
A Model of Methods Access Authorization in Object-oriented Databases 

Nurith Gal-02,’ Ehud Gudesl and Eduardo B. Fernandez2 

’ Dept of Mathematics and Computer Science, Ben-Gurion University, Beer-Sheva, Israel. 
e-mail: {nourith,ehud}@bengus.bitnet 

2 Dept of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA. 
e-mail: ed@cse.fau.edu 

Abstract 

Object-oriented databases are a recent and important 
development and many studies of them have been per- 
formed. These consider aspects such as data modeling, 
query languages, performance, and concurrency con- 
trol. Relatively few studies address their security, a 
critical aspect in systems like these that have a com- 
plex and rich data structuring. 

We developed previously a model of authorization 
for object-oriented databases which includes a set of 
policies, a structure for authorization rules and their 
administration, and evaluation algorithms. In that 
model the high-level query requests were resolved into 
read and writes at the authorization level. In this pa 
per we extend the set of access primitives to include 
ways to control the execution of methods or functions. 
Policy issues are discussed first, and then algorithms 
for access evaluation at compile-time and at run-time. 

Keywords: Database Security, Object-oriented Se- 
curity, Methods, Object-oriented Systems 

1 Introduction 

Object-oriented databases are a recent and important 
development and many studies of them have been per- 
formed [12,13,17]. These consider aspects such as data 
modeling, query languages, performance, and concur- 
rency control. Relatively few studies address their se- 
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curity, a critical aspect in systems like these that have 
a complex and rich data structuring [3,10,15,16]. 

We developed previously a model of authorization 
for object-oriented databases which includes a set of 
policies, a structure for authorization rules and their 
administration and evaluation algorithms [5,6,9,11]. In 
that model the high-level query requests were resolved 
into read and writes at the authorization level. Read 
and write primitives model adequately access to class 
attributes, however, they are not in line with the en- 
capsulation property, a fundamental feature of object- 
oriented systems. In this paper we show that through 
the use of one basic access type, Execute, which is re- 
quired to invoke the execution of a method, we can con- 
trol access to objects. Because execution of a method 
may require using other methods not directly autho- 
rized to the user, we combine access type Execute with 
a form of rights amplification similar to the set-user-id 
concept of Unix. Our previous model used the idea of 
implied access rights through the inheritance structure 
of the data classes. This idea was embodied in three 
policies, which are extended here to consider the effect 
of the new access mechanism. The model also consid- 
ers the effects of negative authorization and multiple 
inheritance. 

In Section 2 we review our previous model and give 
some examples. In Section 3 we present the new model 
with methods and define security policies for it. In 
Section 4 we discuss algorithms for the evaluation of 
access according to these policies. Section 5 contains 
discussions and a summary. 

We know only one recent model for OODBs that 
controls access through methods, the one of the IRIS 
DBMS [l], and we compare our model to that in Sec- 
tion 5. There are other models for authorization in 
object oriented databases which control read/write ac- 
cess to attributes, but do not consider methods [15]. 
Other models apply to multilevel security policies, e.g. 
[lo], and have a completely different emphasis. 
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2 Background 

2.1 Database model 

The database model involves three types of concepts: 
classes, attributes, and methods, two types of associ- 
ations between them: generalization, to describe the 
hierarchical relationship between a class and a sub- 
class, and aggregation to describe the relationship be- 
tween a class and its attributes. A class defines a data 
structure composed of attributes and a set of relevant 
operations, called methods. 

Both attributes and methods of a class are inherited 
by the subclasses of this class. Inheritance propagates 
down the hierarchy unless an attribute or method is 
redefined by a subclass, in which case the redefined 
feature is propagated down. It is possible for a sub- 
class to have multiple parents and therefore to inherit 
attributes or methods from all of them. In case of 
some conflicts in multiple inheritance, it is resolved by 
some arbitrary rule, and the inheriting parent is called 
the “direct father” with respect to an attribute or a 
method. 

An object is an instance of a class. The concept of 
encapsulation implies that access to the data in an ob- 
ject can only be performed through a method. Some 
methods may be very basic, e.g. just read or write the 
value of some attributes, while others may perform 
complex calculations for which they need to invoke 
other methods (and usually the basic read/write meth- 
ods). In the sequel we assume that every attribute has 
the read/write methods implicitly defined for it. 

Figure 1 illustrates a portion of a university 
database. Class Person (P) has attributes Name, So- 
cial Security Number (SSN) , Birthdate (and maybe 
others). Person has the method age which computes 
the age of a person based on his birthdate. Classes 
Student (S) and Teacher (T) are subclasses of Person. 
The generic properties of Student and Teacher define 
Person through a generalization association (G in Fig- 
ure 1). Attribute Year (year of graduation) is defined 
for Student and attributes “Rank” and “Course” for 
Teacher. Student has two methods: gpa which com- 
putes the grade point average, find-yb - find young and 
bright which invokes the two other methods: age and 
gpa to retrieve the young and bright students. Teacher 
contains the methos salary which computes the salary 
based on Rank and other information. Foreign Student 
(FS) is a subclass of Student. Attributes defined for 
subclasses reflect the fact that some features or prop- 
erties only apply to specific subclasses, e.g, Visa is only 
meaningful for Foreign Students. Figure 2 shows the 
same database with all methods (including the imlicit 
read/write) shown. 

Note that the values inherited by a class are a subset 
of those of the superclass, i.e. SSN as an attribute of 
Student represents only the SSNs of Students, while 
the values of SSN as an attribute of Person represent 
SSNs of Students as well as of Teachers. Similarly, 
Foreignstudent inherits the method age from Person, 
which when invoked at this level will only find the ages 
of foreign students. 

2.2 Security policies 

In previous work [5] we proposed the following policies: 
Pr (inheritance ) - a user that has access to a class 

is allowed to have similar type of access in the sub- 
classes to the corresponding attributes inherited from 
that class. 

P2 ( class access) - access to a complete class implies 
access to the attributes defined in that class as well as 
to attributes inherited from a higher class (but only to 
the class-relevant values of these attributes). If there 
is more than one ancestor (multiple inheritance) there 
is access to the union of the inherited attributes. 

Ps ( visibility) - an attribute defined for a subclass 
is not accessible by accessing any of its superclasses. 

We also proposed policies to consider negative au- 
thorization, content-dependent restrictions, and for re- 
solving conflicts between several implied authoriza- 
tions (see [ll]). I n section 3 we extend these policies 
to apply to access through methods. 

A general model for authorization rules is discussed 
in [4]. Here, we define an authorization rule, as a triple 
(U, A, AO) where U is a user or user group, A is an 
access type or set of access types, and A0 is the set of 
attributes of the object 0 to be accessed, i.e. AO={ 
0. al, 0. as . ..}. A rule can either refer to A0 as a 
whole or to its individual components. Attribute ai 
must be defined for object 0 or inherited by it. 

For example, consider again the graph of Figure 1. 
Assume the following authorization rules are defined: 

Rl: (SA, R, S.SSN) - The Student Advisor can read 
SSN of students. 

R2: (FSA, R, (FS.SSN, FS.Visa)) - The Foreign 
Student Advisor can read SSN and visa of foreign stu- 
dents. 

A Student Advisor (SA) could have access to SSNs 
of all students (Pi) but no access to their visas (Ps), 
a Foreign Student Advisor (FSA) could have access to 
visas but only to SSNs of Foreign Students (Pz). Note 
that SA has access also to SSNs of foreign students; 
a negative authorization rule (SA, -R,FS.SSN) could 
prevent this access if necessary. 
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2.3 Validation of access requests 

Access validation occurs by extracting a data request 
from a user query or from an executing program. This 
request has a structure (U’, A’, AO’), where U’ is the 
subject (user, process) making the request, AO’ is the 
requested object (set of attributes), and A’ is the re- 
quested access type. This request is validated against 
the authorization rules to decide if the request should 
be granted totally or partially. 

A Security Context is a set of object classes grouped 
together for security purposes. A Security Context de- 
fines a partially ordered set of object classes (in terms 
of the associations) which delimits the access for user 
queries, i.e. a data request is validated using the rules 
in a specific context. Referring to Figure 1 we can de- 
fine a Security Context SC1 to include classes Person, 
Student, and Foreign Student, as well as their corre- 
sponding associations. In the rest of the paper we’ll 
use examples from this security context. 

Object-oriented databases are very often distributed 
and do not have a centralized schema. Therefore, au- 
thorization rules also are not stored, in general, in a 
centralized location but rather distributed throughout 
the object-hierarchy. The place of storage of autho- 
rization rules affects considerably the way of validat- 
ing access requests. Authorization rules can be placed 
at special classes (e.g., a context root), at the class 
to which they refer, or propagated throughout the hi- 
erarchy. Their placement has no effect in the logical 
aspects of the model but is important with respect to 
performance of the access validation algorithm. 

For the example and rules above we define the fol- 
lowing two queries each of which is issued by SA and 
FSA. 

Ql: read SSN for all students. 
Q2: read SSN and visa for all foreign students. 
According to the policies of Section 2.1 we expect 

the following behaviour as a result of the evaluation of 
the indicated requests. 

(SA, Ql) = (SA, Read S.SSN) - all SSNs of students 
can be read (Policy Pi). 

(SA, Q2) = (SA, Read,{FS.Visa, FS.SSN}) - only 
SSNs of foreign students are, to be read and not their 
visas (Policy Pz). 

’ (FSA, Ql) = (FSA, Read, S.SSN) - only foreign 
student SSNs are to be read (Policy Pz). 

(FSA, Q2) = (FSA, Read {FS.Visa, FS.SSN}) - 
both foreign student SSNs and visas are to be read. 
(Policy P2). 

In [5] we presented an algorithm to evaluate ac- 
cess based on the above model, and showed how the 
queries above are answered correctly by this algorithm. 
The basic inputs to this algorithm are the query graph 

which represent the query in form of a graph, and the 
security graph which represent all the rules relevant to 
the query in the relevant security context. The algo- 
rithm assumes that authorization rules are stored with 
the object to which they refer, i.e the following place- 
ment rule is used: 

An access rule (U, A, {Oi.al,Oi.a2...}) can be placed 
at any node Oi such that: 
a+ is known for object Oi (defined or inherited from 
above). 

In [8] we improved the algorithm by efficiently sup- 
porting multiple node queries and by assuming a more 
general placement rule which allowed placing rules at 
ancestors of the objects they reference. That algorithm 
is the basis for the one presented here. 

For lack of space, we cannot present that algorithm 
here. The most important concept there is the AT data 
structure(Authorization Tree - called there: AT-yes). 
The AT contains information from the query graph as 
well as the results of each step of the authorization val- 
idation. Each node contains information about the at- 
tributes which need to be accessed at that node, specif- 
ically whether the node (attribute) has full, partial, or 
no authorization (see later). The algorithm scans the 
security graph and the AT and updates the various 
fields in AT. At the end, each node of AT contains 
flags indicating its specific authorization (for example, 
for the query Ql above and FSA, the node correspond- 
ing to Foreign-student will be fully authorized, while 
the Student node will be partially authorized). 

3 Policies for Authorization 
Methods 

3.1 Access Control Mechanism 

of 

We can have two types of authorization models based 
on methods: 

1. Methods correspond to access types in the access 
rule. This is consistent with the notion of abstract 
data types, namely an object can only be accessed 
via its predefined methods. For example, class 
Student could only be accessed by methods such 
as add-student, enroll-student, etc. The internal 
actions of the methods, i.e. what other methods 
they call, and what attributes they access is the 
responsibility of the system, and no special autho- 
rization for them is required of the user. 

2. Methods correspond to authorization objects in 
the access rule. In this case some special access 
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hype is required to control the use of methods, e.g 
cull in [l], ezecute in our model. If the method 
needs access to other methods the user needs au- 
thorization for those as well. 

The first model is described in detail in [7]. We 
adopt here the second model and we use a unique 
acees type, Execute, which authorizes to apply a given 
method to a given object. 

In operating systems it is often the case that users 
need to execute programs in a mode which has more 
rights than their own. This is called amplification. 
For example, in Unix, this is handled by the “Set user- 
id” mechanism. We add a similar mechanism here, and 
therefore we need an access type called “Execute with 
set user-id”. Execute, and Execute with set user-id, 
can be denied to provide for negative authorization. 

3.2 Security policies 

We extend the policies of Section 2.2 to consider the 
new model. We complete them by adding a policy for 
negative authorization, a policy for handling implied 
accesses and a policy to consider the effect of Setuid: 

Pi’ - a user that has Execute access to a method in 
a class is allowed to have similar Execute access in its 
subclasses to the corresponding inherited methods. 

P?’ - access to a complete class implies Execute ac- 
cess to the methods defined in the class as well as to 
methods inherited from a higher class. If there is more 
than one ancestor (multiple inheritance) there is access 
to the union of the inherited methods. 

Pa’ - A method defined for a subclass is not acces- 
sible by having Execute access to the methods of a 
superclass. This lack of visibility applies also to inher- 
ited methods redefined in the subclass. 

Pa ( Negative authorization) - An explicit negative 
Execute access to a method overides any implied or 
explicit positive Execute access (of the same type). 

Ps ( Priority ) - When two implied Execute accesses 
apply to a method, the closest one has priority. 

Ps ( Invocation ) - If a method invokes other meth- 
ods during execution, the user must have Execute ac- 
cess to these other methods as well (recursively). This 
applies also to the basic read/write methods. 

Pr ( Amplification ) - A user can be authorized to 
apply the Execute access type to some method with 
rights recieved from another user (who has Execute 
access right to the method). 

The mechanism to apply policy P7 is that of Se- 
tuid. As explained above, a setuid authorization on a 
method can be created to overcome situations where 
a user does not have authorization for an invoked 
method called by an invoking method and therefore 

is not authorized to execute the invoking method by 
virtue of policy P6, even if it is important that he will. 
The problem is solved by making this user dependent 
on another user’s authorizations, for the purpose of the 
invoked method execution. The user granting the right 
should not have recieved it through another setuid but 
must have been authorized directly by the administra- 
tor (i.e. there is no recursive setuid policy...) 

Note that to apply policy P6, the knowledge which 
methods are invoked within a method must be known 
to the access evaluation algorithm. If this algorithm 
applies at compile time, this knowledge must be stored 
with the methods definitions. This point is further 
elaborated on in Section 4. 

As an example consider the database in Figure 1. 
An accountant is a user of this database and his job 
is to compute the salary of the teachers using the 
method Teacher.salary. This method accesses the at- 
tribute Rank which is one of the parameters needed to 
compute the salary. The accountant has an Execute 
access to the method but is unauthorized to access 
Rank. The personnel manager is another user of this 
database which has access to all the attributes and 
methods of class teacher, and he uses the accountant 
services. Therefore, it is convenient to arrange that the 
accountant becomes dependent on the personnel man- 
ager who gives him setuid[personnel manager] access 
to the method Teacher.salary. 

As another example, assume a query that requests 
the age of all students is evaluated. Two meth- 
ods need to be accessed: Student.age which uses the 
attribute Student.Birthdate, and Foreignstudent.age 
which uses the attribute Foreignstudent.Birthdate. ( 
note that these attributes would be accessed through 
the read/write methods of the corresponding at- 
tributes). Now, there may be several cases: 

l Method age is not defined in foreign student and 
is therefore inherited from student. If the user has 
an Execute access right on student.age then he has 
an implicit Execute right on foreign-student.age. 
Now the access depends on the type of access al- 
lowed on attribute birthdate. If, for example, the 
user is authorized to access Student.Birthdate but 
denied access to Foreignstudent.Birthdate, then 
by Policy 6 there will only be a partial answer to 
student.age query. A similar result will be if the 
user has Execute right on student.age but deny- 
execute on foreignstudent.age. A partial answer 
will also be generated if the user has no access to 
student.age (birthdate) but positive Execute acess 
to foreignstudent.age (birthdate). 

l Foreignstudent.age is redefined in foreignstu- 

55 



A G 

A - Aggregation Association 

G - Generalization Association 
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dent. Now according to policy 3 an Execute ac- 
cess on student.age is not carried over to for- 
eignstudent.age and an explicit access to for- 
eignstudent.age is required (same comments for 
birthdate). 

We discuss next the algorithms to evaluate access 
based on the above policies. 

4 Evaluation Algorithms 

The evaluation algorithms are similar to those men- 
tioned in Section 2, that is, it is assumed that the 
query translator generates a query graph to represent 
the query. The query graph is converted into a data 
structure called AT, using the security context con- 
cept. Figure 3 clarifies the above concepts. It shows 
three entities: 

1. The query - (SA, E, Student.find-yb). 

2. The security context which involves basically the 
relevant portions of the database shown in Figure 
1. 

3. The AT which contains all nodes touched by the 
query including their ancestors and descendants. 
This is needed to assure that all relevant rules will 
be searched. 

Next, the evaluation algorithm scans the AT data 
structure and the security graph, searches for appro- 
priate authorization rules and updates the AT accord- 
ingly. The results is that each method node in the tree 
is associated with one of four states: 

fully granted - a node is fully granted if it is 
granted and in each one of the subclasses of its 
class this node is fully granted (empty subclasses 
are considered fully granted). 

fully denied - a node is fully denied if it is denied 
and in each one of the subclasses of its class this 
node is fully denied. 

partially granted - a node is partially granted if 
it is granted and in one or more of the subclasses 
of its class, the node is not fully granted. 

partially denied - a node is partially denied if it 
is denied and in one of the subclasses of its class, 
the node is not fully denied. 

These concepts are important at query run-time. At 
run-time the retrieval algorithm may skip some search- 
ing of the object-hierarchy (this can also be used by 

the query optimizer). For a class which is fully granted 
(denied), all (none) object instances are retrieved and 
there is no need to go down the AT graph hierarchy 
for these types of nodes (although for fully granted the 
query run-time may have to go down the database hi- 
erarchy to fetch all instances ). For partially granted 
nodes the query evaluation algorithm knows that par- 
tial results are possible and will go down the AT graph 
hierarchy and the database hierarchy to check which 
specific nodes are granted and fetch their correspond- 
ing instances. 

We now discuss the access evaluation algorithm. In 
[5] and [9] we discussed several algorithms for scanning 
the AT tree. The difference was mainly with the di- 
rection of search along the tree. Here, because of the 
existence of negative authorization, there is always the 
need to scan the tree all the way to the bottom, there- 
fore the search can start at the bottom level and go 
up. This is what the algorithm does by recursively 
evaluating the sons of a node before its father. 

Also, in our earlier papers we had two types of place- 
ment rules. Placement rule 1 which was discussed in 
Section 2, and placement rule 2 which allows the place- 
ment of rules anywhere in the hierarchy above the ob- 
ject to which they refer. Placement rule 2 has advan- 
tages with complex queries and positive authorization, 
but these advantages are smaller when negative autho- 
rization is allowed. in this paper therefore we assume 
the simpler placement rule 1, where a rule is placed 
with the object it references. 

The main difference of the algorithm below and our 
previous algorithms derives from the existence of meth- 
ods. Since, by Policy 6, in order to have authoriza- 
tion to execute a method it is necessary also to have 
the correct authoriztion for the methods it invokes, 
it is advantageous to evaluate the authorization for 
each method separately, since that evaluation may call 
recursively for the evaluation of other methods (and 
maybe repeat that for another user in case of a setuid 
situation). However, if at any point the evaluation 
of authorization for a method is completed, it is not 
repeated again. This can be seen easily from the algo- 
rithm below. 

Another issue is Compile-time vs. Run-time. The 
compile-time algorithm uses only information known 
at compile-time. This has two implications. First 
it means that all methods invoked by a particular 
method must be known. This is assumed to be done at 
the time the AT is generated byhaving the the schema 
of each method containing the names of methods it di- 
rectly calls. Second, the access evaluation algorithm 
assumes the “worst-case” in which all potentially in- 
voked method are actually invoked, and check autho- 
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rization accordingly. This may be too restrictive, since 
uo consideration is given to methods flow of control. 
A run-time algorithm may provide the needed security 
without being overprotective. This is discussed below. 

We now describe in detail the two algorithms. 

4.1 Compile-Time Algorithm 

procedure evaluate 

Starting with the highest class in the 
query graph: 
for each class 

for each method of this class appearing in AT 
evaluate-method(method, class) 

end evaluate 

procedure evaluate-method (Method, Class) 

1) If there are subclasses to this Class then 
A) for each subclass of this class 

a) find the inherited method in subclass 
b) evaluate-method (method, subclass) 

2) 
A) search for authorization rule in the 

method node. If such a rule is found 
then method execution is authorized, 
or denied according to the rule. 

B) if there are no relevant rules then 
if the method is inherited then 

a. 

b. 

C. 

else 

find the same method in the 
direct father. 
go back to step (A) vith the 
father's method. 
the method gets authorization found 
for the father method. 
(the method is defined) 

according to the idea of a closed system 
method execution is denied. 

C) if the method execution is authorized then 
a. for each child-method invoked by 

the method: 
evaluate-method(child_method,class) 

b. if all child methods are authorized 
then the method is granted 

else 
the method execution is denied 
in the class. 

D) if the method execution is denied and 
setuid is granted then 

a. find the authorizing user. 
b. repeat steps 2-A through 2-C vith the 

authorizing user. 

3) if the method is granted/denied then 
if the Class has no subclasses then 

set method to fully granted/denied 
else if the methods in all the subclasses 

are fully granted/denied then 
set method to fully granted/denied 

else 
set method to partially granted/denied 

end evaluate-method 

The following example demonstrates the operation 
of the above algorithm. 

Assume the following rules refer to the database pre- 
sented in Figure 1: 
R3 = (FSA,E,FS.age) 
R4 = (FSA,-E,S.read-Birthdate) 
R5 = (SA,E,FS.read-Birthdate) 
R6 = (SA,E,FS.age) 
R7 = (FSA,Setuid[SA],FS.age) 

Let’s evaluate the query Q = (FSA,E,S.age) accord- 
ing to the algorithm. ( algoritm’s steps are denoted in 
brackets). 
The Security Graph contains the two methods S.age 
and FS.age. We start in class Student (S), with 
method age. Class S has one subclass - Foreign- 
Student (FS) so FS.age is evaluated first [ 11. In 
FS.age the explicit rule R3 is found , authoriz- 
ing FSA to access FS.age [ Z.A], but since method 
age uses attribute Birthdate we need Read access 
to FS.Birthdate as well (i.e. Execute right on 
read-Birthdate method>[a.C]. An explicit rule concern- 
ing FSA is not found in FS.Birthdate, but as it is an 
inherited attribute we search for a rule in the direct fa- 
ther, in S.Birthdate, and we find R4. Rule R4 denies 
FSA to Read S.Birthdate and this denial is inherited 
by FS.Birthdate[2.B]. Therefore, method age is denied 
for FSA by direct authorization. 
Next, we search for an indirect authorization[&.D] and 
we find R7 which allows FSA to execute FS.age if SA 
is authorized. For user SA the search is much shorter 
because of the two explicit rules R5 and R6 which to- 
gether authorize SA to execute the method FS.age, 
and indirectly authorize FSA as well. FS.age is there- 
fore authorized for user FSA and since FS has no sub- 
classes, it is fully-granted. Now, we turn back to eval- 
uate S.age but no explicit rule is found, there is no 
implicit one in class Person either, which is the direct 
father class of Student with respect to method age. 
In class Person, age is a defined method, so according 
to the idea of a closed system, Person.age is denied 
and this denial is inherited by S.age. Again we search 
for an alternative indirect authorization rule but there 
isn't any. S.age is therefore denied Lut since FS.age is 
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fully-granted, we say that S.age is partially-denied. 

Now we know that the answer to the query will be 
partial because only the age of the Foreign Students 
will be computed, i.e., FSA will be allowed to compute 
age of foreign students only. 

The complexity of this algorithm is in the worst case 
O(q*n*k*m) where q is the number of methods in the 
query, n is the number of nodes in AT, k is the num- 
ber of rules per node, and m is the total number of 
methods invoked by a single metho.d. This complex- 
ity derives mainly from the fine granularity of security 
we support, in particular the ability to apply security 
checks at each method invokation. Using the model in 
[7], the complexity is much reduced. Furthermore, av- 
erage performance is much better ss discussed for the 
originial algorithm in [S]. 

4.2 Run-Time Algorithm 

An evaluation algorithm is measured in terms of secu- 
rity and precision [2], applied to our model as follows: 

security: if an object is unauthorized according to 
the security policies, then it is unauthorized according 
to the algorithm. 

precision: if an object is unauthorized according to 
the algorithm, then it is unauthorized according to the 
security policies. 

The proposed compile-time algorithm is overprotec- 
tive since it provides security but not precision. The 
problem arises when methods are involved, because a 
methods flow of control is unknown until run-time. In 
the compile-time algorithm, authorization of a method 
requires the authorization of all access rights needed in 
the attributes involved in the method. However, this 
requirement is too strong because an access to an at- 
tribute involved in a method may not be needed with 
some specific flow of control within the method. 

A possible way to solve this problem is to use the 
results of the compile- time algorithm and to conduct 
checks at run-time as follows: ,In the compile-time algo- 
rithm, a method which is not authorized because one of 
the nodes involved in it is unauthorized, will be marked 
“undecided”. At run-time, if a method is marked “un- 
decided”, then each time before the method reaches 
a point where an access to a node is needed, the au- 
thorization to this node is checked (according to the 
results of the compile-time algorithm). If the node is 
authorized (partially or fully), then the method is ex- 
ecuted, while if the node is fully denied the method is 
unauthorized and thus aborted. 

5 Discussion and Conclusions 

Any model for security in object-oriented databases 
is dependent on the underlying data model, therefore 
some comparisons are not always meaningful. How- 
ever, since there is a related model [l], a comparison 
with that model can be enlightening. Similarly to our 
model, in [l] 11 a accesses and administration of access 
is expressed through functions calls (methods in our 
case), which is an advantage because of its uniformity. 
On the other hand, because attributes and methods 
are not distinct, security is usually based on the argu- 
ments of methods. This may be quite cumbersome as 
indicated by the authors themselves. Also, in [l] there 
is no specific mechanism for amplification such as our 
set-uid mechanism. Other differences are: 

The Call Privilege 
In [l] the call authority is argument specific, i.e. a 
user can have an authority to call a function for cer- 
tain types of arguments. In our model a user may 
call a method with any argument, the authority to 
use it is automatically checked by the fact that the 
user must have Execute authorization on any method 
invoked from the original method. This allows for a 
more precise and flexible sceme of authorization. 

Static and Dynamic Authorization of Derived Func- 
tions. 
In [l] derived functions are defined in terms of other 
functions. Similarly, methods in our model may use 
other methods and attributes. Two approaches are 
suggested in [l] with respect to derived functions. The 
first is Static Authorization in which, in order to evalu- 
ate a derived function, a call authority on the function 
is sufficient. This is similar to the first model discussed 
in Section 3. The second is Dynamic Authorization in 
which a user must have call authority on the derived 
function as well as on the function it uses. Dynamic 
authorization matches our policy regarding methods , 
i.e. a user may call a method if he has an execution au- 
thority on the method as well as Execute access rights 
on each of the methods used by the derived method. 
We have suggested two algorithms to accomplish this 
action. The first, evaluated at compile time, checks the 
existence of proper access rights to all methods invoked 
by the derived method. The second is a run time al- 
gorithm which checks existence of proper access rights 
only on methods required at run time. This algorithm 
apparently, suits the spirit of Dynamic Authorization 
as presented in [l]. 

The interaction of Authorization and Function Reso- 
lution. 
[l] presents two authorization approaches regarding 
generic functions : Generic Function Authorization 
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and Specific Function Authorization. In the Generic 
Function Authorization if a user is authorized to eval- 
uate a generic function , he can evaluate it for any 
object. The Specific Function Authorization approach 
supports specifying authorization to specific functions, 
and in order to select the right specific function two 
function resolution approaches are suggested : the 
first is Authorization Independent Resolution in which, 
when a specific function is selected, the authorization 
on it is checked. The other is Authorization Depen- 
dent Resolution in which, the most specific function 
the user is authorized to evaluate is executed. In our 
model resolution has nothing to do with security. A 
generic method ( in the sense of applying it to inher- 
ited subclasses) is connected to a class and according 
to database policy, the right method is selected for 
each class and subclass. For example, if the method 
salary is connected to class Admin, and Manager is a 
subclass of class Admin, then a method by the name 
salary is connected to class Manager as well, only for 
security purposes, we treat them as two different meth- 
ods Admin.salary and Manager.salary and a user may 
have different authorities on them. This is also the way 
we can provide different authorization for polymorphic 
methods. 

Guard Functions. 
Guard functions are used to restrict evaluation of other 
functions for security puposes. In our model, we can 
use predicates in order to restrict access to attributes 
or methods in some conditions, although we have not 
shown it in the paper. 

In conclusion we believe that our model supports the 
security policies regarding methods which are common 
in object-oriented databases, and provides flexibility 
and power. Our algorithms for access evaluation can 
be integrated into a typical query translator and run- 
time system. The model can be extended with more 
general methods and for message-oriented databases. 
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