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SUMMARY This paper presents a model and its effect for on-line hand-
written Japanese text recognition free from line-direction constraint and
writing format constraint such as character writing boxes or ruled lines.
The model evaluates the likelihood composed of character segmentation,
character recognition, character pattern structure and context. The likeli-
hood of character pattern structure considers the plausible height, width
and inner gaps within a character pattern that appear in Chinese characters
composed of multiple radicals (subpatterns). The recognition system incor-
porating this model separates freely written text into text line elements, es-
timates the average character size of each element, hypothetically segments
it into characters using geometric features, applies character recognition to
segmented patterns and employs the model to search the text interpreta-
tion that maximizes likelihood as Japanese text. We show the effectiveness
of the model through recognition experiments and clarify how the newly
modeled factors in the likelihood affect the overall recognition rate.
key words: on-line recognition, character recognition, segmentation, prob-
abilistic model, writing constraint

1. Introduction

Demand to remove writing constraint from on-line hand-
writing recognition is getting higher and higher since peo-
ple can write more freely on enlarged surfaces of tablet PCs,
electronic whiteboards and on new paper-based handwriting
environments such as the Anoto pen, e-pen and so on. On
such surfaces, Asian people whose languages are Chinese
origin often write text horizontally, vertically or even slant-
ingly in a mixed way.

Japanese text includes various sizes of character pat-
terns ranging from so-called “half-width” characters like
numbers and symbols, Kana characters (two sets of pho-
netic characters), Kanji characters of Chinese origin consist-
ing of only one radical to those consisting of multiple rad-
icals. Moreover, handwriting even magnifies the size vari-
ations as shown in Fig. 1. Some characters may be several
times longer and/or wider than others.

The research to remove writing format constraint
started from horizontal text recognition without character
writing boxes, which is nowadays common on PDAs to
avoid segmentation problem. Murase et al. made an initial
attempt by applying DP-matching to find the best interpreta-
tion of a character pattern sequence [1]. However, the likeli-
hood of segmentation was not considered and the likelihood
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Fig. 1 An example of Japanese handwritten text.

of context (as Japanese text) was used only for verification.
Okamoto et al. proposed geometrical rules and features to
improve segmentation reliability while decreasing segmen-
tation hypotheses [2]. Aizawa et al. applied a neural net-
work using geometric features to realize real-time segmen-
tation of characters [3]. Fukushima et al. took a probabilis-
tic approach and considered the likelihood based on charac-
ter segmentation, shape (recognition), context, and character
size [4], [5]. By incorporating the factor of character size in
determining the likelihood, they showed better performance
than without including it. Senda et al. published a similar
approach to the above method and formulated the problem
as a search for the most probable interpretation of character
segmentation, recognition and context, but they did not deal
with the likelihood of character size [6], [7].

In off-line handwriting recognition, the same problem
of character segmentation and recognition occurs. Due to
the difficulty of the problem, however, research and de-
velopment have been almost limited to the postal address
recognition where only smallest and largest character size
constraints have been considered as in [8]. For postal ad-
dress recognition, lexical and contextual constraint is strong
enough to find the best address interpretation. For ordinary
text, however, the size likelihood is more effective than the
size constraint.

Most of the previous publications and systems have
been assuming only horizontal or vertical lines of text, while
we have been trying to relinquish any writing constraint
from on-line text input. We proposed a method to recognize
mixtures of horizontal, vertical and slanted lines of text with
assuming normal character orientation [9], and a revised
method with arbitrary character orientation [10]. This pa-
per presents a formalization of on-line unconstrained, line-
direction free handwritten Japanese text recognition with
normal character orientation and the effect of newly intro-
duced factors in the likelihood evaluation. Due to the for-
malization, we have improved the overall recognition rate.

In this paper, Sect. 2 presents the problem that we must
solve. Section 3 describes hypothetical segmentation of a
text line element into character patterns for which the model
of on-line handwritten Japanese text recognition is applied.
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Section 4 presents the model in a probabilistic framework
and Sect. 5 describes implementation briefly and presents
evaluation. Section 6 concludes this paper.

2. Problem

Here, we first define some terminologies. A stroke denotes
a series of pen-tip coordinates sampled from pen down to
pen up. An off-stroke is a vector indicating pen movement
between successive strokes. Character orientation is used
to specify the direction of a character from its top to bottom
while line direction is used to designate the writing direction
of a sequence of characters until it changes (Fig. 2). A text
line is a piece of text separated by new-line or large space
and it is further divided into text line elements at the chang-
ing points of line direction. Each text line element has its
line direction (Fig. 3). The line direction and the character
orientation are independent.

Our on-line recognition system of handwritten Japanese
text, which is free from character orientation, line direction
and any writing format constraint, takes the following steps:

Step 1: separates freely written text into text line elements
and estimates the average character size of each text
line element.

Step 2: estimates line direction and character orientation of
each text line element and rotates it so that character
orientation is normalized.

Step 3: hypothetically segments a character-orientation-
normalized text line element into character patterns us-
ing geometric features.

Step 4: recognizes hypothetically segmented patterns as
characters.

Step 5: applies the model to search the text interpretation
that maximizes the likelihood composed of character
segmentation, character recognition, character pattern
structure and context.

We focus our attention to the model for the step 4

Fig. 2 Line direction and character orientation.

Fig. 3 Text line element and line direction.

and step 5, i.e., the problem of recognizing a character-
orientation-normalize handwritten Japanese text line ele-
ment of arbitrary line direction. Hereafter, we assume a text
line element as a character-orientation-normalized text line
element unless it is explicitly mentioned.

3. Segmentation of a Text Line Element

Before proceeding to the model construction, however, we
must consider the step 3 of hypothetically segmenting a text
line element into character patterns. It is the step that outputs
candidates of segmentation by which a handwritten text line
element is split into a sequence of character patterns.

There are many characters in the Japanese character set
that can be divided into multiple character patterns. For ex-
ample, the patterns shown in Fig. 4 (a) can be read as either
C1, a character in itself, or as the two consecutive charac-
ters C2C3. Which of the two is correct is determined by
the characters (or strings) proceeding and/or following it. In
the example of Fig. 4 (b), the character C4 follows, which
causes the pattern of Fig. 4 (a) to be read as C1. In Fig. 4 (c),
on the other hand, the characters C5C6 follow, which causes
the pattern to be read as two characters C2C3. This example
shows that the position of character segmentation can be dif-
ferent even for the same handwritten pattern depending on
the context and it is therefore difficult to segment characters
deterministically on the basis of geometrical features alone.

Hypothetical segmentation depends also on character
orientation and line direction. After character orientation is
normalized, it depends on line direction of a text line ele-
ment as shown in Fig. 5. Note that segmentation hypothe-
sis is often made within character pattern and it is different
even for the same character pattern depending on the line di-
rection. The quantization can be finer but the 4-directional
quantization shown in Fig. 5 is adequate and effective to pre-
vent a text line element from being segmented excessively.
When the line direction is classified into, say, downward
or upward (rightward or leftward), a considerable gap pro-
jected on the vertical axis (the horizontal axis) or a long
off-stroke to the quantized line direction is employed as a
candidate for segmentation but strokes or off-strokes to the
opposite direction are used to merge its crossing strokes with
the result that hypotheses on segmentation can be decreased,
which is then effective to speed up the text recognition and
to increase the recognition rate.

Fig. 4 An example of segmentation ambiguity.
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Consequently, a text line element is hypothetically seg-
mented according to its quantized direction. For rightward
or leftward (horizontal) direction, a text line element is seg-
mented vertically while producing bounding boxes bi of
character candidates and gaps gi between them along the
text line. For downward or upward (vertical) direction, it
is segmented horizontally. Even if the direction is not per-
fectly along one of the four directions, it is quantized into
one of them and segmented as shown in Fig. 6.

Here, we do not go into the detail of the hypothetical
segmentation. Only what we need is the assumption that a
text line element is segmented with all the true segmenta-
tion positions included as well as some false positions into
a segmentation S, i.e., a sequence of character pattern struc-
tures and gaps. A character pattern structure is defined as a
bounding box with an arbitrary number of inner gaps within
it.

Fig. 5 Quantization of line direction.

Fig. 6 Segmentation of various text line elements.

4. Model of Recognition

The probability that a given pattern X is segmented as a
segmentation S = s1g1s2g2 · · · sigi · · · smgm, where si is an
i-th character pattern structure that is bounded by a box bi

of the height hi and the width wi and includes inner gaps
qik (k = 0, 1,2, · · ·) while gi is an i-th outer gap, and then
recognized as a character sequence C = C1C2 · · ·Ci · · ·Cm

is defined as the conditional probability P(C,S|X) and it is
transformed as follows:

P(C,S|X) =
P(C).P(X,S|C)

P(X)
(1)

The goal is to find the segmentation S and the character
sequence C that maximize P(C,S|X) among candidate seg-
mentations as shown in Fig. 7 and among candidate charac-
ter sequences as shown in Fig. 8. Since P(X) is the probabil-
ity that a pattern X occurs regardless of S and C, we ignore
it. Hereafter, we will consider P(C) and P(X,S|C).

4.1 Probability P(C)

In Eq. (1), P(C) is the probability that a character sequence
C occurs. Assuming the 1st order Markov chain, P(C) is
transformed with Ci denoting the i-th character in C as fol-
lows:

P(C) =
m∏

i=1

P(Ci|Ci−1) (2)

m: the number of characters in C.
P(Ci|Ci−1): the probability that a character Ci−1 is

Fig. 7 Different segmentations for the same pattern.

Fig. 8 Different candidate character sequences for the same
segmentation.
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succeeded by Ci (bi-gram probability).
C0: the state before the first character occurs.
P(C1|C0): the probability that a character C1 occurs

at the top of text.

The term P(Ci |Ci−1) is computed from a large volume
of corpus. A more elaborate model using tri-gram or gener-
ally n-gram is possible, but its actual implementation takes
larger computational cost.

4.2 Probability P(X,S|C)

In Eq. (1), P(X,S|C) is the probability that a charac-
ter sequence C is written as a segmentation S =

s1g1s2g2 · · · sigi · · · smgm and a character pattern sequence
X = X1X2 · · · Xi · · · Xm, where Xi denotes a stroke sequence
Xi = xi1 xi2 · · · xik within si. Using the Basian law:

P(X,S|C) = P(X|S,C).P(S|C) (3)

The terms P(S|C) and P(X|S,C) are the probability that
a character sequence C is written so as to be segmented as
S and the probability that a character sequence C segmented
as S produces a character pattern sequence X, respectively.

4.3 Probability P(S|C)

This is the probability that a character sequence C is written
so as to be segmented as S. We assume the probability that
a character Ci is written in a structure si depends only on
the character Ci and the average size C of the character se-
quence C. We also assume the probability that an outer gap
gi occurs between the characters Ci and Ci+1 depends only
on the characters Ci and Ci+1, and the average size C of the
character sequence C:

P(S|C) ≈
m∏

i=1

P(si|Ci,C).P(gi|Ci,Ci+1,C) (4)

where the term with Cm+1 is ignored.
If we assume that the scale of si and gi is proportional

to the average size C, we can scale them by C. Then,
P(si|Ci,C) and P(gi|Ci,Ci+1,C) are replaced by P(si/C|Ci)
and P(gi/C|Ci,Ci+1), respectively (cf. Appendix).

P(si/C|Ci) is the probability that a character Ci is writ-
ten in a structure si whose height is hi/C, width is wi/C
and includes inner gaps qik/C (k = 0, 1,2, · · ·). The charac-
ter pattern structure is an extension of character size in [4],
[5]. The simplest approximation to P(si/C|Ci) is to assume
a constant probability regardless of Ci. The second simplest
way is to classify characters into several groups Gi and ap-
ply distinct probabilities P(si/C|Gi). Grouping can be made
for numerals, alphabets, simple Kanji characters composed
of single radicals, those composed of left and right radicals,
those composed of top and bottom radicals and so on.

On the other hand, P(gi/C|Ci,Ci+1) is the probability
that an outer gap gi occurs between the characters Ci and
Ci+1 and it can be assumed as a constant regardless of Ci

and Ci+1 or can be approximated by distinct probabilities
depending on Gi including Ci and Gi+1 including Ci+1.

4.4 Probability P(X|S,C)

This is the probability that a character sequence C seg-
mented as S produces a pattern X and approximated as:

P(X|S,C) ≈
m∏

i=1

P(Xi|si,Ci) (5)

The probability P(Xi|si,Ci) is that each character Ci is
written in a structure si and represented by the stroke se-
quence Xi.

4.5 Total Evaluation Function

If we summarize the above transformations and approxima-
tions:

P(C).P(X,S|C) =


m∏

i=1

P (Ci|Ci−1)


×


m∏

i=1

P
(
si/C|Ci

)
.P

(
gi/C|Ci,Ci+1

)
.P(Xi|si,Ci)

 (6)

Then, by taking log of the both sides:

log (P (C) .P (X,S|C)) =
m∑

i=1

logP (Ci|Ci−1)

+

m∑
i=1

(
logP

(
si/C|Ci

)
+logP

(
gi/C|Ci,Ci+1

)
+logP (Xi|si,Ci)

)

(7)

In the right-hand side of Eq. (7), the first term consid-
ers context likelihood in terms of bi-gram, the second term
is related to character recognition likelihood, the third term
and forth term evaluates character pattern structure likeli-
hood and outer gap likelihood, respectively.

5. Implementation and Evaluation

In this section, we describe implementation of the model
briefly and present evaluation of the model.

5.1 Implementation

We prepared the bi-gram table for the context likelihood
from 55,000,000 characters of text in the year 1993 volume
of the ASAHI newspaper (one of the major Japanese news-
paper publishers). By suppressing not occurring bi-grams,
we reduced its size to 3.49 MB for 4,799 character cate-
gories. It is possible to reduce the bi-gram table even more
by neglecting a small number of occurrences, but we used
the above table.

As for the character structure likelihood P(si/C|Ci), we
approximated it as P(hi/C,wi/C|Ci).P(qik/C|Ci). We em-
ployed the most faithful implementation. For each char-
acter category, we obtained the distribution of its height



NAKAGAWA et al.: A MODEL OF ON-LINE HANDWRITTEN JAPANESE TEXT RECOGNITION
1819

(h), width (w) and inner gaps qk (k = 0, 1, . . .) from our
on-line handwritten character pattern databases, kuchibue_d
and nakayosi_t [11].

In order to obtain P(hi/C,wi/C|Ci), we counted the fre-
quencies of the height and the width over the average char-
acter size C within every 0.1 step from 0.0 to 1.9 for each
character category Ci, as shown in Table 1. We blurred the
matrix by another matrix of the Gaussian values as follows:

h(x, y) =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
(8)

We set its size as 15 × 15 and its variance σ as 0.18
by testing several values in experiments, and took x and y at
every 0.1 step from −0.7 to 0.7.

Dividing all the values by the total number of occur-
rences NCi of the character category (Ci) produces the prob-
ability that each quantized height and width over C oc-
curs. For zero components, we approximated them by a very
small value close to 0. This naive implementation requires
the large memory space. i.e., 3.39 MB for 4,443 categories.
For practical systems, however, this size could be reduced.

As for the inner gap, we considered the vertical gap
and the horizontal gap independently. The former has some
width (wg) and the same height as the character while the
latter has some height (hg) and the same width as the char-
acter. In order to obtain P(qik/C|Ci), we counted the fre-
quencies of the gap width over C within every 0.1 step from
0.0 to 0.9 for each character category Ci. We represented
the frequencies by a one-dimensional array. Similarly, we
counted the frequencies of the gap height over C and repre-
sented them by another one-dimensional array. We blurred
the one-dimensional arrays by another one-dimensional ar-
ray of the Gaussian values as follows:

h(x) =
1√
2πσ

exp

(
− x2

2σ2

)
(9)

We set its size as 5 and its variance σ as 0.04 by testing
several values in experiments, and took x at every 0.1 step
from −0.2 to 0.2.

By replacing zero frequency by a very small value
close to 0 and dividing all the frequencies by their sum,
we have produced the probability that each quantized gap
height or gap width over C occurs. Memory requirement is
173 KB for 4,443 character categories.

Table 1 Frequencies of height and width of the punctuation character
“、”.
�������hi/C

wi/C
0.0 0.1 0.2 0.3 . . . 1.9

0.0 9 8 1 0 0 0
0.1 17 30 7 0 0 0
0.2 4 11 5 0 0 0
0.3 0 0 0 0 0 0
0.4 0 0 0 0 0 0
. . . 0 0 0 0 0 0
1.9 0 0 0 0 0 0

On the other hand, we chose the simplest implemen-
tation for P(gi/C|Ci,Ci+1), i.e., we determined a constant
distribution regardless of Ci and Ci+1 from a small amount
of unconstrained handwritten text since we did not have a
large database of unconstrained handwritten text. The table
size to store this distribution is only 56 Byte.

As for P(Xi|si,Ci), we approximate it from the score of
character recognition.

For character recognition, we normalize its shape,
namely we rather neglect its structure so that:

P(Xi|si,Ci) ≈ P(Xi|Ci) (10)

Hereafter, we omit the suffix i. Given C, the recogni-
tion system outputs score δ to X. Therefore:

P(X|C) = P(X, δ|C)

P(X, δ|C) = P(δ|C).P(X|δ,C) (11)

Assuming that (δ, C) and X have the strongest correla-
tion, we remove the second term of the right hand side with
the result that:

P(X, δ|C) = P(δ|C) (12)

Assuming that the term nc(δ) denotes the number of
learning patterns of the category C that are scored as δ by the
recognizer. We expect that P(δa|C)� P(δb|C) if δa � δb.

From a set of learning patterns, we can obtain the right
hand side as nc(δ)/Nc where Nc is the number of learn-
ing patterns of the category C. Figure 9 (a) shows a his-
togram for a Chinese character “三” by our on-line recog-
nizer where we neglect the number of rejection. The prob-
lem here is that the number of occurrences drops sharply as
the score approaches to the best score. This is in some sense
reasonable since the number of learning patterns decreases
as they come close to the prototype of each category. This
is strange, however, if we take nc(δ)/Nc as p(δ/C). There-
fore, we take the following cumulative function instead of
nc(δ)/Nc:

Fig. 9 Histogram for a Chinese character “三”.
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fc(δ) =

∑δ
δ=0 nc(δ)

Nc
(13)

This has the similar shape and prove monotonic in-
crease as shown in Fig. 9 (b).

We may consider this function for each character cate-
gory or take the summation over the entire character set and
take the following single function where Ncc denotes the
number of character categories:

fs(δ) =
∑

c fc(δ)
Ncc

(14)

or the weighted version:

fw(δ) =
∑

c Nc. fc(δ)∑
c Nc

(15)

In practice, we took the Eq. (15) and obtained fw(δ)
from the database nakayosi_t with its size as 4.88 KB. Space
complexity of the recognition system is summarized in Ta-
ble 2.

We have fixed the number of candidate categories as 10
for each hypothetically segmented pattern when the charac-
ter recognizer produces candidates for each segmented pat-
tern.

Time complexity of the recognition system on a Pen-
tium (R) 4 2.26 GHz CPU with 1.0 GB memory is shown in
Table 3. Since the step 1 and the step 2 in Sect. 2 are made
in negligibly small time, we only show the time complexity
from the step 3 to the step 5.

5.2 Evaluation

We collected 136 test patterns consisting of 1,385 characters
from 17 people.

We define character recognition rate (crr) as the num-
ber of correctly recognized characters over the number of
total character patterns. On the other hand, we employ the
F measure composed of recall(R) and precision(P) to show
the segmentation performance since there are two kinds of

Table 2 Memory requirement for tables and dictionaries.

Tables/Dictionaries memory size
Bi-gram 3.49 MB
Character structure Height and Width 3.39 MB
likelihood Inner gap 173 KB
Outer gap likelihood 56B
Conversion from score to likelihood 4.88 KB
Character pattern prototypes 838 KB

Table 3 Time complexity per character.

process processing time /
character

Step 3: hypothetical segmentation 1.99 m sec
Step 4: recognition of hypothetically segmented
patterns

14.17 m sec

Step 5: application of the model to search the
best interpretation

0.68 m sec

Total recognition time 16.84 m sec

error in segmentation that a true segmentation is not detected
and a false segmentation is detected:

F=
2

1/R + 1/P
R=number of correctly detected segmentation positions

/number of true segmentation positions

P=number of correctly detected segmentation positions

/number of detected segmentation positions (including false) (16)

Table 4 shows how each term of the likelihood damages
the performance when not employed in comparison with the
last row where all the terms are employed.

If we do not consider all the terms of the context likeli-
hood, the character recognition likelihood, the character pat-
tern structure likelihood and the outer gap likelihood, i.e., if
we output the sequence of the top candidate for every hy-
pothetically segmented pattern, the performance is low as
shown in the first row. The worst Fmeasure for segmenta-
tion, 0.7989 is observed since it is the result of hard decision
on segmentation.

The second row shows the result of neglecting the
character recognition likelihood among candidate categories
selected as the result of character recognition. Although
65.59% character recognition rate looks too good without
the character recognition likelihood, it is the result after can-
didates are reduced into 10 by the character recognition pro-
cess.

The third row shows large importance of the context
likelihood since its unemployment damages the character
recognition performance as the same as the above two.

The fourth row shows still large effect of the character
pattern structure likelihood. An example of its effect seen in
Fig. 10. Without this term, two characters written narrowly
were recognized incorrectly into a single character. With
this term, however, they are recognized correctly.

Table 4 Effect of the term for the likelihood (%).
����������������Evaluation function

measure
crr Fmeasure

without any term (top candidate for every seg-
mentation)

65.13 0.7989

without character recognition likelihood 65.59 0.9616
without context likelihood in terms of bi-gram 69.72 0.9416
without character pattern structure likelihood 76.17 0.9168
without outer gap likelihood 82.50 0.9776

with all the terms 82.55 0.9778

Fig. 10 Effect of evaluating the character pattern structure likelihood.
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On the other hand, the effect of the outer gap likelihood
alone is not so notable as others as shown in Table 4. This
might have been due to the simplest implementation of this
term.

5.3 Consideration on Recognition Errors

We investigated the reasons of misrecognitions. Although it
is not simple to determine the single term in the total evalu-
ation function for each misrecognition, we can roughly enu-
merate the reasons.

1. Problem of context likelihood
Figure 11 (a) and (b) show recognition errors mainly
due to this reason. Correct character answers are within
the top 5 candidates so that the context likelihood
should be able to save these cases.
Solution to this problem can be two ways. The bi-gram
table for the context likelihood is obtained from the
1993 year’ s volume of the ASAHI newspaper, but it
should be obtained from a large amount of text of the

Fig. 11 Recognition errors.

target domain. Tri-gram should also work better. The
other is to employ a word dictionary.

2. Problem of character recognition
Figure 11 (c) and (d) show recognition errors mainly
due to character recognition. The context likelihood
selects meaningful answers. Character recognition
should score incorrectly segmented patterns very low
so that they are not within recognition candidates.

3. Problem of outer gap likelihood
In many cases, outer gaps were very small even com-
pared with inner gaps with the result that they were
merged into misrecognized character patterns as shown
in Fig. 11 (e). In fact, the effect of this likelihood was
smallest in the above evaluation. We might have over-
simplified this likelihood as the same for all the char-
acter pairs.

4. Problem of character pattern structure likelihood
Although it is very hard to pick up recognition errors
solely due to this reason, when two characters are in-
correctly merged, they are often misrecognized as a
character pattern having two radicals. This type of mis-
recognitions is even supported by the character pattern
structure likelihood.

6. Conclusion

This paper presented a probabilistic model of unconstrained,
line-direction free handwritten Japanese text recognition
and its effect. The model can be applied to text of arbi-
trary character orientation after character orientation is esti-
mated and normalized. We showed the effectiveness of the
model through recognition experiments and clarified how
each factor in the likelihood contributes to the overall char-
acter recognition rate and segmentation rate.

On the other hand, the effect of the outer gap likeli-
hood was small probably due to its simplest implementation.
Therefore, we must try more elaborate implementation and
make its intrinsic contribution clear in the likelihood.

Character size and inner gap representation by tables
is memory consuming but their effects are not high. Alter-
natively, they should be modeled by distribution functions
and trained by learning patterns. It should not require large
memory space while improving their robustness.

Another work to be made is to enlarge the database for
evaluating the proposed model and avail it for open use as
well as train and evaluate the model using a larger amount
of sample patterns.
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Appendix

• P(si|Ci,C) is replaced by P(si/C|Ci), due to the follow-
ing:
Assuming the size si is proportional to the average size
C, the event that si occurs is that the coefficient α =
si/C occurs. Therefore,

P(si|Ci,C) = P(α|Ci,C)

From the Basian law,

P(α|Ci,C) =
P(α,C|Ci)

P(C|Ci)

As for P(α, |Ci),α is independent from C, so that,

P(α,C|Ci) = P(α|Ci).P(C|Ci)

Therefore,

P(α|Ci,C) =
P(α|Ci).P(C|Ci)

P(C|Ci)

= P(α|Ci)

= P(si/C|Ci)

• P(gi|Ci,Ci+1,C) is replace by P(gi/C|Ci,Ci+1) due to
the similar transformation.
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