 In all of the estimations it is assumed that voting is via majority rule and that players vote

deterministically, as in the previous section. It is also assumed that every player has the same discount

factor, δ = 0.9, and thatQ is uniform over the policy space.Q was chosen to be uniform simply as a

baseline.

4.1 Three players divide a dollar

[FIGURE 2 HERE]

Figure 2 is a graph of Player 1’s value function. The setting is a three-player divide-the-dollar game; the

policy space equals the set of all divisions of the dollar between three people and a player’s utility from a

particular policy equals the amount of money he is allocatedby that policy. The policy space is pictured,

and Player 1’s ideal point (the policyx = (1, 0, 0)) is at the top of the simplex. The bottom of the simplex

denotes those policies that give Player 1 no portion of the dollar. The darkest areas correspond to the

policies that yield the highest values for Player 1, and the lightest areas denote the policies that yield the

lowest values.
14The estimations were run by discretizing the policy space into approximately nine hundred policies (for Example 1) or two

hundred and sixty policies (Example 2) and then iterating the mapping defined in Equation 2 of Appendix B until it converged

numerically to a dynamically stable voting equilibrium. The iterations were performed by lettingv0 = {ui}i∈N and defining

vt+1 = g(vt) for t ≥ 0. Convergence was obtained in every example for a sup norm of .002. Once the equilibrium value function

was found, the equilibrium distribution over outcomes was found by first drawing two policies from densityQ, pitting them against

each other (assuming that voters vote according to their equilibrium value functions), pitting the winner against a newpolicy drawn

from Q, pitting thiswinner against a new policy drawn fromQ, and so on. This process was repeated 200,000 times. The frequency

with which each policy arose as an outcome generated the ultimate distribution over observed outcomes.
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It is apparent that the policies that Player 1 values most arenot near Player 1’s ideal point, but rather

those that divide the dollar about equally between himself and one other player, or(1
2 , 1

2 , 0) and(1
2 , 0, 1

2).

The intuition for this is simple. Suppose that the status quopolicy in a given round is Player 1’s ideal point,

(1, 0, 0). Then whichever policy is chosen to be pitted against the status quo in the next round will win with

near certainty, because every policy weakly defeats Player1’s ideal point. Conversely, the point(1
2 , 1

2 , 0),

as an example, is more stable and less likely to be defeated bya new policy. This is why Player 1’sleast

favorite policy is at(0, 1
2 , 1

2). Not only does Player 1 get a payoff of zero from this policy, but it is also a

relatively stable outcome, unlikely to be replaced quickly.

[FIGURE 3 HERE]

Figure 3 depicts the density over observed policy outcomes.The darkest areas correspond to the most

frequently observed policies. In this example only a small subset of the total policy space is ever observed

with positive probability. The observed policies appear toconstitute a majority-rule core with respect to

players’ equilibrium value functions. Figure 2 demonstrates this—since the setting is symmetric, it is clear

that each of Player 1’s most-preferred policies is also the most-preferred policy of another player. This

example demonstrates that the assumption of farsightedness gives us sharp predictions in this divide-the-

dollar game. It predicts outcomes corresponding to the set of policies that divide the dollar evenly between

all members of a minimal winning coalition. In this example,the likelihood of a policy defeating a status

quo such as(1
2 , 1

2 , 0) is approximately 1%.

In social choice theory this set of predicted policies is referred to as thevon Neumann-Morgenstern

stable set(or simplystable set), and is defined by the nice property that no element in the setstrictly defeats

any other element in the set and that any policy outside the set is strictly defeated by an element of the set.15

15These two conditions are termedinternal andexternal stability, respectively.
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It is interesting to note that the predictions generated by this model whenQ is uniform closely coincide with

elements of the von Neumann-Morgenstern stable set inall of the spatial settings considered. However, as

Section 3.2 demonstrates, this is not true in general.

It is also interesting to compare this example with a standard one-shot bargaining model in which players

are recognized with equal probability to propose allocations of the dollar and if an allocation is approved

by a majority of voters, it goes into effect. In the one-shot model proposals are made optimally with regard

to future optimal behavior by players (in the event that a proposal is rejected). Baron and Ferejohn [4]

demonstrate that the only stationary subgame-perfect equilibrium of the one-shot model is for the proposer to

give himselfδ(n−1)
2n

of the dollar and to given−1
2 other playersδ

n
each. In both models, only a bare majority

of players receive a positive share of the dollar. In Baron and Ferejohn’s model, members of the winning

coalition receive different allocations of the dollar depending on whether or not they were the proposer. Here

members of the winning coalition divide the dollar equally among themselves, as proposals are exogenous.

Of course, ex ante outcomes in the one-shot model and this model are the same in expectation.

4.2 An asymmetric two-dimensional spatial model

This last series of pictures depicts a two-dimensional spatial model, where the ideal points of the three

players are no longer symmetric but are located at(0, 1
2), (0, 0), and(1, 0). The policy space is bounded by

the lines connecting the ideal points of the three players.16 First, preferences are assumed to be circular so

that players are indifferent between all policies equidistant from their ideal points. This implies that each

issue dimension matters equally to each player. Then we willconsider the case where two of the three

players care more about one issue dimension than the other.

16When preferences are circular, this policy space corresponds to the Pareto set. When preferences are elliptical, as in the next

example, the policy space subsumes the Pareto set.
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Figure 4 depicts the spatial location of the ideal points of the three players and their indifference curves

when preferences are circular. Figure 5 depicts the equilibrium value function of Player 1, whose ideal point

is located at(0, 1
2). Again, the darker areas correspond to the policies that Player 1 values most highly.

Figure 6 depicts the frequency with which each policy is observed as an outcome, with the most frequent

outcomes being darker in color than the less frequent ones.

[FIGURE 4 HERE]

[FIGURE 5 HERE]

[FIGURE 6 HERE]

In Figure 5 we can see that Player 1’s highest-valued alternative is close to the point(0, .25). Although

not pictured, the equilibrium “highest-valued” policies of Players 2 and 3 are(.03, .03) and(.94, 0), respec-

tively. Farsightedness induces Players 1 and 3 to prefer policies that may spark the formation of a coalition

between themselves and Player 2, the most moderate player. Figure 6 shows that the most observed out-

come is approximately(0, .22), close to the alternative in the stable set corresponding toa coalition between

Players 1 and 2, the two players whose ideal points are closest to each other. In this example the stable set

consists of the points{(0, .19), (.28, .36), (.19, 0)}, approximately.

[FIGURE 7 HERE]

In the last example the preferences of Players 2 and 3 are now elliptical rather than circular, and are defined

by the equation

ui(x1, x2) = −
√

(ri1 − x1)2 + 100(ri2 − x2)2,
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whereri = (ri1, ri2) is the ideal point of playeri. Thus, Players 2 and 3 value the second (ory) dimension of

the policy space ten times more highly than the first. The preferences of Player 1 have remained unchanged.

Figure 7 shows the ideal points of the three players and theirindifference curves. The dotted curve represents

the contract curve of Players 1 and 3, and is the upper bound ofthe Pareto set.

[FIGURE 8 HERE]

[FIGURE 9 HERE]

Interestingly, even though Player 1’s utility function is the same as in the previous example, his equi-

librium value function is quite different than both his utility function and his value function in the previous

example, when the preferences of the other two players were circular. Figure 8 shows that Player 1’s most-

preferred alternatives now lie close to the origin, the ideal point of Player 2. The reason for this is similar

to the intuition behind the example given in Section 3.1. Because the indifference curves of Players 2 and

3 both favor policies that lie close to thex-axis, Player 1 knows that implementing a policy that appeals to

him along they-dimension is a lost cause. This is because the point(0, 1
2), Player 1’s ideal point, is the

alternative inX that isfarthestfrom thex-axis. Thus, he is willing to concede a great deal of utility along

the second dimension of the policy space in order to collude with Player 2 along the first dimension.

The stable set in this example approximately equals{(.14, .03), (0, .01), (.09, 0)}. Figure 9 shows that

there exists a single alternative,(.09, .02), that arises with near certainty. This alternative is closeto the

alternative in the stable set corresponding to a coalition between Players 2 and 3. As in the previous example,

this prediction corresponds to the most efficient element ofthe stable set; it is the element of the stable set

that maximizes the sum of the players’ utilities.
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5 Conclusion

Societies frequently make decisions that will persist intothe future. Indeed, it is not a stretch to argue that

most policies that people care about are of this form, with examples being social policies, entitlements,

budgets, and redistributive policies. This paper argues that there is no reason to expect that preferences

over these “continuing” policies will be similar to preferences over “once-and-for-all” policies. This is

because, when evaluating continuing policies, individuals consider not only their payoffs from the policies

themselves, but also from what the policies will lead to in the future. I show that when preferences are

considered in this way surprising outcomes can emerge in several standard legislative settings. For example,

I demonstrate that a policy that is a Condorcet winner in a one-shot game is selected with probability zero

as a policy outcome when voters are farsighted.

One implication of the model is that its predictions can giveinsight into the sorts of coalitions that may

form in settings where policy is implemented over many rounds. While the existence of stable coalitions is

undeniably central to political life, such coalitions can be difficult to understand from a theoretical perspec-

tive. This type of dynamic environment is perhaps one of the most natural in which to think of the formation

of alliances, and this paper formalizes a common argument for why stability can arise and persist in the

real world. In the theory presented here, individuals consider the trade off between the immediate value of

a policy and the long-run stability of the coalition implementing that policy. Ultimately, this consideration

leads to the recognition that policies that fairly divide benefits between members of a winning coalition leave

individual players best off in the long run. The cooperationthat emerges in this model does not rely on any

threat of punishment other than the fact that current policies can be replaced by new alternatives.

The theory can also be interpreted as providing an explanation for why particular coalitions are more

likely to form than others. Both the analytic and numerical examples demonstrate that farsighted voters
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will frequently vote for policies that do not necessarily give them the highest one-shot payoff. The favorite

policies of a farsighted voter will depend on a combination of his own preferences, the preferences of other

voters, the voting power of other voters, and the likelihoodwith which certain policies will be brought to the

floor. Thus, the model provides a nuanced characterization of voter considerations that encompasses many

different elements of the institutional environment. It also provides a characterization of voting behavior

that is estimable because the model yields distributional predictions.

While the model presented in this paper is purely formal, thetheory is applicable to a variety of real-

world legislative settings, as it utilizes only weak assumptions about the number of voters, their preferences,

their respective voting weights, the majority requirement, and the policy space. However, the predictive

power of the model will depend largely on the functional formof the proposal processQ. This process can

be thought of as representing the likelihood with which particular policies will be considered by the group

in the future. Estimating these likelihoods in real-world situations may provide insight into the prospective

voting behavior of legislators, with the implication beingthat the perceived distribution of future policy

considerations may be an omitted variable in some empiricalmodels of legislative voting.

Appendix A: Assumptions on individual vote choice

Throughout, I assume that for allx, y ∈ X, p(v(x), v(y)), or the probability of transitioning from status quo

x to policy y, given thatx andy are put to a vote, can be written as the probability of victoryof y overx:

p(v(x), v(y)) =
∑

C∈W

∏

i∈C

pi(vi(x), vi(y))
∏

i6∈C

(1 − pi(vi(x), vi(y))) (1)

wherepi(vi(x), vi(y)) ∈ [0, 1] represents Player i’s probability of voting fory overx given value function

v. It is assumed thatpi is independent ofpj for all i, j ∈ N , thatpi(vi(x), vi(y)) + pi(vi(y), vi(x)) = 1,
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and thatpi is increasing invi(y) − vi(x).

While the general model defined in Section 2 does not require any additional assumptions on the func-

tionspi(vi(x), vi(y)), imposing more structure on these functions enables us to obtain results about equilib-

rium existence (Propositions 1, 2, and 3), and about when equilibrium behavior is Markov-perfect (Propo-

sition 4). In particular, the two natural specifications of individual vote choice I consider are deterministic

behavior and probabilistic behavior. These two specifications are discussed and defined below. Determinis-

tic voting simply assumes that individuals vote fory overx if the long-run payoff of havingy implemented

today is at least as high as the long-run payoff of havingx implemented today.

Definition: Individuals votedeterministicallyif pi(vi(x), vi(y)) = 1 if vi(y) ≥ vi(x) and zero otherwise.

Probabilistic voting assumes that, at each round of voting,each individuali receives an unobserved payoff

disturbanceθix from casting a vote for policyx ∈ X. As is standard in models of probabilistic voting,

theseθix terms are assumed to be independently and identically distributed across all policiesx, votersi,

and, implicitly, rounds of voting. Furthermore, the distribution of θix has full support and a cumulative

distribution functionF that is twice continuously differentiable. If the payoff disturbances satisfy all of

these properties, they are termedadmissible.

Assuming this payoff structure implies the following definition of probabilistic voting, which will be

shown in Proposition 4 to be consistent with an assumption that individuals play Markovian pure strategy

Bayesian Nash equilibria.17

17See [15] and [16] for a more thorough presentation of probabilistic voting and agent quantal response equilibria.
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Definition: Individuals voteF -probabilistically (or simply,probabilistically) if, if for all i ∈ N ,

pi(vi(x), vi(y)) = PrF [vi(y) + θiy ≥ vi(x) + θix].

As discussed in Section 3, each of the following three existence results requires that individuals vote prob-

abilistically. Proposition 3 also requires that for alli, pi(vi(x), vi(y)) be differentiable in both of its argu-

ments, and that these derivatives be uniformly bounded. AndProposition 2 additionally requires that these

derivatives be uniformly bounded by a specific constant. These two additional assumptions are formalized

and discussed below.

Assumption 1 | ∂
∂vj (x)pj(vj(x), vj(y))| ≤ K, for someK ∈ R+.

With respect to the assumption of probabilistic voting and Assumption 1, note that it is always possible to

approximate a discontinuous function with such a continuous, differentiable one. These assumptions are

substantively weak and, furthermore, they are not necessary in order to demonstrate that an equilibrium

exists in specific settings. In the estimations and analyticexamples presented, equilibria are shown to exist

even when individuals vote deterministically. Assumption2, however, imposes a real restriction on individ-

ual behavior because it limits how responsive voting decisions can be to payoffs. In the definition of this

assumption, letu = max
x∈X,j∈N

uj(x), and letu = min
x∈X,j∈N

uj(x).

Assumption 2 | ∂
∂vj (x)pj(vj(x), vj(y))| ≤ (1−δ)2

δn|u−u| for all j ∈ N .

First, note that the bound defined by this condition is very conservative. Existence may be obtained in far

less restrictive environments. And second, while this assumption may seem strange, it can be interpreted

in the context of standard models of probabilistic voting. In the standard example of a logit agent quantal

response equilibrium in whichpi(vi(x), vi(y)) = eλvi(y)

eλvi(x)+eλvi(y) for someλ ≥ 0, this assumption will
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impose a restriction onλ for a fixedn and onn for a fixedλ.18 More specifically, in the case of majority

rule and assuming thatui(x) ∈ [0, 1] for all i ∈ N andx ∈ X, it will hold whenever

nλ ≤
4(1 − δ)2

δ
.

Since the right hand side of this equation is always positive, it follows that for any fixed number of players

there will always exist a positiveλ that guarantees equilibrium existence.

Appendix B: Analytic results

For the first three propositions we will define a functiong that maps value functions into value functions, or

g : Vn → Vn with g = {gi}i∈N andgi : Vn → V. Specifically,

gi(v(x)) = ui(x) + δ

∫

y∈X

vi(y)p(v(x), v(y)) + vi(x)(1 − p(v(x), v(y)))Q(y)dy, (2)

with the case of a finiteX defined similarly. It is useful to note that this functiong can also be used

to consider farsighted voting when there are only a finite number of periods of policymaking. Letv0 =

{ui}i∈N and iteratively definevt+1 = g(vt), t ≥ 0. Thenvit(x) captures Playeri’s valuation of policyx

given thatt rounds of policymaking will occur afterx is implemented.

Proposition 1 If X is finite, then there exists a dynamically stable voting equilibrium when individuals vote

probabilistically.

18A logit AQRE assumes that theθix follow a type one extreme value distribution.
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Proof: Sinceδ < 1 and ui is real-valued for alli ∈ N , the upper bound any individual’s value func-

tion could take is 1
1−δ

max
x∈X

ui(x), and the lower bound is zero. Thus, for everyv ∈
∏

i∈N R
X , v ∈

∏

i∈N [0, 1
1−δ

max
x∈X

ui(x)]X , and so the set of value functions is bounded. Furthermore, the set of value func-

tions is convex, since the convex combination of two boundedfunctions takingX to R is itself bounded.

Last, the set of value functions is closed, trivially. It follows that the set of value functions takingX into the

real numbersR is a nonempty, closed, bounded and convex subset of a finite-dimensional vector space,R
X .

The mappingg :
∏

i∈N R
X →

∏

i∈N R
X (see Equation 2) is single-valued by definition, and is con-

tinuous by the continuity of everypi(vi(x), vi(y)). By Brouwer’s Fixed Point Theorem, there exists a

v ∈
∏

i∈N R
X such thatg(v) = v. Thus, there exists a dynamically stable voting equilibrium. �

When policy spaceX is infinite Assumption 2 is needed in order to guarantee existence, along with a

definition and a lemma.

Definition: A set of real-valued functionsV∗ ⊂ V is equicontinuousif for all ǫ > 0, there exists aδ > 0

such that

ρ(s, t) < δ andvi ∈ V∗ ⇒ |vi(s) − vi(t)| < ǫ.

To prove Proposition 2, we are concerned in particular with aset Bn
M ⊂ Vn of vectors of differen-

tiable functions takingX to R whose derivatives are uniformly bounded by the constantM . This set is

equicontinuous; letM be a bound for the derivatives of the functions inBM , and recall that forv ∈ Vn,

ρ(v(s), v(t)) = max
i∈N

|vi(s) − vi(t)|. For anα ∈ X andJ equal to the dimensionality of the policy space,

let |∇vi(α)| = max
j∈J

| ∂vi

∂αj
|. Then, by an extension of the Mean Value Theorem,ρ(s, t) < δ implies that
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ρ(v(s), v(t)) = max
i

|▽vi(α)|ρ(s, t) ≤ Mδ, for someα on the line segment betweens andt. Thus, given

ǫ > 0, the choiceδ = ǫ/(M + 1) demonstrates thatBM , and thusBn
M , is equicontinuous.

Lemma 1 If Assumption 2 holds, then the functiong maps a closed, bounded, and equicontinuous subset

of Vn into itself.

Proof: Defineg as in Equation 2. Boundedness is attained becauseδ < 1. LetBn
M be the set of vectors of

differentiable functions whose derivatives are uniformlybounded by the constantM . The setBn
M is closed.

I will show that there exists anM ∈ R+ such that for anyv ∈ Vn, if v ∈ Bn
M , theng(v) ∈ Bn

M . By Equation

2 we know that for alli,

g(vi(x)) = ui(x) + δ

∫

y∈X

vi(y)p(v(x), v(y)) + vi(x)(1 − p(v(x), v(y)))Q(y)dy

and thus,

|∇g(vi(x))| ≤ |∇ui(x)| + δ|∇vi(x)|(1 −

∫

y∈X

p(v(x), v(y))Q(y)dy)

+ δ

∫

y∈X

(vi(y) − vi(x))|∇p(v(x), v(y))|Q(y)dy, (3)

where, lettingJ equal the dimensionality of the policy space and lettingf be any function ofx, |∇f(x)| =

max
j∈J

|∂f(x)
∂xj

|. From the definition ofp(v(x), v(y)) we get

|∇p(v(x), v(y))| ≤

∑

C∈W

[

[

∑

i∈C

|∇vi(x)|
∂

∂vi(x)
pi(vi(x), vi(y))

∏

j∈C\{i}

pj(vj(x), vj(y))
∏

j 6∈C

(1 − pj(vj(x), vj(y)))
]

−
[

∑

i6∈C

|∇vi(x)|
∂

∂vi(x)
pi(vi(x), vi(y))

∏

j∈C

pj(vj(x), vj(y))
∏

j 6∈C∪i

(1 − pj(vj(x), vj(y)))
]

]

=
∑

i∈N

|∇vi(x)|
∂

∂vi(x)
pi(vi(x), vi(y))Zi({pj(vj(x), vj(y))}j∈N\{i}) (4)
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where, lettingCM
i equal the set of minimal winning coalitions thati is in,

Zi({pj(vj(x), vj(y))}j∈N\{i}) =
∑

C∈CM

i

∏

j∈C\{i}

pj(vj(x), vj(y))
∏

j 6∈C

(1 − pj(vj(x), vj(y))). (5)

Zi({pj(vj(x), vj(y))}j∈N\{i}) represents the probability that Playeri’s vote is pivotal given that all other

playersj vote according to the functionspj(vj(x), vj(y)). Moving back to Equation 3, it follows that

|∇g(vi(x))| ≤ |∇ui(x)|

+ δ|∇vi(x)|(1 −

∫

y∈X

p(v(x), v(y)))Q(y)dy

+ δ

∫

y∈X

(vi(y) − vi(x))
∑

k∈N

|∇vk(x)|
∂

∂vk(x)
pk(vk(x), vk(y))Zk({pj(vj(x), vj(y))}j∈N\{k})Q(y)dy

Let U = max
j∈N,x∈X

|∇uj(x)|. U is assumed to be bounded. LetB = max
j∈N,x,y∈X

|vj(x) − vj(y)|, which is

bounded by the assumption thatδ < 1 andX is compact. LetK = max
j∈N

| ∂
∂vj (x)pj(vj(x), vj(y))|. Last,

assume thatv(x) ∈ Bn
M , or thatM = max

j∈N,x∈X
|∇vj(x)|. Using the fact that Equation 5 is bounded between

zero and one, we now get that

|∇g(vi(x))| ≤ B + δM + δ ∗ N ∗ K ∗ B ∗ M.

It follows that if v ∈ Bn
M , theng(v) ∈ Bn

M if

B + δM + δ ∗ N ∗ K ∗ B ∗ M ≤ M,

or

K ≤
1 − δ

δ ∗ n ∗ B
. (6)
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As B = u−u
1−δ

, Equation 6 is exactly equal to Assumption 2. It follows thatif Assumption 2 holds, theng

maps a closed, bounded and equicontinuous subset ofVn into itself. �

Proposition 2 If X is infinite, then there exists a dynamically stable voting equilibrium when Assumption

2 holds.

Proof: The Heine-Borel Theorem in a function space tells us that a subsetV∗ ⊂ V is compact if and only if

it is closed, bounded, and equicontinuous.19 Lemma 1 proves that the set of value functions can be restricted

to the compact setBn
M . Since the functiong : Bn

M → Bn
M is continuous, we need only convexity of the set

of value functions to prove that there exists an equilibriumvalue function.

Take the convex combination of any two value functions,v,w ∈ Bn
M , so that for anyγ ∈ [0, 1], γv(x)+

(1−γ)w(x) = z(x). Clearlyz is continuous, sincev andw are continuous. Furthermore,z is differentiable,

and the derivative ofz is bounded by the constantM . It follows thatz ∈ Bn
M , and thatBn

M is convex. By

Brouwer’s Fixed Point Theorem, there exists av such thatg(v) = v. �

Proposition 3 If Assumption 1 holds andn is large then there always exists auniqueequilibrium, regardless

of whetherX is finite or infinite.

Proof: The proof is specifically for the case whereX is infinite; the finite case can be proved similarly. For

w, z ∈ Vn, let ρ(wi, zi) = max
x∈X

|wi(x) − zi(x)|, and letρ(w, z) = max
i∈N

ρ(wi, zi). We must show that for

anyw, z ∈ Vn, ρ(g(w), g(z)) < ρ(w, z), or thatg is a contraction mapping.

As in Equation 2, letgi : Vn → V. Thus,g = (g1, ..., gn). First consider the gradient vector∇gi. For all

19This theorem is a direct consequence of the Arzela-Ascoli Theorem. See [19, p. 217].
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x ∈ X,

gi(v(x)) = ui(x) + δ

∫

y∈X

vi(y)p(v(x), v(y)) + vi(x)(1 − p(v(x), v(y)))Q(y)dy.

Thus, the components of∇gi(v(x)) can be defined using the partial derivatives

∂gi(v(x))

∂vi(x)
= δ[1 −

∫

y∈X

p(v(x), v(y))Q(y)dy] + δ

∫

y∈X

(vi(y) − vi(x))
∂p(v(x), v(y))

∂vi(x)
Q(y)dy (7)

and for allj ∈ N \ {i},

∂gi(v(x))

∂vj(x)
= δ

∫

y∈X

(vi(y) − vi(x))
∂p(v(x), v(y))

∂vj(x)
Q(y)dy. (8)

Using Equation 1 we get that for alli ∈ N ,

∂p(v(x), v(y))

∂vi(x)
=

∂pi(vi(x), vi(y))

∂vi(x)
Zi({pj(vj(x), vj(y))}j∈N\{i}) (9)

whereZi(·) is defined as in Equation 5. Recall thatZi({pj(vj(x), vj(y))}j∈N\{i}) represents the probability

that Playeri’s vote is pivotal given that all other playersj vote according to the functionspj(vj(x), vj(y)).

McKelvey and Patty ([16], Lemma 1) prove that when people vote probabilistically (i.e when for allj ∈ N ,

and allx, y ∈ X, pj(vj(x), vj(y)) ∈ (0, 1)), all pivot probabilitiesZi(·) → 0 asn gets large.

Combining Equations 8 and 9, we get for allj ∈ N \ {i}

35



∂gi(v(x))

∂vj(x)
= δ

∫

y∈X

(vi(y) − vi(x))
∂pj(vj(x), vj(y))

∂vj(x)
Zj({pk(vk(x), vk(y))}k∈N\{j})Q(y)dy.

By Assumption 1 we know that for allj ∈ N andx, y ∈ X, ∂pj(vj(x),vj (y))
∂vj(x) is bounded by some constant.

We also know that the difference|vj(y)−vj(x)| is bounded by a constant, sinceδ < 1 and utility is bounded.

SinceZj(·) → 0 asn → ∞, it follows that for anyǫ > 0 there exists anM ∈ N such that for alln > M ,

∂gi(v(x))

∂vj(x)
< ǫ.

Using Equation 7, by the same logic it follows that for anyǫ > 0 there exists anM ∈ N such that for all

n > M ,

∂gi(v(x))

∂vi(x)
< δ[1 −

∫

y∈X

p(v(x), v(y)Q(y)dy] + ǫ.

Define|∇g(v)| such that

|∇g(v)| = max
{i,j}∈N

(

max
x∈X

∣

∣

∣

∣

∂gi(v(x))

∂vj(x)

∣

∣

∣

∣

)

.

Sinceδ[1 −
∫

y∈X
p(v(x), v(y))Q(y)dy] ∈ (0, 1) for all δ < 1, it follows that forn sufficiently large (i.e.,ǫ

sufficiently small),|∇g(v)| < 1.

By the Mean Value Theorem we know that

ρ(g(w), g(z)) ≤ ρ(w, z)|∇g(v)|

for somev on the line segment betweenw andz. Since, for anyv ∈ Vn, |∇g(v)| < 1 for n sufficiently

large, it follows that

ρ(g(w), g(z)) < ρ(w, z).

Thus, there exists anM ∈ N such that for alln > M , the functiong is a contraction mapping.�
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The final proposition and corollary show that we can construct a game,Γ, such that behavior in a dynami-

cally stable voting equilibrium is consistent with Bayesian Markov-perfect Nash equilibrium behavior inΓ.

DefineΓ as follows:

• There is a collection ofplayers, N = {0, ..., n}, with Player 0 assumed to be nature and the remaining

players being voters.

• There is a collection ofstates, S = X ×X, with generic elements. At a given timet, st = (xt, yt) ∈

S can be interpreted as astatus quo policyxt and aproposal, yt, to be pitted against the status quo.

• A player’stypeis denotedθi = (θix, θiy), with θ = {θi}
n
i=1. Letω = (s, θ) be atype profile. For each

i > 0, let Θi = R
2 andΘ = ×n

i=1Θi. Let F denote the twice-continuously differentiable cumulative

distribution function of a probability distribution possessing full support onΘi andF̄ ≡ Fn denote

the cumulative distribution function of the resulting product measure onΘ.

• A history at timet is a sequence of type profiles and actions,ht = {ω0, a1, ω1, ..., ωt−1, at−1, ωt}.

Let Ht denote the set of all possible histories at timet andH denote the set of all possible histories.

Note that the histories are from the voters’ perspective, sothat h0 = {ω0}. Below, the true initial

history,h = ∅, is used only for the consideration of Nature’s determination of the initial type profile,

ω0.

• At each timet each playeri > 0 knows historyht and hasaction spaceAt
i(h

t) = {0, 1}. An action

at
i(h

t) = 1 is a vote by playeri for yt overxt. At t = 0, A0
0(∅) = X ×X ×Θ. At t > 0 Player 0 has

action spaceAt
0({h

t−1}) = X × Θ, whereat
0 = (yt, θt). Let at(ht) be a profile of the actions taken

at timet.
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• Each playeri > 0 is represented by an information structure,Ii, which is a partition ofH such that

any element ofIi, Ii, contains histories of exactly one length. Denoting the subset ofIi containing

histories of any lengtht by It
i and denoting the type of playeri in periodt following historyh by θh

i ,

the information structure is assumed to satisfy the following condition. For any two historiesht and

ĥt, ht andĥt are in the same element ofIt
i if and only if

1. ht−1 = ĥt−1,

2. st = ŝt, and

3. θh
i = θĥ

i .

In words, players are assumed to observe all past actions andtype profiles, the current state, and their

own current type, but not other players’ current types. (Note that the assumption that players observe

each others’ past types is unimportant, as I will be examining equilibrium strategies that do not depend

upon any players’ past types.)

• A strategyfor playeri is a mapping from information sets into the space of probability distributions

over actions, denotedσt
i : Ht → ∆(At

i(ht)) for i > 0. Let Q̃ be the probability measure generated

by pdf Q. It is assumed thatσt
0(h

t) = Q̃ × F̄ at all t > 0, and that fort = 0, σ0
0(∅) = Q̃ × Q̃ × F̄ .

σt denotes a strategy profile at timet.

• Payoffs for each player are defined by the value functionsvi(h) =
∑∞

t=0 δt[ui(x
t) + θt

ia
t
i].

• For t > 0, ωt depends onωt−1 andat−1 in the following way. xt = xt−1 if and only if for some

C ∈ W (the collection of winning coalitions),at−1
i = 0 for all i ∈ C. If not, thenxt = yt−1. yt is

chosen by nature, as in the definition ofat
0.
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We are now ready to prove the last proposition, which is straightforward given the setup of the game. It

requires the definition of probabilistic voting and payoff disturbances presented in Appendix A.

Proposition 4 If individuals vote probabilistically and payoff disturbances are admissible, then at a dynam-

ically stable voting equilibrium,v∗, the collection of functionspi are consistent with behavior in a pure

strategy Bayesian Markov-perfect Nash equilibrium ofΓ.

Proof: Markov perfection requires that if two historiesht andĥt have the same value of type profileωt, then

σi(h
t) = σi(ĥ

t) for all i. In considering Markov-perfect equilibria suppose that strategiesσi are measurable

with respect toωi ≡ (x, y, θi). In other words, players condition only on the current state(x, y) and their

current type,θi.

Let φ(x, y|σ) be the probability thaty defeatsx, given that voters vote according to strategiesσ. Let

φi(x, y|ai, θi, σ−i) be the probability thaty defeatsx conditional on type realizationθi andi’s vote choice

ai. Note that the information structureIi and fact that theθi’s are i.i.d. in each time period imply that

φi(x, y|ai, θi, σ−i) = φi(x, y|ai, θ
′
i, σ−i) for all θi, θ

′
i. In other words,θi only affectsi’s action; it does not

affect his beliefs about other players’ actions.

Clearly,φ is measurable with respect toω (i.e. φ is history-independent). Since we are considering a

monotonic game, we know thatφi(x, y|1, θi, σ−i) ≥ φi(x, y|0, θi, σ−i). In other words, if Playeri votes for

y overx, then the likelihood thaty defeatsx is weakly greater than it would have been had Playeri voted

for x overy.

For a dynamically stable voting equilibrium,v∗, defineσv∗

i as follows:

σv∗

i (ωi) =















0 if v∗i (x) + θix > v∗i (y) + θiy,

1 otherwise.
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All that remains to be shown is thatv∗i is equal to thei’s true expected value givenσv∗ . To see this, write

the probability thati votes fory overx givenσv∗ as:pσ
i (v∗i (x), v∗i (y)) =

∫

R2 σv∗

i (x, y, θi)f(θi)dθi.

It can be verified thatpσ
i = pi, as utilized in the definition ofv∗ (through transition probabilityp(v∗(x), v∗(y))).

Thus,v∗i is Playeri’s true expected payoff conditional on strategy profileσv∗ . It follows thatσv∗ represents

a sequentially rational (i.e., Bayes Nash equilibrium) profile of strategies for the gameΓ. Sinceσv∗

i is by

definition Markovian with respect toωi ≡ (x, y, θi), we can conclude that, for any dynamically stable voting

equilibrium,v∗, the strategy profileσv∗ is a Bayesian Markov-perfect Nash equilibrium.�

The following corollary follows immediately from the fact that when individuals vote deterministically (as

defined in Appendix A) thenθix = 0 for all i ∈ N andx ∈ X.

Corollary 1 If individuals vote deterministically then at a dynamically stable voting equilibrium,v∗, the

collection of functionspi are consistent with behavior in a Markov-perfect equilibrium ofΓ.
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Figure 1: Path of play
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Figure 2: Player 1’s value function.
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Figure 3: Density over outcomes.
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Figure 4: Two-dimensional spatial model with circular preferences.
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Figure 5: Player 1’s value function with circular preferences.

46



1

2 3

Figure 6: Density over outcomes with circular preferences.
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Figure 7: Two-dimensional spatial model where Players 2 and3 have elliptical preferences.
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Figure 8: Player 1’s value function when Players 2 and 3 have elliptical preferences.
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Figure 9: Density over outcomes when Players 2 and 3 have elliptical preferences.
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