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Abstract

The main purpose of this study is to compare two different feedback controllers for the stabilization of quiet standing in
humans, taking into account that the intrinsic ankle stiffness is insufficient and that there is a large delay inducing instability
in the feedback loop: 1) a standard linear, continuous-time PD controller and 2) an intermittent PD controller characterized
by a switching function defined in the phase plane, with or without a dead zone around the nominal equilibrium state. The
stability analysis of the first controller is carried out by using the standard tools of linear control systems, whereas the
analysis of the intermittent controllers is based on the use of Poincaré maps defined in the phase plane. When the PD-
control is off, the dynamics of the system is characterized by a saddle-like equilibrium, with a stable and an unstable
manifold. The switching function of the intermittent controller is implemented in such a way that PD-control is ‘off’ when
the state vector is near the stable manifold of the saddle and is ‘on’ otherwise. A theoretical analysis and a related simulation
study show that the intermittent control model is much more robust than the standard model because the size of the
region in the parameter space of the feedback control gains (P vs. D) that characterizes stable behavior is much larger in the
latter case than in the former one. Moreover, the intermittent controller can use feedback parameters that are much smaller
than the standard model. Typical sway patterns generated by the intermittent controller are the result of an alternation
between slow motion along the stable manifold of the saddle, when the PD-control is off, and spiral motion away from the
upright equilibrium determined by the activation of the PD-control with low feedback gains. Remarkably, overall dynamic
stability can be achieved by combining in a smart way two unstable regimes: a saddle and an unstable spiral. The
intermittent controller exploits the stabilizing effect of one part of the saddle, letting the system evolve by alone when it
slides on or near the stable manifold; when the state vector enters the strongly unstable part of the saddle it switches on a
mild feedback which is not supposed to impose a strict stable regime but rather to mitigate the impending fall. The
presence of a dead zone in the intermittent controller does not alter the stability properties but improves the similarity with
biological sway patterns. The two types of controllers are also compared in the frequency domain by considering the power
spectral density (PSD) of the sway sequences generated by the models with additive noise. Different from the standard
continuous model, whose PSD function is similar to an over-damped second order system without a resonance, the
intermittent control model is capable to exhibit the two power law scaling regimes that are typical of physiological sway
movements in humans.
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Introduction

During human quiet standing, the passive stiffness of the ankle

joint, arising from visco-elasticity of the muscle-tendon-ligament

system, is lower than the growth-rate of the gravitational toppling

torque [1,2], leaving an upright unstable equilibrium of saddle

type which is characterized by a topology of a system’s phase

space spanned by the position and the velocity providing a

convergent motion toward the equilibrium in one direction (a

stable manifold) and a divergent motion away from the

equilibrium in a different direction like a mountain pass (an

unstable manifold). Thus the upright standing posture requires to

be stabilized by suitable active control strategies. Many approach-

es have been investigated for solving this problem and here we

focus on the one which has been adopted by the majority of

people: a conventional, linear, continuous-time feedback control-

ler based on proportional and derivative feedback (PD control

model) [3,4,5].
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The main challenge is how to compensate the danger of

instability induced by the large neural feedback transmission delay,

which is of the order of 200 ms [6]. The standard PD model faces

a stringent trade-off that leaves narrow margins for the design of

the control parameters: the proportional gain must be large

enough for supplementing the insufficient ankle stiffness but not

too large for avoiding delay-promoted instability. Damping of

sway patterns requires rather large values of the derivative gain but

again the feedback delay sets a stringent upper bound on this

parameter. As we show in the following, the combination of these

stability constraints leaves a very narrow area in the P–D

parameter space where the standard controller is able to provide

stability of the upright posture.

We shall contrast the standard controller with a similar feedback

PD controller, with the difference that the feedback is switched on

and off intermittently, according to a switching mechanism

defined in the phase plane. We aim at demonstrating that the

intermittent, non-linear controller is more robust than the linear,

continuous controller by showing that the stability region in the

parameter space is much larger in the former case than in the

latter one and, in particular, much lower values of the feedback

parameters are required. This control model further expands

previous work on the intermittent nature of posture control [7],

focusing in particular on a formal stability analysis of such non-

linear, delayed feedback control system by means of Poincaré

maps.

Moreover, we shall also compare the two models in the

frequency domain by looking at the scaling properties of the PSD

(Power Spectral Density) of the sway patterns generated by the two

models in comparison with biological patterns. It is known indeed

[8,9,10] that the PSD function of natural sway, if plotted in a log-

log scale, can be well fitted by two linearly scaled regimes (or three

if very low frequencies are included). That is, the PSD in each

regime can be approximated as f2a, where f is the frequency in Hz

and a is the scaling factor. In the lower frequency band

(0.01 Hz,f,0.2 Hz) the scaling factor is about 1.5, and in the

higher band (f.0.2 Hz) it is about 3.

Methods

Four different controllers of the inverted pendulum
model of human standing
In this study, the human upright posture is simply modeled by

the motion of an inverted pendulum as

I€hh~mgh h{T ð1Þ

where I represents the moment of inertia of human body around

the ankle, h the tilt angle, g the gravity acceleration, m the body

mass, h the distance from the ankle joint to the body CoM (Center

of Mass), T the ankle torque, and Tg~mghh the gravitational

toppling torque. The ankle joint torque T is modeled as

T~KhzB _hhzfP hDð ÞzfD _hhD

� �

zsj ð2Þ

where D is the neural transmission delay, hD~h t{Dð Þ and
_hhD~ _hh t{Dð Þ. The first two terms on the right hand side of the

equation represent passive feedback torques, with no time delay,

related to the intrinsic mechanical impedance of the ankle joint (K

and B are the passive stiffness and viscosity parameters,

respectively); the third and fourth terms represent the active

neural feedback torques that are determined as functions of delay-

affected tilt angle and angular velocity, respectively; the last term is

a noise torque, modelled as an additive Gaussian white noise j(t) of

intensity s. By combining eq. 1 and eq. 2 we obtain a delay

differential equation (DDE):

I€hh~mgh h{ KhzB _hhzfP hDð ÞzfD _hhD

� �� �

zsj ð3Þ

In the following we consider four different implementations of

the active controllers fP and fD and analyze the corresponding

properties and performance. In Models 1 and 2 the active

feedback is linear and continuous in time. In Models 3 and 4 the

active feedback is non-linear and intermittent. Figure 1 shows, for

the four control models, the distribution of active and inactive

regions in the phase plane ( _hh vs. h).

Model 1. This model uses a PD linear controller with no time

delay (D~0):

fP hð Þ~P h tð Þ
fD _hh
� �

~D _hh tð Þ

(

ð4Þ

For the system to be asymptotically stable it is necessary and

sufficient that, whatever the noise level and the derivative gain

D.0, K+P.mgh. The two eigenvalues are real if

B+D.2[(K+P2mgh)I]1/2 and complex otherwise.

Model 2. This model uses a PD controller with time delay D:

fP hDð Þ~P hD

fD _hhD

� �

~D _hhD

(

ð5Þ

In this case, the previous condition on the proportional gain is

still necessary but is not sufficient. As demonstrated in the

Appendix, two additional conditions must be satisfied by the

proportional and derivative gains, yielding a set of three conditions

to be satisfied by the feedback controller for gaining the asymptotic

stability of the upright posture:

Pwmgh{K

Dv I
D

DwDP{B

8

>

<

>

:

ð6Þ

In the P–D parameter plane this identifies a triangle that

limits the set of admissible values for the feedback parameters

(see Fig. 2). When D~0, Model 2 is equivalent to Model 1. As

D decreases, the triangle increases its area and tends to fill

the whole first quadrant of the P–D plane to the right of the criti-

cal value mgh-K. On the contrary, as D increases the triangle

decreases its area and vanishes when it reaches a critical value

D~ Bz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2z4I mgh{Kð Þ
p

h i.

2 mgh{Kð Þ½ � which is a function

of the physical parameters of the system (m,h,I,B,K). In this study,

we consider a physiologically plausible value of D~200 ms [6],

which is fixed throughout the study and is less than the critical

value, providing the triangular stable area in the P–D plane. A loss

of stability of the upright posture occurs when DwDP{B is

broken via a Hopf bifurcation, which is a typical critical

phenomenon that induces a stable or unstable oscillatory behavior

of a dynamical system through instability of an equilibrium state,

leading to an unstable oscillation around the upright equilibrium

of unstable focus type. Indeed when D~DP{B, the real parts of

Intermittent Postural Control
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the eigenvalues of the linearized equation (eq. 16 in Appendix)

vanishes and the upright equilibrium loses its stability.

Model 3. In this model the PD controller with time delay D is

intermittently switched on and off according to a state-dependent

mechanism, which divides the phase plane of the pendulum into

four regions separated by a negatively tilted line through the origin

and the ordinate axis: [dh=dt~ah] with 0§a and [h~0]:

fP(hD)~P hD

fD( _hhD)~D _hhD

(

, i:e:, PD control is turned on (PD-on), if hD _hhD{a hD

� �

w0

fP(hD)~0

fD( _hhD)~0

(

, i:e:, PD control is turned off (PD-off), otherwise

ð7Þ

Note that the phase space of the DDE of eq. 3 for a nonzero

D.0 is infinite dimensional, and rigorously speaking, a state of the

system at time t is a curve segment h tð Þ, _hh tð Þ
h in ot~t

t~t{D
.

Therefore the h{ _hh plane cannot be a phase plane of the system.

Nevertheless, with keeping carefully this mathematics in mind, we

refer to the h{ _hh plane as the phase plane. According to eq. 7, the

PD-on regions correspond to the first and third quadrants of the

phase plane, augmented by two angular slices (in the fourth and

second quadrants, respectively) whose amplitude is a function of

the switching parameter a. The PD-off regions fill the remaining

areas of the phase plane. The percentage PD-on vs. PD-off ranges

between 50% to 100% as a is varied between 0 and 2‘. As

a?{?, the PD-off region tends to disappear and Model 3

becomes identical to Model 2. Let us illustrate the switching

condition for the controller defined by eq. 7 more in detail using

Fig. 3: it describes a typical case with the values of P and D

breaking the stability condition DwDP{B so that the upright

equilibrium would be an unstable focus if the PD controller were

Figure 1. Characterization of the 4 control models in the phase
plane ( _hh vs: h). In Models 1 and 2 the control is active in the whole
plane. The shaded areas in Models 3 and 4 identify the areas where the
control is switched off.
doi:10.1371/journal.pone.0006169.g001

Figure 2. In the plane of proportional and derivative param-
eters (P and D, respectively) of the model 1 and model 2
feedback controllers, the figure identifies the region of
stability (shaded triangle). Body parameters: m (mass); I (moment
of inertia); h (distance of the center of mass from the ankle); K (intrinsic
stiffness); B (intrinsic viscosity); mgh (gravity toppling rate). Controller
parameters: P, D, D (delay of the feedback loop). As D decreases, the
triangle increases its area and tends to fill the whole first quadrant to
the right of the critical value mgh-K. As D increases the triangle
decreases its area and vanishes when it reaches the value
D~ Bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2z4I mgh{Kð Þ
p

� �.

2 mgh{Kð Þ.
doi:10.1371/journal.pone.0006169.g002

(7)
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always turned on. Moreover, the upright equilibrium is also

unstable of saddle type if the PD controller were always turned off.

Figure 3A shows a typical solution of Model 3 in the phase

plane. The initial state at t=0 is represented by the thick and

nearly horizontal curve segment (labelled ‘‘1’’ in Fig. 3A) located at

upper left of the first quadrant of the phase plane, representing a

slightly forward tilting posture with a velocity falling forward. The

right and left edges of the segment are h 0ð Þ, _hh 0ð Þ
h i

and

h {Dð Þ, _hh {Dð Þ
h i

, respectively. This segment moves in the phase

plane according to the DDE of eq. 3. A state of the system at time t

is represented by the corresponding curve segment whose leading

edge is h tð Þ, _hh tð Þ
h i

and the tail-end is h t{Dð Þ, _hh t{Dð Þ
h i

. The

condition separated by hD _hhD{ahD

� �

~0 in eq. 7 implies that the

PD controller is turned on and off, respectively, if the tail-end of

the segment is located in the on and off regions in the phase

plane. Because the tail-end at t=0 is in the on-region in

Fig. 3A, the time evolution of the system is governed by

I€hh~mgh h{ KhzB _hhzPhDzD _hhD

� �

for some time interval,

during which the state of the system spirals away from the

unstable upright equilibrium of focus type. After a period of time,

the leading edge reaches the boundary dh=dt~ah separating the

on and off regions (at a point referred to here as R1) leaving the

tail-end still in the on-region. Then after the time interval D, the

tail-end also reaches at the boundary dh=dt~ah as represented in

Fig. 3A by the nearly vertical thick segment (labeled ‘‘2’’)

overflying downward from the boundary dh=dt~ah in the off-

region, switching the PD controller off. In the off-region, the time

evolution of the system is governed by I€hh~mgh h{ KhzB _hh
� �

with no PD control for some time interval. Thus the state segment

moves upward in the phase plane along a hyperbolic curve

(represented by the dashed curve in Fig. 3A) associated with the

saddle type upright equilibrium until the tail-end of the segment

reaches the boundary dh=dt~ah from the off-region side, at

which the PD controller is turned on again (the state segment

labeled ‘‘3’’). Then the leading edge of the segment 3 returns to

and gets across the boundary dh=dt~ah at a point referred to

here as R2. Similar processes may be repeated as we shall analyze

in detail in this study. It is important to note that the leading edge

of the state segment labeled ‘‘3’’ in Fig. 3A is located below the

orbit connecting the segments 1 and 2. Because of this the point R2

is closer to the equilibrium than the point R1. If the leading edge of

the state segment labeled ‘‘3’’ in Fig. 3A were above this orbit, a

subsequent orbit would have returned to the boundary dh=dt~ah

at a more distant point from the equilibrium than the point R1.

Figure 3B shows another typical solution of Model 3 when the

value of P is larger than that used for Fig. 3A. In this case the initial

state at t=0 is represented by the thick and nearly vertical curve

segment (labelled ‘‘1’’ in Fig. 3B) located at upper right of the first

quadrant of the phase plane, representing a forward tilting posture

with a velocity falling forward. The leading edge of the segment

when the tail-end reaches the boundary dh=dt~ah overflies

largely into the off-region of the fourth quadrant, due to the large

value of P, and it goes beyond the stable manifold (the dotted line

with arrow heads directing the equilibrium in Fig. 3B) of the saddle

equilibrium of the system governed by I€hh~mgh h{ KhzB _hh
� �

.

The leading edge when the tail-end reaches the boundary

dh=dt~ah (the curve segment labeled ‘‘2’’ in Fig. 3B) located

below the stable manifold moves along a hyperbolic upward-

convex curve (the dashed curve in Fig. 3B) directing to the third

quadrant of the phase plane to recover the tilting posture. The

third quadrant is the on-region, and thus similar but mirror-image

processes may be repeated in which the state segment moves from

Figure 3. Typical solutions of Model 3 in the phase plane. In each plane, the initial state at t=0 is represented by the thick curve segment
labeled ‘‘1’’. This state segment moves in the phase plane according to the DDE of eq. 3 in number order as labeled. A state of the system at time t is
represented by the corresponding curve segment whose leading edge is h tð Þ, _hh tð Þ

h i

and the tail-end is h t{Dð Þ, _hh t{Dð Þ
h i

. The PD controller is turned
on and off, respectively, if the tail-end of the segment is located in the on (white) and off (gray-shaded) regions in the phase plane. Dotted lines are
the stable manifold (arrow heads directing the equilibrium) and the unstable manifold (arrow heads departing away from the equilibrium). A: A
typical orbit of eq. 3 when the proportional gain P of the PD controller is small. B: A typical orbit of eq. 3 when the gain P is large.
doi:10.1371/journal.pone.0006169.g003
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the third to the second quadrant, and then the second to the first

quadrant as we shall analyze in this study. Note that the curve

segments labelled ‘‘3’’, ‘‘4’’ and ‘‘5’’ are the states at which the PD

controller is turned on, off, and on, respectively.

The stability of this control model, as well as the following one,

cannot be computed by means of the standard methods (analysis of

the Bode plots, computation of the eigenvalues etc.) due to the

non-linearity and intermittency of the controllers. Instead, we shall

use Poincaré maps for the orbits in the phase plane that

determined by the dynamics of eq. 3 with the control of eq. 7.

Model 4. This model is identical to Model 3, with a circular

extension of the PD-off region around the origin, i.e. a dead zone

in the phase plane:

fP(hD)~P hD

fD( _hhD)~D _hhD

(

, i:e:, PD-on, if hD _hhD{a hD

� �

w0 & h2Dz
_hh2Dwr2

fP(hD)~0

fD( _hhD)~0

(

, i:e:, PD-off, otherwise

ð8Þ

where r is the radius of the circular dead-zone. This non-linearity

represents the limited sensitivity of the sensors detecting the body

tilt and the corresponding falling velocity. Again, the stability of

this system will be analyzed by means of Poincaré maps.

The constant parameters used in the simulations are listed in

table 1. With these values the passive stiffness K is 80% of the

critical stiffness mgh and thus the upright posture is unstable

(saddle) without a suitable active control.

Stability analysis by means of Poincaré maps
The trajectories in the phase plane of the sway movements

described by eq. 3, with the control provided by Model 1 or 2, can

be a stable or unstable spiral, a stable or unstable node, or a saddle

according to the values of the feedback gains P and D (PD-on

flows). Note that the classification of the flows (dynamics) depends

on the closed-loop eigenvalues: complex conjugates, with negative

real part (flow with stable spiral); complex conjugates, with positive

real part (flow with unstable spiral); both negative real (flow with

stable node); both positive real (flow with unstable node); both real

but with opposite sign (saddle flow). If no control is provided and

the intrinsic stiffness is smaller than the critical value, the

corresponding PD-off flow is a saddle, which includes a stable

and an unstable manifold. If the control is intermittent (Models 3

and 4), the orbits are composed by a combination of PD-on and

PD-off flows and the switching function described above

automatically selects an orbit along the stable manifold of the

latter flow. Therefore, the typical flow in the phase plane

determined by Model 3 is a sequence of unstable spiral, followed

by a flow along the stable manifold of the saddle and so on, as

illustrated in Fig. 3.

The stability analysis of such non-linear dynamics can be

carried out by considering a section, transversal to the flow of the

system, known as a first return map or Poincaré map. This map

can be interpreted as a discrete dynamical system with a state

space that is one dimension smaller than the original continuous

dynamical system (in our case this implies a reduction from a 2-

dimensional problem in the phase plane to a 1-dimensional

problem). The stability of the original system can then be

reformulated by looking at the fixed point of the map and

evaluating its stability.

With reference to Fig. 4, let us call P and S the two lines in

the phase plane that identify the switching function of Model 3

and let us use S as the section for evaluating the Poincaré map. Let

us denote a state segment at time t h tð Þ, _hh tð Þ
h in ot~t

t~t{D
of the

Model 3 as x t,t{D½ �: The leading edge and tail-end of the

segment are h tð Þ, _hh tð Þ
h i

and h t{Dð Þ, _hh t{Dð Þ
h i

, respectively (see

Fig. 3). Let us define Gt x t,t{D½ �ð Þ as a flow of the DDE of eq. 3.

Gt x t,t{D½ �ð Þ is a function that maps a state segment x t,t{D½ � to
a time evolved state segment x tzt,tzt{D½ � for the time interval

t seconds. In Fig. 3, for example, the state segment ‘‘1’’ is mapped

to the state segment ‘‘2’’ for a certain time interval t.

Characteristics of the flow Gt x t,t{D½ �ð Þ for Model 3 are state-

dependent, since the PD controller of the system is switched on

and off according to the state-dependent mechanism defined by

eq. 7. Let us consider the flow of Model 3 by assuming that the PD

controller is always on (as in Model 2), and denote it as

GON
t x t,t{D½ �ð Þ. In the same way, we consider the flow of Model

Table 1. Model parameters used in the simulations.

m Body mass 60 kg

I Inertia of the body around the ankle 60 kgm2

h Distance of the center of mass from the ankle 1 m

B Intrinsic viscosity coefficient 4.0 Nms/rad

K Intrinsic stiffness coefficient 471 Nm/rad (80% of mgh)

g Acceleration of gravity 9.81 m/s2

D Delay in the feedback loop 0.2 s

r Radius of the dead-zone in the phase plane 0.004 rad-rad/s

doi:10.1371/journal.pone.0006169.t001

(8)

Figure 4. Stability analysis of control model 3 (in the absence
of noise) by means of the Poincaré map. Alternation of PD-on and
PD-off flows. The lines S andP in the phase plane h vs: _hh

� �

are related
to the switching mechanism of the controller. (The shaded areas
indicate that the PD-control is switched off.) S is also used as the
section for the computation of the map. Two typical orbits from S to S
are shown (thick curves) for two different values of the proportional
controller gain P: sRp1Rp2Rp3Rs’ and sRq1Rq2Rq3Rs’. The thin
lines display the PD-on flows (unstable spiral) and the PD-off flow
(saddle with a stable manifold).
doi:10.1371/journal.pone.0006169.g004
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3 by assuming that the PD controller is always off, and denote it as

GOFF
t x t,t{D½ �ð Þ. As illustrated in Fig. 3, Gt x t,t{D½ �ð Þ is

represented by GON
t x t,t{D½ �ð Þ if the tail-end of x t,t{D½ � is in

the on-region. GON
t x t,t{D½ �ð Þ is typically a flow with an unstable

focus and referred to as the PD-on flow. If the tail-end of x t,t{D½ �
is in the off-region, Gt x t,t{D½ �ð Þ is represented by

GOFF
t x t,t{D½ �ð Þ which is a flow with the saddle and referred to

as the PD-off flow. Here we approximate the mapping

Gt x t,t{D½ �ð Þ by gt uð Þ where u is the leading edge of the state

segment x t,t{D½ � in 2-dimensional phase plane and gt uð Þ is the
leading edge of the state segment x tzt,tzt{D½ � also in the 2-

dimensional phase plane, by which characterization of the flow

becomes much easier and tractable though less rigorous

mathematically. As in Gt x t,t{D½ �ð Þ, gt uð Þ is also represented by

PD-on flow and PD-off flow, denoted by gON
t uð Þ and gOFF

t uð Þ,
respectively.

The Poincaré map can then be computed by choosing a leading

edge sMS of a state segment as a starting point of an orbit and

tracking it until it reaches S again, as a new leading edge s’ of a

time evolved state segment on S. As shown in Fig. 4, an orbit from

S to S is always composed of three parts: 1) PD-on part, 2) PD-off

part, 3) the second PD-on part. There are two possible patterns

according to the specific values of the control parameters. In one

pattern (see Fig. 3B), the first part of the orbit (a curve from s to p1
in Fig. 4) is generated by a PD-on flow gON

t , although the leading

edge is entering the PD-off region, because the tail-end of the state

segment still remains in the PD-on region reflecting the controller

takes a time D before detecting the switching condition due to the

feedback delay. Namely the first part of the orbit is a curve starting

from sMS (the leading edge of the state segment x 0,{D½ � at time

t=0), to a point p1~gON
D sð Þ (the leading edge of the state segment

x D,0½ � at time t~D). Note that the tail-end of this initial state

segment reaches S at time t~D at which the PD control is

switched off. Thus the first part of the orbit is identical to the state

segment x D,0½ �. The second part of the orbit brings the leading

edge p1 at time D to the leading edge p3~gOFF
azD p1ð Þ at time

t~azD, passing through p2 on P, with a duration which is

composed of two parts: a seconds from p1 to p2~gOFF
a p1ð Þ in the

PD-off region with the PD-off flow and D seconds from p2 to

p3~gOFF
D p2ð Þ in the PD-on region still with the PD-off flow. As

above, the tail-end of the state segment reaches P at time

t~azD, and the PD control is switched on. Once again, note that

the orbit from p2 to p3 is identical to the state segment x azD,a½ �
at time t~azD. The final part of the orbit brings p3 back to the

switching line S after b seconds: s0~gON
b p3ð Þ[S.

The other pattern, shown in Fig. 4, brings sMS to q1, q2, q3 and

then back to s’MS, but with a shorter orbit that does not cross P

(see Fig. 3A). In general, we can define the Poincaré map with the

following notation:

s0~W sð Þ:gON
b gOFF

azD gON
D sð Þ

� �� �

ð9Þ

The PD-off flow gOFF
t

:ð Þ is always the saddle flow with the stable

manifold (the dotted straight line with a negative slope on the

phase plane in Figs. 3 and 4). The leading edge points p1 and q1
when the PD controller is switched off can be close to the stable

manifold of the saddle for the choice of the switching function and

the value of P. In particular, if p1 or q1 is exactly on the stable

manifold, the state of the system approaches the upright

equilibrium directly along the straight line of the stable manifold.

Note that if the feedback parameters allow a stable PD-on flow (i.e.

P and D are contained in the triangle stable region of Fig. 2) then

also the overall behavior of Model 3 is clearly stable without any

need to analyze the Poincaré map. This analysis instead is

necessary for evaluating the stability when the PD-on flow is an

unstable spiral (focus). For large values of D and small values of P,

the PD-on flow may become an unstable node and in that case the

map is not defined, which is the out of range of this study.

For the stability analysis we can restrict the map W : S?S of eq.

9 to the angular values h alone, because the knowledge of points s

and s’ on the switching line S allows to go back and forth between

the sway angle and the angular velocity without any loss of

generality:

h0~F hð Þ ð10Þ

A map F can be obtained numerically, in which a tilt angle h0 of
s’ on S is plotted against a tilt angle h of s on S as a graph. Once

we obtain the map F, a sequence of tilt angles at every transverse

of the leading edge across S can be obtained just by the iterative

use of the map. More precisely, for a given initial tilt angle h1 of a

leading edge placed on S, h2 at the subsequent transverse of the

leading edge can be obtained as h2~F h1ð Þ. In general,

hnz1~F hnð Þ for n~1,2, � � �. If the upright posture is asymptot-

ically stable, the sequence hnf g converges to zero as n??. The

necessary and sufficient condition for the asymptotic stability of

the upright posture (h=0) is that this posture is a stable fixed point

of the map, and this requires that the following condition is

satisfied:

d F qð Þ=dhj jh~0v1 ð11Þ

The orbits generated by Model 4 in the phase plane are the

same as those generated by Model 3 as long as the state vector

remains outside the dead-zone. However, even in the absence of

noise, the control is generally unable to asymptotically drive the

system to the upright equilibrium in a stable way. Rather, we

should observe a bounded stability, typically with periodic

attractors. However, if the size of the dead zone is not too large,

in particular if the linear approximation of the sway angles is still

valid, then we can expect that the areas of stability in the

parameter space for Models 3 and 4 are basically the same.

Simulation of the inverted pendulum DDE
In the simulations, the DDE of eq. 3 is numerically integrated

by using the forward Euler method, with time step Dt=0.001 s.

More precisely, the second order equation of motion is

reformulated as the following ordinary delay differential equation:

_xx tð Þ~f x tð Þ, x t{Dð Þð Þzsj tð Þ ð12Þ

where x tð Þ~ h tð Þ, _hh tð Þ
h i

, j tð Þ is a normal random process, s is the

corresponding amplitude, and D is the feedback delay time. By

defining the following discrete normal white noise as a sequence of

independent increments of the standard Wiener process (which is

an integral of j tð Þ) between successive discrete time instants nDt

and nz1ð ÞDt for nonnegative integer n:

Wn~
1
ffiffiffiffiffi

Dt
p

ð nz1ð ÞDt

nDt

j sð Þ ds ð13Þ

for which E Wn½ �~0 and E WnWm½ �~dnm, we can rewrite eq. 12

in a discrete form as follows:
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xnz1~xnzf xn, xn{kð ÞDtzs Wn

ffiffiffiffiffi

Dt
p

ð14Þ

where k~D=Dt. See Appendix for some details. This yields

practically a 400-dimensional discretized system for the time delay

D~0:2s. The initial state was set as h 0ð Þ~0:01, h tð Þ~ _hh tð Þ~0 for

{Dƒtv0. The transient affected by this initial condition was

discarded for steady state analyses.

Results

The control models introduced in the previous sections were

simulated in a systematic way by using different combinations of

the control parameters (P, D, a). The first issue we wished to

address was the robustness of Model 2 (continuous control) vs.

Model 3 (intermittent control). To this end, the Poincaré map

h’= F(h) was obtained for different combinations of the control

parameters (P, D, a). Figure 5A shows two examples of the

Poincaré map for a value of the switching parameter a

(a=20.4 s21) with a sequence of the tilt angles generated by

iterations of each map from an initial tilt angle. The maps could be

well approximated by straight lines: the negative slope line

describes the convergent dynamics for given values of the

parameters P and D corresponding to the sequence sRp1 Rp2
Rp3 Rs’ in Fig. 4 (see also Fig. 3B); the positive slope line for a

smaller value of P corresponds to sRq1Rq2Rq3Rs’ in Fig. 4 (see

also Fig. 3A). Figures 5B and 5C shows that the iterative use of the

map depicted in Fig. 5A generates a convergent sequence of values

that have a good agreement with the DDE dynamics, confirming

that the Poincaré map can be used practically to analyze the

dynamics of Model 3. Note that the convergent sequence of the tilt

angles observed repeatedly on the Poincaré section S is monotonic

if the slope of the map is positive, and it is oscillatory if the slope of

the map is negative.

Figure 6 shows the regions of stability in the P–D plane for

different values of the switching parameter a. We find again the

stability triangle of Model 2 which clearly does not change with a.

For Model 3, the figure also shows the distribution in the

parameter plane of the absolute slope of the Poincaré map |dF(h)/

dh |, in which a shading that attributes darker shade represents the

more stable conditions.

In general, we can see that the delay-induced instability

observed in Model 2 by large values of P and small values of D

is indeed compensated by the intermittent activation of the

feedback control. Moreover, for each value of the parameter a,

there exist optimal sets of P–D values that maximize stability. For

P–D values near the dark linear band of Fig. 6, the points p1 or q1
of the orbits when PD control is switched off (see Fig. 4), happen to

fall quite close to the stable manifold of the saddle flows, thus

leading to the most stable dynamics with ‘‘rapid convergence’’ to

equilibrium according to a ‘‘sliding motion’’ along the stable

manifold. Moreover, the fact that the dark linear band is almost

vertical implies that stability is very little sensitive to the value of D

and this means that the compensation of the delay-induced

instability by means of the intermittent activation of the feedback

does not require large values of the derivative gain D as occurs

with Model 2. In particular, the inverted pendulum can be

stabilized even by the zero value of D in Model 3.

Figure 5. Poincaré map h’ = F(h) and its dynamics. A: Two
examples of numerically obtained Poincaré map for two different
values of P. Representation of the return map was restricted to the
angular values: h to h’. For each map, an initial tilt angle h1 of a leading
edge placed on S is given, and the subsequent transverse angles of the
leading edge across S are obtained by h2~F h1ð Þ and h3~F h2ð Þ. B and
C: A sequence of the tilt angles when the state of the system passes
through the section S obtained by iterative use of the map in the panel
A (filled points) and by the DDE simulation (open circles) for Model 3

with a=20.4 s21, and they showed a good agreement. The sequence
toward the equilibrium of the sway angle is monotonic in B (P/
mhg=0.54) and oscillatory in C (P/mhg= 0.64).
doi:10.1371/journal.pone.0006169.g005
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The optimal value of P, given a and D, is characterized by the

fact that the leading edge of the state segment of the PD-on flow,

after it enters into the off-region and when the tail-end of the state

segment reaches the boundary S at which the PD control is

switched off, is located exactly on the stable manifold of the saddle

flow and this allows the state of the system to approach directly

equilibrium without the help of derivative control. If P is smaller

than the optimal value, then dF(h)/dh.0 and the PD-on flow

terminates before the leading edge reaches the stable manifold and

this yields a monotonic convergent dynamics (Fig. 5B). If P is

larger than the optimal value, the opposite occurs: dF (h)/dh,0

and the PD-on flow terminates after the leading edge reaches the

stable manifold and this yields a damped oscillatory convergence

to the equilibrium (Fig. 5C).

In any case, Fig. 6 clearly shows that the region in the feedback

parameter space where stability can be achieved is much larger for

the discontinuous control of Model 3 than the continuous control

of Model 2, suggesting that discontinuous control is a more robust

control mechanism than continuous feedback control.

Figure 7 shows typical simulated dynamics with and without

noise for each of the four models, to be compared with

experimental data coming from a typical human subject (Fig. 8.

See [11] for the corresponding experimental setup.). Models 1 and

2 are asymptotically stable for large PD gains that are close to the

values used in previous studies [3,4], exhibiting a rapid decay to

the equilibrium in the noise free case from the given initial

condition and a stochastic sway distribution centered around the

upright posture in the presence of noise. Model 3 also shows

asymptotic stability with a point attractor at the origin but it

requires much smaller values of the P and D parameters (P/

mgh=0.8, D=270 Nms/rad for Model 2 and P/mgh=0.25,

D=10 Nms/rad for Model 3).

Model 4 has two periodic attractors, with a positive and a

negative average angular values. In the absence of noise it settles in

one oscillatory mode or the other as a function of the initial state of

the simulation. The noise induces alternations between these two

attractors, which are more prominent than the alternations

observed in Model 3 and this agrees with the bimodal angular

histograms observed by Bottaro et al [7].

Figure 7 also shows typical power spectra of the four control

models, to be compared with the power spectrum of human sway

(Fig. 8). In Models 1 and 2, due to the large PD gains, the PSD

profile is roughly a second order type without a resonance whereas

in Models 3 and 4 we clearly find the two power law scaling

regimes typical of human sway. Moreover, Models 1 and 2 require

much larger noise intensities to reproduce the physiologically

plausible sway amplitude than Models 3 and 4: s =2.0 Nm in

Fig. 7A–B and s =0.2 Nm for Fig. 7C–D.

Figure 6. Comparison of the stability region in the P–D plane for the control Models 2 and 3. The horizontal axis is normalized with
respect to the critical stiffness (mgh) considering that the intrinsic stiffness is 80% of that value. The stability region of Model 2 is the striped triangle.
The stability region of Model 3 is the grey-shaded area, with a gray intensity which is a function of the absolute slope of the Poincaré map: |dF/dh|h= 0

: the darker the shade the quicker the recovery of upright equilibrium. |dF/dh|h= 0= 0 is maximal stability; |dF/dh|h= 0=1 is neutral stability. Dotted
areas correspond to instability (|dF/dh|h= 0.1). The four panels show how the stability of Model 3 depends upon parameter a which identifies the
switching mechanism of Fig. 1. In panels C and D, a small white thin region at the left upper edge of the gray region corresponds to parameter sets in
which the equilibrium point is a stable node. Hence in this white region, the Poincaré map cannot be defined though the equilibrium point is stable.
doi:10.1371/journal.pone.0006169.g006
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Figure 7. Simulation of the four control models with and without noise: Model 1 (panel A); Model 2 (panel B); Model 3 (panel C);
Model 4 (panel D). Each panel shows: 1) trajectories in the phase plane (left-upper part without noise, left-lower part with noise); 2) corresponding
angular sway sequences (middle-upper part without noise, middle-lower part with noise); 3) power spectral density for the model with noise (right
part). In the shaded areas of the phase planes, PD control is switched off. For Models 1 and 2, the following parameters were used: P/mgh= 0.8,
D= 270 Nms/rad, s = 2 Nm. For Models 3 and 4 the parameters in the PD-on regions were as follows: P/mgh= 0.25, D= 10 Nms/rad, s = 0.2 Nm, and
a=20.4 s21.
doi:10.1371/journal.pone.0006169.g007

Intermittent Postural Control

PLoS ONE | www.plosone.org 9 July 2009 | Volume 4 | Issue 7 | e6169



Noise-free DDE simulations of Model 4 for various sets of P-D-a

parameters show that the stable regions in the P-D-a parameter

space of Model 4 are the same as those of Model 3, with the

difference that the attractor of Model 3 is an asymptotically stable

equilibrium point and that of Model 4 is a limit cycle. This fact

provides a common basis for understanding the noisy dynamics of

both Models 3 and 4. As shown in Fig. 7, the power spectra of

Models 3 and 4, if affected by noise, exhibit the two power law

scaling regimes that are typical of physiological sway movements.

In particular, the first power law scaling factor at the low

frequency regime of Model 4 changes depending on the values of

P, a, and the noise intensity s as these parameters determine

stochastic occurrences of the slow motions along the saddle

manifold. In the noise-free case, two limit cycle attractors coexist

in Model 4 and the state point oscillates around one limit cycle or

the other.

These oscillatory patterns are characterized by the fact that PD

control is switched on for one part of the limit cycle and switched

off for the remaining part. The distance between the stable

manifold of the saddle dynamics that describes the system’s

behavior when PD-control is off and the leading edge of the state

segment in the phase plane when the PD control is turned off

depends on the values of P and a as we have demonstrated for

Model 3. If the distance is small, a small noise added to Model 4

can push the state point moving closely along the stable manifold

of the PD-off flow, which is a part of ‘‘the noisy limit cycle,’’ to the

opposite side of the phase plane, leading to the stochastic switching

from one limit cycle attractor to the other. If the distance is large, a

noise of larger intensity is required to induce the alternation

between the attractors: the alternation frequency between the

attractors tends to increase with noise intensity. However, the

alternation occurs most frequently if the distance and the noise

intensity match. This could be considered as a type of a stochastic

resonance.

Figure 9 shows two examples of the PSD for Model 4 with two

different values of P (P/mgh<0.29 for the left panel and P/

mgh<0.79 for the right panel) and common values of D, a, and s
(D=10 Nms/rad, a=20.4 s21, s =0.2 Nm). For this value of

the switching parameter a, the optimal value of P for the stability

of Model 3 was about 60% of mgh regardless the value of D, i.e.,

the dark band was located at P=mgh&0:6 in Fig. 6C. Thus the

values of P used for Fig. 9 left and right are, respectively, smaller

and larger than the optimal value of P. As in these two examples,

the PSD showed the two power law scaling for smaller values of P,

and it was more like a second order system and similar to the PSD

of Model 2 with or without a resonance for large values of P.

Figure 10 shows, for Model 4, the dependence of the scaling

factor a of the power spectrum of the noisy sway at the low

frequency regime, as a function of s and P for several a values with

a fixed low derivative gain D at 10 Nms/rad. For a given value of

P, a tends to be a unimodal function of s when P is close to the

optimal value taken from the dark band of Fig. 6 for which the

corresponding Model 3 exhibits the most stable dynamics (see the

unimodal curve of Fig. 10C at P=mgh&0:6 as the function of s as

a typical example). The peak value of the unimodal curve is

attained when the noise intensity matches the distance between the

stable manifold and the leading edge just after the PD control is

switched off as described above. If P is smaller than the optimal

value chosen from the left-hand side of the dark band of Fig. 6, the

unimodal curve gradually becomes monotonic increasing function

with a saturated value. The peak and the saturated values of a are

close to or larger than 1.5 depending on the value of the switching

parameter a: this is close to the physiological scaling factor [8,9,10]

and the PSD is more or less similar to Fig. 9-left, exhibiting the two

power law scaling. On the other hand, the unimodal curve

disappears and the curves of the scaling factor a as the function of

s become almost flat close to zero or even negative if P is larger

than the optimal value, i.e., if it is taken from the right-hand side of

the dark band for which Model 3 shows damped oscillations (refs.

Fig. 5C). That is, the PSD is similar to a second order system with

or without a resonance (e.g., Fig. 9-right). In particular, the PSD

does not exhibit a resonance peak for the value of P larger than but

Figure 8. Sample of human postural sway, collected from a subject in quiet standing for 120 s. Left upper panel: Angular sway sequence;
Left lower panel: trajectory in the phase plane; Right panel: power spectral density of the angular sway.
doi:10.1371/journal.pone.0006169.g008
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close to the dark band, and it shows a small resonant peak if the

value of P is more away from the dark band and if the noise

intensity is small.

Discussion

The intermittent control strategy explored in this paper is based

on the idea that, in order to control the behavior of a system

characterized by a saddle-type unstable equilibrium, it is smart to

take advantage of the stable manifold of the saddle and focus the

active control intervention on the task of keeping the state of the

system as close as possible to such manifold by means of a

sequence of small, well timed control signals. This is an idea which

has been used in different fields, in order to control physical [12],

physiological [13], and clinical [14] systems. In Gibsonian terms

[15] we may say that, in spite of the instability of the saddle-type

equilibrium, the stable manifold of the saddle is an ‘‘affordance’’

that a smart agent is supposed to exploit in order to simplify the

control problem and provide a more economical solution: indeed

part of the job can be performed by the ‘‘environment’’ not the

controlling agent.

An intermittent control mechanism for continuous-time control

systems with feedback delay is similar to the ‘‘act-and-wait’’

concept proposed by Insperger [16]. The difference with respect to

our model is that the switching mechanism is periodic instead of

being event-driven: although such mechanism can be efficient, it

leaves open the choice of the switching period and, in any case,

there is no hint of biological plausibility of this type of solution in

the case of posture control.

One of the results of this study is that the intermittent PD

controller can achieve stable equilibrium with very small or even

null values of the derivative gain D. However, this does not imply at

all that the velocity information of the postural sway is not important

[5,17]. On the contrary, the estimate of sway velocity is one of the

key sensory information for switching on and off the active control in

the intermittent control at the right time. In particular, the distance

between the stable manifold of the saddle for the PD-off flow and the

point when the PD control is switched off determine the postural

stability, and it is determined by the timing of the switching off of the

PD control, for which the velocity information is critical. In this

regard, the intermittent control model proposed by Bottaro et al [7]

incorporates an internal model of the body dynamics for generating

the active control torques, by which the appropriate amount of the

intermittent and brief control torque calculated based on the

internal model can locate the state point close to the stable manifold,

leading to a more robust stability of the quiet standing.

Another study [18,19,20] has investigated the properties of the

following DDE:

_xx tð Þ~cx tð Þzf x t{Dð Þð Þzsj tð Þ ð15Þ

where x represents the postural tilt angle, and f :ð Þ is the x t{Dð Þ
dependent on-off switching function. They have shown that the

Figure 9. Power spectral density functions (PSDs) of sway data for Model 4 with two different parameter values. Left panel:
P= 176 Nm/rad (P=mgh&0:299), D= 10 Nms/rad, a=20.4 s21. Right panel: P=470 Nm/rad (P=mgh&0:799), D=10 Nms/rad, a=20.4 s21. For
Models 3 and 4 with a=20.4 s21, the optimal the optimal value of P for the stability is about 60% ofmgh (i.e. P=mgh&0:6) regardless the value of D.
The values of P in the left and right panels are smaller and larger than the optimal value of P, respectively.
doi:10.1371/journal.pone.0006169.g009
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model has two coexisting limit cycles: noise can induce transitions

between the two attractors, resulting in multiple scaling of two

point correlation functions. In this regard, the model above

reproduces similar dynamics to Models 3 and 4 of this study. An

important difference is that eq. 15 is derived by neglecting the

inertia term from the equation of motion in order to reduce the

analysis to a first order DDE. They justified this by assuming that

the system is overdamped, i.e. the ankle viscosity is high enough.

However, we showed in Models 3 and 4 that the total viscous

torque (including the passive viscosity B as well as the ‘‘active

viscosity’’ D) could be very small and comparable with or even

smaller than the inertia torque. Indeed, we have examined

experimental sway data to compare the inertia and viscous terms

during human quiet stance, confirming that the inertia term

should not be neglected. Several features of the postural sway

movements suggest indeed the overdamped dynamics: the non-

resonant PSD, the non-oscillatory impulse responses to small

perturbations, etc. However, our study demonstrates that the same

outcome can be obtained by a properly tuned ‘‘saddle mecha-

nism’’, even with a very small level of ankle viscosity.

We showed that the postural sway with the intermittent

activation of the PD controllers can reproduce the multiple power

law scaling property of the PSD during human quiet stance when

the upright posture is perturbed by white noise with appropriate

intensity. Note that there is one-to-one correspondence between

each power law regime of the PSD and that of the two point

correlation function, since PSD and the two point correlation

function are simply interrelated by the Fourier transform [21].

The basic mechanism underlying the two power law scaling

regimes in Models 3 and 4 is stochastic switching of the state

between left and right halves of the phase plane. In particular, the

switching occurs between two coexisting limit cycles. This is

similar to what has been shown by Milton and colleagues [18].

Nevertheless, it is worthwhile to note that continuous PD and/or

PID models, which are most popular models of the upright

postural control, require colored noise whose spectral property is

responsible for the power law scaling at the low frequency regime.

The discontinuous, intermittent control hypothesis can provide

alternative mechanisms to generate physiological postural fluctu-

ation that can be characterized by the power law scaling at the low

frequency regime. Moreover, we showed that several physiological

parameters, such as the feedback gains of the active controller, the

condition determining the intermittent activation of the PD

controller, and the noise intensity can change the scaling factor.

Figure 10. For the feedback control Model 4 (intermittent with dead zone) the figure shows the dependence of the scaling factor a
of the PSD function upon the following parameters: 1) noise intensity; 2) proportional feedback gain P (normalized with respect to
the critical stiffness mgh); 3) the slope a of the switching function. The derivative feedback gain D is fixed at the value of 10 Nms/rad. The
values of a, with appropriate choice of s, P and a, are comparable with the physiological value which is about 1.5. A: a=0 s21. B:a=20.1 s21.
C:a=20.4 s21. D: a=20.7 s21.
doi:10.1371/journal.pone.0006169.g010
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This suggests that one might be able to perform a model based

estimation of these parameter values based on the scaling factor.

This study shows that the intermittent feedback control of the

postural dynamics with ‘‘the tuned’’ on-off regions can robustly

stabilize the upright posture even with small PD gains. Small gains

provide compliant postural dynamics and thus the physiologically

plausible small amount of noise can naturally generate the

fluctuation during quiet standing [22]. The study may also

provide new insight in well studied experimental paradigms during

human quiet stance, such as the noise-enhanced sensation and

disease-induced abnormal sensation, by examining them with the

intermittent control hypothesis. Experimental paradigms with a

modification of the sensory dead-zone [23], with noise-intensity

dependent changes in the balance control [24], and with rigidity-

dependent varied ankle stiffness in patients with Parkinson’s

disease could be examined with our model. The models analyzed

in this study might be able to predict how the corresponding

parameters can affect the sway patterns.

In many different paradigms of neural control of movement has

emerged the concept that the control patterns might be organized

in well-timed, intermittent bursts or chunks: saccadic/tracking eye

movements [25], postural sway movements [17,22], visuo-manual

tracking [26,27], stick-balancing on a finger tip [28,29], cursive

handwriting [30]. Overall, the origin of the such intermittency

remains obscure and has, up to now, been viewed mainly as a

consequence of neurophysiological internal constraints that limit

the computing power of the neural controller. However, there is

the alternative possibility that intermittency has a functional role in

the control strategy of human subjects: that of maintaining the

stability of feedback control despite uncertainties about dynamic

properties of the body or manipulated objects and the large neural

delays in the transmission of the feedback signals. An example of

discontinuous, impulsive control playing a functional role, other

than in the postural control analyzed in this study, is in the

dynamic stabilization of gait patterns: Yamasaki et al [31] showed

that impulsive, well-timed phase resetting in response to external

perturbations during the rhythmic motor control of human gait

can increase dynamics stability of motions in a better way than

conventional, continuous feedback control, affected by large

feedback delays.

There are various sources of non-linearity in the neural control

of movement (muscle elasticity, hysteresis, joint friction and

viscosity, Coriolis coupling) and a high degree of redundancy.

When a subject has to perform movements with external

mechanical constraints or to manipulate an object, some of the

dynamic characteristics of the resulting controlled system are not

precisely known by the central nervous system. One of the key

issues in studying motor control is to understand how the brain can

generate the appropriate command. This question is closely

related to a classical problem in robotics where manipulator

controllers have to be built in order to achieve similar tasks in such

a way that control stability is guaranteed. Such control problems

are greatly simplified by the introduction of intermediate ‘‘sliding

variables’’ [32,33]. A sliding variable is a specific combination of

the instantaneous error and its time derivative (a particular case of

composite variable). By choosing this composite variable so that

the implicit differential equation is stable, high order control

problems can be reduced to first-order problems, amenable to

qualitative feedback strategies, typically organized in intermittent

manner.

In the case of postural control x~ h, _hh
h i

can be considered as a

sliding variable, a useful simplification that allows the brain to

greatly reduce the dimensionality of the control problem. In fact,

the formalization of the control problem by means of eq. 3 is

clearly a simplification because the body is not an inverted

pendulum and the sliding variables themselves, h and _hh, are

abstractions that are not directly measurable if we consider the

multijoint structure of the body and the ‘‘paradoxical’’ contraction

of the gastrocnemii [34]. In this framework, the proposed

intermittent control model is an example of how seeking the right

kind of simplification is a strategy adopted by the human brain for

managing complexity as well by the scientists for analysing the

complexity of real problems: We compared two simplified

explanations of the same problem and suggested that one

explanation is better than the other because is more robust and

better explains important features of biological behavior.

Appendix
Linear stability analysis of Model 2. The DDE of the

system with the model-2 controller is the following:

I€hh~mgh h{ KhzB _hhzP hDzD _hhD

� �

Following Stépán and Kollár [35] we approximate hD and _hhD by

their first-order Taylor’s series expansion

h t{Dð Þ&h tð Þ{ _hh tð ÞD
_hh t{Dð Þ& _hh tð Þ{€hh tð ÞD

(

thus yielding

I{DDð Þ€hhz BzD{PDð Þ _hhz KzP{mghð Þh~0 ð16Þ

In other words, the delay tends to decrease the apparent inertia

and damping of the inverted pendulum but both must remain

positive for stability because the eigenvalues solve the following

equation:

l2z
BzD{PD

I{DD
lz

KzP{mgh

I{DD
~0

From this we can derive the conditions on the gains of the

feedback controller, listed in eq. 6.

Euler approximation of a stochastic differential

equation. Equation 12 can be interpreted symbolically as an

Ito stochastic differential equation

dXt~f Xt,Xt{Dð ÞdtzsdBt ð17Þ

where Xt represents the random variable version of x tð Þ, and Bt

represents the Brownian motion or the standard Wiener process

defined for t§0. The Euler approximation of eq. 17 with a fixed

time step Dt~tnz1{tn n~0,1, . . .ð Þ is:

Xnz1~Xnzf Xn,Xn{kð ÞDtzsDBn ð18Þ

where DBn~Btnz1
{Btn is the random increments of the Wiener

process for the time interval between tn and tn+1, and k~D=Dt.
The increments are independent Gaussian random variables with

mean E DBn½ �~0 and variance E DBnð Þ2
h i

~Dt. See [36] for

more details. Using a discrete white Gaussian noise of intensity

unity, i.e., independent Gaussin random variables Wn with mean

E Wn½ �~0, variance E Wn
2

� �

~1, and E WnWm½ �~dnm in stead of

DBn, eq. 18 can be rewritten as:
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Xnz1~Xnzf Xn,Xn{kð ÞDtzsWn

ffiffiffiffiffi

Dt
p

ð19Þ

This is equivalent with eq. 14 in the main text. Note that eq. 19

can also be rewritten as:

Xnz1~Xnzf Xn,Xn{kð ÞDtzs’WnDt

for s’~s
� ffiffiffiffiffi

Dt
p

. For Dt~0:001 as we utilize in this study, s’ is

1
�

ffiffiffiffiffi

Dt
p

&30 times larger than s. If we conventionally consider s’

as the intensity of noise (as is the case in some previous studies), the

typical values of the noise intensity s~2 Nm and s~0:2 Nm used

in this article can be read as 60 and 6, respectively.
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