
A Model of Methods Access Authorization in Object-oriented Databases

Nurith Gal-02,’ Ehud Gudesl and Eduardo B. Fernandez2

’ Dept of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, Israel.
e-mail: {nourith,ehud}@bengus.bitnet

2 Dept of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA.
e-mail: ed@cse.fau.edu

Abstract

Object-oriented databases are a recent and important
development and many studies of them have been per-
formed. These consider aspects such as data modeling,
query languages, performance, and concurrency con-
trol. Relatively few studies address their security, a
critical aspect in systems like these that have a com-
plex and rich data structuring.

We developed previously a model of authorization
for object-oriented databases which includes a set of
policies, a structure for authorization rules and their
administration, and evaluation algorithms. In that
model the high-level query requests were resolved into
read and writes at the authorization level. In this pa
per we extend the set of access primitives to include
ways to control the execution of methods or functions.
Policy issues are discussed first, and then algorithms
for access evaluation at compile-time and at run-time.

Keywords: Database Security, Object-oriented Se-
curity, Methods, Object-oriented Systems

1 Introduction

Object-oriented databases are a recent and important
development and many studies of them have been per-
formed [12,13,17]. These consider aspects such as data
modeling, query languages, performance, and concur-
rency control. Relatively few studies address their se-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made OT distributed for

direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copyright is by permission of the Very Large Data
Base Endowment. To copy otherwise, OT to repabliah, Tequires
a few and/or special permission from the Endowment.

Proceedings of the 19th VLDB Conference
Dublin, Ireland, 1993

curity, a critical aspect in systems like these that have
a complex and rich data structuring [3,10,15,16].

We developed previously a model of authorization
for object-oriented databases which includes a set of
policies, a structure for authorization rules and their
administration and evaluation algorithms [5,6,9,11]. In
that model the high-level query requests were resolved
into read and writes at the authorization level. Read
and write primitives model adequately access to class
attributes, however, they are not in line with the en-
capsulation property, a fundamental feature of object-
oriented systems. In this paper we show that through
the use of one basic access type, Execute, which is re-
quired to invoke the execution of a method, we can con-
trol access to objects. Because execution of a method
may require using other methods not directly autho-
rized to the user, we combine access type Execute with
a form of rights amplification similar to the set-user-id
concept of Unix. Our previous model used the idea of
implied access rights through the inheritance structure
of the data classes. This idea was embodied in three
policies, which are extended here to consider the effect
of the new access mechanism. The model also consid-
ers the effects of negative authorization and multiple
inheritance.

In Section 2 we review our previous model and give
some examples. In Section 3 we present the new model
with methods and define security policies for it. In
Section 4 we discuss algorithms for the evaluation of
access according to these policies. Section 5 contains
discussions and a summary.

We know only one recent model for OODBs that
controls access through methods, the one of the IRIS
DBMS [l], and we compare our model to that in Sec-
tion 5. There are other models for authorization in
object oriented databases which control read/write ac-
cess to attributes, but do not consider methods [15].
Other models apply to multilevel security policies, e.g.
[lo], and have a completely different emphasis.

52

2 Background

2.1 Database model

The database model involves three types of concepts:
classes, attributes, and methods, two types of associ-
ations between them: generalization, to describe the
hierarchical relationship between a class and a sub-
class, and aggregation to describe the relationship be-
tween a class and its attributes. A class defines a data
structure composed of attributes and a set of relevant
operations, called methods.

Both attributes and methods of a class are inherited
by the subclasses of this class. Inheritance propagates
down the hierarchy unless an attribute or method is
redefined by a subclass, in which case the redefined
feature is propagated down. It is possible for a sub-
class to have multiple parents and therefore to inherit
attributes or methods from all of them. In case of
some conflicts in multiple inheritance, it is resolved by
some arbitrary rule, and the inheriting parent is called
the “direct father” with respect to an attribute or a
method.

An object is an instance of a class. The concept of
encapsulation implies that access to the data in an ob-
ject can only be performed through a method. Some
methods may be very basic, e.g. just read or write the
value of some attributes, while others may perform
complex calculations for which they need to invoke
other methods (and usually the basic read/write meth-
ods). In the sequel we assume that every attribute has
the read/write methods implicitly defined for it.

Figure 1 illustrates a portion of a university
database. Class Person (P) has attributes Name, So-
cial Security Number (SSN) , Birthdate (and maybe
others). Person has the method age which computes
the age of a person based on his birthdate. Classes
Student (S) and Teacher (T) are subclasses of Person.
The generic properties of Student and Teacher define
Person through a generalization association (G in Fig-
ure 1). Attribute Year (year of graduation) is defined
for Student and attributes “Rank” and “Course” for
Teacher. Student has two methods: gpa which com-
putes the grade point average, find-yb - find young and
bright which invokes the two other methods: age and
gpa to retrieve the young and bright students. Teacher
contains the methos salary which computes the salary
based on Rank and other information. Foreign Student
(FS) is a subclass of Student. Attributes defined for
subclasses reflect the fact that some features or prop-
erties only apply to specific subclasses, e.g, Visa is only
meaningful for Foreign Students. Figure 2 shows the
same database with all methods (including the imlicit
read/write) shown.

Note that the values inherited by a class are a subset
of those of the superclass, i.e. SSN as an attribute of
Student represents only the SSNs of Students, while
the values of SSN as an attribute of Person represent
SSNs of Students as well as of Teachers. Similarly,
Foreignstudent inherits the method age from Person,
which when invoked at this level will only find the ages
of foreign students.

2.2 Security policies

In previous work [5] we proposed the following policies:
Pr (inheritance) - a user that has access to a class

is allowed to have similar type of access in the sub-
classes to the corresponding attributes inherited from
that class.

P2 (class access) - access to a complete class implies
access to the attributes defined in that class as well as
to attributes inherited from a higher class (but only to
the class-relevant values of these attributes). If there
is more than one ancestor (multiple inheritance) there
is access to the union of the inherited attributes.

Ps (visibility) - an attribute defined for a subclass
is not accessible by accessing any of its superclasses.

We also proposed policies to consider negative au-
thorization, content-dependent restrictions, and for re-
solving conflicts between several implied authoriza-
tions (see [ll]). I n section 3 we extend these policies
to apply to access through methods.

A general model for authorization rules is discussed
in [4]. Here, we define an authorization rule, as a triple
(U, A, AO) where U is a user or user group, A is an
access type or set of access types, and A0 is the set of
attributes of the object 0 to be accessed, i.e. AO={
0. al, 0. as . ..}. A rule can either refer to A0 as a
whole or to its individual components. Attribute ai
must be defined for object 0 or inherited by it.

For example, consider again the graph of Figure 1.
Assume the following authorization rules are defined:

Rl: (SA, R, S.SSN) - The Student Advisor can read
SSN of students.

R2: (FSA, R, (FS.SSN, FS.Visa)) - The Foreign
Student Advisor can read SSN and visa of foreign stu-
dents.

A Student Advisor (SA) could have access to SSNs
of all students (Pi) but no access to their visas (Ps),
a Foreign Student Advisor (FSA) could have access to
visas but only to SSNs of Foreign Students (Pz). Note
that SA has access also to SSNs of foreign students;
a negative authorization rule (SA, -R,FS.SSN) could
prevent this access if necessary.

53

2.3 Validation of access requests

Access validation occurs by extracting a data request
from a user query or from an executing program. This
request has a structure (U’, A’, AO’), where U’ is the
subject (user, process) making the request, AO’ is the
requested object (set of attributes), and A’ is the re-
quested access type. This request is validated against
the authorization rules to decide if the request should
be granted totally or partially.

A Security Context is a set of object classes grouped
together for security purposes. A Security Context de-
fines a partially ordered set of object classes (in terms
of the associations) which delimits the access for user
queries, i.e. a data request is validated using the rules
in a specific context. Referring to Figure 1 we can de-
fine a Security Context SC1 to include classes Person,
Student, and Foreign Student, as well as their corre-
sponding associations. In the rest of the paper we’ll
use examples from this security context.

Object-oriented databases are very often distributed
and do not have a centralized schema. Therefore, au-
thorization rules also are not stored, in general, in a
centralized location but rather distributed throughout
the object-hierarchy. The place of storage of autho-
rization rules affects considerably the way of validat-
ing access requests. Authorization rules can be placed
at special classes (e.g., a context root), at the class
to which they refer, or propagated throughout the hi-
erarchy. Their placement has no effect in the logical
aspects of the model but is important with respect to
performance of the access validation algorithm.

For the example and rules above we define the fol-
lowing two queries each of which is issued by SA and
FSA.

Ql: read SSN for all students.
Q2: read SSN and visa for all foreign students.
According to the policies of Section 2.1 we expect

the following behaviour as a result of the evaluation of
the indicated requests.

(SA, Ql) = (SA, Read S.SSN) - all SSNs of students
can be read (Policy Pi).

(SA, Q2) = (SA, Read,{FS.Visa, FS.SSN}) - only
SSNs of foreign students are, to be read and not their
visas (Policy Pz).

’ (FSA, Ql) = (FSA, Read, S.SSN) - only foreign
student SSNs are to be read (Policy Pz).

(FSA, Q2) = (FSA, Read {FS.Visa, FS.SSN}) -
both foreign student SSNs and visas are to be read.
(Policy P2).

In [5] we presented an algorithm to evaluate ac-
cess based on the above model, and showed how the
queries above are answered correctly by this algorithm.
The basic inputs to this algorithm are the query graph

which represent the query in form of a graph, and the
security graph which represent all the rules relevant to
the query in the relevant security context. The algo-
rithm assumes that authorization rules are stored with
the object to which they refer, i.e the following place-
ment rule is used:

An access rule (U, A, {Oi.al,Oi.a2...}) can be placed
at any node Oi such that:
a+ is known for object Oi (defined or inherited from
above).

In [8] we improved the algorithm by efficiently sup-
porting multiple node queries and by assuming a more
general placement rule which allowed placing rules at
ancestors of the objects they reference. That algorithm
is the basis for the one presented here.

For lack of space, we cannot present that algorithm
here. The most important concept there is the AT data
structure(Authorization Tree - called there: AT-yes).
The AT contains information from the query graph as
well as the results of each step of the authorization val-
idation. Each node contains information about the at-
tributes which need to be accessed at that node, specif-
ically whether the node (attribute) has full, partial, or
no authorization (see later). The algorithm scans the
security graph and the AT and updates the various
fields in AT. At the end, each node of AT contains
flags indicating its specific authorization (for example,
for the query Ql above and FSA, the node correspond-
ing to Foreign-student will be fully authorized, while
the Student node will be partially authorized).

3 Policies for Authorization
Methods

3.1 Access Control Mechanism

of

We can have two types of authorization models based
on methods:

1. Methods correspond to access types in the access
rule. This is consistent with the notion of abstract
data types, namely an object can only be accessed
via its predefined methods. For example, class
Student could only be accessed by methods such
as add-student, enroll-student, etc. The internal
actions of the methods, i.e. what other methods
they call, and what attributes they access is the
responsibility of the system, and no special autho-
rization for them is required of the user.

2. Methods correspond to authorization objects in
the access rule. In this case some special access

54

hype is required to control the use of methods, e.g
cull in [l], ezecute in our model. If the method
needs access to other methods the user needs au-
thorization for those as well.

The first model is described in detail in [7]. We
adopt here the second model and we use a unique
acees type, Execute, which authorizes to apply a given
method to a given object.

In operating systems it is often the case that users
need to execute programs in a mode which has more
rights than their own. This is called amplification.
For example, in Unix, this is handled by the “Set user-
id” mechanism. We add a similar mechanism here, and
therefore we need an access type called “Execute with
set user-id”. Execute, and Execute with set user-id,
can be denied to provide for negative authorization.

3.2 Security policies

We extend the policies of Section 2.2 to consider the
new model. We complete them by adding a policy for
negative authorization, a policy for handling implied
accesses and a policy to consider the effect of Setuid:

Pi’ - a user that has Execute access to a method in
a class is allowed to have similar Execute access in its
subclasses to the corresponding inherited methods.

P?’ - access to a complete class implies Execute ac-
cess to the methods defined in the class as well as to
methods inherited from a higher class. If there is more
than one ancestor (multiple inheritance) there is access
to the union of the inherited methods.

Pa’ - A method defined for a subclass is not acces-
sible by having Execute access to the methods of a
superclass. This lack of visibility applies also to inher-
ited methods redefined in the subclass.

Pa (Negative authorization) - An explicit negative
Execute access to a method overides any implied or
explicit positive Execute access (of the same type).

Ps (Priority) - When two implied Execute accesses
apply to a method, the closest one has priority.

Ps (Invocation) - If a method invokes other meth-
ods during execution, the user must have Execute ac-
cess to these other methods as well (recursively). This
applies also to the basic read/write methods.

Pr (Amplification) - A user can be authorized to
apply the Execute access type to some method with
rights recieved from another user (who has Execute
access right to the method).

The mechanism to apply policy P7 is that of Se-
tuid. As explained above, a setuid authorization on a
method can be created to overcome situations where
a user does not have authorization for an invoked
method called by an invoking method and therefore

is not authorized to execute the invoking method by
virtue of policy P6, even if it is important that he will.
The problem is solved by making this user dependent
on another user’s authorizations, for the purpose of the
invoked method execution. The user granting the right
should not have recieved it through another setuid but
must have been authorized directly by the administra-
tor (i.e. there is no recursive setuid policy...)

Note that to apply policy P6, the knowledge which
methods are invoked within a method must be known
to the access evaluation algorithm. If this algorithm
applies at compile time, this knowledge must be stored
with the methods definitions. This point is further
elaborated on in Section 4.

As an example consider the database in Figure 1.
An accountant is a user of this database and his job
is to compute the salary of the teachers using the
method Teacher.salary. This method accesses the at-
tribute Rank which is one of the parameters needed to
compute the salary. The accountant has an Execute
access to the method but is unauthorized to access
Rank. The personnel manager is another user of this
database which has access to all the attributes and
methods of class teacher, and he uses the accountant
services. Therefore, it is convenient to arrange that the
accountant becomes dependent on the personnel man-
ager who gives him setuid[personnel manager] access
to the method Teacher.salary.

As another example, assume a query that requests
the age of all students is evaluated. Two meth-
ods need to be accessed: Student.age which uses the
attribute Student.Birthdate, and Foreignstudent.age
which uses the attribute Foreignstudent.Birthdate. (
note that these attributes would be accessed through
the read/write methods of the corresponding at-
tributes). Now, there may be several cases:

l Method age is not defined in foreign student and
is therefore inherited from student. If the user has
an Execute access right on student.age then he has
an implicit Execute right on foreign-student.age.
Now the access depends on the type of access al-
lowed on attribute birthdate. If, for example, the
user is authorized to access Student.Birthdate but
denied access to Foreignstudent.Birthdate, then
by Policy 6 there will only be a partial answer to
student.age query. A similar result will be if the
user has Execute right on student.age but deny-
execute on foreignstudent.age. A partial answer
will also be generated if the user has no access to
student.age (birthdate) but positive Execute acess
to foreignstudent.age (birthdate).

l Foreignstudent.age is redefined in foreignstu-

55

A G

A - Aggregation Association

G - Generalization Association

Figure 1: A University Database

R/W - Read/Write

0 - Defined Method

0 - Object Class

A - Aggregation Association

G - Generalization Association

Figure 2: The Database With Methods

56

dent. Now according to policy 3 an Execute ac-
cess on student.age is not carried over to for-
eignstudent.age and an explicit access to for-
eignstudent.age is required (same comments for
birthdate).

We discuss next the algorithms to evaluate access
based on the above policies.

4 Evaluation Algorithms

The evaluation algorithms are similar to those men-
tioned in Section 2, that is, it is assumed that the
query translator generates a query graph to represent
the query. The query graph is converted into a data
structure called AT, using the security context con-
cept. Figure 3 clarifies the above concepts. It shows
three entities:

1. The query - (SA, E, Student.find-yb).

2. The security context which involves basically the
relevant portions of the database shown in Figure
1.

3. The AT which contains all nodes touched by the
query including their ancestors and descendants.
This is needed to assure that all relevant rules will
be searched.

Next, the evaluation algorithm scans the AT data
structure and the security graph, searches for appro-
priate authorization rules and updates the AT accord-
ingly. The results is that each method node in the tree
is associated with one of four states:

fully granted - a node is fully granted if it is
granted and in each one of the subclasses of its
class this node is fully granted (empty subclasses
are considered fully granted).

fully denied - a node is fully denied if it is denied
and in each one of the subclasses of its class this
node is fully denied.

partially granted - a node is partially granted if
it is granted and in one or more of the subclasses
of its class, the node is not fully granted.

partially denied - a node is partially denied if it
is denied and in one of the subclasses of its class,
the node is not fully denied.

These concepts are important at query run-time. At
run-time the retrieval algorithm may skip some search-
ing of the object-hierarchy (this can also be used by

the query optimizer). For a class which is fully granted
(denied), all (none) object instances are retrieved and
there is no need to go down the AT graph hierarchy
for these types of nodes (although for fully granted the
query run-time may have to go down the database hi-
erarchy to fetch all instances). For partially granted
nodes the query evaluation algorithm knows that par-
tial results are possible and will go down the AT graph
hierarchy and the database hierarchy to check which
specific nodes are granted and fetch their correspond-
ing instances.

We now discuss the access evaluation algorithm. In
[5] and [9] we discussed several algorithms for scanning
the AT tree. The difference was mainly with the di-
rection of search along the tree. Here, because of the
existence of negative authorization, there is always the
need to scan the tree all the way to the bottom, there-
fore the search can start at the bottom level and go
up. This is what the algorithm does by recursively
evaluating the sons of a node before its father.

Also, in our earlier papers we had two types of place-
ment rules. Placement rule 1 which was discussed in
Section 2, and placement rule 2 which allows the place-
ment of rules anywhere in the hierarchy above the ob-
ject to which they refer. Placement rule 2 has advan-
tages with complex queries and positive authorization,
but these advantages are smaller when negative autho-
rization is allowed. in this paper therefore we assume
the simpler placement rule 1, where a rule is placed
with the object it references.

The main difference of the algorithm below and our
previous algorithms derives from the existence of meth-
ods. Since, by Policy 6, in order to have authoriza-
tion to execute a method it is necessary also to have
the correct authoriztion for the methods it invokes,
it is advantageous to evaluate the authorization for
each method separately, since that evaluation may call
recursively for the evaluation of other methods (and
maybe repeat that for another user in case of a setuid
situation). However, if at any point the evaluation
of authorization for a method is completed, it is not
repeated again. This can be seen easily from the algo-
rithm below.

Another issue is Compile-time vs. Run-time. The
compile-time algorithm uses only information known
at compile-time. This has two implications. First
it means that all methods invoked by a particular
method must be known. This is assumed to be done at
the time the AT is generated byhaving the the schema
of each method containing the names of methods it di-
rectly calls. Second, the access evaluation algorithm
assumes the “worst-case” in which all potentially in-
voked method are actually invoked, and check autho-

57

A
T

S
ec

ur
ity

 C
on

te
xt

I
1

I
I

1
P

er
so

n
1

1
P

er
so

n
1

Q
ue

ry
 =

 (
S

A
,

E
, S

.F
in

d -
 Y

B
)

Fi
gu

re
 3

 :
A

n
E

xa
m

pl
e

A
T

rization accordingly. This may be too restrictive, since
uo consideration is given to methods flow of control.
A run-time algorithm may provide the needed security
without being overprotective. This is discussed below.

We now describe in detail the two algorithms.

4.1 Compile-Time Algorithm

procedure evaluate

Starting with the highest class in the
query graph:
for each class

for each method of this class appearing in AT
evaluate-method(method, class)

end evaluate

procedure evaluate-method (Method, Class)

1) If there are subclasses to this Class then
A) for each subclass of this class

a) find the inherited method in subclass
b) evaluate-method (method, subclass)

2)
A) search for authorization rule in the

method node. If such a rule is found
then method execution is authorized,
or denied according to the rule.

B) if there are no relevant rules then
if the method is inherited then

a.

b.

C.

else

find the same method in the
direct father.
go back to step (A) vith the
father's method.
the method gets authorization found
for the father method.
(the method is defined)

according to the idea of a closed system
method execution is denied.

C) if the method execution is authorized then
a. for each child-method invoked by

the method:
evaluate-method(child_method,class)

b. if all child methods are authorized
then the method is granted

else
the method execution is denied
in the class.

D) if the method execution is denied and
setuid is granted then

a. find the authorizing user.
b. repeat steps 2-A through 2-C vith the

authorizing user.

3) if the method is granted/denied then
if the Class has no subclasses then

set method to fully granted/denied
else if the methods in all the subclasses

are fully granted/denied then
set method to fully granted/denied

else
set method to partially granted/denied

end evaluate-method

The following example demonstrates the operation
of the above algorithm.

Assume the following rules refer to the database pre-
sented in Figure 1:
R3 = (FSA,E,FS.age)
R4 = (FSA,-E,S.read-Birthdate)
R5 = (SA,E,FS.read-Birthdate)
R6 = (SA,E,FS.age)
R7 = (FSA,Setuid[SA],FS.age)

Let’s evaluate the query Q = (FSA,E,S.age) accord-
ing to the algorithm. (algoritm’s steps are denoted in
brackets).
The Security Graph contains the two methods S.age
and FS.age. We start in class Student (S), with
method age. Class S has one subclass - Foreign-
Student (FS) so FS.age is evaluated first [11. In
FS.age the explicit rule R3 is found , authoriz-
ing FSA to access FS.age [Z.A], but since method
age uses attribute Birthdate we need Read access
to FS.Birthdate as well (i.e. Execute right on
read-Birthdate method>[a.C]. An explicit rule concern-
ing FSA is not found in FS.Birthdate, but as it is an
inherited attribute we search for a rule in the direct fa-
ther, in S.Birthdate, and we find R4. Rule R4 denies
FSA to Read S.Birthdate and this denial is inherited
by FS.Birthdate[2.B]. Therefore, method age is denied
for FSA by direct authorization.
Next, we search for an indirect authorization[&.D] and
we find R7 which allows FSA to execute FS.age if SA
is authorized. For user SA the search is much shorter
because of the two explicit rules R5 and R6 which to-
gether authorize SA to execute the method FS.age,
and indirectly authorize FSA as well. FS.age is there-
fore authorized for user FSA and since FS has no sub-
classes, it is fully-granted. Now, we turn back to eval-
uate S.age but no explicit rule is found, there is no
implicit one in class Person either, which is the direct
father class of Student with respect to method age.
In class Person, age is a defined method, so according
to the idea of a closed system, Person.age is denied
and this denial is inherited by S.age. Again we search
for an alternative indirect authorization rule but there
isn't any. S.age is therefore denied Lut since FS.age is

59

fully-granted, we say that S.age is partially-denied.

Now we know that the answer to the query will be
partial because only the age of the Foreign Students
will be computed, i.e., FSA will be allowed to compute
age of foreign students only.

The complexity of this algorithm is in the worst case
O(q*n*k*m) where q is the number of methods in the
query, n is the number of nodes in AT, k is the num-
ber of rules per node, and m is the total number of
methods invoked by a single metho.d. This complex-
ity derives mainly from the fine granularity of security
we support, in particular the ability to apply security
checks at each method invokation. Using the model in
[7], the complexity is much reduced. Furthermore, av-
erage performance is much better ss discussed for the
originial algorithm in [S].

4.2 Run-Time Algorithm

An evaluation algorithm is measured in terms of secu-
rity and precision [2], applied to our model as follows:

security: if an object is unauthorized according to
the security policies, then it is unauthorized according
to the algorithm.

precision: if an object is unauthorized according to
the algorithm, then it is unauthorized according to the
security policies.

The proposed compile-time algorithm is overprotec-
tive since it provides security but not precision. The
problem arises when methods are involved, because a
methods flow of control is unknown until run-time. In
the compile-time algorithm, authorization of a method
requires the authorization of all access rights needed in
the attributes involved in the method. However, this
requirement is too strong because an access to an at-
tribute involved in a method may not be needed with
some specific flow of control within the method.

A possible way to solve this problem is to use the
results of the compile- time algorithm and to conduct
checks at run-time as follows: ,In the compile-time algo-
rithm, a method which is not authorized because one of
the nodes involved in it is unauthorized, will be marked
“undecided”. At run-time, if a method is marked “un-
decided”, then each time before the method reaches
a point where an access to a node is needed, the au-
thorization to this node is checked (according to the
results of the compile-time algorithm). If the node is
authorized (partially or fully), then the method is ex-
ecuted, while if the node is fully denied the method is
unauthorized and thus aborted.

5 Discussion and Conclusions

Any model for security in object-oriented databases
is dependent on the underlying data model, therefore
some comparisons are not always meaningful. How-
ever, since there is a related model [l], a comparison
with that model can be enlightening. Similarly to our
model, in [l] 11 a accesses and administration of access
is expressed through functions calls (methods in our
case), which is an advantage because of its uniformity.
On the other hand, because attributes and methods
are not distinct, security is usually based on the argu-
ments of methods. This may be quite cumbersome as
indicated by the authors themselves. Also, in [l] there
is no specific mechanism for amplification such as our
set-uid mechanism. Other differences are:

The Call Privilege
In [l] the call authority is argument specific, i.e. a
user can have an authority to call a function for cer-
tain types of arguments. In our model a user may
call a method with any argument, the authority to
use it is automatically checked by the fact that the
user must have Execute authorization on any method
invoked from the original method. This allows for a
more precise and flexible sceme of authorization.

Static and Dynamic Authorization of Derived Func-
tions.
In [l] derived functions are defined in terms of other
functions. Similarly, methods in our model may use
other methods and attributes. Two approaches are
suggested in [l] with respect to derived functions. The
first is Static Authorization in which, in order to evalu-
ate a derived function, a call authority on the function
is sufficient. This is similar to the first model discussed
in Section 3. The second is Dynamic Authorization in
which a user must have call authority on the derived
function as well as on the function it uses. Dynamic
authorization matches our policy regarding methods ,
i.e. a user may call a method if he has an execution au-
thority on the method as well as Execute access rights
on each of the methods used by the derived method.
We have suggested two algorithms to accomplish this
action. The first, evaluated at compile time, checks the
existence of proper access rights to all methods invoked
by the derived method. The second is a run time al-
gorithm which checks existence of proper access rights
only on methods required at run time. This algorithm
apparently, suits the spirit of Dynamic Authorization
as presented in [l].

The interaction of Authorization and Function Reso-
lution.
[l] presents two authorization approaches regarding
generic functions : Generic Function Authorization

60

and Specific Function Authorization. In the Generic
Function Authorization if a user is authorized to eval-
uate a generic function , he can evaluate it for any
object. The Specific Function Authorization approach
supports specifying authorization to specific functions,
and in order to select the right specific function two
function resolution approaches are suggested : the
first is Authorization Independent Resolution in which,
when a specific function is selected, the authorization
on it is checked. The other is Authorization Depen-
dent Resolution in which, the most specific function
the user is authorized to evaluate is executed. In our
model resolution has nothing to do with security. A
generic method (in the sense of applying it to inher-
ited subclasses) is connected to a class and according
to database policy, the right method is selected for
each class and subclass. For example, if the method
salary is connected to class Admin, and Manager is a
subclass of class Admin, then a method by the name
salary is connected to class Manager as well, only for
security purposes, we treat them as two different meth-
ods Admin.salary and Manager.salary and a user may
have different authorities on them. This is also the way
we can provide different authorization for polymorphic
methods.

Guard Functions.
Guard functions are used to restrict evaluation of other
functions for security puposes. In our model, we can
use predicates in order to restrict access to attributes
or methods in some conditions, although we have not
shown it in the paper.

In conclusion we believe that our model supports the
security policies regarding methods which are common
in object-oriented databases, and provides flexibility
and power. Our algorithms for access evaluation can
be integrated into a typical query translator and run-
time system. The model can be extended with more
general methods and for message-oriented databases.

References

1. Ahad It., Lyngbaek P., and Onuegbe E., “Support-
ing access control in an object-oriented database lan-
kwze,” Proc. EDBT-92, Vienna, March, 1992, pp.
184-200.

2. Denning, D., Cryptography and Data Security, Addi-
son Wesley,1982.

3. Dittrich, K., Hartig, M., Pffefferle, H., “Discre-
tionary Acces Control in StructuaIly Object-Oriented
Database Systems”, in Database Security II: Status
and Prospectus, C.E.Landwehr(ed.), Elsevier Science
Publ.. 1989, 105-121.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

E.B. Fernandez, R. C. Summers and C. Wood,
Database security and Integrity, Addison-Wesley,
1981.

E.B. Fernandez, E. Gudes, and H. Song, “A secu-
rity model for object-oriented databases”, Proc. of the
1989 IEEE Symp. on Security and Privacy, Oakland,
CA., 1989, 110-115.

E.B.Fernandez, E.Gudes, and H.Song, “A model for
evaluation and administration of security in object-
oriented databases”, to appear in IEEE Trans. on
Knowledge and Data Eng.

E.B.Fernandez, Larrondo-Petrie M., and E.Gudes, “A
method-based authorization model for object-oriented
databases”, submitted for publication.

Song, H., “Evaluation of authorization in object-
oriented and semantic databases”, MSc Thesis,
Florida Atlantic University, 1990.

Gudes E., Song, H., Fernandez E B., “Evaluation of
negative and predicate-based authorization in object-
oriented databases,” Database Security IV: Status and
Prospectus, S Jajodia and C. E. Landwehr (Ed.), El-
sevier Science Publishers, 1991, 85-98.

T.F.Keefe, W.T.Tsai, and M.B. Thuraisingham,
“SODA:A secure object-oriented database system”
,Computera and Security, 8 (1989), 517-533.

M. Larrondo-Petrie, E. Gudes, H. Song and E.
B. Fernandez, “Security Policies in object-oriented
databases,” in Database Security III: Status and
Prospects, D. L. Spooner and C. Landwehr (Eds.), El-
sevier Science Publishers, 1990, 257-268.

J.G.Hughes, Object-oriented Databases, Prentice HaII
Intl., 1991.

Kim, W. Introduction to object-oriented databases,
T\TTT Press, 1990.

‘1‘. Lunt, “Access control policies for database sys-
tems,n in Database Security II: Status and Proapec-
ha, C.E.Landwehr(ed.), EIsevier Science Publ., 1989,
41-52.

F. Rabitti, E. Bertino, W. Kim, and D. Woelk, “A
model of authorization for next-generation database
systems”, ACM Trans. on Database systems, 16,l
(March 1991) 88-131.

Spooner, D., L. “The impact of inheritance on security
in object-oriented database systems,” Database aecu-
rity II: Status and Prospectus, C. E. Landwehr, Else-
vier Science Publ., 1989, 141-150.

17. Stonebraker M. (Ed), Special issue on Database Prototype
Systems, IEEE Trans. on Knowledge and Data Engineer-
ing, Vol 2, No. 1, March, 1990.

61

