
VU Research Portal

A model of open-loop control of equilibrium position and stiffness of the human elbow
joint
Kistemaker, D.A.; van Soest, A.J.; Bobbert, M.F.

published in
Biological Cybernetics
2007

DOI (link to publisher)
10.1007/s00422-006-0120-6

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Kistemaker, D. A., van Soest, A. J., & Bobbert, M. F. (2007). A model of open-loop control of equilibrium position
and stiffness of the human elbow joint. Biological Cybernetics, 96(3), 341-350. https://doi.org/10.1007/s00422-
006-0120-6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 25. Aug. 2022

https://doi.org/10.1007/s00422-006-0120-6
https://research.vu.nl/en/publications/89fa2adb-27b1-4629-a94b-c8b7e1365634
https://doi.org/10.1007/s00422-006-0120-6
https://doi.org/10.1007/s00422-006-0120-6


Biol Cybern (2007) 96:341–350
DOI 10.1007/s00422-006-0120-6

ORIGINAL PAPER

A model of open-loop control of equilibrium position and stiffness
of the human elbow joint

Dinant A. Kistemaker · Arthur J. (Knoek) Van Soest ·
Maarten F. Bobbert

Received: 15 November 2004 / Accepted: 14 October 2006 / Published online: 15 December 2006
© Springer-Verlag 2006

Abstract According to the equilibrium point theory,
the control of posture and movement involves the set-
ting of equilibrium joint positions (EP) and the indepen-
dent modulation of stiffness. One model of EP
control, the α-model, posits that stable EPs and stiff-
ness are set open-loop, i.e. without the aid of feedback.
The purpose of the present study was to explore for the
elbow joint the range over which stable EPs can be set
open-loop and to investigate the effect of co-contraction
on intrinsic low-frequency elbow joint stiffness (Kilf).
For this purpose, a model of the upper and lower arm
was constructed, equipped with Hill-type muscles. At a
constant neural input, the isometric force of the contrac-
tile element of the muscles depended on both the myofil-
amentary overlap and the effect of sarcomere length on
the sensitivity of myofilaments to [Ca2+] (LDCS). The
musculoskeletal model, for which the parameters were
chosen carefully on the basis of physiological literature,
captured the salient isometric properties of the mus-
cles spanning the elbow joint. It was found that stable
open-loop EPs could be achieved over the whole range
of motion of the elbow joint and that Kilf, which ranged
from 18 to 42 N m·rad−1, could be independently con-
trolled. In the model, LDCS contributed substantially
to Kilf (up to 25 N m·rad−1) and caused Kilf to peak at a
sub-maximal level of co-contraction.
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List of Symbols
Kilf Intrinsic low-frequency joint stiffness
MEF Mono-articular elbow flexor
BE Bi-articular elbow extensor
STIM Muscle stimulation
q Active state
ϕe Elbow angle
ϕe Shoulder angle
CE Contractile element
SE Series elastic element
PE Parallel elastic element
FCE Force delivered by CE
FMAX Maximum isometric force
Fisomn FCE/FMAX
lMTC Muscle-tendon complex length
lCE CE length
lCE_opt CE optimum length
lCE_rel lCE/lCE_opt
lPE PE length
lPE_0 PE slack length
lSE SE length
lSE_0 SE slack length

1 Introduction

Several theories have been proposed about how humans
control movements. One of the most influential theories
is the equilibrium point (EP) theory. The EP theory
postulates that, because of the “spring-like” behavior
of the (neuro-)musculoskeletal system, EPs are defined
and that movements are made by shifting the EPs, with
EPs being joint angles at which the net muscle
moment equals zero. This theory is attractive from a
computational point of view, because it does not rely on
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extensive computation to calculate the torque-time
history required to move a system to a desired position.
It is generally accepted that the spring-like behavior
emerges from both intrinsic properties of muscles and
reflexive pathways.

Intrinsic muscle properties are the essential compo-
nent in a version of the EP hypothesis known as
the α-model (e.g. Hogan 1984; Bizzi and Abend 1983).
The central idea behind the α-model is that, due to the
force–length properties of the muscles spanning a joint,
a desired EP can be set by setting appropriate open-
loop stimulation levels of these muscles. For this idea
to work, it should be possible to specify open-loop sta-
ble EPs over the full range of motion of the joint to be
controlled. In addition, it is desirable that at any EP,
intrinsic stiffness, i.e. the stiffness provided by the mus-
cles without neural feedback, can be adjusted to task
requirements by means of co-contraction. Needless to
say, these conditions are necessary but not sufficient for
alpha-control to be feasible.

In animal experiments, the existence of stable EPs
has indeed been confirmed. For example, it was shown
by Giszter et al. (1993) that microstimulation of specific
locations in the grey matter of the spinal cord of deaffe-
rented frogs elicited force fields that defined stable EPs
of the frog’s leg. It was suggested in that study that even
though the number of force fields found was very small,
equilibrium at any desired position would be achievable
by combining these force fields. Similarly, Graziano et al.
(2002) were able to set stable hand positions of mon-
keys by microstimulation of their primary motor and
premotor cortex; constant stimulation of a specific part
of the cortex led to movements that halted at a cer-
tain position, irrespective of the initial position of the
limb. Again, there seemed to be a mapping from stimu-
lation site at the cortex to equilibrium hand position in
space. Tehovnik (1995) found similar results for orbital
eye position with microstimulation in the dorsomedial
frontal cortex of monkeys. However, because the system
was neurophysiologically intact in the latter two studies,
it was impossible to assess whether the observed equi-
librium positions were due solely to the intrinsic muscle
properties. Thus, while it has been shown in deafferent-
ed frogs that open-loop stimulation may define EPs, it
is currently unclear to what extent this is also true in
primates, and over what range of motion it holds.

Separation of intrinsic and reflexive contributions to
the mechanical behavior of the controlled system is rele-
vant from a control theoretical perspective, as both con-
tributions have their advantages and disadvantages. The
intrinsic contribution has the advantage of generating an
immediate (zero-lag) response to perturbation, but pro-
longed modulation of the associated stiffness through

co-contraction is energetically unattractive. This disad-
vantage does not apply to the reflexive contribution.
However, time delays in the feedback loop set limits
on the feedback gains at which the controlled system
is stable, and thus on the reflexive contribution to the
mechanical behavior of the controlled system.

Experimentally it is not trivial to determine the intrin-
sic and reflexive contributions to the total low-frequency
joint stiffness (Kilf), defined here as the change in steady-
state muscle moment per unit change in steady-state
joint angle, at constant muscle stimulation. For exam-
ple, attempts to determine the (total) low-frequency
joint stiffness using experiments in which subjects were
asked to resist perturbations have resulted in values for
elbow stiffness that range from 14 N m·rad−1 (Bennet
et al. 1992) to 126 N m·rad−1 (Lacquaniti et al. 1982).
Furthermore, separation of the reflexive and intrinsic
contributions to the total low-frequency joint stiffness
requires advanced system identification methods (e.g.
Kearney et al. 1997; Van der Helm et al. 2002; it is
currently unclear to what extent the results of these
methods depend on the assumptions made.

From a modeling perspective, the existence of open-
loop EPs and the contribution of intrinsic muscle
properties to Kilf at any joint depend on the static
moment–angle–stimulation relationships of the muscles
spanning that joint. As the parameters determining this
relationship are well documented, we propose to take
these as a starting point for a model-based exploration
of open-loop control of EPs and Kilf. To be more pre-
cise, the moment–angle–stimulation relation depends
on the following relationships: the relationship between
the force of the contractile element (FCE), CE length
(lCE) and muscle stimulation (STIM), and the relation-
ship between the length of muscle–tendon complexes
(lMTC) and joint angles. The latter relationship can be
readily obtained in cadaver studies using the tendon
displacement method (Grieve et al. 1978). The depen-
dence of isometric FCE on lCE is commonly attributed
to the overlap of actin and myosin combined with the
effect of sarcomere length on the sensitivity of myofil-
aments to [Ca2+]. This length-dependent [Ca2+] sen-
sitivity (LDCS) causes the optimum muscle length to
depend on stimulation (e.g. Roszek et al. 1994; Balnave
and Allen 1996; Zuurbier et al. 1998; Hansen et al. 2003)
and adds to the intrinsic low-frequency stiffness of a
muscle (Kistemaker et al. 2005).

The purpose of the present study was to explore for
a representative joint the range of motion over which
stable EPs can be set open-loop and to investigate the
effect of co-contraction on Kilf. Because many experi-
ments concerning stiffness involve the elbow joint, and
because arm muscle parameters are well documented,
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a model of the upper and lower arm was constructed.
The model incorporated Hill-type muscle models and a
formulation of LDCS (Hatze’s 1981).

2 Methods

The model of the arm consisted of three rigid segments,
interconnected by two hinges representing the glenohu-
meral and elbow joint, and was constrained to move
in the horizontal plane (see Fig. 1). Segment parame-
ter values were taken from Winter (1990; see Table 1).
The muscles actuating the arm were lumped to end up
with a mono-articular elbow flexor MEF (brachiorad-
ialis, brachialis, pronator teres, extensor carpi radialis),
a mono-articular elbow extensor MEE (triceps later-
alis, triceps medialis, anconeus, extensor carpi ulnaris),
a bi-articular elbow flexor BF (biceps long head, biceps
short head) and a bi-articular elbow extensor BE (triceps
long head).

The modelled Hill-type muscles consisted of a con-
tractile element (CE), a series elastic element (SE) and
a parallel elastic element (PE), as shown schematically
in Fig. 2. The relation between STIM and active state (q),
the relative amount of Ca2+ bound to troponin (Ebashi
and Endo 1968), was modelled following Hatze’s (1981)

Fig. 1 Schematic drawing of the musculoskeletal model of the
arm. The model consisted of three rigid segments interconnected
by two hinges representing glenohumeral and elbow joint, actu-
ated by four Hill-type muscles. ϕe= elbow angle and ϕs= shoulder
angle. The model was constrained to move in the horizontal plane
only

Fig. 2 Schematic representation of the Hill-type muscle model
used in this study. See Appendix and “List of symbols” for abbre-
viations

and has been described in detail elsewhere (Kistemaker
et al. 2005). SE and PE were modelled as quadratic
springs. The isometric force delivered by CE depended
on lCE and q, and was described by a parabola deter-
mined by optimum lCE (lCE_opt), maximum isometric
force (FMAX), and a factor (width) specifying the zero
crossings of the isometric force relative to lCE_opt. A
more detailed description of the muscle model is pro-
vided in the Appendix.

The muscle parameters, FMAX, tendon slack-length
(lSE0), lCE_opt and moment arms of the four lumped
muscles were obtained from Nijhof and Kouwenhoven
(2000) and Murray et al. (1995, 2000). The contribution
of the individual muscle parameters to the parameters
of the lumped muscles depended on the relative contri-
bution of the muscle to the total joint moment. Moment
arms (arm) were related to joint angle on the basis of the
relationship between the length of the muscle–tendon
complex (lMTC) and joint angle (Nijhof and Kouwen-
hoven 2000; Murray et al. 1995), measured using the
tendon displacement method (Grieve et al. 1978). The
muscle parameter width (see Appendix) was chosen
such that the isometric elbow moment–angle relation-
ship at maximal stimulation was in accordance with that
observed experimentally (Singh and Karpovitch 1968;
Kullig et al. 1984; Van Zuylen et al. 1988; An et al. 1989;
Chang et al. 1999). Other non-specific muscle parame-
ters were obtained from Van Soest and Bobbert (1993).
All parameter values are presented in Tables 1 and 2.

To minimize the number of independent model inputs
and to have a straightforward and meaningful definition
of co-contraction, the stimulation levels of the mono-
and bi-articular elbow extensors (STIMe) were set to
be equal, and so were the stimulation levels of mono-
and bi-articular elbow flexors (STIMf). Co-contraction
was defined as the amount of “shared” stimulation in
STIMe and STIMf (Bullock and Contreras-Vidal 1993).
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Table 1 Segment parameters

length (m) mass (kg) IZ (kgm2) Z [m]

Upper arm 0.335 2.10 0.024 0.146
Fore arm 0.263 1.65 0.025 0.179

IZ = moment of inertia with respect to the centre of gravity Z = distance from proximal joint to centre of gravity
∗Including hand

Table 2 Muscle parameters

Muscle FMAX (N) lCE_opt (m) lSE_0 (m) lPE_0 (m) a_0 (m) a1e (m) a1s (m) a2e (m)

MEF 1420 0.092 0.172 0.129 0.286 −0.014 0 −3.96e-3
MEE 1550 0.093 0.187 0.130 0.236 0.025 0 −2.16e-3
BF 414 0.137 0.204 0.192 0.333 −0.016 −0.030 −5.73e-3
BE 603 0.127 0.217 0.178 0.299 0.030 0.030 −3.18e-3

The following parameters were equal for all muscles modelled: m = 11.30, c = 1.37 e-4, η = 5.27 e4, q0 = 5.00 e-3, k = 2.90 and width
= 0.66 For abbreviations see “List of symbols”

For any of the modelled muscles and for any combina-
tion of STIM, shoulder angle (ϕs) and elbow angle (ϕe),
a value for lCE can be calculated that results in an iso-
metric situation, i.e. a situation in which the force of SE
is equal to the sum of the forces of CE and PE (see Fig. 2
and Appendix). This was done for all muscles with STIM
ranging from 0 to 1 in steps of 0.01, ϕe ranging from 0 to
5
6π rad in steps of 0.01 rad and ϕs ranging from 0 to 1

2π

rad in steps of 1
12π rad. For any combination of ϕs and

ϕe, all combinations of STIMe and STIMf were identi-
fied that yielded an open-loop EP, i.e. an EP achieved
without the aid of feedback. For each EP found, the
slope of the net isometric moment–angle relationship in
the EP was estimated. To be consistent with the litera-
ture Kilf was defined as minus the value of this slope. In
other words, a positive value of Kilf means that the EP
is stable. Unstable EPs (i.e. EPs with negative Kilf) were
discarded.

3 Results

Figure 3a shows the maximal isometric moment–angle
relationships of all modelled muscles at maximal stim-
ulation in the range of elbow angles from 0 to 5

6π rad.
The optimum angle for the moment–angle relationship
of all flexors combined was set to be consistent with
that found in measurements on human subjects (see
Table 3). The same was done for the optimum angle
of the moment–angle relationship of all extensors com-
bined, but because this relationship is not well doc-
umented in the literature, estimation of the optimum
angle may have been imprecise.

Table 3 Elbow angles at which the peak occurred in the isomet-
ric moment-angle relationship for elbow extension (ϕopt_ext) and
elbow flexion (ϕopt_flex)

Reference ϕopt_ext ϕopt_flex

An et al. (1989) – 0.5π

Chang et al. (1999) – 0.5π

Singh and Karpovitch (1968) ± 0.5π 0.5π

Van Zuylen et al. (1988) – 0.56πa

Kullig et al. (1984) ± 0.47π 0.5π

This study 0.44π 0.53π

a Compensated for difference in angle definition

Figure 4 shows the stable EPs obtained, at three
different shoulder angles. Stable EPs were found for all
elbow angles in the physiological range of motion (0 to
5
6π rad), at all shoulder angles investigated (0 to 1

2π rad).
For each STIM leading to a stable EP, it was confirmed
by numerical simulations that regardless of the initial
state of the system, the system moved towards the cal-
culated EP and came to rest there. For all elbow angles
considered, EPs could be realized with different combi-
nations of STIMe and STIMf, and thus at different levels
of co-contraction. In Fig. 4b, this is graphically shown as
the intersection of the EP landscape with a horizontal
plane: all the stimulation pairs on the intersecting curve
lead to an EP at the same angle. As indicated in Fig. 4,
results for different shoulder angles were qualitatively
the same. For the sake of conciseness, in the remain-
der of this paper we shall present only results for the
condition in which the shoulder angle was fixed at 1

4π

rad.
In order to assess the contribution of LDCS to the

static characteristics of the system, the model was also
evaluated for stable EPs in the absence of LDCS (see
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Fig. 3 Isometric moment–angle relations. (a) STIM = [1 1],
(b) STIM = [ 0.17 0.22], (c) STIM = [ 0.17 0.22] without LDCS,
(d) STIM = [ 0.25 0.55]. Dashed and dash-dotted lines are the iso-

metric moment–angle relations of the individual muscles. Arrows
indicate optimum angle for each muscle separately. Solid line is
the resultant net moment

Fig. 4 Stable open-loop EPs
as a function of muscle
stimulation (STIM). STIMs
leading to an EP at an elbow
angle (ϕe) outside the range
0 − − 5

6 π rad were omitted.
a, b and c show EPs at a
shoulder angle (ϕs) of 1

4 π rad,
2
6 π rad and 1

6 π rad,
respectively. As illustrated in
b, the intersection of the EP
landscape with the horizontal
STIM-plane represents all the
combinations of STIM of the
extensors and STIM of the
flexors that yield an EP at the
same elbow angle
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Fig. 5 Low-frequency
stiffness (Kilf) of the elbow
joint as a function of STIM
for all calculated stable EPs;
in this particular case the
shoulder angle was fixed at
1
4 π rad (see Fig. 4a)

Appendix) and it was found that for many elbow angles,
especially in the range between 0 and 2.3 rad, no EP
could be obtained. Figure 3b, c illustrates the effect of
the removal of LDCS. For a fixed STIM ([0.17 0.22])
leading to a stable EP at an angle of 1

2π rad, isomet-
ric moments as a function of elbow angle were calcu-
lated and plotted in Fig. 3b. A stable EP occurs at an
angle where the net moment crosses zero with a negative
slope (indicating stabilizing stiffness). In Fig. 3c, isomet-
ric moment–angle relationships were plotted with the
same STIM ([0.17 0.22]), but without LDCS. Because
lumping of the muscle stimulations might in principle
reduce the range of angles over which stable EPs could
be obtained, the model without LDCS was also evalu-
ated for the existence of EPs when the muscle stimu-
lations were not lumped, but controlled separately for
each of the modelled muscles. In that case, the number
of EPs increased, but none were found in the range of
elbow angles between 0 and 1.8 rad.

From the model with LDCS, Kilf was calculated for
each STIM leading to an EP in the elbow angle range
from 0 to 5

6π rad (for the condition in which the shoul-
der angle was fixed at 1

4π rad) (Fig. 5). The calculated
Kilf values were well within the (wide) range of values
reported in literature for static conditions (Lacquaniti
et al. 1982; Mussa-Ivaldi et al. 1985; MacKay et al. 1986;
Flash 1987; Bennet et al. 1992). Higher Kilf values were
found when the combination of four individual mus-
cle STIMs was optimized rather than the combination
of two lumped STIMs. For example, at an elbow an-
gle of 1

2π rad, maximal Kilf was calculated to be about
19 N m·rad−1 when muscle stimulation was lumped and
about 23 N m·rad−1 when the combination of individual
muscle stimulations was optimized. To estimate the con-
tribution of LDCS to Kilf, elbow joint stiffness due to

LDCS was calculated using Hatze’s (1981) model of acti-
vation dynamics (see Appendix and Kistemaker et al.
(2005)). The results indicated that this contribution was
substantial; for some joint angles about 25 N m·rad−1 of
the low-frequency CE stiffness could be attributed to
LDCS.

Figure 6 shows the Kilf for EPs ranging from 0 to 5
6π

rad as a function of co-contraction level. Each line in
the graph connects stimulations leading to an EP at one
particular elbow angle (i.e. all the stimulations on the
intersection curve of the EP landscape with a horizontal
plane at a given elbow angle; see for example Fig. 4b).
As can be seen in Fig. 6, Kilf does not always increase
when co-contraction is increased; Kilf first increases with
co-contraction to reach a peak value at a sub-maximal
co-contraction level, and then drops when co-contrac-
tion is further increased. This non-monotonous relation
between co-contraction and Kilf is caused by LDCS.
LDCS adds significantly to Kilf, but the LDCS induced
stiffness is absent for both high and low muscle stimu-
lations, causing the total intrinsic stiffness to peak at a
sub-maximal stimulation level (Kistemaker et al. 2005).

4 Discussion

The purpose of the present study was to investigate for
the elbow joint whether the musculoskeletal system al-
lows for setting stable EPs open-loop and to investigate
the relationship between intrinsic low-frequency joint
stiffness (Kilf) and the level of co-contraction of elbow
flexors and extensors. We attempted to extract from the
literature the best estimate of each of the different vari-
ables influencing the static moment–angle–stimulation
relationship of the muscles spanning the elbow joint.
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Fig. 6 Open-loop low-frequency stiffness (Kilf) as a function of
co-contraction level, which was defined as: min([ STIMeSTIMf ]).
Each line connects stimulations leading to a stable EP at the same
angle (i.e. all the stimulations on the intersection of the EP land-
scape with a horizontal plane, see Fig. 4b)

In a previous study it was shown that Hatze’s (1981)
model of activation dynamics provides a good descrip-
tion of the effect of sarcomere length on the sensitivity
of myofilaments to Ca2+ (LDCS) and the shift in opti-
mum lCE with (sub-maximal) muscle stimulation level
(Kistemaker et al. 2005). In the present study, this model
was combined with the optimum lengths of the muscles
crossing the elbow joint, the maximal isometric forces,
the moment arm–angle relationships and the angles at
which the muscles are at optimum length as reported in
the literature, to end up with isometric moment–angle
relationships of the model that were similar to those
reported by Singh and Karpovitch (1968); Kullig et al.
(1984); Van Zuylen et al. (1988); An et al. (1989) and
Chang et al. (1999).

For the so-called α-model (e.g. Hogan 1984; Bizzi and
Abend 1983) stable open-loop EPs are the foundation
for the control of posture and movement. When stable
EPs can be set at any joint angle within the physiological
range of motion, a movement to any desired position
can be generated by changing the STIM combination
from that corresponding to the current EP to that corre-
sponding to the desired EP. Exploration with the mus-
culoskeletal model used in this study suggested that at
any angle in the physiological range of motion, stable
EPs could be set. Furthermore, stable EPs could be
realized at different levels of co-contraction and hence
with different values for Kilf. Kilf obtained at different
co-contraction levels depended on elbow angle (see
Fig. 6); it ranged from about 18 N m·rad−1 near full
extension to 43 N m·rad−1 at about 5

6π rad. It should

be noted that the intrinsic low-frequency joint stiffness
estimated in this study is lower than the total low-fre-
quency joint stiffness for two reasons. Most importantly
because no feedback was incorporated in the model, but
also because lumping of muscle stimulation negatively
affected the stiffness values predicted (see Results).

Indeed, the Kilf values derived in this study were in
the lower region of the wide range of total joint stiff-
ness values (14–126 N m·rad−1) reported in the liter-
ature (e.g. Bennet et al. 1992; Lacquaniti et al. 1993;
Gomi and Osu 1998). The large variation of stiffness val-
ues supports the claim of Latash and Zatsiorsky (1993)
that neither the definition nor the experimental deter-
mination of stiffness is without problems. In particular,
Gomi et al.(Gomi and Kawato 1997; Gomi and Osu
1998) suggested that the large variation in reported stiff-
ness values is related to differences in experimental set-
up and instructions. As one example, in the study of
Lacquaniti et al. (1982), in which stiffness values up to
126 N m·rad−1 were reported, subjects were instructed
to maximally resist a deterministic perturbation. Be-
cause subjects knew beforehand that a perturbation was
going to occur, it is quite likely that they modified the
supra-spinal input to the muscles, which may explain
why the “stiffness” reported was twice the maximal stiff-
ness value reported in other studies (e.g. Gomi and Osu
1998; Popescu et al. 2003). As another example, stiffness
is typically estimated by fitting a second-order model
to the response to quasi-random perturbations. Latash
and Zatsiorsky (1993) correctly argued that in this case
the stiffness estimated depends on the frequency con-
tent of the perturbations. This is because in the intact
musculoskeletal system, the skeleton interacts with a
visco-elastic contractile element in series with an elastic
tendon (and aponeurosis), resulting in a system that is at
least of order three. As a consequence, the parameters
of the KBI model fitted to the response to perturba-
tions depend on the frequency content of the perturba-
tion. This implies that, even though it has been shown
that second-order models can approximate the response
to small perturbations accurately (e.g. Agarwal and
Gottlieb 1977; Hunter and Kearney 1982; Winters and
Stark 1987), the stiffness identified using fast perturba-
tions may well be higher than the low-frequency stiff-
ness as defined in this study. All in all, the intrinsic
low-frequency stiffness estimated in the present study
makes a substantial contribution to the total stiffness as
experimentally derived.

In the present study we found that a substantial part
of Kilf can be attributed to LDCS. Moreover, the con-
tribution of LDCS to Kilf turned out to be essential for
the model to have stable open-loop EPs over the whole
physiological range of motion; after LDCS had been
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removed from the muscle model, there was a large part
of the range of motion of the elbow for which no sta-
ble EPs could be obtained. The influence of LDCS for
force generation can be best explained at the level of a
single muscle. As mentioned briefly in the Introduction,
LDCS causes an increase in Ca2+ sensitivity at higher
CE length (Endo 1972, 1973; Stephenson and Williams
1982; McDonald et al. 1997; Patel et al. 1997; Konhillas
et al. 2002), so that the CE length at which the larg-
est isometric force is produced shifts to a value that is
larger than lCE_opt (e.g. Balnave and Allen 1996; Roszek
et al. 1994). Thus, if a muscle is stretched to a new con-
stant length, isometric muscle force not only changes as
a result of changes in myofilamentary overlap but also
changes (i.e. increases) as a result of LDCS. This means
that, from a mechanical point of view, LDCS adds to
the low-frequency stiffness of a muscle as defined in this
study. It has been shown that LDCS peaks at sub-max-
imal stimulation levels (Endo 1972, 1973; Stephenson
and Williams 1982; McDonald et al. 1997; Patel et al.
1997; Konhilas et al. 2002), which we have previously
interpreted as an indication that LDCS-induced stiffness
peaks at intermediate stimulation levels (Kistemaker
et al. 2005 ). At the level of the joint, LDCS caused a shift
in optimum joint angle for maximal isometric moment
(see Fig. 3) and caused Kilf to relate non-monotonically
to co-contraction. For most elbow angles Kilf peaked
at a sub-maximal co-contraction level (see Fig. 6) of
about 0.15. Note that, due to the highly non-linear rela-
tion between stimulation and active state in the activa-
tion dynamics model used (see Appendix), the isometric
force of a muscle at a stimulation level of 0.15 is about
60% of maximal isometric force. It seems that LDCS al-
lows us to realize a given level of stiffness at a lower force
level and thus at lower metabolic cost. To exemplify
the non-monotonic relationship between Kilf and level
of co-contraction, moment–angle relations were plotted
for a co-contraction level that maximized Kilf (Fig. 3b),
as well as for a higher co-contraction level (Fig. 3d), both
setting the EP at 1

2π rad. Although the level of co-con-
traction and the associated individual muscle moments
were higher in Fig. 3d compared to Fig. 2b, Kilf was
smaller, as indicated by the less steep slope of the net
moment–angle relationship in the EP.

The suggestion that Kilf peaks at a sub-maximal level
of co-contraction runs counter to the generally accepted
notion that stiffness increases with co-contraction. Yet,
this suggestion follows logically when LDCS, a well-
documented physiological muscle property, is combined
with the commonly used Hill-type muscle model. In
our view, it would be interesting to test the sugges-
tion experimentally. This would require an experiment
and a method to tease apart the intrinsic and reflexive

contributions to the total low-frequency joint stiffness.
As to the experiment, it would seem straightforward to
conduct an experiment in which stiffness and co-contrac-
tion level are not only measured when a subject is asked
to maximally resist perturbations, but also when the sub-
ject is asked to maximally co-contract. If in the latter case
both co-contraction and Kilf are higher, it will falsify the
suggestion made above. To our knowledge, such exper-
iments have not been conducted so far. The relation
between co-contraction and stiffness is typically mea-
sured during experiments in which a subject is asked to
maintain a position while confronted with environmen-
tal instabilities (e.g. Osu and Gomi 1999; Milner 2002).
In such a set-up, however, it is unlikely that subjects,
when asked to resist these perturbations, will raise their
co-contraction level beyond the level that maximizes
stiffness. As to the teasing apart of intrinsic and reflexive
contributions to the total low-frequency joint stiffness,
one method that has been used is to subtract intrinsic
stiffness estimated with a muscle model from the mea-
sured stiffness (Shadmehr and Arbib 1992). Obviously,
such an approach would not be applicable to test our
suggestion, because it is the intrinsic stiffness that needs
to be estimated. Other methods reported in the litera-
ture build on system identification techniques (e.g. Kear-
ney et al. 1997; Zhang and Rymer 1997; Van der Helm
et al. 2002). In view of the intricacies of experimen-
tal determination of stiffness (Latash and Zatsiorsky
1993), it should be firmly established that the identifica-
tion method to be used in the context of the envisaged
experiment allows for unbiased estimation of the intrin-
sic low-frequency stiffness.

If the model-based prediction that stable open-loop
EPs exist over the full physiological range of elbow joint
motion is accepted, then a prerequisite for the α-model
is satisfied; a controller based on the α-model would
be capable of controlling movements from any initial
position to any target position. However, the existence
of stable open-loop EPs over the full range of motion
is not sufficient for alpha-control to be feasible; it could
well be, for example, that alpha-control is too sluggish.
The dynamics of movements generated with different
types of EP controllers, and their resemblance to fast
movements produced by human subjects, are investi-
gated elsewhere (Kistemaker et al. 2006).

Appendix

The modelled Hill-type muscle consists of CE, SE and
PE, as shown schematically in Fig. 2 (see “List of sym-
bols” for the relevant abbreviations).

STIM is related to active state (q; defined as
the relative amount of Ca2+ bound to troponin;
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Ebashi and Endo 1968), using Hatze’s model of acti-
vation dynamics (1981). Steady state q is a non-linear
function of STIM:

q = q0 + (ρ · STIM)3

1 + (ρ · STIM)3 (1)

with q0 a constant and ρ a function of lCE_rel:

ρ = cη
(k − 1)

(k − lCE_rel)
lCE_rel (2)

c, η and k are constants (see Table 2).
In order to assess the contribution of LDCS to the

static characteristics of the system, the dependency of q
on CE length was removed by fixing lCE_rel at a value
of 1 in Eq. 2, making ρ independent of lCE_rel, i.e. ρ =
cη. This simplifies the dependence of q on STIM to:

q = q0 + (c · η · STIM)3

1 + (c · η · STIM)3 (3)

Normalized isometric force (Fisomn ) is modelled as a
second-order polynomial with an optimum at lCE_rel = 1
and two zero-crossings at lCE_rel = 1 ± width:

Fisom_n = −a · lCE_rel
2 + 2a · lCE_rel − a + 1 (4)

with a = 1/width2. This characteristic is scaled for q,
FMAX and lCE_opt (see Table 2) to end up with the iso-
metric CE force (Fisom) as function of lCE.

Fisom = q · FMAX · Fisom_n (5)

The parameter “width” was chosen such that the
isometric moment–angle relationship of the model cor-
responded to measured relationships presented in liter-
ature. The passive force–length characteristic of the PE
is modelled to depend quadratically on lCE_rel (note that
lPE = lCE, see Fig. 2):

FPE = kPE ·
[

max

(
0, lCE_rel − lPE_0

lCE_opt

)]2

(6)

kPE is chosen such that FPE = 0.5 FMAX at lCE_rel =
1 + width. The passive force characteristic of the SE is
modelled to depend quadratically on lSE:

FSE = kSE · [max(0, lSE − lSE_0)]2 (7)

kSE is chosen such that SE is 4% elongated at FMAX.
lMTC as function of ϕe and ϕs is modelled as a second-

order polynomial:

lMTC(ϕe, ϕs) = a0 + a1e · ϕe + a2e · ϕe
2 + a1s · ϕs (8)

a1e, a2e and a1s are based on cadaver data using tendon
displacement method (Grieve et al. 1978). a0, repre-
senting lMTC at ϕe = ϕs = 0 (for angle definition see
Fig. 1), is chosen such that optimum angles for maximal
isometric moment is consistent with those reported in

the literature. a0 thus directly affects the angle at which
CE length is optimal. Only insofar as moment arms are
non-constant, it also indirectly affects the precise form of
the torque–angle relation; this indirect effect is usually
not substantial. Moment arms are calculated by taking
the partial derivative of lMTC with respect to ϕe and ϕs:

arme(ϕe) = ∂lMTC

∂ϕe
= a1e + 2a2eϕe (9)

arms(ϕs) = ∂lMTC

∂ϕs
= a1s (10)
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