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A model of neuronal bursting using three coupled 
first order differential equations 

BY J. L. HINDMARSH' AND R. M. ROSE2 

'Department of Applied Mathematics and Astronomy and 2Departent of 

Physiology, University College, Cardiff, CF1 1XL, U.K. 

(Communicated by Sir Andrew Huxley, P.R.S. - Received 22 September 1983). 

We describe a modification to our recent model of the action potential 
which introduces two additional equilibrium points. By using stability 
analysis we show that one of these equilibrium points is a saddle point 
from which there are two separatrices which divide the phase plane into 
two regions. In one region all phase paths approach a limit cycle and 
in the other all phase paths approach a stable equilibrium point. A 
consequence of this is that a short depolarizing current pulse will change 
an initially silent model neuron into one that fires repetitively. Addition 
of a third equation limits this firing to either an isolated burst or a 
depolarizing afterpotential. When steady depolarizing current was applied 
to this model it resulted in periodic bursting. The equations, which were 
initially developed to explain isolated triggered bursts, therefore provide 
one of the simplest models of the more general phenomenon of oscillatory 
burst discharge. 

INTRODUCTION 

We have recently described a two variable model of the action potential (Hindmarsh 
& Rose i982a) which is a modification of Fitzhugh's B.v.P. (Bonhoeffer-van der 
Pol) model (Fitzhugh I96I), with the property that each action potential is 
separated by a long interspike interval typical of real neurons. In the phase plane 
this property results from the close proximity of the nullelines in the subthreshold 
region of the oscillation. In this paper we examine how this proximity can be 

exploited to give a qualitative explanation of burst generation. In view of the 
importance of this proximity for our model, and the way that the phase paths are 

apparently channelled between the nullelines when they are close together, we refer 
to this as the narrow channel property. Most of our attention will be directed to 
molluscan burst neurons, which have been used extensively to investigate the ionic 
basis of burst activity (Gola I974; Plant & Kim 1976; Gorman & Hermann i982). 

This work was initiated by the discovery of a cell in the brain of the pond snail 
Lymnaea which was initially silent, but when depolarized by a short current pulse, 
generated a burst that greatly outlasted the stimulus. Thompson & Smith (I976) 

have observed a similar type of response in various molluscan burst neurons 
which had been hyperpolarized to stop the bursting. When these continually 
hyperpolarized cells were depolarized by a short current pulse they generated an 
action potential followed by a slow depolarizing after-potential (d.a.p.). Burst 
discharges triggered by depolarizing current pulses have also been reported in 
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88 J. L. Hindmarsh and R. M. Rose 

crustaceans (Russell & Hartline I982; Dickenson & Nagy I983), and vertebrates 
(Schwindt & Crill 1980). 

In seeking an explanation for these phenomena we realized that a small 

deformation of the narrow channel in our model would create two additional 
equilibrium points, and that the resulting three equilibrium point model would 
have both a stable equilibrium point and a stable limit cycle. The transition from 
the stable equilibrium point, or silent state, to the stable limit cycle, or repetitively 
firing state, could be triggered by a short current pulse. Introduction of a third 
and slower differential equation to represent adaptation was found to terminate 
this discharge producing either an isolated burst or a d.a.p., depending on the 
choice of parameters. Application of a steady depolarizing current to this model 
was then found to produce periodic bursting. In the phase plane these bursts could 
be seen to be generated by the movement of one of the nullelines between a position 
with one equilibrium point and a position with three equilibrium points. 

Plant & Kim (1976) have discussed a model of bursting which is an extension 
of the Hodgkin-Huxley model (Hodgkin & Huxley 1952), and uses seven coupled 
first order differential equations. The model described here retains the main 
features of Plant & Kim's model (see Discussion) but is simpler with bursting 
explained using a two dimensional phase plane. This has the advantage of making 
it easier to understand interactions between bursting neurons (R. M. Rose and 
J. L. Hindmarsh, unpublished). 

The equations may be seen as a mathematical representation of bursting 
properties in terms of a B.v.P. type of model (Fitzhugh I 961 ), this representation 
being qualitative and dependent on the narrow channel property of our original 
equations (Hindmarsh & Rose i982a). 

THE THREE EQUILIBRIUM POINT MODEL 

Consider the following system of differential equations as a model for the action 
potential v = ca(,8r-f (v) + I) (1) 

r= y(g(v) -8r), (2) 

in which v represents membrane potential, r is a recovery variable, I is applied 
current, and a, fi, y and 8 are constants. These equations generalize Fitzhugh's 
B.v.P. model (Fitzhugh 196I) and our modification of that model (Hindmarsh & 
Rose i982a). In these equations we could set cx = 1/C where C is the membrane 
capacity and also set ,8 = 1 without loss of generality. However we will shortly 
simplify these equations by defining new variables. The form of the functions f(v) 
and g(v) in (1) and (2) may be determined partly by voltage clamp experiments in 
which the initial (Ivp(O)) and steady-state (Ivp(oo)) values of clamping current are 
measured for a range of clamping voltages (vp), and partly by the requirement that 
f(v) be cubic (see Hindmarsh & Rose i982a, b). 

Then f (vp) = Ivp(O), and g(vp)-f (vp)I-vp (oo) (Hindmarsh & Rose I 982a). In 
both Fitzhugh's and our model, the function f(v) is a cubic, but Fitzhugh (I96I) 

assumed that g(v) was linear, whereas we calculated g(v) using an I( o) curve 
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similar to that shown in figure 1 a. As a result, in the phase plane representation 
of these equations our model is different from that of Fitzhugh in that v and r 
nullelines, the curves labelled v = 0 and r = 0 in figure 1 b lie close together for 
v < 0, and consequently the phase point moves slowly along the narrow channel 
between the nullelines giving a long interspike interval (Hindmarsh & Rose I 982 a). 
Also the phase plane for this model, shown schematically in figure 1 b, has only 
one equilibrium point given by the intersection of the v and r nullelines. In a 
repetitively firing cell this equilibrium point is unstable. 

(a) I(a:) (c) DOO) 

V V 

r | u=O ? I0 w. I =O 
(b)t (d) I 

FIGURE 1. Schematic illustration of steady state current-voltage (I(oo) - v) curves (a) for the one 
equilibrium point model, and (c) for the three equilibrium point model, and the corresponding 
v and r nullelines in the phase plane, (b), and v and w nullelines in the phase plane, (d). 

The main aim of this paper is to discuss a further modification to the model which 
is illustrated in figure 1 c, d. If the I(oo) curve is deformed slightly so that it has 
three intersection points with the I(oo) = 0 axis, then this change creates three 
equilibrium points in the phase plane. Physiologically this modification would 

correspond to the addition of a slow inward current whose time constant is similar 
to that of the recovery (r) process in the model. If this inward current were 
described by an equation of the form: 

z = y(h(v)-8z) (3) 

then, defining a new variable w = r + z, we obtain 

-= y(g(v) + h(v)- 'w) (4) 

which is of the same form as (2). 
The assumption of equal time constants is probably inaccurate, since we 

estimate from data on R15 of Aplysia (Gola I974; Plant & Kim 1976) that the 
slow inward current may be five to ten times slower than the outward potassium 
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current. However as shown later the assumption may be more appropriate for 

bursting cells that switch on more rapidly than R15, in which case it may be a 
reasonable simplification which does not greatly alter the qualitative behaviour. 

A simple form of the equations for the new model may be arrived at as follows 
(for the case I = 0). First transform (1) and (4) by defining a new time variable 

T = y8t and introducing new variables x and y defined by: 

x(T) = v(T), y(T) = /w(t) 

which satisfy the differential equations 

= y-F(x) (5) 

G= (x)-y (6) 
where 

F(x) = -,f(x) and G(x) = (g(x) +h(x)). 

In these equations x is the membrane potential and y the recovery variable as 
in Fitzhugh's B.v.P model (Fitzhugh i96i) and our earlier model (Hindmarsh & 
Rose i982 a). Now impose the following conditions on F(x) and G(x): 

(i) F(x) is a cubic (and F(x) -+oo as x -+oo); 
(ii) G(x) is quadratic; 
(iii) F(x) and G(x) both have a local maximum for the same value of x. 

Condition (i) follows from Fitzhugh (I96I) and Hindmarsh & Rose (i982a). 

Condition (ii) is a simplification of our earlier (experimental) form for G(x) 
(Hindmarsh & Rose I 982 a), and condition (iii) is an approximation in the interests 

of simplicity. Finally we choose the origin of the x-y plane so that F(x) and G(x) 
have their local maximum at x = 0, and that the value of F(x) at x = 0 is zero. 

With these conditions the general form of F(x) and G(x) is: 

F(x) = ax3-bx2, 

and G(x) = c-dx2 (a, b,c,d > 0). 

giving the following equations 

= P(x,y) y y-ax3+bx2, (7) 

= Q(x,y) c-dx2-y (8) 

The only difference between these equations and the Fitzhugh B.v.P. model 

(Fitzhugh I96I) is that the y nullcline is now parabolic instead of a straight line. 

PROPERTIES OF THE MODEL 

(a) Equilibrium points 

The equilibrium points (e.p.s) are given by the intersection of the x and y 
nullelines, where P(x, y) = 0 = Q(x, y). Eliminating y, the x coordinates of the 
equilibrium points are given by the roots of F(x) = G(x) or 

X3+px2 = q, (9) 
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where d-b 
p = and q=-. 

Now q > 0 since a > 0 and c > 0. Therefore there will be one e.p. if p < 0, giving 
nullelines similar to those of figure 1 b. The condition for three e.p.s. is that 
27 q < 4p3, or that 27 a2c < 4 (d-b)3, which in turn requires that b < d. 

TABLE 1. (D = (b2-3a)2, b2 > 3a) 

sign of sign of 
region values of xo Tr(A(xo)) Det(A(xo)) type of e.p. 

I x0 <-2(d-b)/3a - + stable node or spiral 
II -2(d-b)/3a < xo <0 - - unstable saddle 

III 0 < x < (b-D)/3a - + stable focus or spiral 
IV (b-D)/3a < xo < (b+D)/3a + + unstable focus or spiral 
V (b+D)/3a <x0 - + stable focus or spiral 

(b) Stability 

The stability of these e.p.s may be investigated using the linear approximations 
to (7) and (8) (Arrowsmith & Place (I982), chapter 3). At the e.p. whose x-coordin- 
ate is xo the linear approximation is: 

[ii] = A(xO) [] 

where u1 and u2 are new coordinates whose origin is at the e.p. and 

A aP aP 
[-3ax2+2bxo, 1 

A (xo) == 

aQ aQ 2 -d -1 
ax ay 

~(xo0,y0) 

The type of e.p. is determined by the signs of the trace and determinant of A(xO). 
The trace and determinant are given by: 

Tr (A(xo)) =-3ax + 2bxo -1, 
Det (A(xo)) = 3axO +2(d-b)x0. 

Now provided b2> 3a, Tr (A(xo)) is negative for all values of xo except those 
between (b-(b2-3a)')/3a and (b+(b2-3a)")/3a. Det(A(xo)) is positive for all 
values of xo except those between -2(d-b)/3a and 0. Thus we may divide the 
x-axis into five regions according to the signs of Tr (A(xo)) and Det (A(xo)). Table 1 
gives the type of e.p. according to the region to which xo belongs. 

If b2 < 3a then Tr(A(xo)) is negative for all values of xo, and the only possible 
types of e.p. are unstable saddle or stable focus or spiral. This precludes the 
possibility of an unstable focus or spiral whose phase paths approach a stable limit 
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cycle. Since we want this to be our model of the repetitively firing cell we impose 
the condition that b2 > 3a. 

(c) Location of roots 

The Poincare Index (Jordan & Smith (1977), chapter 3) of the single e.p. in the 
phase plane of figure 1 b is 1. The introduction of two additional e.p.s as in figure 
1 d does not change the sum of the indices of all the e.p.s and it is easily seen that 

the leftmost and rightmost e.p.s have index 1, while the middle e.p. has index 

-1. Thus the middle e.p. corresponds to a saddle point and must have its 
x-coordinate in region II. It follows that the leftmost e.p. must have its x-coordinate 
in region I and so be a stable node or spiral. This leaves open the question of the 
location of the x-coordinate of the rightmost e.p. As remarked above, we obtain 
a simple model of a repetitively firing cell if this e.p. is an unstable node or spiral. 
So we require the x-coordinate of the rightmost e.p. to lie in region IV. 

The lower and upper boundaries of region IV are given by: 

L= bD (10) 
3a 

and 

M b (11) 
3a 

respectively. If L3 +pL2 = q then the positive root of the cubic (9) will be L, and 
if 1I3 +pM2 = q it will be M. So provided 

L3+pL2 < q < M3+pM2, (12) 

the positive root will lie in region IV. 
The conditions (10) and (11) are shown graphically in figure 2. There the roots 

of the cubic (9) are the x-coordinates of the points of intersection of the graph of 
x3 +pX2 with the horizontal line of height q above the x-axis. To have three roots, 
represented by the points A, B and C, we must have 0 < 27q < 4p3, and the 

instability condition on the e.p. corresponding to the positive root is L < C < M 
which can also be expressed by (12). 

(d) Numerical solution 

An example of the type of response that we wish to simulate is shown in figure 
3b, which is an intracellular recording from a small identified cell in the visceral 
ganglion of the pond snail Lymnaea. The cell is usually silent, but when depolarized 
for about 100 ms it fires several times, and continues to fire after cessation of the 
stimulating current. Adding to (7) a term I, to represent the external current, we 
obtain: x =y-ax 3+bx2 + I (13) 

= c-dx2-y. (14) 

A numerical solution to (13) and (14) for a short current pulse (I) is shown in figure 
3 a. During the application of the current pulse the x value rises steadily, and as 
in the real neuron the model discharges repetitively after termination of the current 
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x3+px 2 

M3+pM2 

27 q i ;/ 

/ A -2p B 
I 

C M 
3 ~ b-D ~ (b?D 

/3a ) 3a 

FIGURE 2. Location of roots of the equation X3 + pX2 = q. Explanation in text. 

2- 

x 

0~~~~~ . 0~ ~ ~ ~~~~~~~3 

-2 

(b) 

,] 10 mV 

200 ms 

t4 
FIGURE 3. Triggered repetitive firing. (a) Numerical solution to (13) and (14) with a = 1, b = 3, 

c = 1, d = 5, for a short current pulse (I = 1). (b) Intracellularly recorded response of a small 
identified cell in the visceral ganglion of the snail Lymnaea stagnalis, for a short depolarizing 
current pulse applied between arrows. Upward displacement of baseline during current pulse 
is due to bridge imbalance. 

pulse. One difference between the model and the cell is that it is always necessary 
to fire the cell several times during application of the current pulse for an 
afterdischarge to occur. In the model it is possible to produce the afterdischarge 
by the application of a shorter current pulse which does not fire the cell (figure 
3 a). This difference could arise because the subthreshold inward current has slower 
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10- 

-1.6 -1 0.6 x 

-2 2 

B- 

saddleX 
point 
separatrix yzo 

/ .~~~y 
FIGURE 4. Phase plane representation of (7) and (8) with a = 1, b= 3, c= 1, d 5. The 

equilibrium points (e.p.s) A, B and C are a stable node, an unstable saddle, and an unstable 
spiral respectively. Corresponding current-voltage (I(oo) -x) curve is shown above phase 
plane. Explanation in text. 

activation kinetics in the snail neuron than is assumed in the model. Also the 
recorded action potentials have a greater undershoot and more rapid recovery than 
in the model, although this difference is to be expected because it was present in 
our original model (Hindmarsh & Rose I982 a). The three equilibrium point model 
therefore shows the property of triggered firing at least qualitatively. 

(e) Phase plane representation 

This property of triggered firing can be understood most easily by examining the 
behaviour in the phase plane (figure 4). For convenience the calculated solutions 
in figure 3a and 4 were obtained with the constants a = 1, b = 3, c = 1, d = 5, so 

that the equilibrium points are easily located at x values of - 1.6, -1 and + 0.6. 
As predicted by the analysis (table 1) the leftmost equilibrium point is a stable 
node, the middle equilibrium point is a saddle point, and the rightmost equilibrium 
point is an unstable spiral. If the initial conditions for x and y are chosen to be 
close to the unstable equilibrium point on the right, the phase point spirals out 
until it enters a limit cycle. On the other hand if the point is started close to the 
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saddle point and the direction of integration reversed, we obtain the dashed line 
that divides the phase plane into two regions. On one side of this line the phase 
point joins the limit cycle, whereas on the other side it is deflected downwards 
towards the stable node. The phase plane isoclines are related to the steady-state 
current-voltage curve shown above the diagram, with the x-coordinates of the 

equilibrium points A, B and C given by the x-coordinates of the points where 
I(oo) = 0. This current-voltage curve is similar to that proposed to underlie 
triggered discharges in cat motoneurons in the presence of penicillin (Schwindt & 
Crill i980), and to the current-voltage curve obtained for molluscan burst cells 
such as R15 of Aplysia under voltage clamp (Gola I974). 

In the calculated response to a current step, the model was initially in 
equilibrium at x = -1.6. On application of the current step, the ? = 0 isocline was 
displaced downwards, eliminating the two equilibrium points on the left hand side 
of the phase plane. Therefore the phase point moved fairly rapidly upwards and 
to the right, giving the fall in membrane potential observed in figure 3a. On 
termination of the current step, the x- = 0 isocline moves back to the original 
position, recreating the two equilibrium points on the left hand side. If the phase 
point is below the saddle point when this happens, it moves slowly back to the 
leftmost equilibrium point. On the other hand if the phase point is above the saddle 
point on termination of the current pulse, it enters the limit cycle and an infinite 
train of impulses result (figure 3 a). It can therefore be seen that triggered firing 
results because the model is changed temporarily from a three equilibrium point 
model to one having a single unstable equilibrium point during the application of 
the current pulse. 

ADDITION OF A THIRD DIFFERENTIAL EQUATION 

(a) Adaptation 

The cell in Lyrnnaea which has been discussed earlier did not fire indefinitely, 
but slowed down and terminated with a slow after-hyperpolarizing wave (figure 
5b). A simple way of producing this effect would seem to be the introduction of 
a slow current, which gradually hyperpolarizes the cell. A slowly increasing 
outward current has been reported to cause adaptation in molluscan neurons 
(Partridge & Stevens I 976), and is generally assumed to underlie the repolarization 
process in molluscan bursters (Plant & Kim 1976; Gorman & Hermann I982). In 
the following system of equations we have added an adaptation current (z) to (13). 
This adaptation current approaches a steady-state value, which we assume to be 
a linear function of x. Other authors have represented adaptation as a conductance 
variable with a sigmoidal steady-state curve (Colding-J0rgensen 1976) to be 
consistent with the Hodgkin-Huxley formulation (Hodgkin & Huxley I952). Our 
equations are closer to Fitzhugh's model (Fitzhugh I96I) in that the xi, y and i 

equations have cubic, quadratic, and linear terms in x respectively. The equations 
for the three equilibrium point model with adaptation are: 

= y-ax3+bx2+J-z, 

-c-dx2- y, (15) 

z = r(s(x-x1)-z), I 
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where (x1, yl) are the coordinates of the leftmost e.p. of the model without 

adaptation. This has the result that (x1, y1, 0) is a stable e.p. of the model with 

adaptation. For numerical investigation we will use a = 1, b = 3, c = 1 and d = 5 

as previously. 

The responses of this model to a short depolarizing current pulse depend on the 

values given to the constants r and s. For the case r 0.001, s = 1, an isolated 

2 

x 

0 

-2 _ ' -- 

40 

v'V 11 mV0 
- I I 

FIGURE 5. Model with adaptation included. (a) Numerical solution to (15) with a = 1, b = 3, 
c = 1, d = 5, r = 0.001, s = 1, for a short current pulse (I = 1), showing a triggered burst; 

(b) example of a triggered burst recorded intracellularly from the identified cell in the 
Lymnaea visceral ganglion; (c) numerical solution as in (a) but writh 8 = 4, showing a 
depolarizing afterpotential. 

burst of action potentials is obtained (figure 5 a) similar to that obtained 

experimentally in Lymrnaea (figure Sb). For r = 0.001, s = 4, the response shown 

in figure Sc is obtained, which is similar to the d.a.p.s observed by Thompson & 

Smith (I976). One difference between calculated and recorded waveforms is that 

the recorded d.a.p.s are biphasic with an initial dip before rising to a peak 

(Thompson & Smith I976). Similarly, recorded bursts tend to have an initial 

acceleration before adaptation takes place (figure 5 b) . These features are not shown 

by the model, which gives steadily declining afterpotentials (figure Sc) or spike 

frequencies (figure 5 a). 

One feature that is interesting is that after the burst the model slowly 

hyperpolarizes to an x value that is more negative than the starting value (x1). 

When this hyperpolarization is complete we have found that the x value returns 

very slowly to the original value x1 (see also figure Ga). 
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We can understand these effects by considering what happens in the x-y phase 
plane. Strictly speaking, since there are three variables, x, y and z, we should 

be looking at a three dimensional phase space. However, the third variable z is 

slowly varying (r = 0.001) compared to x and y. We therefore regard z as a slowly 

varying parameter in the equations for x and 4. 
Consider the model neuron, initially at rest at xl, which is given a short current 

step. As before (figure 4) the phase point will enter a limit cycle, but now each time 

an action potential occurs the adaptation current (z) will be incremented, and this 

will displace the x nullcline upwards on successive cycles. The firing frequency will 

decrease because the narrow channel on the left hand side of the phase plane (figure 

4) becomes narrower. Also as the x nullcline is displaced upwards the equilibrium 

points will move, the saddle point being displaced upwards and the leftmost 

equilibrium point being displaced downwards. Eventually the saddle point will be 

displaced upwards so far that the limit cycle trajectory will cross the saddle point 

separatrix (figure 4). Thus the firing ceases and the phase point enters the narrow 

channel below the saddle point and moves slowly downwards towards the leftmost 

equilibrium point. This slow movement gives rise to the slow hyperpolarizing wave, 
which approaches a value below x1 because the leftmost equilibrium point has been 

displaced downwards. As the adaptation current relaxes back to its starting value, 

the x value will reapproach x1 as the leftmost equilibrium point moves back to its 

original position. 

(b) Burst generation 

As remarked in the Introduction, Thompson & Smith (I 976) converted bursting 

cells into cells that produced d.a.p.s in response to current pulses, by the 

introduction of a constant hyperpolarizing current. Conversely we expect our 

equations to model a bursting cell when the current parameter (I) is set at a 

constant positive level. Numerical solutions for different values of applied current 

(I), but without further modification to the other parameters are shown in figure 

6. At low levels of steady depolarizing current (I = 0.4, figure 6a), the model 

generated an isolated burst followed by an after-hyperpolarizing wave which 

slowly recovered to the starting value (x1). At higher levels of current (I = 2) the 

model generated a long burst initially in response to the current step, and this 
adapted and terminated to give the periodic burst pattern shown in figure 6 b. These 

bursts are similar to the bursts of cell R15 of Aplysia (Gola I974) except that the 

model switches on and off more rapidly presumably because our equivalent of the 

slow inward current has a faster time constant than in the real cell. At still higher 

levels of current (I = 4) there was a continuous high frequency discharge, with the 

frequency declining from the onset of the step to the steady repetitive firing shown 
in figure 6c. 

Again burst generation can be easily understood by use of the x-y phase plane 

(figure 7). The phase plane will be examined at five points (a-?) on the burst cycle 
shown schematically in figure 7a. At a the adaptation current is just beginning 
to rise and the applied current (I) has changed the three equilibrium point model 
to one having a single unstable equilibrium point (figure 7b) by downward 

displacement of the x nullcline. Consequently the model generates a burst of action 

4 Vol. 221. B 
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potentials because of the presence of the limit cycle. As the adaptation current rises 

the x nullcline moves upwards and a saddle point is created which moves slowly 

upwards as the adaptation current continues to rise. Eventually the phase point 

is displaced across the saddle point separatrix, and enters the narrow channel below 

the saddle point and the burst switches off (figure 7c). This process is identical to 

2 
(a) 

0 

-2- 

2 

0 (b) (c) 

-2 
100 

FIGURE 6. Burst generation. Numerical solution of (15) with a = 1, b = 3, c = 1, d = 5, r = 0.001, 
8 = 4, for (a) I = 0.4, (b) I = 2, (c) I = 4; (b) starts 700 time units after the onset of I step, 

and (c) after 1000 time units of continuous firing. 

that described in the previous section on isolated burst generation. At point : the 

phase point is moving down the narrow channel towards the leftmost equilibrium 

point (figure 7c). When the post-burst hyperpolarization is completed the phase 

point has reached the leftmost equilibrium point. The adaptation current then 

starts to fall, displacing the x nullcline downwards again. As this happens the 

leftmost equilibrium point and the saddle point approach each other (figure 7d), 

the slow upward movement of the lower equilibrium point causing the inter-burst 

pacemaker depolarization at pointy. At point 6 the two equilibrium points coalesce 

(figure 7 e) and finally at ? the model switches back to a one equilibrium point model 

which has the phase plane shown in figure 7f and figure 7 b, so that another burst 

is generated. Burst generation therefore arises through a regular alternation 

between one and three equilibrium point states. 

(c) Random burst structure 

With parameter values a = 1, b = 3, c = 1, d = 5, r = 0.005, s = 4 and current 

I = 3.25 the numbers of spikes in successive bursts were 7, 5, 5, 7, 5, 5, 5, 5, 6, 
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4, 3, 3, 7, 5, 4, 5, 7, without any apparent pattern. Thus we have an example of 
a deterministic system producing bursts with a random structure. This example 
shows that a random burst structure does not necessarily require that the system 
is subject to random forces or noise. 

(a) 

x 

(b) Y xIO ( =O x=O 

0 O(e) 

(c) xc O 

x (f) 

FIGURE 7. (a) Schematic representation of burst cycle; (b) and (c) are phase plane diagrams 
corresponding to times a and ,; (d) to (e) show details of the x-y phase plane diagrams 
corresponding to times y to ? in the burst cycle. 

(d) Post-inhibitory rebound 

A further feature of the model that arises without further modification, is that 
it shows post-inhibitory rebound. If the model is hyperpolarized for a period similar 
to the burst duration, the adaptation current will decrease below its resting value. 

Consequently when the hyperpolarizing current is released, the model will behave 
as though extra current had been applied, and the phase plane will be similar to 
that in figure 7b. The model will generate a post-inhibitory rebound burst, which 
will terminate in the usual way as the adaptation current rises back to its resting 
value. An example of this effect using exactly the same parameter values as in 
figures 5c and 6 but with the applied current (I) given in the hyperpolarizing 
direction for a period similar to the burst duration is shown in figure 8. 

4-2 
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DiSCUSSION 

A current view of burst generation in molluscan neurons, based on voltage clamp 

experiments, is as follows (Gorman & Hermann I982). Firstly in the interburst 

interval the rising depolarization activates a subthreshold inward current carried 

primarily by Ca2+ ions, which initiates the burst. During the burst both the slow 

depolarization and the action potentials cause Ca2+ entry into the cell, which in 

~~~~~~~~~~~~~:~~~~~~2 
T 

20 

FIGURE 8. Post-inhibitory rebound. Numerical solution of (15) for a long hyperpolarizing step 
(I = - 3). Other parameters as in figures 5c and 6. 

turn activates a slow outward Ca2+ dependent K+ current. This current terminates 

the cycle causing the post-burst hyperpolarization. The slow outward current then 

declines and the cell slowly depolarizes to initiate another cycle. This mechanism 

is broadly consistent with our model. The subthreshold inward current of 

molluscan burst neurons is known to give rise to a region of negative slope in the 

I-V characteristic in a voltage range and of a magnitude which is qualitatively 

similar to that in our model (Gola I974; Smith et at. I975; Wilson & Wachtel 

1974). The Ca2+ activated K+ current may be thought of as equivalent to our z 

current. 
A mechanism similar to this has been expressed mathematically in a model of 

bursting given by Plant & Kim (I976). To understand the relationship between 

their model and ours it is useful to consider both models as a modification to the 

repetitively firing neuron. The most complete model of repetitive firing in 

molluscan neurons is that of Connor & Stevens (I 97 I). They added a fast outward 

current to the Hodgkin-Huxley model (Hodgkin & Huxley I952) giving a 

description involving six differential equations. Using this as a starting point, Plant 

& Kim (1976) included an additional constant inward current and a slowly 

activated outward current described by a seventh differential equation. Our model 

is similar to this except that we have started with a model for repetitive firing which 

uses only two differential equations (Hindmarsh & Rose 1982 a). The subthreshold 

inward current has been incorporated by deforming the steady state I-V curve 

without a change in the number of variables, and the slow outward current is 

included as a third differential equation. Therefore we have modelled essentially 

the same mechanism as Plant & Kim (I976) using three differential equations 

instead of seven. The advantage of this is that since one of our variables (z) changes 

slowly, the overall mechanism can be easily represented in the two dimensional 

phase plane and the stability of the equilibrium points can be analysed. It is 

therefore easier to understand related phenomena such as triggered bursting and 
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post-inhibitory rebound. It is for instance possible to predict another type of 

bursting. If the unstable equilibrium point in region IV is displaced into region 

III (table 1) before the upwardly displaced saddle point has time to switch off the 

burst, the phase point will spiral into the stable focus in region III. When the z 
variable relaxes again, the phase point will spiral out to meet the limit cycle again. 
This should lead to a burst pattern with spike amplitude increasing and decreasing 

at the beginning and end of each burst. We have observed this type of bursting 
in the Lymnaea brain (R. M. Rose, unpublished observations). 

Although there are other possible mechanisms for the generation of d.a.p.s, for 

instance recurrent synaptic excitation, extracellular K+ accumulation during 
activity, and local circuit currents from dendrites, there are strong arguments 

against these mechanisms at least in the case of molluscan neurons (Thompson & 

Smith I976). The latter authors conclude that the dominant mechanism in d.a.p. 

production is activation of the subthreshold inward current of bursting neurons 
and its slow inactivation. We have not attempted to include inactivation mech- 

anisms in our model but recognize this as an alternative. 
Although there are obvious applications of the model to small oscillatory 

networks because of the economy of variables, an important problem to be 
answered is the physical meaning of the x, y and z variables. The problem is how 

to relate our original model to the Hodgkin-Huxley model (Game I982). Although 

there are difficulties here, we think that the topological features of the narrow 
channel and its deformation may survive a considerable amount of modification 

and reinterpretation. In conclusion, the model, which is a natural extension of 
Fitzhugh's model of the nerve impulse (Fitzhugh 196I) should be regarded in the 

same way as a qualitative representation of a further set of neural properties in 
the phase plane. 

We thank Sir Andrew Huxley, P.R.S., for his helpful comments and Dr 
D. A. Evans for assistance with the numerical work. 
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