A Model of Farsighted Voting
Elizabeth Maggie Penn

October 30, 2007

Abstract

| present a new method of interpreting voter preferencestiiings where policy remains in effect until
replaced by new legislation. In such settings voters camsidt only the utility they receive from a
given policy today, but also the utility they will receiveofn policies likely to replace that policy in the
future. The model can be used to both characterize longeefierences and distributions over policy

outcomes in situations where policy is ongoing and votezdansighted.
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“[W]e're unprepared for the consequences of winning. Wivgnin court too soon could mean
losing in the court of public opinion, in Congress and undse tJnited States Constitution.”
—NMatt Coles, Director of the ACLU Lesbian and Gay Rights Bobjquoted in The New York

Times on November 12, 2004. [14]

1 Introduction

Following the 2004 elections in which eleven states passedtitutional amendments banning gay mar-
riage, gay rights groups began a concerted public efforhtmge their political strategy. The groups de-
cided to temporarily retreat from what they had previousyreed to be their most important goal: winning
the right for same-sex marriages. The reason for this mowesivaple. The groups realized that a chal-
lenge to such amendments in federal court was a risky prisposiegardless of whether the challenge was
successful or not. An unfavorable court decision wouldidisia a legal precedent that could be invoked in
future cases. A favorable court decision could easily &cagd public and legislative support for a federal
constitutional amendment banning same-sex marriagegbtitri

Political choice in the short term often involves long-teconsiderations because, as the above story
demonstrates, decisions made today can greatly affecypies tof decisions that are feasible tomorrow.
Given the importance that individuals place on long-ternbcomes, an essential step in understanding
strategic voting behavior is understanding the future equences of policy choice. These consequences
are particularly relevant when policies remain in effeatdn indefinite period of time, or are continuing.
A continuing program, as opposed to a once-and-for-all qamog is a policy that continues in effect until

it is changed by new legislatioh.When such a policy is enacted we can think of it as producingta-p

1The terms “continuing program” and “once-and-for-all pramy” are used in Baron [3].



dependent stream of future legislation, with the statusajuany given time being the extant legislation at
that time. Because of the long-term nature of these progtheysare often of particular interest to legis-
lators, activists and voters. Such programs include entights, social policy, and redistributive programs,
with specific examples being minimum wage laws, social sgchenefits, the regulation of public health
concerns such as air quality and automobile safety, anibbiilig requirements for social welfare programs.

Decisions over continuing programs frequently affect tieife choices that are available to a group;
for example, it can be politically difficult to reinstate actance it has been repealed, to lower levels of
entitiement spending, or to revoke a law concerning pulalfety. When legislators evaluate such policies
they do so with an eye toward what the policy is likely to proglwver time. There is therefore no reason
to expect that legislative bargaining over a continuinggpamn will be similar to legislative bargaining
over a once-and-for-all program. While the behavior of asletpr may depend largely on his immediate
preferences, it may also depend on how he sees today’s chwiaffecting future decisions. This tension
between short and long-term interests is my primary focus.

In this paper | develop a model of bargaining over continggnggrams in which individuals rank poli-
cies not only on the basis of the utility they yield today, bigo with respect to the types of alternatives
they will likely lead to in the future. The model differs fromuch of the bargaining literature in that the
bargaining process does not end once a policy has been agyeadas in Baron and Ferejohn [4]. Instead,
the chosen policy becomes the reversion point of the nextdafi bargaining, and remains in effect until it
is replaced by a new alternativeThe model is used to both characterize voting behavior whérituals

are farsighted and to characterize the types of policigsaicemerge when programs are continuing.

2Baron [3], Kalandrakis [12], Riboni [20], and Bernheim et B] also examine repeated bargaining games with endogenou

reversion points. These papers will be discussed in Se2tihn



The theory developed here captures several importantrésatf politics that may not be captured
in a one-shot model of bargaining. First, farsighted votes not indifferent between different policies
that provide them with the same level of utility. This is besa the space of alternatives that defeat each
policy, and that each policy defeats, are substantivefgmiht. This model demonstrates that in dynamic
environments, the space of alternatives that can and calefieat a policy may have as much impact on
individual decisionmaking as the substance of the polieglit And second, farsighted voters will take the
preferences of others into account when voting, not becalugdehavioral assumption such as altruism or
inequality aversion, but because the preferences of oti#dnmatter when passing future legislation. This
implies that changing the preferences of a single voteraliginge the strategic behavior of every other voter
in a predictable way. While both of these features hold truany dynamic game, the goal of this paper
is to not only characterize individual behavior on an eguilim path, but also to characterize farsighted
individual preferences in general. Most importanthis model calculates a general induced utility function
for each player that captures his evaluation of every palicterms of what it is likely to produce over time.

The paper begins with several general existence resultsenl apply the model to a number of stan-
dard legislative settings, including a one-dimensionatigp model, a divide-the-dollar game, and a two-
dimensional spatial model in which players have eithetancor elliptical preferences. | find that the theory
is capable of making sharp predictions in each of thesel#tiyis settings, with the predicted outcomes fre-
guently corresponding to policies that divide benefitdydietween like-minded individuals. Thus, while
the model is intended specifically to analyze individualevohoice, it could also be interpreted as a model
of endogenous party, or coalition, formation. The coali$idhat tend to emerge consist of those individuals
whose preferences are most similar, either in terms ofapdistance or intensity of preference. Further-

more, farsighted individuals tend to favor policies th&agiequitable distributions of payoffs, and frequently



vote for certain normatively “fair” alternatives over thewn ideal points. Relatedly, farsighted voters may
shy away from implementing an inefficient Condorcet winmefaivor of implementing a more efficient cy-
cle of alternatives over time; thus farsighted voters mdiingly concede utility in the short term for more
beneficial policy outcomes later on.

The paper proceeds as follows: Section 2 describes thearteted and presents the model. Section 2.1
describes the path of play in more detail and discussesceli#rature. Section 2.2 presents the notion of
a dynamically stable voting equilibrium, the equilibriumncept used in the analysis of the model. Section
3 presents several results about equilibrium existendectivastitute the main theoretical contribution of
the paper. When the policy space is finite | show that theraydvexists an equilibrium. When the policy
space is infinite then there exists an equilibrium undemgetonditions, and when the number of players
is large the equilibrium is unique. Furthermore, | dematstithat equilibrium behavior in this model is
consistent with Bayesian Markov-perfect equilibrium bgba Section 3.1 provides two analytic examples
of the model in the setting of a finite policy space, and shdxas€ondorcet winners may not arise as policy
outcomes when voters are farsighted. Section 4 discussesp#rific applications of the model in greater
detail and presents numerical results concerning thedeajigns in continuous policy spaces. Section 5

concludes.

2 The Model

There is a collection ofotersN = {1,2,...,n} and a compact set C R™ of alternatives or policies
X can be either finite or infinite. For each voiee N, preferences are represented by a real-valuity
function u; : X — R. When the set of policies is infinite | also assume that theiiey functions are

differentiable, and that their derivatives are uniformgubded by some constabit



A subsetC' C N is called acoalition of voters. Coalitions that are large enough to enact a policy
are calleddecisive or winning The collection of winning coalitions i/ . It is simply assumed that this
collection W is monotonicand proper. Monotonicity implies that ifC ¢ W andC c C’, thenC’ ¢ W,
or that adding people to a decisive coalition yields anottemisive coalition. Properness implies that if

C e W,thenN \ C ¢ W, or that any two decisive coalitions must have at least odiigtual in common.

2.1 Path of Play and Related Literature

The legislative process is modeled as a sequence of sessiahich votes on policy occur. In each round
the status quo is determined by the bargaining outcome qdréheous round. A policy to be pitted against
the status quo arises exogenously in each round. This geldryawn from a probability densit§). A vote

then occurs between this policy and the status quo. Evesr veteives a payoff from the winning policy
and this policy then becomes the status quo of the next rofibdrgaining. This process is pictured in the

figure below.

[FIGURE 1 HERE]

The probabilistic and exogenous nature of the proposalegsodistinguishes this model from Baron
[3], Kalandrakis [12], Riboni [20], and Berhneim et al. [&nd warrants a short discussion. Both Baron
and Kalandrakis analyze infinitely repeated bargaining egmmith endogenous reversion points. In these
papers a player is selected at random to make a proposaltire@aicd. The proposal is pitted against the
status quo, with the winner becoming the status quo in theroexd of bargaining. Baron looks at the case
of a unidimensional policy space, and finds that outcomeserge to the ideal point of the median voter.
Kalandrakis examines a three-player divide-the-dollangand finds that a Markov perfect equilibrium

of the game is characterized by a situation where the proposevery round proposes the entire dollar
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for himself, and this allocation is approved by a majorityptdyers. Riboni considers a similar model in
which policy changes are proposed by a strategic agenda $etto is not a member of the voting body),
and then voted upon by a committee. Bernheim et al. also densi similar model in which legislators
are recognized sequentially to make proposals and a finitgbau of proposals are made. Under weak
conditions they find a result similar in spirit to Kalandrsi&j in which the final proposer receives the entire
dollar in a divide-the-dollar setting).

The focus of these papers differs from my paper in an imporespect. While these papers are con-
cerned primarily with predicting equilibrium policy outeees and voter behavior on the path of play, the
goal of this paper is to model voter preferences @lealternatives when voters evaluate policies in terms of
what they are likely to produce over time. By separatingngttrategies from the proposal process, results
about farsighted preferences and behavior are easiereipiat. For example, in Penn [18] | endogenize
the proposal process in this model by allowing players toemakposals themselves. The results | find are
similar to those found by Kalandrakis and Bernheim et al. sTi{alandrakis’s result that a legislative dic-
tator emerges with certainty in every round is likely an efffef the particular endogenous proposal process
assumed.

The assumption of an exogenous and probabilistic processhigh future proposals are generated

reflects the notion that legislators are not certain of tHieypproposals that will be brought to the floor in the

3Also worth noting are recent papers by Battaglini and Cdaté][that examine the dynamics of taxation and public spendi

In these papers, policy-making periods are linked by endoge levels of public goods and public debt, respectively.
“Kalandrakis has different work [13] that specifically exags the importance of proposal rights in determining palithower.

He obtains the interesting result tlaaty distribution of power can be obtained by simply manipulganoposal rights in a particular
bargaining environment. The same is not true when manipglather institutional features of the bargaining gaméhsagvoting

rights.



future, but are aware of the current political climate aneehariors over the distribution of future proposals.
While “endogenous” is frequently interpreted as being meadistic than “exogenous” in any game theoretic
model, the assumption of an exogenous agenda here makesdad @asier to interpret, easier to apply to
different situations, and, | argue, more realistic. Thibésause an agenda in this setting will depend on a
number of complex factors (recognition rules, specialregeand constituency pressures, the ordering of
the legislative calendar, party control, etc.) that areobeiythe scope of this model. For example, in game-
theoretic models it is generally assumed that legislat@sandomly recognized to propose alternatives to
the floor via a particular recognition rule. This assumptyigids a very specific kind of strategic agenda-
setting process that is separate from the goal of this paféch is simply to model voter preferences in an
environment where policies are replaced by new policies tiwe.

Roberts [21] and Compte and Jehiel [9] study similar baiggiproblems with randomly generated
offers. Roberts considers a setting where policymakingigiouing and every alternative is equally likely
to be brought to the floor. Compte and Jehiel assume the barggirocess ends when a certain number of
players accept the random offer. They examine the effecatidpce, the number of players and the majority
requirement, and find that as the majority requirement as®@e more efficient outcomes are generated,
but that it also takes longer to reach agreement. They metiveeir random proposal process with the
argument that it is rare for any individual or group to havit ¢ontrol over an agenda-setting process, and
that even if a person did have full control over proposalsyduld be difficult for him to perfectly target
a collection of specific payoffs for the other players. Thispdind that simplifying the proposal process
in such a way enables them to better analyze many empirigalanties that have not been supported by
previous bargaining problems; for example, the fact thatement is frequently more difficult to obtain

when unanimous consent is required.



2.2 Dynamically stable voting equilibria

This section presents the model of farsighted voter prea® Utility functionu;(x) represents Playeis
one-shot payoff from policy whenz is enacted today. However, if Playgis farsighted then he not only
cares about his payoff from havingenacted today, but also his future payoffs from the polities will
ultimately replacer.

Let Playeri’s value functiorbe denoted;, wherev; : X — R. This function represents the discounted
sum of utility Playeri can expect to receive from having poliayenacted today, given that a stream of
policies will be enacted after. Letv = {v;};,cn be the collection of all voter value functions, with’
being the space of all value functions (so that V™). In equilibrium each voter will assign a “true” long-
term value to every policy. This means that players will vmised on their equilibrium value functions and
by voting this way they ultimately generate those same fanst

In equilibrium, value functions capture a consistency leetwbeliefs and behavior; when a player be-
haves according to such a function, the value he assignsdticy pquals the true future expected value of
that policy. When this holds fall players, then the vote strategies of players generate fahations that
generate those same vote strategies. Thus, beliefs andidretiee entirely consistent with each other. The

following equilibrium concept captures this idea.

Definition: A dynamically stable voting equilibriuis a collection of value functions;* = {v };cn, such

that for all: € N andx € X,

vi (@) = wi(w) + 6 Y [0} (y)p(v" (2), 0" () + o] () (p(v" (), v* (2)))]Qy)-

yeX

The case of an infinit& is defined analogoush.

®As the value function depends on the distribution from whichposals are drawn, 6}, v} (z) could also be written (z|Q).
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The functionu;(z) equals the utility playei receives from alternative in one period. The probability
that policy y will defeat status qua is denotedp(v(z), v(y)). This function is simply assumed to be the
probability that a winning coalition votes far over z, given that every voter knows that policy selection
will continue into the future. Thus voting decisions are madsed on voters’ value functions and not their
utility functions (i.e. voters are farsighted). The specftinctional form ofp(v(z), v(y)) can be found in
Appendix A, it is simply the probability of victory of overz.

Q is the probability mass from which alternativgegdo be pitted against the status quo are drawn. As
discussed in Section 2.@), represents the fixed beliefs that voters have over the tyf@teonatives that will
be brought to the floor in the future. These beliefs could boum over all alternatives (uninformative),
or could be generated by fixed external pressures from galliiarties, special interests, constituencies, or
simply the current political climate. Whil@ is assumed to be independent of the current statuscgao
similar model could be constructed whepds conditioned orx. This construction would not dramatically
change the analytic results of the model, but is omitted &seef expositioi. When the sef is infinite Q
is instead a density. In this cas@,is assumed to have full support, and to be differentiablg in

0 € [0,1) is a discount factor that represents players’ time prefssen When is high, voters place
greater relative weight on the future. For notational sioifyl ¢ is assumed to be common for all players,
but this assumption does not affect any of the analytic tesul

One feature of this model that differentiates it from an eyedwmus proposal model is that the probability
of victory of y overz, or p(v(x),v(y)), is averaged over all decisive coalitions. Alternativelyyen pro-

posals are endogenous the proposer does two things: hesshaosilternative to propose, and he identifies

81t would require a stronger assumption than Assumption 2deoto prove existence whexi is infinite (Proposition 2).



a particular decisive coalition to target his proposal therefore, when proposals are endogenous policy
outcomes will typically change at every round of voting @wsléhe status quo is the proposer’s ideal point.
However, in this model, because winning coalitions are ngéo uniguely determined but instead are aver-
aged over, a consequence is that universalistic, or clageitersalistic, majorities can arise given particular

policy pairings. Thus, policy will remain at more desirabtatus quos for longer, and undesirable policies
will be replaced quickly.

To summarize this section, the above model characterizestirm individual preferences in a setting
where policies are repeatedly being challenged and replageew alternatives. In a given round a tran-
sition from status qua: to new policyy is dependent upon two factors. First, poligynust be chosen to
be pitted against status quofrom density). Second, voters must choose policyver status qua, and
the probability thaty defeats: when infinitely more rounds remain is denote@(z), v(y)). The function
v;(x) represents’s discounted expected sum of utility whens enacted today, given that infinitely more
rounds of policy selection will occur. This equalg(z), ori's utility from = today, plus the discounted

expected value of what will ultimately lead to in the future.

3 Analytic results and examples

In the sections that follow, | will provide examples of dynaally stable voting equilibria in specific set-
tings. The goal of this section is to provide more generalltegbout the types of environments in which
we can expect dynamically stable voting equilibria to eaistl to be unique. Recall that an equilibrium in
this setting is a collection of value functions such thatewlndividuals vote according to these functions,
individual valuations of policies equal the true future esied values of those policies. Therefore, we are

looking for fixed points in a mapping from one value functiotoi another. Mathematically, this is different
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than a more standard game theoretic setup in which we lookxdt points in action profiles. The differ-
ence stems from the fact that while value functions (whiehrecessarily cardinal) will yield action profiles,
action profiles do not provide us with enough information iegis back cardinal valuations. Therefore,
stronger conditions are required in order to obtain eqguilih existence in this setup than in a standard game
theoretic setup.

Propositions 1, 2, and 3 all focus on the problem of equiliforiexistence. Although the voting behavior
of players is purposefully left unspecified in this modediiurdual behavior is implicit in the definition of the
functionp(v(x), v(y)), or the probability of victory of; overxz. While p is defined formally in Appendix A,
let the probability that individual (with value functionv;) votes fory overz be denoted;(v;(x), v;(y)).
The three existence results all require that this prolghie a continuous function for all individuals, or
that individuals vote probabilistically.

Many authors have invoked the assumption of probabilistitalvior on the part of voters (see [16], [22],
[1], and [10]), with the implication being that models of la@ior are incapable of perfectly predicting vote
choice, and that this reality should be incorporated intdhlculations of voters. This model is consistent
with the more game-theoretic formulation of probabilistating adopted by McKelvey and Patty [16]. As
in their setup, and opposed to some more classic models babilistic voting, the expected payoff of
casting a vote is represented correctly for each Votarother words, individuals vote with the knowledge
that other voters are also behaving probabilistically. Wsther recent work on the topic, the assumption

of probabilistic voting in this model is consistent with pustrategy equilibrium behavior in a Bayesian

"In particular, the difficulties with equilibrium existenbere are mathematically similar to difficulties in obtamiexistence in

games with continuous action spaces.
8Relatedly, McKelvey and Patty also require the size of tieetekate to be “large enough” in order to characterize thgiri-

librium.
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framework in which individuals receive privately obseryeayoff shocks for each possible action, or vote.
This formulation of probabilistic voting, and in particuléhe effect of these random payoff disturbances on
individual vote functiong;, is presented in Appendix A.

The three existence results require different and nestsdo$eonditions on individual vote functions
p;.2 Proposition 1 simply proves that when the alternative spéde finite and individuals vote probabilis-
tically, an equilibrium exists. Proposition 3 proves tHandividual vote functions are differentiable and the
derivatives are uniformly bounded layy constant, then a unique equilibrium will exist when the nemdf
players is large enough, regardless of whetkias finite or infinite. Proposition 2 proves existence whén
is infinite for any number of players, but requires that thevagive of p be bounded by a particular constant.
In Appendix A this constant is defined both generally (Asstiomp2) and more specifically for the case of

a logit agent quantal response equilibrium. All proofs @& gnopositions can be found in Appendix B.

Proposition 1 If X is finite, then there exists a dynamically stable voting laniiim whenp is continuous.

Proposition 2 If X is infinite, then there exists a dynamically stable votingildzrium when the derivative

of p is bounded by a particular constant.

Proposition 3 Whenn is large then there always exists a unique dynamically st&ljuilibrium when the

derivatives of; are uniformly bounded, regardless of whett€iis finite or infinite.

To understand why additional requirements on transitiambabilitiesp are needed to prove existence
whenX is infinite, note that the set of all functions over a finiteeatiative space is a vector space, while the

set of all functions over an infinite and compact subsé'dfis a function space. Compactness of the space

%Alternatively, as discussed in Appendix A, these assumptimn be thought of as requirements on the distributiondifiih-

uals’ privately observed random payoff disturbances.

12



of value functions is generally needed in order to find a fixethp While any closed and bounded subset
of a finite-dimensional vector space is compact, closed anhded sets of functions are rarely compact.
Proposition 2 is proved by showing that the set of value fonetis equicontinuous, and thus compact, when
a certain restriction (Assumption 2 described above) om#vative of transition probability holds.

Proposition 3 proves existence differently, by showing thiaen the total number of players is suffi-
ciently large we can construct an iterative definition of aatyically stable voting equilibrium that is a
contraction mapping. This definition (Equation 2 in AppenB)) is also used to perform the numerical
estimations that follow in Section 4, and is discussed iragmedetail in that section. Furthermore, this
definition can be easily utilized to calculate farsightedleations of policy when only a finite number of
rounds of policymaking will occur. The extension of this reotb the setting of a finite number of rounds
is discussed in Appendix B.

Last, it is important to note that under different specifmas of the functiong; a dynamically stable
voting equilibrium is equivalent to other commonly used iébium concepts. For the final proposition
and corollary of the paper | construct a gafiein which equilibrium behavior is consistent with behavior
generated by dynamically stable voting equilibria. In jgaitar, | show that when individuals vote prob-
abilistically, behavior in a dynamically stable voting didpium is equivalent to pure strategy Bayesian
Markov-perfect Nash equilibrium behavior in the constedcjame (Proposition 4). As a corollary it fol-
lows that when individuals vote deterministically, so that;(z),v;(y)) = 1if v;(y) > v;(z) and zero
otherwise, then at a dynamically stable voting equilibrittve collection of functiong; constitute a Markov-
perfect equilibrium. In both cases, thé vector represents the expected utility functions of thgeis, and
strategies as specified by the functignsare consistent with the maximization of these expectedtyutil

functions. The proofs and the constructionloére relegated to Appendix B.
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Proposition 4 If individuals vote probabilistically and payoff disturbees are admissible, then at a dy-
namically stable voting equilibriumy*, the collection of functiong; are consistent with behavior in a pure

strategy Bayesian Markov-perfect Nash equilibrium of a gdm

3.1 A One-Dimensional Example: The Federal Marriage Amendrant and Gay Rights

When the policy space is finite and small it is not difficult tdve for equilibria analytically. In this section
and the next | will present simple analytic examples of dyicafty stable voting equilibria. This first
example depicts a one-dimensional spatial model, the gedepicts a setting in which there is a majority
preference cycle over a subset of the alternative spacetingxamples | assume that discount faéter .9

and that voting is deterministic, with

1 if vit(y) > v ()

pi(vit(2), vie(y)) = § 0 if vie(y) < vie(z)

otherwise.

N[

\

To motivate this first example, consider the story presemdide introduction about the political strate-
gies of gay rights groups after the 2004 elections. Supptdhiere are three political actors in the model:
a gay rights activist (R), a defense-of-marriage actiigt &nd a neutral voter (N). Also, suppose that there
are three possible political outcomes: a court-mandatedtann of state constitutional amendments ban-
ning gay marriage (“court mandate,” for short), legaliaatof civil unions and benefits for same-sex partners
(“civil unions”), and a federal constitutional amendmeanhhing gay marriage (“marriage amendment”).

Last, assume that the “marriage amendment” outcome isrilyrigeing strongly forwarded by special
interests, and is three times more likely to arise as a pgitoposal than the other two policy alternatives.

Thus,Q(Marriage amendmeht= % and@(Civil unions) = Q(Court mandatg= %
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The following figure depicts the hypothetical spatial lo@atof the ideal points of the three players and

the locations of the three policies.

Gay rights activist (R) Neutral voter (N) Defense-of-mage activist (D)
* 4 I 4 |
Court mandate  Civil unions Marriage amendment

The above figure generates the following two tables, whickvghe utility functions of the three players and

the sum of expected utility each policy yields in the longreat a dynamically stable voting equilibrium.

One-shot Utility Farsighted (Equilibrium) Valuations
, Court Civil Marriag , Court Civil (Marriag
i | ui(mandate | “i(uniond | ui( amend. i | vi(mandaté | vi(union amende)
R 1 3 1 R 4.512 4.565 3.478
1 3 3
N : 3 3 N| 7195 75 75
D 0 : 3 D 5.488 5.435 6.522

The following table summarizes the above information byictem individuals’ rankings over the alterna-
tives when individuals are both myopic and farsighted. #yer: strictly prefers policyz to policy y, it is

written z > y. If Playeri is indifferent between the two, it is written~ .
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Individuals’ Rankings of Alternatives

i One-shot rankings Farsighted rankings
Gay rights Court Civil o Marriage Civil o Court Marriage
activist (R) mandate™ unions” amendment| unions” mandate” amendment
Neutral Civil _ Marriage Court | Civil _ Marriage Court
voter (N) unions™ amendment” mandate| unions™ amendment™ mandate
Defense-of-marriage  Marriage Civil Court Marriage Court Civil
activist (D) amendment” unions” mandate| amendment mandate™ unions

As is consistent with a traditional spatial model, the rawoter is always indifferent between legalized
civil unions and a constitutional marriage amendment, anckly prefers both of these policies to a court
mandate legalizing gay marriage. However, the gay rightigsisic with ideal point “court mandate,” will
strictly prefer to implement “civil unions” rather than hisvn ideal point when he is farsighted. This is
because when “marriage amendment” is more politicallyegélihan the other two policies (i.e. is brought
to the voters’ attention more often by densipy the policy that makes the gay rights activist best off over
time is not his ideal point, but the policy closest to his ideaint that can defeat a constitutional marriage
amendment. Thus, it is in the activist's best interest tacedie some utility in the current round in order to
prevent his least favorite policy from being quickly implented. Finally, the defense-of-marriage activist
strictly prefers “court mandate” to “civil unions” when hefarsighted, even though “civil unions” is closer
to his ideal point. Loosely speaking, this is because atrtcomandate” there is a 60 percent chance of
transitioning to “marriage amendment,” the defense-offrage activist's favorite policy, while at “civil
unions” this chance drops to 30 percent.

The purpose of this example is to demonstrate several kéyrésaof this model. First, all three players

16



care both about the policy chosen today and about the typpsliafes that will replace it in the future.
Second, farsightedness requires taking into accountutistial particularities at any given time. In this
example this is reflected in the exogenduiterm, which captures the fact that there is currently carsiole
pressure from interest groups to enact gay marriage bahe &deral level. And third, farsightedness also
requires taking into account the preferences of otheripaliactors. In the absence of a defense-of-marriage
activist, the gay rights activist would have pursued a diifi political strategy. While this example is
obviously highly stylized, it provides a clear picture ofvhthis model works, and demonstrates that the
predictions that this model yields are often quite intetiv

A final point to note is that the “farsighted preferences” agived of in this model are only farsighted
with respect to the current political climate, @rterm. In this sense, the model predicts short-term behavior
when individuals care about policy in the long run. In thisuewple a strategic gay rights activist will not
challenge state-level bans of gay marriage in the federatgiven the current political climateClearly
the political climate will change over time, and these clegill necessarily change the predictions of the

model.

3.2 A Condorcet Winner-Turned-Loser

In this next example there are three voters and four alter®gtX = {c,z,y, z}, with one alternativey,
being a Condorcet winner. The other three alternatives Bomajority preference cycle, with - y, y > z,
andz > z. The Condorcet winner gives each voter a one-shot payoff wffle the expected value of an
alternative in the majority preference cycle is 3. Thus,levkivery player is better off cycling through the
alternativesr, y, z than remaining at Condorcet winnerc always gives two players strictly greater utility

in the short term than they would receive at any other polidye following tables present players’ utility
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functions and their farsighted valuations whgs uniform over all alternatives (i.e. when every alterviati

is equally likely to be brought to the floor for a vote).

One-shot Utility Farsighted (Equilibrium) Valuations
i | uile) | uie) | ui(y) | ui(2) i ovile) | wile) | owily) | vi(?)
1 2 8 1 0 1| 28.7097| 39.0463| 30.109 | 20.8447
2 2 1 0 8 2| 28.7097| 30.109 | 20.8447| 39.0463
3 2 0 8 1 3| 28.7097| 20.8447| 39.0463| 30.109

The following table depicts individuals’ rankings over tileernatives when individuals are both shortsighted
and farsighted. As in the previous example, a preferenaarsaloccurs. This reversal changes Condorcet
winnerc into a Condorceloserin farsighted valuations, or a policy that is majority-cetkd by every other

policy.10

Individuals’ Rankings of Alternatives

1 | One-shot rankings Farsighted rankings

1| z>c>y»>=z2 T=Yy=crz
2 zZ=Cc-x >y Z-xT>=c>y
3 Yy—Cc=z- Y=z=cHx

The logic behind why the preference reversal occurs takesteps to reveal. First note that in the short run
Player 1 prefers to g, but in the long run this preference is reversed. Howevandy both lead to similar

payoffs in the subsequent round for Player 1: since eveeyradtive beats when voters are farsighted, the

10Roberts [21] provides an interesting refinement of Condasteners to intertemporal settings that captures thosieipslthat
can also defeat cycles of alternatives. This example wardsigely because the Condorcet winner here does not sRiidfgrts’s

stronger criterion of being a “generalized Condorcet wirine
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expected payoff to Player 1 in a round following the impletaéion ofc is %(2 +8+1+4+0) = 1741 Player

1's expected payoff aftey is implemented is the samg:is only defeated by, and so Player 1's expected
payoff in the round following implementation gfis £(8) + 2(1) = 1. However,c andy lead to different
expected payoffs for Player 1 two rounds out. Whjlandc both lead to an expected payoff élf in a
subsequent roung,leads to an expected payoff %ZI two rounds out, while leads to an expected payoff of

% two rounds out! Thus, while equilibrium evaluations in this framework aaptexpected payoffs for an
infinite stream of future policies, the intuition behind wneference reversals occur can be seen in settings
with a finite (and even small) number of periods.

This example demonstrates that, when voters are farsighitcbmes will not necessarily coincide with
many commonly known tournament solution concepts inclgidive uncovered set, minimal covering set,
tournament equilibrium set, Banks set, largest consigefjtand von Neumann-Morgenstern stable set, as
all of these sets reduce to the core, if one exists the spatial settings considered in the following segtion
outcomes do appear to coincide with elements of the von Nenfvorgenstern stable set. However, this
observation cannot be extended to a general preferena®emént. The relevant issue is that cardinality of
preferences matters in this setting, whereas tournamérttasoconcepts only require ordinal preferences.
This same issue distinguishes this model from sophisticatting (the standard definition of which is pre-

sented in [24]), which is defined solely with respect to oatlpreferences. Sophisticated voting will always

To see the logic of this, lej be implemented today, at= 0. Tomorrow att = 1 y will lead to eitherz (with probability%)
or y (with probability%), for an expected payoff to Player 1 @f Att = 2 thereis ai chance we will have been atatt = 1,
which will lead tox with probability 2 and z with probability 1, for an expected payoff o&. Similarly, there is & chance we
will have been ay in the previous round, for an expected payoft at 2 of % Thus the expected payoff at= 2 wheny was

implemented at = 0is 1 (2}) + 3(11) = 2T

12These six sets are defined in [17], [11], [23], [2], [8], an8][Zespectively.
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yield a Condorcet winner as the unigue voting outcome, if addocet winner exists. Here a Condorcet
winner exists, but it is chosen with probability zero as anildzrium policy outcome.

More generally, this example of a Condorcet winner-turtosg+ provides a good basis of comparison
between this model and the standard sophisticated voting $eat is frequently used to analyze forward-
looking behavior in legislative settings. Sophisticateding describes strategic voting behavior over a
finite, predetermined sequence of alternatives. As in thidet) sophisticated voters may seemingly exhibit
“preference reversals,” in that they may vote in favor oémdatives that give them lower utility in order
to beneficially affect the future path of play. However, undephisticated voting, voters do not actually
concede anything; individuals may vote against policias they like, but only because they know that what
they like cannot win. In this model, farsighted voters maketahort term losses in order to detterin

expectation than they could have in a one-shot g&me.

4 Numerical examples in two-dimensional spaces

What follows is a look at several numerical estimations @ thodel in settings where the policy space
is two-dimensional. The first setting is that of a three-plagonstant sum game and the second setting is
that of a three-player spatial model where players haveeopveferences. The graphs that follow depict

both the equilibrium value functions of one of the playerd #me equilibrium distribution over observed

3This model also considers a different agenda framework theammendment agendas considered under sophisticated.voti
Not only is the proposal process in this model probabiljdbiet agendas move “forward” in that the status quo is replate
every round of voting. The standard sophisticated votirnigpseonsiders agendas as fixed orderings of alternativéis,palicies
sequentially eliminated through a planned series of pagwotes. These agendas are commonly voted on “backwatt,avixed

status quo considered last.
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outcomes? In all of the estimations it is assumed that voting is via migjarule and that players vote
deterministically, as in the previous section. It is alseumsed that every player has the same discount
factor, § = 0.9, and thatQ is uniform over the policy spacel) was chosen to be uniform simply as a

baseline.

4.1 Three players divide a dollar

[FIGURE 2 HERH]

Figure 2 is a graph of Player 1's value function. The setting three-player divide-the-dollar game; the
policy space equals the set of all divisions of the dollamieein three people and a player’s utility from a
particular policy equals the amount of money he is allocégdhat policy. The policy space is pictured,

and Player 1’s ideal point (the poliay= (1,0, 0)) is at the top of the simplex. The bottom of the simplex
denotes those policies that give Player 1 no portion of tHeidoThe darkest areas correspond to the
policies that yield the highest values for Player 1, and itjetést areas denote the policies that yield the

lowest values.

¥The estimations were run by discretizing the policy spate approximately nine hundred policies (for Example 1) oo tw
hundred and sixty policies (Example 2) and then iteratirgrttapping defined in Equation 2 of Appendix B until it converge
numerically to a dynamically stable voting equilibrium. ellerations were performed by letting = {u;}:c~y and defining
ver1 = g(ve) for ¢ > 0. Convergence was obtained in every example for a sup nor@0af Once the equilibrium value function
was found, the equilibrium distribution over outcomes wasd by first drawing two policies from densify, pitting them against
each other (assuming that voters vote according to theililedum value functions), pitting the winner against a npalicy drawn
from Q), pitting thiswinner against a new policy drawn frof, and so on. This process was repeated 200,000 times. Thefrey

with which each policy arose as an outcome generated theaittidistribution over observed outcomes.
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It is apparent that the policies that Player 1 values moshataear Player 1's ideal point, but rather
those that divide the dollar about equally between himsedf @ane other player, o, 1,0) and (3,0, 3).
The intuition for this is simple. Suppose that the statusppiiy in a given round is Player 1's ideal point,
(1,0,0). Then whichever policy is chosen to be pitted against thestguo in the next round will win with
near certainty, because every policy weakly defeats Plagddeal point. Conversely, the poi(‘%, %, 0),
as an example, is more stable and less likely to be defeatednieyv policy. This is why Player 1lgast

favorite policy is at(0, %, %). Not only does Player 1 get a payoff of zero from this poliayt iv is also a

relatively stable outcome, unlikely to be replaced quickly
[FIGURE 3 HERE]

Figure 3 depicts the density over observed policy outcoriiée. darkest areas correspond to the most
frequently observed policies. In this example only a smaltiset of the total policy space is ever observed
with positive probability. The observed policies appeaconstitute a majority-rule core with respect to
players’ equilibrium value functions. Figure 2 demongsathis—since the setting is symmetric, it is clear
that each of Player 1's most-preferred policies is also tlstrpreferred policy of another player. This
example demonstrates that the assumption of farsightedyiess us sharp predictions in this divide-the-
dollar game. It predicts outcomes corresponding to thefgablies that divide the dollar evenly between

all members of a minimal winning coalition. In this examplee likelihood of a policy defeating a status

quo such ag1, 1,0) is approximately 1%.
In social choice theory this set of predicted policies ienefd to as theon Neumann-Morgenstern
stable sefor simplystable sét and is defined by the nice property that no element in thetgetly defeats

any other element in the set and that any policy outside this stictly defeated by an element of the &t.

These two conditions are termidernal andexternal stability respectively.
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Itis interesting to note that the predictions generatechisymodel wher) is uniform closely coincide with
elements of the von Neumann-Morgenstern stable salt iof the spatial settings considered. However, as
Section 3.2 demonstrates, this is not true in general.

Itis also interesting to compare this example with a stasthdae-shot bargaining model in which players
are recognized with equal probability to propose allocetiof the dollar and if an allocation is approved
by a majority of voters, it goes into effect. In the one-shatda proposals are made optimally with regard
to future optimal behavior by players (in the event that gopeal is rejected). Baron and Ferejohn [4]
demonstrate that the only stationary subgame-perfeclileduin of the one-shot model is for the proposer to
give himself% of the dollar and to givé‘;—1 other playeré;b each. In both models, only a bare majority
of players receive a positive share of the dollar. In Baroth Berejohn’s model, members of the winning
coalition receive different allocations of the dollar degeg on whether or not they were the proposer. Here

members of the winning coalition divide the dollar equallgang themselves, as proposals are exogenous.

Of course, ex ante outcomes in the one-shot model and thiglraoelthe same in expectation.

4.2  An asymmetric two-dimensional spatial model

This last series of pictures depicts a two-dimensionaligpatodel, where the ideal points of the three
players are no longer symmetric but are Iocate@)a%), (0,0), and(1,0). The policy space is bounded by
the lines connecting the ideal points of the three playRiBirst, preferences are assumed to be circular so
that players are indifferent between all policies equaistfrom their ideal points. This implies that each
issue dimension matters equally to each player. Then wecaiikider the case where two of the three

players care more about one issue dimension than the other.

8When preferences are circular, this policy space corralptmthe Pareto set. When preferences are elliptical, dginext

example, the policy space subsumes the Pareto set.
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Figure 4 depicts the spatial location of the ideal pointdhefthree players and their indifference curves
when preferences are circular. Figure 5 depicts the eqiuilibvalue function of Player 1, whose ideal point
is located at(0, %). Again, the darker areas correspond to the policies thatePlh values most highly.
Figure 6 depicts the frequency with which each policy is oles@ as an outcome, with the most frequent

outcomes being darker in color than the less frequent ones.
[FIGURE 4 HERE]
[FIGURE 5 HERE]
[FIGURE 6 HERE]

In Figure 5 we can see that Player 1's highest-valued aligens close to the poinf0, .25). Although
not pictured, the equilibrium “highest-valued” policieERiayers 2 and 3 arg03, .03) and(.94, 0), respec-
tively. Farsightedness induces Players 1 and 3 to prefarig®lthat may spark the formation of a coalition
between themselves and Player 2, the most moderate plaigeneFs shows that the most observed out-
come is approximatel{0, .22), close to the alternative in the stable set correspondimgctialition between
Players 1 and 2, the two players whose ideal points are ¢laseach other. In this example the stable set

consists of the point§(0, .19), (.28, .36), (.19,0)}, approximately.

[FIGURE 7 HERH]

In the last example the preferences of Players 2 and 3 are lfiptical rather than circular, and are defined

by the equation

wi(21,22) = —+/(ri1 — 21)2 + 100(riz — 29)2,
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wherer; = (r;1, 52) is the ideal point of playei. Thus, Players 2 and 3 value the second/jatimension of
the policy space ten times more highly than the first. Theapesices of Player 1 have remained unchanged.
Figure 7 shows the ideal points of the three players anditidifference curves. The dotted curve represents

the contract curve of Players 1 and 3, and is the upper boutied®areto set.
[FIGURE 8 HERE]
[FIGURE 9 HERE]

Interestingly, even though Player 1's utility function letsame as in the previous example, his equi-
librium value function is quite different than both his itilfunction and his value function in the previous
example, when the preferences of the other two players vilendar. Figure 8 shows that Player 1's most-
preferred alternatives now lie close to the origin, the ligeant of Player 2. The reason for this is similar
to the intuition behind the example given in Section 3.1. & the indifference curves of Players 2 and
3 both favor policies that lie close to theaxis, Player 1 knows that implementing a policy that appéal
him along they-dimension is a lost cause. This is because the p(ﬁLna}), Player 1's ideal point, is the
alternative inX that isfarthestfrom thez-axis. Thus, he is willing to concede a great deal of utiliiyna
the second dimension of the policy space in order to colluitle Rlayer 2 along the first dimension.

The stable set in this example approximately eqdéls4, .03), (0,.01), (.09,0)}. Figure 9 shows that
there exists a single alternative(9,.02), that arises with near certainty. This alternative is cltuséhe
alternative in the stable set corresponding to a coaliteiwben Players 2 and 3. As in the previous example,
this prediction corresponds to the most efficient elememhefstable set; it is the element of the stable set

that maximizes the sum of the players’ utilities.
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5 Conclusion

Societies frequently make decisions that will persist thi future. Indeed, it is not a stretch to argue that
most policies that people care about are of this form, witAngxes being social policies, entitlements,
budgets, and redistributive policies. This paper arguas ttiere is no reason to expect that preferences
over these “continuing” policies will be similar to prefaes over “once-and-for-all” policies. This is
because, when evaluating continuing policies, individwansider not only their payoffs from the policies
themselves, but also from what the policies will lead to ia fhture. | show that when preferences are
considered in this way surprising outcomes can emerge grakstandard legislative settings. For example,
| demonstrate that a policy that is a Condorcet winner in ash game is selected with probability zero
as a policy outcome when voters are farsighted.

One implication of the model is that its predictions can dghaght into the sorts of coalitions that may
form in settings where policy is implemented over many raunhile the existence of stable coalitions is
undeniably central to political life, such coalitions camdifficult to understand from a theoretical perspec-
tive. This type of dynamic environment is perhaps one of tbhstmatural in which to think of the formation
of alliances, and this paper formalizes a common argumenifiy stability can arise and persist in the
real world. In the theory presented here, individuals atersthe trade off between the immediate value of
a policy and the long-run stability of the coalition implemtieg that policy. Ultimately, this consideration
leads to the recognition that policies that fairly dividenbgits between members of a winning coalition leave
individual players best off in the long run. The cooperatibat emerges in this model does not rely on any
threat of punishment other than the fact that current psician be replaced by new alternatives.

The theory can also be interpreted as providing an exptam#br why particular coalitions are more

likely to form than others. Both the analytic and numericehraples demonstrate that farsighted voters
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will frequently vote for policies that do not necessarilygthem the highest one-shot payoff. The favorite
policies of a farsighted voter will depend on a combinatibhie own preferences, the preferences of other
voters, the voting power of other voters, and the likelihaoth which certain policies will be brought to the
floor. Thus, the model provides a nuanced characterizafieoter considerations that encompasses many
different elements of the institutional environment. Ka@lrovides a characterization of voting behavior
that is estimable because the model yields distributiorediptions.

While the model presented in this paper is purely formal,thiery is applicable to a variety of real-
world legislative settings, as it utilizes only weak asstions about the number of voters, their preferences,
their respective voting weights, the majority requirememtd the policy space. However, the predictive
power of the model will depend largely on the functional fasfrthe proposal proces3. This process can
be thought of as representing the likelihood with which ipatar policies will be considered by the group
in the future. Estimating these likelihoods in real-wortliations may provide insight into the prospective
voting behavior of legislators, with the implication beitttat the perceived distribution of future policy

considerations may be an omitted variable in some empimcalels of legislative voting.

Appendix A: Assumptions on individual vote choice

Throughout, | assume that for ally € X, p(v(z),v(y)), or the probability of transitioning from status quo
x to policy y, given thatr andy are put to a vote, can be written as the probability of victmiry over z:

p(v(z),v(y)) = Z Hpi(vi(w)7vi(y)) H(l = pi(vi(z),vi(y))) 1)

CeW ieC igC

wherep; (v;(x),vi(y)) € [0, 1] represents Player i's probability of voting fgrover z given value function

v. It is assumed that; is independent op; for all i, j € N, thatp;(vi(z),vi(y)) + pi(vi(y), vi(x)) = 1,
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and thatp; is increasing in; (y) — v;(z).

While the general model defined in Section 2 does not requiyeadditional assumptions on the func-
tionsp; (v;(x), v;(y)), imposing more structure on these functions enables ustéinotesults about equilib-
rium existence (Propositions 1, 2, and 3), and about wheililedum behavior is Markov-perfect (Propo-
sition 4). In particular, the two natural specifications mdiividual vote choice | consider are deterministic
behavior and probabilistic behavior. These two specificatiare discussed and defined below. Determinis-
tic voting simply assumes that individuals vote fpoverx if the long-run payoff of having; implemented

today is at least as high as the long-run payoff of havirigplemented today.

Definition: Individuals votedeterministicallyif p;(v;(z),v;(y)) = 1 if v;(y) > v;(x) and zero otherwise.

Probabilistic voting assumes that, at each round of voagh individual receives an unobserved payoff
disturbancef,,, from casting a vote for policy € X. As is standard in models of probabilistic voting,
thesed;, terms are assumed to be independently and identicallyiliit#d across all policies, votersi,
and, implicitly, rounds of voting. Furthermore, the distriion of §;, has full support and a cumulative
distribution functionF that is twice continuously differentiable. If the payoffstlirbances satisfy all of
these properties, they are ternahissible
Assuming this payoff structure implies the following defiiom of probabilistic voting, which will be

shown in Proposition 4 to be consistent with an assumptiahitidividuals play Markovian pure strategy

Bayesian Nash equilibri¥.

See [15] and [16] for a more thorough presentation of prdissisivoting and agent quantal response equilibria.
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Definition: Individuals voteF'-probabilistically (or simply, probabilistically) if, if for all i € N,

pi(vi(x),vi(y)) = Pre[vi(y) + 0y > vi(x) + Oiz].

As discussed in Section 3, each of the following three emésaesults requires that individuals vote prob-
abilistically. Proposition 3 also requires that for alp;(v;(z), v;(y)) be differentiable in both of its argu-

ments, and that these derivatives be uniformly bounded. Progosition 2 additionally requires that these
derivatives be uniformly bounded by a specific constant.s€he/o additional assumptions are formalized

and discussed below.
Assumption 1 \%pj(vj(x),vj(y))] < K, for someK € R;.

With respect to the assumption of probabilistic voting arssémption 1, note that it is always possible to
approximate a discontinuous function with such a contisyalifferentiable one. These assumptions are
substantively weak and, furthermore, they are not necgdsasrder to demonstrate that an equilibrium
exists in specific settings. In the estimations and anagxamples presented, equilibria are shown to exist
even when individuals vote deterministically. Assumpt&owever, imposes a real restriction on individ-
ual behavior because it limits how responsive voting denssican be to payoffs. In the definition of this

assumption, let = max wu;(x), and letu = min u;(z).
2EX,jEN vEX,jEN

(115)2

onlu—ul

Assumption 2 \%pj(vj(x),vj(y))] < forall j € N.

First, note that the bound defined by this condition is venyseovative. Existence may be obtained in far
less restrictive environments. And second, while this miggion may seem strange, it can be interpreted

in the context of standard models of probabilistic voting.the standard example of a logit agent quantal

eMvi(y)

response equilibrium in which; (v;(x),v;(y)) = YR e o]

for someX > 0, this assumption will
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impose a restriction on for a fixedn and onn for a fixed \.'® More specifically, in the case of majority

rule and assuming that (x) € [0,1] for alli € N andz € X, it will hold whenever

4(1 —6)2

A<
AS TS

Since the right hand side of this equation is always positivellows that for any fixed number of players

there will always exist a positivé that guarantees equilibrium existence.

Appendix B: Analytic results

For the first three propositions we will define a functipthat maps value functions into value functions, or

g: V" — V" with g = {g; }ieny andg; : V" — V. Specifically,

gi(v(x)) = ui(zx) + 6 / vi(y)p(v(z), v(y)) + vi(x)(1 = p(v(z),v(y)))Q(y)dy, ()
yeX
with the case of a finiteX defined similarly. It is useful to note that this functigncan also be used

to consider farsighted voting when there are only a finite Ineinof periods of policymaking. Let, =
{u; }ien and iteratively define,1 = g(v), t > 0. Thenv;(z) captures Playet's valuation of policyz

given thatt rounds of policymaking will occur after is implemented.

Proposition 1If X is finite, then there exists a dynamically stable voting Eopitim when individuals vote

probabilistically.

18A logit AQRE assumes that thé, follow a type one extreme value distribution.
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Proof: Sinced < 1 anduw; is real-valued for ali € N, the upper bound any individual’'s value func-
tion could take is;1s gfg(cui(a:), and the lower bound is zero. Thus, for everye []..yR¥, v €
[Lien 0, 155 max u; ()], and so the set of value functions is bounded. Furthermioeesdt of value func-
tions is convex, since the convex combination of two bounfdedtions takingX to R is itself bounded.
Last, the set of value functions is closed, trivially. Itlals that the set of value functions takidginto the
real number® is a nonempty, closed, bounded and convex subset of a fiimiteadional vector spac®~.
The mapping : [[,cn RX — [Lcn RX (see Equation 2) is single-valued by definition, and is con-
tinuous by the continuity of every;(v;(z),v;(y)). By Brouwer’s Fixed Point Theorem, there exists a

v € [Lien RX such thaty(v) = v. Thus, there exists a dynamically stable voting equilitoriid

When policy spaceX is infinite Assumption 2 is needed in order to guarantee ext®, along with a

definition and a lemma.

Definition: A set of real-valued function¥* C V is equicontinuousf for all ¢ > 0, there exists @ > 0
such that

p(s,t) < dandv; € V* = |vi(s) —vi(t)] < e.

To prove Proposition 2, we are concerned in particular witeeaB}, C V" of vectors of differen-
tiable functions takingX to R whose derivatives are uniformly bounded by the consfdnt This set is
equicontinuous; lef\/ be a bound for the derivatives of the functionsAg;,, and recall that fow € V",

p(v(s),v(t)) = max lvi(s) — vi(t)|]. Forana € X andJ equal to the dimensionality of the policy space,
[4S]

35; |. Then, by an extension of the Mean Value Theore(s, ) < § implies that

let |V =
[Vvi(a)] = max|5
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p(v(s),v(t)) = max|yv;(a)|p(s,t) < M4, for somex on the line segment betwesrand¢. Thus, given

e > 0, the choice) = ¢/(M + 1) demonstrates thdt,,, and thus5’},, is equicontinuous.

Lemma 1 If Assumption 2 holds, then the functigrmaps a closed, bounded, and equicontinuous subset

of V" into itself.

Proof: Defineg as in Equation 2. Boundedness is attained becausd. Let B}, be the set of vectors of
differentiable functions whose derivatives are uniforinunded by the constantf. The set3}, is closed.
I will show that there exists ai/ € R such that forany € V", if v € B};, theng(v) € B},. By Equation

2 we know that for alk,

9(vi(2)) = ui(x) + 5/ vi(y)p(v(x), v(y)) + vi(z)(1 = p(e(z),v(y)))Q(y)dy

yeX

and thus,

[Vg(vi(x))] < IVUz($)|+5|Vvi($)I(1—/ p(u(z),v(y))Q(y)dy)

yeX

. / _(00) = u @) ploa). o) Q)i @3)

where, letting/ equal the dimensionality of the policy space and lettirige any function ofc, |V f(x)| =

max |aaf—g)|. From the definition op(v(x), v(y)) we get
JE

[Vp(v(z),v(y))| <

> [ S Vullgospitute) o) TT pse). o) [L0- b))

CeWw - ieC ]EC\{} JjécC
(> IVuila )pz vi(@),viy)) [ pilvs (@ ) T (= pitvi(@),0;(9))]
i¢C jec jgCUi
= > |[Vuie )pz(vz( 2),vi () Zi({p; (w3 (), 05 (1) }jemiiy) )
i€EN
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where, lettingCM equal the set of minimal winning coalitions thas in,

Zi({pi(w; @), v; ) ey = Y. [ piwi@),vi@) [T = pi(v(@),v;))). (5)

cecM jeC\{i} Jj€C

Zi({p;(vj(w),v;(y))}jen\(i}) represents the probability that Playiér vote is pivotal given that all other

players; vote according to the functions(v;(x),v;(y)). Moving back to Equation 3, it follows that

Vg(vi(z))] < [Vui(z)]

©8Vui(e)l(1 - / p(0(z), v(1)))Qv)dy

yeX

+ 8 (ily) —vile) Y V0 ()] o i (o (), ok (y)) 2k ({Pj (05 (2), 05 (Y)) }jen\ (13 ) Q(Y)dy

yeX kEN 6U]g($)
LetU = max |Vu;(x)|. U is assumed to be bounded. LBt= max |v;(x) — v;(y)|, which is
JEN,xzeX JEN,x,ye X
bounded by the assumption that< 1 and X is compact. Letk = m%]%pj(vj(x),vj(y))\. Last,
Je
assume that(x) € B}, orthatM = max |Vv;(x)]. Using the fact that Equation 5 is bounded between
JeN,xe

zero and one, we now get that

IVg(vi(z))| < B+0M + 0% N+ K BxM.

It follows that if v € BY,, theng(v) € B}, if
B+0M+ 6« N*xKx*xBxM< M,

or

1-9¢
< —
K_(S*n*B (6)
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As B = % Equation 6 is exactly equal to Assumption 2. It follows tHassumption 2 holds, thep

maps a closed, bounded and equicontinuous sub3é&t ofto itself. O

Proposition 2 If X is infinite, then there exists a dynamically stable votingiltgrium when Assumption
2 holds.
Proof: The Heine-Borel Theorem in a function space tells us thabaeiw* C V is compact if and only if
itis closed, bounded, and equicontinudid.emma 1 proves that the set of value functions can be restrict
to the compact sdf},. Since the functio : B}, — B}, is continuous, we need only convexity of the set
of value functions to prove that there exists an equilibrivatue function.

Take the convex combination of any two value functiansy € BY,, so that for anyy € [0, 1], yv(z) +
(I1—y)w(z) = z(x). Clearlyz is continuous, since andw are continuous. Furthermorejs differentiable,
and the derivative of is bounded by the constaif. It follows thatz € Bj;, and thatB3}; is convex. By

Brouwer’s Fixed Point Theorem, there exists such thaty(v) = v. O

Proposition 31f Assumption 1 holds and is large then there always existsigiqueequilibrium, regardless
of whetherX is finite or infinite.
Proof: The proof is specifically for the case wheXeis infinite; the finite case can be proved similarly. For

w,z € V", let p(w;, z;) = max |w;(x) — z(x)
reX

, and letp(w, z) = max p(wj, z;). We must show that for
(S

anyw, z € V", p(g(w), g(z)) < p(w, z), or thatg is a contraction mapping.

As in Equation 2, ley; : V" — V. Thus,g = (¢1,...,9n). First consider the gradient vectdtg;. For all

1%This theorem is a direct consequence of the Arzela-Ascaofém. See [19, p. 217].
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re X,

9i(v(@)) = ui(z) + 6 / vi(y)p(v(z), v(y)) + vi(z)(1 = p(u(z),v(y)))Q(y)dy.

yeX

Thus, the components & g;(v(z)) can be defined using the partial derivatives

0gi(v()) _ iy 220, ()
el <ot — [ (el ow)Qd +6 [ ) = o) LG Q) ()

yeX yeX

and for allj € N\ {i},

0gi(v(z)) _ / (vi(y) _Ui(x))MQ(y)dy. (8)

ovj(x) o0vj(x)

yeX

Using Equation 1 we get that for alle IV,

op(v(z),v Opi(vi(x), v;
o 8<w>($)<y>> _ opi( 8;();0 WD) .y 03 (). 03 ()} yemgay) ©)

whereZ;(-) is defined as in Equation 5. Recall tha{{p; (v;(z),v;(y))};en\(i}) represents the probability
that Player’s vote is pivotal given that all other playejs/ote according to the functions; (v;(z), v;(y)).
McKelvey and Patty ([16], Lemma 1) prove that when peopleywbbabilistically (i.e when for all € N,

and allz,y € X, pj(vj(z),v(y)) € (0,1)), all pivot probabilitiesZ;(-) — 0 asn gets large.

Combining Equations 8 and 9, we get for gk N \ {i}
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0gi(v(x Ipj(vj (), v;(y
2l =5 [ (000 = i) P 7 (o) ) e ) QU
yeX
By Assumption 1 we know that for ajl € N andz,y € X, w is bounded by some constant.

We also know that the difference; (y) —v;(x)| is bounded by a constant, sinte< 1 and utility is bounded.

SinceZ;(-) — 0 asn — oo, it follows that for anye > 0 there exists ad/ € N such that for all > M,

dgi(v(x))
dvj(z)

< €.

Using Equation 7, by the same logic it follows that for any 0 there exists ar/ € N such that for all

n> M,

9gi(v(x))

v (x) <91 - /yeX p(v(z),v(y)Q(y)dy] + €.

Define|Vg(v)| such that

%)

|[Vg(v)] = max <max 90;(2)

{ijreN \ zeX

Sinced[1 — [,

yex P(v(@),v(y))Q(y)dy] € (0,1) forall § < 1, it follows that forrn sufficiently large (i.e.¢

sufficiently small),

Vg(v)| < 1.

By the Mean Value Theorem we know that

p(g(w), g(2)) < p(w, z)|Vg(v)|

for somev on the line segment betweemandz. Since, for anyw € V™", [Vg(v)| < 1 for n sufficiently

large, it follows that
p(g9(w), 9(2)) < p(w, 2).
Thus, there exists al/ € N such that for all > M, the functiong is a contraction mappingd.]
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The final proposition and corollary show that we can constaugame][’, such that behavior in a dynami-
cally stable voting equilibrium is consistent with Bayesharkov-perfect Nash equilibrium behaviorlin

Definel” as follows:

e Thereis acollection gblayers N = {0, ..., n}, with Player 0 assumed to be nature and the remaining

players being voters.

e There is a collection dftates S = X x X, with generic element. At a given timet, st = (2%, y%) €

S can be interpreted asstéatus quo policy:’ and aproposal ¢, to be pitted against the status quo.

e Aplayer'stypeis denoted; = (6;,,0;,), with§ = {0;};_,. Letw = (s, 0) be atype profile For each
i >0,let®;, = R? and® = x?_,0,. Let F denote the twice-continuously differentiable cumulative
distribution function of a probability distribution possing full support or®; and ' = F™ denote

the cumulative distribution function of the resulting pootl measure o®.

e A history at timet is a sequence of type profiles and actiolis= {w°, a',w?, ...,w! 1 ot~ Wi},
Let H! denote the set of all possible histories at titrendH denote the set of all possible histories.
Note that the histories are from the voters’ perspectivethaoh? = {w°}. Below, the true initial
history, h = (), is used only for the consideration of Nature’s determaratif the initial type profile,

WP,

e At each timet each playei > 0 knows historyh! and hasaction spaced!(h') = {0,1}. An action
at(h') = 1is a vote by playei for y* overx’. Att =0, A3(0)) = X x X x ©. Att > 0 Player 0 has
action spaced) ({n71}) = X x ©, wherea), = (v, 6"). Leta!(h!) be a profile of the actions taken

at timet.
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e Each playeri > 0 is represented by an information structufg, which is a partition ofH such that
any element of/;, I;, contains histories of exactly one length. Denoting thesstibfZ; containing
histories of any lengti by Z! and denoting the type of playeéin periodt following history i by 9?,
the information structure is assumed to satisfy the follmviondition. For any two historigs and

ht, ht andh? are in the same element &f if and only if

1. b=t =Rt

In words, players are assumed to observe all past actiontypagrofiles, the current state, and their
own current type, but not other players’ current types. @\bat the assumption that players observe
each others’ past types is unimportant, as | will be exargienuilibrium strategies that do not depend

upon any players’ past types.)

e A strategyfor playeri is a mapping from information sets into the space of proighdistributions
over actions, denotedl’ : H! — A(AL(h;)) fori > 0. LetQ be the probability measure generated
by pdf Q. Itis assumed that}(h!) = Q x F atallt > 0, and that fort = 0, 6J(0) = Q x Q x F.

o' denotes a strategy profile at time
e Payoffs for each player are defined by the value functigfis) = >, & [u;(x") + Olal].

e Fort > 0, w' depends on'~! anda’~! in the following way. 2! = z!~! if and only if for some
C' € W (the collection of winning coalitionsy! ™' = 0 for all i € C. If not, thena? = y*~1. ¢! is

chosen by nature, as in the definitionaf
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We are now ready to prove the last proposition, which is gitforward given the setup of the game. It

requires the definition of probabilistic voting and paydftdrbances presented in Appendix A.

Proposition 4 If individuals vote probabilistically and payoff distunbeges are admissible, then at a dynam-
ically stable voting equilibriumyp*, the collection of functiong; are consistent with behavior in a pure
strategy Bayesian Markov-perfect Nash equilibriuni’of

Proof. Markov perfection requires that if two historiésandh! have the same value of type profiké, then
oi(ht) = az-(iﬁ) for all <. In considering Markov-perfect equilibria suppose thedtegiess; are measurable
with respect tav; = (z,y,6;). In other words, players condition only on the current state/) and their
current typep;.

Let ¢(x, y|o) be the probability thay defeatsz, given that voters vote according to strategiesLet
¢i(z,yla;, 0;,0_;) be the probability thay defeats: conditional on type realizatio6; andi’s vote choice
a;. Note that the information structutg and fact that the;’s are i.i.d. in each time period imply that
di(x,yla;, 0;,0-;) = ¢i(x,yla;, 0, 0_;) for all 6;, 0. In other wordsg; only affectsi’s action; it does not
affect his beliefs about other players’ actions.

Clearly, ¢ is measurable with respect io(i.e. ¢ is history-independent). Since we are considering a
monotonic game, we know that(x, y|1,0;,0_;) > ¢;(x,y|0,6;,0_;). In other words, if Playef votes for
y over z, then the likelihood thay defeatsr is weakly greater than it would have been had Playeted
for x overy.

For a dynamically stable voting equilibrium?, defines?” as follows:

0 if v () 4 O > 0} (y) + Oy,
o (wi) =
1 otherwise.
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All that remains to be shown is thaf is equal to the’s true expected value givert”. To see this, write
the probability that votes fory overz giveno®” as:p? (v} (z), v} (y)) = g2 0¥ (2, y,0;) f(6;)db;.
It can be verified that! = p;, as utilized in the definition af* (through transition probability(v*(z), v*(y))).
Thus,v? is Playeri’s true expected payoff conditional on strategy prafite. It follows thato¥" represents
a sequentially rational (i.e., Bayes Nash equilibrium)fiteaf strategies for the gamnie. Sincea;-’* is by

definition Markovian with respect to; = (z, y, 6;), we can conclude that, for any dynamically stable voting

equilibrium, v*, the strategy profile?” is a Bayesian Markov-perfect Nash equilibriuf.

The following corollary follows immediately from the fadiat when individuals vote deterministically (as

defined in Appendix A) thefi;, = 0forall: € N andz € X.

Corollary 1 If individuals vote deterministically then at a dynamigaditable voting equilibriumyp*, the

collection of functiong; are consistent with behavior in a Markov-perfect equilibriofI".
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Figure 1: Path of play
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Figure 2: Player 1's value function.

Figure 3: Density over outcomes.
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Figure 4: Two-dimensional spatial model with circular greinces.

Figure 5: Player 1's value function with circular preferesc
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Figure 6: Density over outcomes with circular preferences.

Figure 7: Two-dimensional spatial model where Players 23&have elliptical preferences.
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Figure 8: Player 1's value function when Players 2 and 3 hiiimieal preferences.

Figure 9: Density over outcomes when Players 2 and 3 hayeiedli preferences.
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