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A Model of Random Industrial SAT

D. Barak-Pelleg1 D. Berend2,3 J.C. Saunders4,5,6

Abstract

One of the most studied models of SAT is random SAT. In this model, instances are com-

posed from clauses chosen uniformly randomly and independently of each other. This model

may be unsatisfactory in that it fails to describe various features of SAT instances, arising in

real-world applications. Various modifications have been suggested to define models of indus-

trial SAT. Here, we focus mainly on the aspect of community structure. Namely, here the set of

variables consists of a number of disjoint communities, and clauses tend to consist of variables

from the same community. Thus, we suggest a model of random industrial SAT, in which the

central generalization with respect to random SAT is the additional community structure.

There has been a lot of work on the satisfiability threshold of random k-SAT, starting with

the calculation of the threshold of 2-SAT, up to the recent result that the threshold exists for

sufficiently large k.

In this paper, we endeavor to study the satisfiability threshold for the proposed model of

random industrial SAT. Our main result is that the threshold in this model tends to be smaller

than its counterpart for random SAT. Moreover, under some conditions, this threshold even

vanishes.

1 Introduction

For both historical and practical reasons, the Boolean satisfiability problem (SAT) is one of the

most important problems in theoretical computer science. It was the first problem proven to be NP-

complete [11]. Since its introduction, there has been growing interest in the problem, and many

aspects of the problem have been researched.

In this problem, one is required to determine whether a certain Boolean formula is satisfiable.

An instance of the problem consists of a Boolean formula in several variables v1, . . . , vn. The

formula is usually given in conjunctive normal form (CNF). The basic building block of the for-

mula is a literal, which is either a variable vj or its negation vj . A clause is a disjunction of the

form l1∨...∨lk of several distinct literals. Thus, altogether, the formula looks like C1∧C2∧ ...∧Cm,
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where each Ci is a clause, say Ci = li,1∨...∨li,ki . Given a formula, one may assign a TRUE/FALSE

value to each of the variables v1, . . . , vn. The formula is satisfiable, or SAT, if there exists an as-

signment under which the formula is TRUE, and is unsatisfiable, or UNSAT, otherwise.

The k-satisfiability (k-SAT) problem is a special case of SAT, in which each clause is a dis-

junction of up to k literals. Some authors restrict k-SAT to instances with exactly k literals in

each clause, which terminology we will follow here. Given n and k, let Ω (n, k) denote the set of

all
(
n
k

)
2k possible clauses of length k over n Boolean variables. A random k-SAT instance with m

clauses is a uniformly random element of (Ω (n, k))m. Namely, it consists of m clauses, selected

uniformly randomly and independently from Ω (n, k). Thus, clause repetitions are allowed, and

two instances, differing in the order of the clauses only, are considered as distinct.

The ratio m/n is the density and denoted by α. This parameter turns out to be very important.

If α is sufficiently small, then a large random instance with density α is SAT with high probability,

whereas if it is sufficiently large then a large random instance is UNSAT with high probability.

Despite its loose name, the notion of “with high probability” is well defined. Let (Ej)
∞
j=1 be a

sequence of events. The event Ej occurs with high probability (w.h.p.) if P (Ej) −−−→
j→∞

1. In our

case, we take larger and larger random instances with some fixed density, and inquire whether they

are SAT or UNSAT. For k ≥ 2, denote [1]:

rk ≡ sup{α : A random density-α instance is SAT w.h.p.} ,

r∗k ≡ inf{α : A random density-α instance is UNSAT w.h.p.} .

For k = 2, it was proved long ago [10, 16, 22] that r2 = r∗2 = 1. The Satisfiability Threshold

Conjecture claims that, in fact, rk = r∗k for all k [10]. This conjectured common value is the

satisfiability threshold. It has been a subject of interest among researchers, theoretically and empir-

ically, to prove the conjecture for k ≥ 3 and find the threshold. Recently, the conjecture has been

proved for large enough k [13].

As part of this research, lower and upper bounds were obtained on rk and r∗k for k ≥ 3. In [17]

it was proven that r∗k ≤ 2k ln 2. This has been improved in [25] to r∗k ≤ 2k ln 2− 1
2
(1 + ln 2) + εk.

From the other side, a sequence of successive improvements led finally to the bound rk ≥ 2k ln 2−
1
2
(1 + ln 2) + εk [12]. Thus, with the satisfiability conjecture settled in [13] for large k, it follows

that rk = r∗k = 2k ln 2 − 1
2
(1 + ln 2) + εk for such k. For small values of k, more specific results

were obtained. For k = 3, the best bounds seem to be r3 ≥ 3.52 [23, 24], and r∗3 ≤ 4.4898 [14].

Experiments and other results of heuristics, based on statistical physics considerations, indicate

that r3 ≈ 4.26 [29, 30], r4 ≈ 9.93, r5 ≈ 21.12, r6 ≈ 43.37, r7 ≈ 87.79 [29].

Much more is known about 2-SAT. First, unlike k-SAT for k ≥ 3, which is an NP-complete

problem, 2-SAT instances may be solved by a linear time algorithm [10, 22]. Also, there is quite

precise information about 2-SAT for density very close to the threshold r2 = 1 [9, 38].

It has been argued that instances of random k-SAT do not in fact represent real-world, or

industrial, instances [28, 33, 34]. One of the major differences between industrial and random

SAT instances is that the set of variables in industrial instances often consists of a disjoint union of

subsets, referred to as communities; clauses tend to comprise variables from the same community,

with only a minority of clauses containing variables from distinct communities [7, 32]. There are

several additional variations [4, 6]. For example, the variables may be selected non-uniformly (say,

according to a power-law distribution [5, 20]), and/or the clauses may be of non-constant length.
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In this paper we work with a (generalization of a) model introduced by [18] . Our model is

similar to the random model, except for the partition of the variables into communities. These

communities are of the same size. There are several clause types (defined precisely in the next

section), differing in the number of variables from the same or distinct communities in each clause.

Our focus is on the satisfiability threshold in this model. The question has been studied in

[18], mostly experimentally, for the model suggested there. We show that the findings in that

paper, whereby the threshold tends to be smaller when there are many single-community clauses

(i.e., clauses consisting of variables from the same random community) remain true in the general

model. In fact, if the communities are small, the threshold may even be 0.

We present our model in Section 2. The main results are stated in Section 3, and the proofs

follow in Section 4. In Section 5 we present some simulation results.

2 A Model of Random Industrial SAT

In industrial SAT, the strength of the community structure of an instance is usually measured by

its modularity [7, 19, 35]. Roughly speaking, given a graph, its modularity gives an indication of

the tendency of the vertices to be connected to other vertices, which are similar to them in some

way. In our case, an instance defines the following undirected graph. The set of nodes is the

set of variables {v1, . . . , vn}. There is an edge (vi, vj) for i 6= j if there exists a clause in the

instance, containing both variables vi (or its negation) and vj (or its negation). More precisely, we

view this object as a multi-graph; if both vi and vj (or their negations) appear in several clauses,

there are several edges connecting them. Given an instance, high modularity indicates that there

exists a partition of the set of variables into subsets, such that a large portion of the edges connect

vertices of the same subset, compared to a random graph with the same number of vertices and

same degrees [31, 35] .

As in the regular model, we have n Boolean variables and m clauses in an instance. Each clause

is chosen independently of the others. Each variable in each clause is negated with a probability of

1/2, independently of the other variables. The model differs from the regular model in several as-

pects: There is a community structure on the set of variables, and we also do not necessarily assume

all clauses to be of the same length. Specifically, the set of variables {v1, . . . , vn} is partitioned into

B disjoint (sets of variables referred to as) communities C1, C2, ..., CB. For simplicity, we assume

all communities to be of the same size h, so that n = B · h. Without loss of generality, we will

assume that Ci = {vj : (i− 1)h+ 1 ≤ j ≤ ih}, 1 ≤ i ≤ B. As n grows, so do usually both B
and h (although at times one of them may remain fixed), and we will write B(n) and h(n) when

we want to relate to their dependence on n. For an ℓ-tuple K = (k1, . . . , kℓ) with non-increasing,

positive integer entries, denote by ΩB (n, K) the set of all clauses of length k1 + · · ·+ kℓ, formed

of k1 variables from some community Ci1 , k2 from another community Ci2 , . . . , kℓ from some ℓ-th
community Ciℓ , where the indices ij are mutually distinct. We will refer to such a clause as a clause

of type K. We will always implicitly assume that ki ≤ h for each i, so that we can indeed choose

the required number of variables from the various communities. Similarly, we implicitly assume

that ℓ ≤ B. Let PK be the uniform measure on ΩB (n, K).

Example 2.1. (a) Let n = 1000, B = 10 and h = 100. The clauses

(v237 ∨ v250 ∨ v911 ∨ v917 ∨ v939),
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and

(v401 ∨ v423 ∨ v427 ∨ v450 ∨ v500)

are of types (3, 2) and (5) (single-community clause), respectively. (In general, the type of

single-community clauses of length k will be written as (k).) The clauses above belong to

the spaces Ω10 (1000, (3, 2)) and Ω10 (1000, (5)), respectively.

(b) The space Ω10 (1000, (3, 2)) consists of a = 10 · 9
(
100
3

)(
100
2

)
· 25 clauses, and Ω10 (1000, (5))

consists of b = 10
(
100
5

)
· 25 clauses.

(c) Under the measure P(3,2), each clause in Ω10 (1000, (3, 2)) is chosen with probability 1/a;

under P(5), each clause in Ω10 (1000, (5)) is chosen with probability 1/b.

The random instances we will be dealing with are of the following structure. There is some

number T ≥ 1 of clause types K1, . . . ,KT . Each Kt, 1 ≤ t ≤ T , is a vector Kt = (k1t, . . . , kℓt).
These vectors are mutually distinct. Each clause in the instance is of one of these types. The

probability of each clause to be of type Kt is pt, where pt, 1 ≤ t ≤ T , are arbitrary fixed

real numbers, with
∑T

t=1 pt = 1. More formally, we select independently m clauses from the

space
⋃T

t=1 ΩB (n, Kt) according to the measure P =
∑T

t=1 pt · PKt . Using similar notations

to [18], denote by F (n,m,B, P ) the probability space of instances. Namely, the sample space

of F (n,m,B, P ) is the m-fold Cartesian product
(
⋃T

t=1ΩB (n, Kt)
)m

of the space correspond-

ing to the selection of a single clause, endowed with the product measure Pm. (For more on the

notions of a product of measure spaces and of the product measure, see, for example, [2, Sec.

2.5].) For concreteness, in Algorithm 1 we present the exact mechanism for selecting an instance

of F (n,m,B, P ).
Note that, when employing Algorithm 1, we care about the order of choices, so that each clause

may be obtained in several ways. This is easier to implement and has no bearing on the probability

of obtaining each possible clause.

Thus, the regular model of random k-SAT is, with the notations above, F
(
n,m, 1, P(k)

)
.

Instances in the model presented in [18] include clauses of length k of two types: (i) single-

community clauses – all k variables belong to the same community (B
(
h
k

)
· 2k possible choices),

and (ii) the k variables belong to k distinct communities (
(
B
k

)
· (2h)k possible choices). For

some 0 < p < 1, each clause is of type (i) with probability p and of type (ii) with probability 1−p.

With the above notations, their probability space is

F

(

n,m,B, p · P(k) + (1− p) · P(
1, . . . , 1
︸ ︷︷ ︸

k

)

)

for some k.

Example 2.2. With n,B and h as in Example 2.1, and k = 3, the instance

(v423 ∨ v459 ∨ v496) ∧ (v156 ∨ v437 ∧ v626),

is an instance in

F
(
1000, 2, 10, 0.2 · P(3) + 0.8 · P(1,1,1)

)
.
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Algorithm 1: Choosing an instance in F (n,m,B, P )

Input: n, m, B, K1, . . . ,KT , p1, . . . , pT .

Output: An instance I
I ← ∅;
for i← 1 to m do

C ← ∅;
Choose a clause type – each Kt has probability pt;
Suppose Kt = (k1, . . . , kℓ);
Select ℓ distinct integers i1, . . . , iℓ in the range [1, B] (with the same probability

1
B(B−1)···(B−ℓ+1)

for each possible choice);

for j ← 1 to ℓ do
Choose kj distinct integers a1, . . . , akj in the range [1, h] (with the same

probability 1
h(h−1)···(h−kj+1)

for each possible choice);

for d← 1 to kj do

x← (ij − 1) · h+ ad;

Negate vx with probability 1/2;

C ← C ∨ vx;

I ← I ∧ C;

return I

The first clause is of type (3) as all three variables v423, v459, v496 belong to the same commu-

nity C5 = {vi : 401 ≤ i ≤ 500}, while the second clause is of type (1, 1, 1), as the variables

v156, v437, v626 belong to three distinct communities: C2, C5 and C7, respectively.

As our interest in this paper is in instances constructed as above, from this point on we will use

the term “community-structured" instead of the more general “industrial".

3 The Main Results

As explained above, the clauses in an community-structured instance tend to include variables from

the same community. In this paper, moreover, we usually deal with the case where one (or more)

of the clause types is a single-community type, namely Kt = (k) for some 1 ≤ t ≤ T and k ≤ h.

In some results, we will further restrict ourselves to the case T = 1, where the only clause type is

a single-community type (equivalently, P = P(k) for some k).

In [18] it was observed empirically that, when the modularity of the variable incidence graph

of the instance increases, the threshold decreases. Now, the modularity in our case is larger when

more clauses consist of variables from the same community and when the communities are small.

Our first result is quite straightforward, but it already hints that instances in the model suggested

in Section 2 tend to be no more satisfiable than random k-SAT instances. Note that the first part of

the proposition is one of the initial results for random SAT [17] .

Proposition 3.1. Let I be a random instance in F (n, αn,B, P ).
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(a) Suppose that for each Kt, 1 ≤ t ≤ T , the clause length is at most k. If α > 2k ln 2, then I is

UNSAT w.h.p.

(b) Let T = 1 and P = P(k) for some k ≥ 2.

(i) If α > r∗k, then I is UNSAT w.h.p.

(ii) If h(n) = Θ(n) and α < rk, then I is SAT w.h.p.

Our next result points out a significant difference between random instances and community-

structured ones. One might expect the threshold to be different for community-structured instances,

but it turns out that this difference may be not just quantitative. The following result shows that, sur-

prisingly, under certain conditions the satisfiability threshold is 0. To this end, we will consider m
as some function of n, not necessarily m = αn, and write m(n) instead of m.

For real functions f and g, we write f = Ω(g) if g = O(f), and f = ω(g) if g = o(f). We

also write f = polylog(g) if f = O
(
lnθ g

)
for some θ.

Theorem 3.2. Let I be a random instance inF (n,m(n), B, P ), where Kt = (k) for some 1 ≤ t ≤ T .

(a) Let h(n) = O (1).

(i) If T = 1 (so that P = P(k)) and m(n) = o(n1−1/2k), then I is SAT w.h.p.

(ii) If m(n) = Θ(n1−1/2k), then I is SAT with probability bounded away from 1. If, more-

over, T = 1, then I is SAT with probability bounded away from both 0 and 1.

(iii) If m(n) = ω(n1−1/2k), then I is UNSAT w.h.p.

(b) If h(n) = o
(

lnn
ln lnn

)
and m(n) = Ω

(
n

polylog(n)

)

, then I is UNSAT w.h.p.

(c) If h(n) = o (lnn) and m(n) = Ω
(
n · e−β·lnn/h(n)

)
for some β < 1/r∗k, then I is UNSAT

w.h.p.

(d) Let h(n) = O (lnn) and T = 1. Then there exists some ε0 > 0 such that, if m(n) = αn
with α > r∗k − ε0, then I is UNSAT w.h.p.

Remark 3.3. (a) The ε0 in part (d) is effective. Namely, as will follow from the proof, one

can present such an ε0 explicitly (in terms of the implicit constant in the equality h(n) =
O(lnn)).

(b) Still in case (d), one can deal with the general case of arbitrary T as long as the weight of

P(k) in P , namely the probability that a clause is of type P(k), is sufficiently large.

In Theorem 3.2 there are four types of results for the asymptotic satisfiability of a random

community-structured instance with n variables, m(n) clauses, B communities of size h(n) =
n/B, and probability measure P . Namely, either the probability of satisfiability (i) tends to 0
as n → ∞, or (ii) it tends to 1, or (iii) it is bounded away from 1, or (iv) it is bounded away from

both 0 and 1. These results are summarized in Table 1. In general, we assume that Kt = (k) for

some 1 ≤ t ≤ T and k ≥ 1. In the third column we place a ‘1’ or a ‘∗’, depending on whether

6



Parameters Result

h(n) m(n) T

O(1) o
(

n1−1/2k
)

1 SAT w.h.p.

O(1) Θ
(

n1−1/2k
)

1 ∈ (δ, 1− δ)

O(1) Θ
(

n1−1/2k
)

∗ ∈ (0, 1− δ)

O(1) ω
(

n1−1/2k
)

∗ UNSAT w.h.p.

o
(

lnn
ln lnn

)
Ω (n/polylog(n)) ∗ UNSAT w.h.p.

o (lnn) Ω
(
n1−1/(r∗k+ε)h(n)

)
∗ UNSAT w.h.p.

O (lnn) > (r∗k − ε0)n 1 UNSAT w.h.p.

Table 1: Asymptotic satisfiability of a random instance with small communities

in F (n,m(n), B, P ).

T is required to be 1 or is arbitrary, respectively. The notation ∈ (0, 1− δ) indicates a probability

bounded away from 1, and the notation ∈ (δ, 1 − δ) indicates a probability bounded away both

from 0 and 1.

The proof of Theorem 3.2 will use the following lemma.

Lemma 3.4. Consider the spaces F (n,m(n), B, P ) and F (n,m′(n), B, P ), where m′(n) =
ω (m(n)). If a random instance in F (n,m(n), B, P ) is UNSAT with probability bounded away

from 0, then a random instance in F (n,m′(n), B, P ) is UNSAT w.h.p.

In the proof of Theorem 3.2 (and that of Theorem 3.6), we use some results regarding the

classical “balls and bins” problem. In this problem, there are M balls and B bins. Each ball is

placed uniformly randomly in one of the bins, independently of the other balls. One quantity of

interest is the maximum load, which is the maximum number of balls in any bin. There are several

papers studying the size of the maximum load, as well as generalizations of this problem. It seems

that [37] contains all previous results. Our next result seem not to be covered by previous results

regarding the balls and bins problem. It will be employed in the proof of Theorem 3.2, and is of

independent interest.

Given a sequence (Xn)
∞
n=1 of random variables and a probability law L, we let Xn

D−−−→
n→∞

L
denote the fact that Xn converges to L in distribution as n → ∞. Denote by Po(λ) the Poisson

distribution with parameter λ.

Theorem 3.5. Consider the balls and bins problem with B bins and M = M(B) balls, where

B →∞. Let s ≥ 2 be an arbitrarily fixed integer.

7



(a) If M(B) = o(B1−1/s), then the maximum load is at most s− 1 w.h.p.

(b) If M(B) = ω(B1−1/s), then the maximum load is at least s w.h.p.

(c) If M(B) = Θ(B1−1/s), then the maximum load is either s− 1 or s w.h.p. Moreover, suppose

M(B) = C · B1−1/s (1 + o(1)) , (1)

and let XB be the number of bins that contain exactly s balls. Then XB
D−−−→

B→∞
Po(C s/s !).

Theorem 3.5 will be proven in Appendix A.

As noted earlier, random 2-SAT is much better understood than random k-SAT for general k.

This enables us to obtain a stronger result than Theorem 3.2 in the case P = P(2).

Theorem 3.6. Let I be a random instance in F
(
n, αn,B, P(2)

)
.

(a) There exists an 0 < ε0 < 1 such that, if h(n) = o (
√
n) and α > 1 − ε0, then I is UNSAT

w.h.p.

(b) For h(n) = Θ(
√
n):

(i) If 1 − ε0 < α < 1, where ε0 is as in (a), then I is SAT with probability bounded away

from both 0 and 1.

(ii) If α = 1 then I is UNSAT w.h.p.

(c) For h(n) = ω(
√
n) with h(n) = o(n):

(i) If α < 1 then I is SAT w.h.p.

(ii) If α = 1 then I is UNSAT w.h.p.

(d) For h(n) = Θ(n) :

(i) If α < 1 then I is SAT w.h.p.

(ii) If α = 1 then I is SAT with probability bounded away from both 0 and 1.

Remark 3.7. As in Remark 3.3.(b), one can deal with the more general case of arbitrary T , as

long as one of the clause types Kt is of the form (2) and is of sufficiently large weight.

Similarly to Table 1, we summarize the results of Theorem 3.6 in Table 2. Here, we always

assume k = 2, m(n) = αn and T = 1. The notations are as in Table 1.

As we have seen, when clauses tend to be formed of variables in the same community, the in-

stance tends to become unsatisfiable. One may wonder what happens in the opposite case, namely

when variables tend to belong to distinct communities. Intuitively, this constraint should usually

make little difference, as anyway few clauses may be expected to contain variables from the same

community. However, if there are very few communities, this constraint is more significant. Specif-

ically, consider the extreme case of B = 2, P = P(1,1). In this case, we disallow about half of the

possible clauses of the classical model B = 1, P = P(2). Does it affect the satisfiability thresh-

old? Namely, if when moving from the classical case to a case with most clauses from the same

community, we tend to make the instance unsatisfiable, will the constraint of having in each clause

variables from distinct communities tend to make it “more satisfiable"? The following theorem

shows that it makes a very small difference if at all.

8



h(n)
α ∈ (1− ε0, 1) = 1

= o (
√
n) UNSAT w.h.p UNSAT w.h.p.

= Θ (
√
n) ∈ (δ, 1− δ) UNSAT w.h.p.

∈ ω (
√
n) ∩ o (n) SAT w.h.p. UNSAT w.h.p

= Θ (n) SAT w.h.p ∈ (δ, 1− δ)

Table 2: Asymptotic satisfiability of a random instance in F
(
n, αn,B, P(2)

)
.

Theorem 3.8. Let 0 ≤ p ≤ 1 and B ≥ 2 arbitrary and fixed. The satisfiability threshold in the

model

F
(
n,m,B, pP(1,1) + (1− p)P(2)

)

is 1.

One may still ask whether the regular random modelF (n,m, 1, P(2)) and the modelF (n,m, 2, P(1,1))
display some difference in behaviour near the threshold, namely for m = n · (1 + o(1)). More

precisely, recall that, by [9], for m in some range of size Θ(n2/3) around n, the satisfiability proba-

bility for the random model is bounded away from both 0 and 1. (See (7) below for a more accurate

formulation.) Do the two models behave in the same way for m = n+ θn2/3 for fixed θ?

We studied this question by a large simulation. We detail the experiment in Section 5. The

results seem to indicate strongly that the two models behave in the same way also in the win-

dow m = n±Θ(n2/3).

4 Proofs

Proof of Proposition 3.1:

(a) We follow the proof in the random model [17]. Fix a truth assignment and consider I. Each

clause has at most k literals. The variables are negated with probability 1/2 independently

of each other, and hence each clause is satisfied with probability of at most 1−2−k, indepen-

dently of the other clauses. The expected number of satisfying truth assignments is therefore

at most 2n ·
(
1− 2−k

)αn
. As α > 2k ln 2, we have

2n ·
(
1− 2−k

)αn −−−→
n→∞

0.

(Note that we have not used in this part the specific mechanism by which clauses are selected.

The variables in each clause may be selected arbitrarily. As long as all clauses are of length

at most k, and the sign of each variable in each clause is selected uniformly randomly, and

independently of all other variables in this clause and all the others, the conclusion holds.)

Thus, I is UNSAT w.h.p.
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(b) A random instance I in F
(
n, αn,B, P(k)

)
decomposes into B sub-instances Ii, 1 ≤ i ≤ B,

where each Ii is formed of those clauses consisting of variables solely from Ci. Obvi-

ously, I is SAT if and only if all Ii-s are such. For 1 ≤ i ≤ B, let Ui = 1 if Ii is satisfiable,

and Ui = 0 otherwise. The variable U =
∏B

i=1 Ui indicates whether I is satisfiable. Let Wi

denote the number of clauses in Ii. Since each of the αn clauses consists of variables from Ci
with probability 1/B, independently of all other clauses, Wi is binomially distributed with

parameters αn and 1/B:

Wi ∼ B (αn, 1/B) , 1 ≤ i ≤ B.

(i) Suppose first that h(n) = ω(1). Let αi denote the density of the sub-instance Ii, 1 ≤ i ≤
B. There exists an i with αi ≥ α, and therefore αi > r∗k. It follows that Ii is UNSAT

w.h.p., and hence so is I.

The case h(n) = O(1) follows in particular from Theorem 3.2.(a).(iii) (to be proved

below).

(ii) In this case B(n) = Θ(1). Without loss of generality assume B(n) = B is fixed. For

γ > 0, let

W<γ =

B⋂

i=1

{Wi < γ · h(n)} . (2)

Let α′ be an arbitrary fixed number, strictly between α and rk. Denoting by A the

complement of an event A, we have:

P (U = 1) = P (W<α′)P (U = 1 |W<α′ )

+ P
(
W<α′

)
P
(
U = 1

∣
∣W<α′

)

≥ P (W<α′)P (U = 1 |W<α′ ) .

(3)

By the weak law of large numbers for the binomial random variables Wi,

Wi

n/B
P−−−→

n→∞
α, 1 ≤ i ≤ B,

and therefore

P
(
W<α′

)
= P

(
B⋃

i=1

{Wi ≥ α′ · n/B}
)

≤
B∑

i=1

P (Wi ≥ α′ · n/B)

= B · P (W1 ≥ α′ · n/B) −−−→
n→∞

0.

Hence

P (W<α′) = 1− P
(
W<α′

)
−−−→
n→∞

1.

10



Now consider the second factor on the right-hand side of (3). Clearly, the more clauses

any Ii contains, the less likely it is to be satisfiable, and therefore

P (U = 1 |W<α′ ) ≥
B∏

i=1

P (Ui = 1 |Wi = α′ · n/B ) . (4)

As α′ < rk, each of the sub-instances Ii is SAT w.h.p., so that each of the factors in

the product on the right-hand side of (4) converges to 1 as n → ∞. Since, by our

assumption, B is fixed, so does the whole product. Hence I is SAT w.h.p.

As mentioned in Section 3, the proofs of Theorem 3.2 and Theorem 3.6 make use of some

results concerning the balls and bins problem. Let L be the maximum load for M balls and B bins.

By [37], for any δ > 0,

L ≥







lnB

ln B lnB
M

, if B
polylog(B)

< M = o(B lnB),

(dc − δ) lnB, if M = c · B lnB,

(5)

w.h.p. for an appropriate constant dc > c.

Remark 4.1. The constant dc, in the second part of (5), is the unique solution of the equation

1 + x(ln c− ln x+ 1)− c = 0

in (c,∞) (see [37, Lemma 3]). A routine calculation shows that dc = c + c · u(1/c), where the

function u is the unique non-negative function defined implicitly by the equation

−u(w) + (1 + u(w)) ln(1 + u(w)) = w, (w ≥ 0).

The function u(w) has been studied in [26, pp. 101–102], and in particular expressed as a power

series in
√
w near 0.

The fact that dc > c is the reason that the threshold in Theorem 3.2.(d) is strictly less than r∗k.

One can easily bound dc − c from below. In fact, write dc = c+ ε. Then

1 = −(c+ ε)(ln c− ln(c+ ε) + 1) + c

= −(c+ ε) ln c + (c+ ε) ln(c+ ε)− ε

< (c+ ε) · ε/c− ε = ε2/c,

and hence dc > c+
√
c.

Proof of Theorem 3.2: We follow the notations used in the proof of Proposition 3.1. Recall

that Ii is the sub-instance formed of those clauses in I consisting of variables solely from Ci,
and Wi is the number of clauses in Ii, 1 ≤ i ≤ B. Denote Wmax = max {W1, . . . ,WB} .

Note that, while we have not assumed that T = 1 in parts (a).(iii), (b), and (c) of the theorem,

we may make this assumption without loss of generality in these parts as well. In fact, suppose
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that any of these three parts has been proven for the case T = 1, and consider the general case. If

the probability of (k) in P is p, then w.h.p. there will be at least p · m(n)/2 clauses of type (k).
To see this, denote by I(k) the sub-instance of I obtained by taking the clauses of type (k) and

by m′(n) the number of clauses in I(k). Clearly, m′(n) is distributed binomially with parameters

m(n) and p. Employing Chernoff’s bound we obtain a lower bound of p ·m(n)/2 on m′(n) w.h.p.

It follows that m′(n) has the same lower bound assumed on m(n) (namely, it is ω(n1−1/2k) in part

(a).(iii), it is Ω
(

n
polylog(n)

)

in part (b), and it is Ω
(
n · e−β·lnn/h(n)

)
in part (c)). As we have assumed

the correctness of these parts for T = 1, the instance I(k) is UNSAT w.h.p., and hence certainly so

is the original instance, which contains it. Thus, we may indeed assume in all parts that T = 1.

Since T = 1, each clause has all its literals from the same community. Hence, the selection of a

clause corresponds to the selection of a community. Consider clauses as balls, and communities as

bins. The process of selecting the clauses, as far as the community to which the variables in each

clause belong, is analogous to that of placing m(n) balls in B bins uniformly at random. The idea

of the proof in parts (b)-(d) will be to prove that w.h.p. we have Wmax/h(n) > r∗k. This will imply

that there is at least one sub-instance Ii with density larger than r∗k. Thus, already Ii is UNSAT

w.h.p., and consequently so is I.

(a) Without loss of generality, assume that h(n) = h > 0 is fixed.

(i) By Theorem 3.5.(a), there is no sub-instance with more than 2k − 1 clauses w.h.p. Since

instances with less than 2k clauses are certainly satisfiable, all Ii-s are SAT, and hence

so is I.

(ii) Here, we may assume that m(n) = θ · n1−1/2k for some constant θ > 0. By Theorem

3.5.(c), the probability that there is an Ii, 1 ≤ i ≤ B, with at least 2k clauses, is

bounded away from 0. Assume, say, that W1 ≥ 2k. Then, with probability at least

(

1/

(
h

k

))2k

· (2k)!/2k2k ,

all 2k distinct clauses consisting of the variables v1, . . . , vk have been drawn. As the

instance is UNSAT if it contains all these 2k clauses, the probability for our instance

to be UNSAT is bounded away from 0. Now, assume that P = P(k), for some k > 0.

Now, by Theorem 3.5.(c) there is no sub-instance with more than 2k − 1 clauses with

probability bounded away from 0. Thus, similarly to part (i), I is SAT with probability

bounded away from 0.

(iii) Follows from the previous part and Lemma 3.4.

(b) In view of part (a).(iii), we may assume h(n) → ∞. We may also assume that m(n) =
n/ lnθ n for some θ ≥ 1. Clearly, m(n) ≤ B. On the other hand,

m(n) =
n

lnθ n
≥ B

(2 lnB)θ
=

B

polylog(B)
.

Thus, by (5), w.h.p., the maximum load is at least

lnB

ln
B lnB

m(n)

≥
1
2
· lnn

ln

(
n · lnn
n/ lnθ n

) ≥ lnn

2(θ + 1) ln lnn
.

(6)
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Now, there are h(n) = o(lnn/ ln lnn) variables in each community. By (6), w.h.p., the

density of the sub-instance Ii with the maximal number of clauses is at least

Wmax

h(n)
≥

1
2(θ+1)

· lnn/ ln lnn
o (lnn/ ln lnn)

−−−→
n→∞

∞.

Hence, this Ii is UNSAT w.h.p., and therefore so is I.

(c) By (5), w.h.p., the number of clauses in the sub-instance Ii with the maximal number of clauses

is at least

Wmax ≥
lnB

ln
B lnB

m(n)

=
lnn(1− o(1))

ln
B lnB

m(n)

.

For a large enough n

ln
B lnB

m(n)
≤ ln






n

h(n)
· lnn

n · e−β lnn/h(n)






= ln
lnn

h(n)
+ β · lnn

h(n)
.

As β < 1/r∗k, for large enough x we have ln x + βx < x/r∗k. Hence, for large enough n we

have

ln
B lnB

m(n)
≤ 1

r∗k
· lnn
h(n)

.

This implies that the density of the sub-instance Ii with the maximal number of clauses is at

least
Wmax

h(n)
≥ 1

ln
B lnB

m(n)

· lnn(1 − o(n))

h(n)
> r∗k,

and thus UNSAT w.h.p. Consequently, so is I.

(d) In view of the previous part, we may assume that h(n) = θ lnn for some θ > 0. Choose c0
such that

dc0 = θr∗k,

where dc is as in (5). Let α > c0/θ, and put c = αθ. Thus, c > c0 and dc > dc0 . Let

δ < dc − θr∗k . We have

m(n) = n · α =
nc

θ
= (1 + o(1)) · nc lnB

θ lnn
= (c+ o(1)) ·B lnB.

By (5), the size of the largest sub-instance is Wmax ≥ (dc − δ) lnB w.h.p. Hence, w.h.p. the

density of this sub-instance is

Wmax

h(n)
≥ (dc − δ) lnB

h(n)
=

(dc − δ) · (1− o(1)) lnn

θ lnn

=
dc − δ

θ
− o(1) = r∗k +

dc − δ − θr∗k
θ

− o(1).
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Letting ε0 = r∗k − c0/θ, we get our claim.

Proof of Lemma 3.4: Denote the random instance in F (n,m′(n), B, P ) by I ′. Denote the

instance obtained from the first m(n) clauses of I ′ by I ′1, the instance obtained from the next m(n)
clauses of I ′ by I ′2, . . . , the instance obtained from the last m(n) clauses of I ′ by I ′b(n) (with

b(n) = m′(n)/m(n)). According to our assumption, there exists an ε > 0 such that

P (I ′i is SAT) ≤ 1− ε, i = 1, 2, . . . , b(n).

Now, the events {I ′i is SAT} , 1 ≤ i ≤ b(n), are independent, and we clearly have

{I ′ is SAT} ⊆
b(n)
⋂

i=1

{I ′i is SAT} .

Since b(n)→∞:

P (I ′ is SAT) ≤ P (I ′i is SAT, 1 ≤ i ≤ b(n)) ≤ (1− ε)b(n) −−−→
n→∞

0.

In the proof of Theorem 3.6 we will use the following result from [9]. There exist some

0 < ε0 < 1 and λ0 > 0 such that the satisfiability probability of a random 2-SAT instance I
with m = n · (1 + ε) clauses is

P (I is SAT) =







1−Θ

(
1

n |ε|3
)

, −ε0 ≤ ε ≤ −λ0n
−1/3,

Θ (1) , −λ0n
−1/3 < ε < λ0n

−1/3,

exp (−Θ (nε3)) , λ0n
−1/3 ≤ ε ≤ ε0.

(7)

Actually, in the sequel, we will encounter only the first two cases. Note that in the case m =
n · (1− ε) with λ0n

−1/3 ≤ ε ≤ ε0, we have

1− θ1
n · ε3 ≤ P (I is SAT) ≤ 1− θ2

n · ε3 (8)

for some constants θ1, θ2 > 0.

We will also use an additional result regarding the balls and bins problem. Let L be the maxi-

mum load for M balls and B bins. By [37], w.h.p.

L ≤ M

B
+

√

2M lnB

B
, M = ω(B ln3B). (9)

Given a sequence (Xi)
∞
i=1 of random variables and a probability law L, we write Xi

D−−−→
i→∞

L if

the sequence converges to L in distribution.

14



Proof of Theorem 3.6: We follow the notations used in the proof of Theorem 3.2. Also, for γ >
0, let

I<γ =
{

(m1, . . . , mB) :m1 + . . .+mB = αn,mi < γ · h(n)∀1 ≤ i ≤ B
}

,

and let I>γ and I≥γ be analogously understood. More generally, for 0 ≤ p ≤ 1, let I<γ,p denote

the set of B-tuples (m1, . . . , mB) with at least pB entries mi, 1 ≤ i ≤ B, for which mi < γ · h(n).
(Thus, I<γ = I<γ,1.)

Note that the set W<γ , defined in (2), may now be written in the form

W<γ =
⋃

(m1,...,mB)∈I<γ

B⋂

i=1

{Wi = mi} .

We use similar notations, for example W>γ , W≥γ,p and W<γ,p, analogously.

(a) Let δ, p be sufficiently small positive numbers, to be determined later. Let ε0 be as in (7). We

have

P (U = 1) = P (W<1+δ ∩W>1−ε0,p) · P (U = 1 |W<1+δ ∩W>1−ε0,p )

+ P
(
W<1+δ ∩W>1−ε0,p

)
· P
(
U = 1

∣
∣W<1+δ ∩W>1−ε0,p

)

+ P
(
W<1+δ

)
P
(
U = 1

∣
∣W<1+δ

)

≤ P (U = 1 |W<1+δ ∩W>1−ε0,p ) + P
(
W<1+δ ∩W>1−ε0,p

)

+ P
(
U = 1

∣
∣W<1+δ

)
.

(10)

Consider the first term on the right-hand side of (10). The event W<1+δ ∩W>1−ε0,p implies

that Wj = mj , 1 ≤ j ≤ B, for some (m1, . . . , mB) ∈ I<1+δ ∩ I>1−ε0,p. We note that,

conditioned on the event
⋂B

i=1 {Wi = mi}, the events {Ui = 1}, 1 ≤ i ≤ B, are independent.

Also, for each 1 ≤ i ≤ B with mi > (1− ε0)h(n) we have

P
(
Ui = 1 |Wi = mi

)
≤ P

(
Ui = 1 |Wi = (1− ε0) h(n)

)
.

Thus

P (U = 1 |W<1+δ ∩W>1−ε0,p ) ≤
∏

i:Wi>(1−ε0)h(n)

P
(
Ui = 1 |Wi = (1− ε0) h(n)

)

≤ P
(
U1 = 1 |W1 = (1− ε0)h(n)

)pB
.

(11)

In view of Theorem 3.2.(a).(iii), we may assume that h(n)→∞. By (8), for some θ > 0

P (U = 1 |W<1+δ ∩W>1−ε0,p ) ≤
(

1− θ

h(n) · ε03
)pB

=

(

1− θ/ε0
3

h(n)

)h(n)·pn

h2(n)

. (12)

As
(

1− θ/ε0
3

h(n)

)h(n)

−−−→
n→∞

e−θ/ε03 ,
pn

h2(n)
−−−→
n→∞

∞,
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we obtain from (11) and (12)

lim
n→∞

P (U = 1 |W<1+δ ∩W>1−ε0,p ) = 0. (13)

Now we claim that the event W<1+δ ∩W>1−ε0,p in the second term on the right-hand side

of (10) is empty. In fact, the event W<1+δ means that all sub-instances Ii are of density less

than 1 + δ, and the event W>1−ε0,p means that most of them are of density at most 1 − ε0.
Since the overall density is α > 1− ε0, the two events do not meet for sufficiently small δ, p.

Thus

P
(
W<1+δ ∩W>1−ε0,p

)
= 0. (14)

We turn to the last term on the right-hand side of (10). The condition W<1+δ implies that

there is at least one 1 ≤ j ≤ B such that the density of Ij is at least 1+δ. Since the threshold

of 2-SAT is 1, this Ij is UNSAT w.h.p., and in particular I is such. Hence:

lim
n→∞

P
(
U = 1

∣
∣W<1+δ

)
= 0. (15)

By (10), (13), (14) and (15), I is UNSAT w.h.p.

(b) In this part we employ the approach of part (a) with minor changes. We may assume h(n) =
θ1
√
n for some θ1 > 0.

(i) Consider (10). In the first term on the right-hand side, as pn/h2(n) ≤ θ2 for some θ2 > 0,

by (12) we have

limn→∞P (U = 1 |W<1+δ ∩W>1−ε0,p ) ≤ e−θ·θ2/ε03 . (16)

(14) and (15) still hold in this case. Thus, by (10), (14), (15) and (16),

limn→∞P (U = 1) ≤ e−θ·θ2/ε03 < 1.

In the other direction, let α
′

be strictly between α and 1. Similarly to (10),

P (U = 1) ≥ P
(
W<α

′

)
P
(
U = 1

∣
∣W<α

′

)
. (17)

First, consider the second factor on the right-hand side of (17). Given that W<α′ has

occurred, for some (m1, . . . , mk) ∈ I<α′ the event
⋂B

i=1 {Wi = mi} has occurred. Sim-

ilarly to (11),

P
(
U = 1

∣
∣W<α′

)
≥

B∏

i=1

P
(

Ui = 1
∣
∣
∣Wi = α

′ · h(n)
)

= P
(

U1 = 1
∣
∣
∣W1 = α

′ · h(n)
)B

.

By (8), for some θ3, θ4 > 0

limn→∞P
(
U = 1

∣
∣W<α′

)
≥ lim

n→∞

(

1− θ3
h(n) · (1− α′) 3

)n/h(n)

= lim
n→∞

(

1− θ−1
1 · θ3 ·

(
1− α

′
)−3

√
n

)√
n/θ1

= e−θ4 > 0.
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Now consider the first factor on the right-hand side of (17). By (9), w.h.p. the number

of clauses in the sub-instance Ii with the maximal number of clauses is bounded above

by
m

B
· (1 + o(1)) · α · h(n).

Thus the density of all Ij-s is bounded by

(1 + o(1)) · α · h(n)
h(n)

−−−→
n→∞

α < α
′

,

namely

P
(
W<α′

)
−−−→
n→∞

1. (18)

By (17)-(18)

limn→∞P (U = 1) ≥ 1 · e−θ4 > 0.

Therefore, I is SAT with probability bounded away from both 0 and 1.

(ii) Similarly to (10), and with p > 0 to be determined later,

P (U = 1) ≤ P (U = 1 |W≥1,p ) + P
(
W≥1,p

)
. (19)

Consider the first addend on the right-hand side of (19). Similarly to (11),

P (U = 1 |W≥1,p ) ≤
pB
∏

i=1

P (Ui = 1 |Wi = h(n)) = P (U1 = 1 |W1 = h(n))pB .

By (7), for some 0 < θ2 < 1 and θ3 > 0

P (U = 1 |W≥1,p ) ≤ θ
p
√
n/θ3

2 −−−→
n→∞

0. (20)

Consider the second addend on the right-hand side of (19). Define the variables Xj , 1 ≤
j ≤ n, as follows: Xj = 1 if the j-th clause consists of variables from the first com-

munity, and Xj = 0 otherwise. Thus, Xj ∼ Ber(1/B). The variables X1, . . . , Xn are

independent, |Xj| ≤ 1 for 1 ≤ j ≤ n and

n∑

j=1

V (Xj) = n · 1
B

(

1− 1

B

)

= h(n)

(

1− h(n)

n

)

−−−→
n→∞

∞.

Thus, by a version of the Central Limit Theorem [27, Corollary 2.7.1]

∑n
j=1Xj − E

(
∑n

j=1Xj

)

√∑n
j=1 V (Xj)

D−−−→
n→∞

N(0, 1).

Clearly, E
(
∑n

j=1Xj

)

= E(W1) = h(n). Thus, for large n we have

P (W1 ≥ h(n)) = P

(

W1 − h(n)
√

h(n)(1− h(n)/n)
≥ 0

)

≈ Φ(0) =
1

2
. (21)
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(We mention in passing that, in fact, we do not need the Central Limit Theorem for our

purpose. By [21, Theorem 1], as W1 ∼ B(n, h(n)/n) and h(n)/n > 1/n

P (W1 ≥ h(n)) = P (W1 ≥ E(W1)) >
1

4
.

This inequality is weaker than (21), but suffices for the proof.)

Define the variables

Di =

{

1, Wi ≥ h(n),

0, otherwise,
1 ≤ i ≤ B.

The Di-s are Ber(p0)-distributed, where p0 = P (W1 ≥ h(n)). Let D =
∑B

i=1Di. By

(21)

E(D) = B · P (W1 ≥ h(n)) > B/3.

Consider the proportion of sub-instances with at least h(n) clauses. We want to find

a p > 0 such that P (D > pB) −−−→
n→∞

1. By [15, Lemma 2], the variables Di are

negatively correlated, and hence

V (D) =
B∑

i=1

V (Di) + 2
∑

1≤i<j≤B

Cov(Di, Dj)

≤ B · V (D1) = B · p0(1− p0) ≤ B/4.

By the one-sided Chebyshev inequality for any p1 > 0

P
(
D −E (D) ≥ −p1B

)
≥ 1− V (D)

V (D) + p21B
2
≥ 1− B/4

p21B
2
= 1− 1

4p21B
−−−→
n→∞

1.

Thus
P
(
D ≥ E(D)− p1B

)
= P

(
D ≥ B/3− p1B

)
−−−→
n→∞

1.

Therefore for p = 1/6 w.h.p. D > B/6. Thus

P
(
W≥1,1/6

)
−−−→
n→∞

0. (22)

(c)

(i) Let α
′ ∈ (1− ε0, α). Similarly to (10)

P (U = 0) ≤ P
(
U = 0

∣
∣W<α′

)
+ P

(
W<α′

)
. (23)

Consider the first term on the right-hand side of (23). Similarly to the proofs of

the previous parts, given that the event W<α′ has occurred, the density of each

sub-instance Ii is less than α
′

, and thus,

P
(
Ui = 0

∣
∣W<α′

)
≤ P

(

Ui = 0
∣
∣
∣Wi = α

′ · h(n)
)

, 1 ≤ i ≤ B.
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Employing the union bound

P
(
U = 0

∣
∣W<α

′

)
≤

B∑

i=1

P
(

Ui = 0
∣
∣
∣Wi = α

′ · h(n)
)

= B · P
(

U1 = 0
∣
∣
∣W1 = α

′ · h(n)
)

.

(24)

By (8), as α
′

> 1− ε0, for some θ > 0

P
(

U1 = 0
∣
∣
∣W1 = α

′ · h(n)
)

<
θ

h(n) · (1− α′)3
. (25)

By (24) and (25), and as h(n) = ω(
√
n)

P
(
U = 0

∣
∣W<α

′

)
≤ n

h2(n)
· θ

(1− α′)3
−−−→
n→∞

0. (26)

By (26), (18) and (23), I is SAT w.h.p

(ii) Start from (19). Consider the first term on the right-hand side of (19). As h(n) =
o(n), similarly to (20) we have

P (U = 1 |W≥1,p ) ≤ θ
pn/h(n)
1 −−−→

n→∞
0.

By (22), for sufficiently small p, the second term on the right-hand side of (19)

will vanish.Thus, I is UNSAT w.h.p.

(d)

(i) In part (c).(i) we only used the fact that h(n) = ω(
√
n), so that the proof there

applies here as well.

(ii) In this case we may assume that B = B0 is fixed. By (9), the density of the

sub-instance Ii with the maximal number of clauses is bounded above by

1

h(n)
·
(

m

B
+

√

2m lnB

B

)

= 1 +

√

2 lnB0

n/B0
.

Thus, denoting α
′

(n) = 1 +
√

2B0 lnB0/n, we have

P
(

W≤α′(n)

)

−−−→
n→∞

1. (27)

By (17),

P (U = 1) ≥ P
(

W≤α′ (n)

)

P
(

U = 1
∣
∣
∣W≤α′(n)

)

.

By (7), and similarly to (10), for some θ > 0,

P
(

U = 1
∣
∣
∣W≤α′ (n)

)

≥ θB0 > 0. (28)
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Thus, by (27)-(28), I is SAT with probability bounded away from 0.

In the other direction, there is at least one sub-instance Ii with density at least 1.

Without loss of generality assume that the density of the first sub-instance I1 is at

least 1 and thus, for the same θ as above

P (U1 = 1) ≤ θ < 1.

Therefore,

P (U = 1) =
B∏

i=1

P (Ui = 1) ≤ P (U1 = 1) < 1.

Thus, I is SAT with probability bounded away from both 0 and 1.

The proof of Theorem 3.8 follows Chvátal and Reed [10]. The case p = 0 follows from

Proposition 3.1. We will thus assume that p > 0.

We first recall two definitions and their relevance to the satisfiability/unsatisfiability of an in-

stance.

Definition 4.2. [10] A bicycle is a formula that consists of at least two distinct variables v1, . . . , vs
and clauses C0, C1, . . . , Cs with the following structure: there are literals l1, . . . , ls such that each

li is either vi or vi, we have Ci = li
∨
li+1 for all 1 ≤ i ≤ s − 1, C0 = u

∨
l1, and Cs = ls

∨
v

where u, v ∈ {v1, . . . , vs, v1, . . . , vs}.
Chvátal and Reed [10] proved that every unsatisfiable formula contains a bicycle.

Definition 4.3. [10] A snake is a sequence of distinct literals l1, . . . , ls such that no li is the com-

plement of another.

Chvátal and Reed [10] proved that, for a snake A consisting of the literals l1, . . . , ls, the formula

FA, consisting of the s + 1 clauses li
∨

li+1 for all 0 ≤ i ≤ s with l0 = ls+1 = lt, is unsatisfiable.

Proof of Theorem 3.8: Suppose that

lim
n→∞

m

n
= r.

We have to show that for r < 1 our formula is satisfiable w.h.p., while for r > 1 it is unsatisfiable

w.h.p.

First suppose that r < 1. Let p′ be the probability that our formula contains a bicycle. We will

derive an upper bound for p′. To derive this upper bound, we will add up the probabilities of our

formula containing each specific bicycle. Thus, first take some specific bicycle, consisting of s+1
clauses C0, C1, . . . , Cs as in Definition 4.2 for some 2 ≤ s ≤ n. Also, suppose that exactly j out

of the clauses C1, C2, . . . , Cs−1 consist of two variables from the same community. There are at

most ms+1 choices as to which of the m clauses will make up the clauses C0, C1, C2, . . . , Cs in our

formula. The probability of a clause in the formula to be some specific clause, with both variables

in the same community, in our bicycle is

1− p

4B
(
n/B
2

) ,
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whereas if the variables are in different communities then this probability is

p
(
B
2

) (
2n
B

)2 .

Then the probability that our formula will contain this specific bicycle is bounded above by

(1− p)jps−1−jms+1

((
2n
2

))2
(

4B
(
n/B
2

))j ((
B
2

) (
2n
B

)2
)s−1−j =

Bs−1(1− p)jps−1−jms+1

n2s−j(2n− 1)2(2n− 2B)j(2(B − 1))s−1−j
.

Now we count the number of possible bicycles. Suppose we restrict ourselves to bicycles such that

exactly j clauses out of C1, C2, . . . , Cs−1 as defined above each consists of two variables from the

same community. There are
(
s−1
j

)
ways to choose these clauses. Then if we pick the literals for

the bicycle one at a time, we have 2n choices for the first literal since we have n Boolean variables

in total. If C1 is supposed to contain both variables from the same community, then there are
2n
B
−2 choices for the second literal. On the other hand, if C1 is supposed to contain variables from

different communities, then there are
2(B−1)n

B
choices for the second literal. Continuing in this way,

we see that there are less than 2n
(
2n
B

)j
(

2(B−1)n
B

)s−1−j

choices for the literals in the bicycle. Also,

there are at most s2 choices for u and v. Hence, assuming 2n > B, we have

p′ <

n∑

s=2

s2
s−1∑

j=0

(
s− 1

j

)

(2n)s
(
1

B

)j (
B − 1

B

)s−1−j

· Bs−1(1− p)jps−1−jms+1

n2s−j(2n− 1)2(2n− 2B)j(2(B − 1))s−1−j

=

n∑

s=2

s2
s−1∑

j=0

(
s− 1

j

)
2j+1nj−s(1− p)jps−1−jms+1

(2n− 1)2(2n− 2B)j

=
n∑

s=2

2s2ps−1ms+1

ns(2n− 1)2

s−1∑

j=0

(
s− 1

j

)(
2n(1− p)

p(2n− 2B)

)j

=
2m2

n(2n− 1)2

n∑

s=2

s2
(
2nm− 2pBm

n(2n− 2B)

)s−1

.

By a geometric series argument, the sum above is finite, and so p′ = O
(
1
n

)
. Thus, the satisfiability

threshold is at least 1.

Now suppose r > 1. We will also assume that p < 1. (If p = 1, the proof is actually simpler.)

For each n ∈ N, choose a t = t(n) ∈ N in such a way that

lim
n→∞

t/ logn =∞, lim
n→∞

t/n1/9 = 0. (29)

Let s = 2t − 1. We will show that our formula contains a formula FA of a snake A consisting of

s literals w.h.p. Thus, our formula will be unsatisfiable w.h.p. We use the second moment method.

Let X =
∑

XA, where XA = 1 if our formula contains each clause of FA exactly once, and

XA = 0 otherwise. We will prove that

E(X2) ≤ (1 + o(1))E(X)2, (30)
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from which the desired result may be deduced using Chebyshev’s inequality. Consider an arbitrary

snake A. Suppose that FA contains exactly t1 clauses each consisting of a pair of variables from

different communities and exactly t2 clauses each consisting of variables from the same community.

We have E(XA) = f(t1, t2), where

f(x1, x2) =

m−x2∑

i=x1

pi(1− p)m−i

(
m

i

)(
i

x1

)(
m− i

x2

)

x1!x2!

(

1

4
(
B
2

)
n2

B2

)x1
(

1

4B
(
n/B
2

)

)x2

·
(

1− x1

4
(
B
2

)
n2

B2

)i−x1
(

1− x2

4B
(
n/B
2

)

)m−i−x2

= (1− p)x2px1

(

1

4
(
B
2

)
n2

B2

)x1
(

1

4B
(
n/B
2

)

)x2

m!

(m− x1 − x2)!

·
(

(1− p)

(

1− x2

4B
(
n/B
2

)

)

+ p

(

1− x1

4
(
B
2

)
n2

B2

))m−x1−x2

.

Take two snakes A and A′, where FA contains exactly t1 clauses with variables from different

communities and exactly t2 clauses with variables from the same community, and FA′ contains

exactly t3 clauses with variables from different communities and exactly t4 clauses with variables

from the same community. Also, suppose FA and FA′ share precisely i1 clauses with variables

in different communities and precisely i2 clauses with variables from the same community. Then

E(XAXA′) = f(t1 + t3 − i1, t2 + t4 − i2). Since m = O(n), we have

f(x1, x2) = (1 + o(1))

(
Bpm

2(B − 1)n2

)x1
(
B(1− p)m

2n2

)x2

(31)

uniformly in both cases if we assume that x1, x2 = O(nα) where α < 1/2.

Now let us count the snakes A such that FA contains exactly t1 clauses with variables from

different communities and exactly t2 clauses with variables from the same community. We de-

note the set of all such snakes as St1,t2 . First, we may view FA as a directed graph with vertices

y1, . . . , ys (where each yi is the variable such that li is yi or yi) and edges yiyi+1, 0 ≤ i ≤ s, with

y0 = ys+1 = yt. This directed graph consists of two direct cycle graphs, each consisting of t
vertices and having exactly one vertex in common (the vertex y0 = ys+1 = yt). Each edge corre-

sponds to a clause in FA. Consider the t2 edges corresponding to the t2 clauses with variables in

different communities. Let j1 and j2 be the number of such edges in each of the two cycle graphs

that make up the whole graph. We can see that j1, j2 6= 1. For k = 1, 2 for the cycle with the jk
edges, there will be

(
t
jk

)
ways to choose these jk edges. These jk edges will then partition the set

of vertices into max{1, jk} groups, where the variables corresponding to the vertices in a group

will belong to the same community. Thus, the number of ways of choosing the community of each

of the variables corresponding to the vertices in this cycle graph is the chromatic number of the

cycle graph consisting of max{1, jk} vertices in B colours or (B − 1)jk + (jk − 1) (−1)jk . After

choosing all of these communities for each cycle graph, we are left with choosing the variables

from these communities, and there will be at least n
B
−s choices per vertex after making the choice
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for the vt variable. Putting it altogether, the number of such snakes will be bounded below by

2n

B

(
2n

B
− 2s

)s−1 ∑

j1+j2=t1
j1 6=1,j2 6=1

(
t

j1

)(
t

j2

)

·((B − 1)j1 + (B − 1)(−1)j1) ((B − 1)j2 + (B − 1)(−1)j2)
B

and bounded above by

(
2n

B

)s ∑

j1+j2=t1
j1 6=1,j2 6=1

(
t

j1

)(
t

j2

)

· ((B − 1)j1 + (B − 1)(−1)j1) ((B − 1)j2 + (B − 1)(−1)j2)
B

.

By (29), the latter is asymptotic to the actual number of such snakes as n→ ∞. By (31), we thus

have:

E(X) ∼
2t∑

t1=0

(
Bpm

2(B − 1)n2

)t1 (B(1− p)m

2n2

)2t−t1 (2n

B

)2t−1

·
∑

j1+j2=t1

(
t

j1

)(
t

j2

)

· ((B − 1)j1 + (B − 1)(−1)j1) ((B − 1)j2 + (B − 1)(−1)j2)
B

=
1

B

(
2n

B

)2t−1(
B(1− p)m

2n2

)2t
(

t∑

j=0

(
t

j

)(
p

(B − 1)(1− p)

)j
(
(B − 1)j + (B − 1)(−1)j

)

)2

=
1

B

(
2n

B

)2t−1(
B(1− p)m

2n2

)2t
((

1 +
p

(1− p)

)t

+ (B − 1)

(

1− p

(B − 1)(1− p)

)t
)2

=
1

2n

(
(m

n

)t

+ (B − 1)

(
(1− p)m

n
− mp

n(B − 1)

)t
)2

∼ 1

2n

(m

n

)2t

. (32)

By (29), we have

E(XAXA′) = (1 + o(1))E(XA)E(XA′)

(
2(B − 1)n2

Bpm

)i1 ( 2n2

B(1− p)m

)i2

uniformly in the range 0 ≤ i1, i2 ≤ 2t. In particular, if FA and FA′ have no clauses in common,

then E(XAXA′) = (1 + o(1))E(XA)E(XA′). Thus, to prove (30), our main concern will be when

FA and FA′ have clauses in common. To deal with this case, we will derive an upper bound for

∑

|FA∩FA′ |=i

E (XAXA′)

(where FA ∩ FA′ denotes the set of common clauses of FA and FA′) for each 1 ≤ i ≤ 2t. First

consider how we can construct two snakes A and A′ such that FA and FA′ have i clauses in common

and account for its contribution to the above sum. Viewing FA and FA′ as graphs as above, we let
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FAA′ be their intersection, with isolated vertices removed. Suppose that FAA′ contains i edges and

j vertices. To construct the possible snakes A and A′, we create a procedure with five steps:

1) Choose j terms of A for membership in FAA′ .

2) Assign variables to these j terms.

3) Choose which positions in the snake A′ will be filled with terms in FAA′ .

4) Assign variables to the positions in A′ picked out in step 2).

5) Assign variables to all other positions in A and A′.
For 1), we can select our j terms of A as follows. We first decide if the edge y0y1 is in FAA′ or

not, and then, for each 1 ≤ r ≤ s, we place a marker at yr if exactly one of yr−1yr and yryr+1 is

in FAA′ . The total number of markers will be between 2(j − i) − 1 and 2(j − i) + 2, and so the

total number of choices for the j terms is at most 2
(

s+3
2j−2i+2

)
. Thus, the total number of choices for

3) will also be at most 2
(

s+3
2j−2i+2

)
. Also, we have at most tk!2k choices for step 4), where k is the

number of components in FAA′ .

For step 2), if we impose the restriction that i1 edges among the j vertices correspond to the

clauses with variables in different communities, then the number of ways to assign such variables is
(
i
i1

) (
2n
B

)j
Bk(B−1)i1 . As well, for step 5), if we impose the restrictions that, of the remaining 2t−i

clauses in A, there are exactly t1 with variables in different communities, and that of the remaining

2t − i clauses in A′ there are exactly t2 clauses with variables in different communities, then the

number of ways to assign such variables is bounded above by
(
2t−i
t1

)(
2t−i
t2

) (
2n
B

)2s−2j
(B − 1)t1+t2 .

First suppose that 1 ≤ i ≤ t − 1. Then none of the components of FAA′ may contain loops,

so that k = j − i. Putting it all together, weighing all of the possible pairs of snakes A and A′,
appropriately using (29), we obtain

∑

|FA∩FA′ |=i

E (XAXA′) <
∑

j≥i+1

9

2

(
s+ 3

2j − 2i+ 2

)2

t · (j − i)!(2B)j−i

·
((

2n

B

)j i∑

i1=0

(
i

i1

)(
Bpm

2n2

)i1 (B(1− p)m

2n2

)i−i1
)

·
((

2n

B

)s−j 2t−i∑

t1=0

(
2t− i

t1

)(
Bpm

2n2

)t1 (B(1− p)m

2n2

)2t−i−t1
)2

<
9B2t(2t + 2)4

8n2

(m

n

)4t−i ∑

j≥i+1

(
B3(2t+ 2)4

n

)j−i

for sufficiently large n. Thus by (32) we have for sufficiently large n

∑

|FA∩FA′ |=iE (XAXA′)

E(X)2
< 5t(2t+ 2)4

( n

m

)i ∑

j≥i+1

(
B3(2t+ 2)4

n

)j−i

<
2600B3t9

n

( n

m

)i

.

Now suppose that t ≤ i ≤ 2t. We have two possibilities for the components of FAA′ . Either none

of them contains loops or exactly one of them contains a loop and the number of loops in this
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component is exactly 1 or 2, where the possible loops are y0, y1, . . . , yt and yt, yt+1 . . . , ys+1. In

either case we have k ≤ j − i+ 2. Thus,

∑

|FA∩FA′ |=i

E (XAXA′) <
∑

j≥i+1

9

2

(
s+ 3

2j − 2i+ 2

)2

t · (j − i)!(2B)j−iB2

·
((

2n

B

)j i∑

i1=0

(
i

i1

)(
Bpm

2n2

)i1 (B(1− p)m

2n2

)i−i1
)

·
((

2n

B

)s−j 2t−i∑

t1=0

(
2t− i

t1

)(
Bpm

2n2

)t1 (B(1− p)m

2n2

)2t−i−t1
)2

<
9B6t(2t + 2)4

2n2

(m

n

)4t−i ∑

j≥i+1

(
B3(2t+ 2)4

n

)j−i

.

By (32), for sufficiently large n
∑

|FA∩FA′ |=iE (XAXA′)

E(X)2
< 20B4t(2t+ 2)4

( n

m

)i ∑

j≥i+1

(
B3(2t+ 2)4

n

)j−i

<
10400B7t9

n

( n

m

)i

.

Thus
2t∑

i=1

∑

|FA∩FA′ |=i E (XAXA′)

E(X)2
<

2t∑

i=1

10400B7t9

n

( n

m

)i

= o(1),

from which we can deduce (30).

5 Empirical results

To test the question posed after Theorem 3.8, we have conducted the following experiment. We

have taken n = 106, and m = n + c · n2/3, with c = −1, 0, 1, 2. (This non-symmetric range

was due to preliminary simulations, that showed that the interesting window is actually centered

somewhat above n. For each such m, we generated 105 random instances from F
(
n,m, 2, P(1,1)

)

and F
(
n,m, 1, P(2)

)
(which is just the random model), tested each instance using the SAT solver

SAT4J, described in [8], and calculated the percentage of satisfiable instances in each group. To

complete the picture, we did the same for the model F
(
n,m, 2, P(2)

)
.

The results are presented in Table 3. The first two models show remarkably similar results.

Unsurprisingly, the third model leads to lower satisfiability probabilities.

6 Conclusions

We have dealt with the satisfiability threshold of a particular model of SAT. This model highlights

one of the features in which so-called community-structured SAT instances differ from classical
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F
m 0.99 · 106 106 1.01 · 106 1.02 · 106

F
(
n,m, 2, P(1,1)

)
0.980 0.909 0.641 0.201

F
(
n,m, 1, P(2)

)
0.980 0.908 0.644 0.203

F
(
n,m, 2, P(2)

)
0.946 0.827 0.521 0.142

Table 3: Percentage of satisfiable instances (out of 105 instances) for n = 106.

SAT instances. Namely, the set of variables decompose into several disjoint subsets-communities.

The significance of these communities stems from the fact that clauses tend to contain variables

from the same community. We have shown, roughly speaking, that the satisfiability threshold of

such instances tends to be lower than for regular instances. Moreover, if the communities are very

small, the threshold may even vanish.

The paper leaves a lot to study for industrial SAT instances. To begin with, there are other

features considered in the literature as being characteristic of industrial instances. For example,

in the scale-free structure, the variables are selected by some heavy-tailed distribution. Moreover,

even regarding the issue of communities, there is more to be done. We assumed here that all com-

munities are of the same size. Obviously, there is no justification for this assumption beyond the

fact that it simplifies significantly the analysis of the model. What can be said about the threshold

if there are both small and large communities? Even prior to that, what would be reasonable to

assume regarding the probability of a variable to be selected from each of the communities?
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A Proof of Theorem 3.5

In the proof of Theorem 3.5 we shall use the following lemma, which is analogous to Lemma 3.4.

Lemma A.1. Consider the balls and bins problem with B bins and M(B) balls, and also with B
bins and M

′

(B) balls, where M
′

(B) = ω(M(B)). If the maximum load for M(B) balls is at least

s ≥ 1 with probability bounded away from 0, then the maximum load for M
′

(B) is at least s w.h.p.

Proof: Assume we part the balls into b(B) = M
′

(B)/M(B) disjoint batches of M(B) balls

each. Suppose we toss the balls in each batch into the bins separately, and check the maximum

load for each batch. Let Li be the maximum load for batch i, 1 ≤ i ≤ b(B). According to our

assumption, there exists an ε > 0 such that

P (Li ≥ s) ≥ ε, i = 1, 2, . . . , b(B).

Let L be the maximum load in the case we place all the M
′

(B) balls into the B bins. The

events {Li ≥ s} , 1 ≤ i ≤ b(B), are independent, and we clearly have

{L < s} ⊆
b(B)
⋂

i=1

{Li < s} .

Hence:

P (L ≥ s) = 1− P (L < s) ≥ 1− (1− ε)b(B) −−−→
B→∞

1.

The next proof will make use of the notion of negative association of random variables [15]:

Denote [k] = {1, . . . , k} for k > 0. Random variables X1, . . . , Xk are negatively associated if for

every two index sets I, J ⊆ [k], with I ∩ J = ∅,

E
(

f1(Xi; i ∈ I)f2(Xj; j ∈ J)
)

≤ E
(

f1(Xi; j ∈ I)
)

E
(

f2(Xj; j ∈ J)
)

,

for every two functions f1 : R
|I| → R and f2 : R

|J | → R, which are both non-decreasing or both

non-increasing.

In the proof of Theorem 3.5, we will make use of the following result, concerning the balls

and bins problem. Let Yi denote the number of balls placed in the i-th bin, 1 ≤ i ≤ B. Let gi :
R→ R be non-decreasing functions, 1 ≤ i ≤ B. By [15, Lemma 2], the variables Y1, . . . , YB are

negatively associated, and in particular the gi(Yi)-s are negatively correlated.

Proof of Theorem 3.5: Let Y1, . . . , YB be as above. We clearly have

Yi ∼ B (M(B), 1/B) , 1 ≤ i ≤ B.

Define the variables

Si =

{

1, Yi ≥ s,

0, otherwise,
1 ≤ i ≤ B.
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The Si-s are Ber(p)-distributed, where p = P (Y1 ≥ s). Let S =
∑B

i=1 Si.

(a) We use the first moment method. Obviously:

P (S > 0) = P (S ≥ 1) ≤ E(S) = Bp.

Let us index the balls from 1 to M(B), and let Mj = 1 if the j-th ball entered the first bin and

Mj = 0 otherwise, 1 ≤ j ≤ M(B). Thus, the Mj-s are Ber(1/B)-distributed. Let J =
(
[M(B)]

s

)

denote the set of subsets of size s of [M(B)]. By the union bound and symmetry:

p = P (Y1 ≥ s) = P
(⋃

J∈J

⋂

j∈J
{Mj = 1}

)

≤
(
M(B)

s

)

· P
(

M1 = . . . = Ms = 1
)

=

(
M(B)

s

)(
1

B

)s

.

Since M(B) = o(B1−1/s),

P (S > 0) ≤ B ·
(
M(B)

s

)(
1

B

)s

≤ B · M(B)s

Bs
=

(
M(B)

B1−1/s

)s

−−−→
B→∞

0.

Thus, w.h.p. the maximum load does not exceed s− 1.

(b) We employ the second moment method. First, if M(B) ≥ Bs, then there must be at least

one bin with at least s balls in it. Thus we may assume that
M(B)
B

< s. We have

E(S) = B · P (Y1 ≥ s) = B ·
M(B)
∑

j=s

(
M(B)

j

)(
1

B

)j (

1− 1

B

)M(B)−j

≥ B ·
(
M(B)

s

)(
1

B

)s(

1− 1

B

)M(B)−s

.

For sufficiently large B we have M(B) ≥ 2s, and therefore

E(S) ≥ B · (M(B)/(2B)) s

s!
·
((

1− 1

B

)B
)(M(B)−s)/B

≥ B · (M(B)/(2B)) s

s!
· e−2M(B)/B .

Thus we have

s!E(S) ≥ B · e−2M(B)/B ·
(
M(B)

2B

)s

≥ e−2s

(
M(B)

2B1−1/s

)s

(33)

By [15], the variables Y1, . . . , YB are negatively associated. Since each Si is a non-decreasing

function of Yi, this yields Cov(Si, Sj) ≤ 0 for i 6= j. Hence:

V (S) =

B∑

i=1

V (Si) + 2
∑

1≤i<j≤B

Cov(Si, Sj)

≤ B · V (S1) = B · p(1− p) < B · p = E(S).
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As S ≥ 0, the Paley–Zygmund inequality [36] yields

P (S > 0) ≥ E2(S)

E(S2)
=

E2(S)

V (S) + E2(S)
>

E2(S)

E(S) + E2(S)
=

E(S)

1 + E(S)
. (34)

By (33), we have E(S) −−−→
B→∞

∞. Also, by (33) and (34), we have

P (S > 0) >
E(S)

1 + E(S)

and so P (S > 0) −−−→
B→∞

1. Thus, w.h.p. the maximum load is at least s.

(c) The first statement follows from parts (a) and (b), applied with s+1 and s−1, respectively,

instead of s. For the convergence part, suppose (1) holds. Observe that there are BM possible ways

to distribute the M balls into the B bins. Obviously, XB =
∑B

i=1 1yi=s. Let 1 ≤ t ≤ B. We will

prove that

lim
B→∞

E

(
X

t

)

=
Cst

(s!)tt!
. (35)

Specify t bins, say i1, i2, . . . , it out of the B bins. The number of balls in bins i1, i2, . . . , it, and all

of the other bins combined forms a multinomial distribution. It follows that

E

(
XB

t

)

=

(
B
t

)(
M
s

)(
M−s
s

)(
M−2s

s

)
· · ·
(
M−(t−1)s

s

)
(B − t)M−ts

BM
.

As B →∞, we thus have

E

(
XB

t

)

= (1 + o(1))
Mst(B − t)M−ts

t!s!tBM−t

= (1 + o(1))
CstBst−t(B − t)M−ts

t!s!tBM−t

= (1 + o(1))
CstBst(B − t)M−ts

t!s!tBM

= (1 + o(1))
Cst(1− t/B)−ts(1− t/B)M

t!(s!)t
.

From (1), we have

lim
B→∞

M

B
= 0

and so (35) holds. The desired result follows from Brun’s sieve, which is stated in Theorem 2.1 of

[3].
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